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SIMULATION FROM ENDPOINT-CONDITIONED,
CONTINUOUS-TIME MARKOV CHAINS ON A FINITE STATE
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Analyses of serially-sampled data often begin with the assumption that
the observations represent discrete samples from a latent continuous-time
stochastic process. The continuous-time Markov chain (CTMC) is one such
generative model whose popularity extends to a variety of disciplines rang-
ing from computational finance to human genetics and genomics. A common
theme among these diverse applications is the need to simulate sample paths
of a CTMC conditional on realized data that is discretely observed. Here
we present a general solution to this sampling problem when the CTMC is
defined on a discrete and finite state space. Specifically, we consider the gen-
eration of sample paths, including intermediate states and times of transi-
tion, from a CTMC whose beginning and ending states are known across a
time interval of length T . We first unify the literature through a discussion
of the three predominant approaches: (1) modified rejection sampling, (2) di-
rect sampling, and (3) uniformization. We then give analytical results for the
complexity and efficiency of each method in terms of the instantaneous tran-
sition rate matrix Q of the CTMC, its beginning and ending states, and the
length of sampling time T . In doing so, we show that no method dominates
the others across all model specifications, and we give explicit proof of which
method prevails for any given Q,T, and endpoints. Finally, we introduce and
compare three applications of CTMCs to demonstrate the pitfalls of choosing
an inefficient sampler.

1. Introduction. This paper considers the problem of conditional sampling
from a continuous-time Markov chain (CTMC) defined on a discrete and finite
state space. In the ideal case, given continuously-observed sample paths, statis-
tical inference is straightforward: the sufficient statistics are simply the number
of transitions between any two states and the total time spent in each state [e.g.,
Guttorp (1995), Section 3.7]. In most applications of CTMCs, however, the sto-
chastic process {X(t) : 0 ≤ t ≤ T } serves as a continuous-time model for data sam-
pled at discrete points in time T0 = 0 < T1 < · · · < TN−1 < TN = T . Sometimes
this discretized problem remains amenable to closed-form analysis, and in such
cases sampling is unnecessary. Examples from the literature include Holmes and
Rubin (2002) and Hobolth and Jensen (2005), both of whom motivated EM al-
gorithms by showing how to calculate the number of transitions between any two
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states and the time spent in a state for an endpoint-conditioned CTMC. More re-
cently, Siepel, Pollard and Haussler (2006) showed how to calculate the probabil-
ity mass function for the number of transitions, and Minin and Suchard (2008)
derived analytically tractable results for the moments of the number of transi-
tions between any two states. Our work complements these approaches, focus-
ing on the case where parametric inference relies upon the simulation of continu-
ous sample paths from the CTMC conditional on X(T0), . . . ,X(TN). As a conse-
quence of the Markov assumption, knowledge of the data X(T0), . . . ,X(TN) effec-
tively partitions the process into independent components {X(t) :Tk ≤ t ≤ Tk+1}
whose endpoints X(Tk) and X(Tk+1) are known. Thus, sampling a realization
from {X(t) : 0 ≤ t ≤ T } given the observed data amounts to sampling from N

independent and identical CTMCs, each conditioned on its endpoints X(Tk) and
X(Tk+1) and spanning a fixed interval of time Tk+1 − Tk . In what follows, we
specialize to one of these N components, focusing on how to simulate sample
paths from a CTMC when only its endpoints are known. Crucially, while calculat-
ing the sufficient statistics from the simulated data remains easy, the simulations
themselves may be prohibitively time-consuming without an efficient strategy for
generating sample paths.

The wide applicability of CTMCs to serially-sampled data has accelerated their
entry into the interdisciplinary literature, and several recent papers have specif-
ically considered the problem of sampling paths from an endpoint-conditioned
process. Blackwell (2003), for example, discusses a naive rejection sampling
method as it applies to the analysis of radio-tracking data. A similar approach
is considered in Bladt and Sørensen (2005), the motivation there coming from
the field of mathematical finance. For our purposes, a naive rejection sampling
method is one that simulates sample paths forward in time according to the speci-
fied process: as a consequence of endpoint conditioning, rejection of a sample path
occurs whenever there is disagreement between the simulated and observed ending
states. Nielsen (2002) improves upon the naive rejection sampling approach in an
application to molecular evolution. His method, which we call “modified rejection
sampling,” conditions on the event that one state change must have occurred in
cases where the observed endpoints of the process are not the same. Nevertheless,
despite Nielsen’s improvement, sampling forward in time without specific regard
to the ending state may lead to a prohibitively low rate of path acceptance. As an al-
ternative, Hobolth (2008) suggests a direct sampling procedure based on analytical
expressions for the probabilities of state transitions and their waiting times. A final
approach, often called uniformization, originates with the work of Jensen (1953).
The idea is to construct a related process that permits virtual transitions (in which
the state does not change) so that the number of state transitions in a time interval
can be seen as Poisson distributed and the state transitions themselves constitute a
Markov chain. Sampling from this related process is equivalent to sampling from
the target CTMC provided that the virtual changes are ignored. Recent applica-
tions can be found in Fearnhead and Sherlock (2006), Lartillot (2006), Mateiu and
Rannala (2006), and Rodrigue, Philippe and Lartillot (2008).
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Though developed for distinct applications, each of the aforementioned path-
sampling procedures simulates from the same conditional distribution and thus
solves the same problem. In light of this interchangeability, and because of the im-
portance of path sampling to statistical inference on endpoint-conditioned CTMCs,
it is imperative to ask whether one procedure should be preferred for its com-
putational efficiency. The remainder of the paper seeks an exhaustive answer to
this question. We first give a thorough discussion in Section 2 of the three sam-
pling strategies: (1) modified rejection sampling, (2) direct sampling, and (3) uni-
formization. In Section 3 we introduce three CTMCs that highlight the heteroge-
nous relationship between parameterization of the stochastic process and the effi-
ciency of each sampling strategy. Section 4 then generalizes the results of Section 3
by providing analytical expressions for the efficiency of each sampler for arbitrary
parameterizations of the CTMC. We conclude by summarizing the results into
recommendations on how to best simulate sample paths from any given CTMC. In
doing so, we also identify cases for which one or more of the potential strategies
is guaranteed to fail.

2. Sampling strategies for endpoint-conditioned chains. In this section
we review three strategies for simulating a realization of a finite-state CTMC
{X(t) : 0 ≤ t ≤ T } conditional on its beginning state X(0) = a and ending state
X(T ) = b. The chain is defined by its instantaneous rate matrix Q with off-
diagonal entries Qab ≥ 0 and diagonal entries Qaa = −∑

b �=a Qab = −Qa < 0.
We make the futher assumption that X(t) is irreducible and positive recurrent
so that a stationary distribution π exists. Finally, unless otherwise noted, we set∑

c πcQc = 1 so that one state change is expected per unit time.
To understand the sampling difficulties associated with conditioning a CTMC

on its endpoints, it is useful to first review how one proceeds when the ending
state X(T ) is unobserved. Simulating a sample path of {X(t) : 0 ≤ t ≤ T } that
begins at X(0) = a can be accomplished by a simple iterative procedure. The key
observation is that the waiting time τ to the first state change is exponentially
distributed with mean 1/Qa. If τ > T , there is no state change in the interval
[0, T ], and the corresponding sample path is constant; otherwise, a new state c is
drawn from the discrete probability distribution with probability masses Qac/Qa

and the procedure is iterated for the shorter time interval [τ, T ] (or, equivalently,
for [0, T − τ ]). For reference, we present this forward sampling algorithm below:

ALGORITHM 1 (Forward sampling).

1. Sample τ ∼ Exponential(Qa). If τ ≥ T , we are done: X(t) = a for all t ∈
[0, T ].

2. If τ < T , choose a new state c �= a from a discrete probability distribution with
probability masses Qac/Qa. Repeat the procedure with new beginning state c

and new time interval [τ, T ].
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Under the assumption that the ending state X(T ) = b is observed, conditioning
excludes all paths sampled from the preceding algorithm that fail to end in state b.
This is the essence of the rejection sampling approach, whose modification by
Nielsen we discuss in the next subsection.

2.1. Rejection sampling. As implemented in Blackwell (2003) and Bladt and
Sørensen (2005), naive rejection sampling uses forward sampling to generate can-
didate sample paths of an endpoint-conditioned CTMC. From these, the acceptable
candidates are those for which the simulated ending state and the observed ending
state are the same. In particular, when sampling forward, the probability of hitting
the observed ending state b is Pab(T ) = exp(Qt)ab. Thus, if T is large, this prob-
ability approximately equals the stationary probability πb of b. Conversely, if T is
small and a �= b, the probability is approximately QabT . It follows that in case of
(i) large time T and small stationary probability πb, or (ii) different states a �= b

and small time T , naive rejection sampling is bound to fail. Nielsen’s modification
improves upon naive rejection sampling in the latter case Nielsen (2002). By a
conditioning argument, the time τ to the first state change given at least one state
change occurs before T and X(0) = a has density

f (τ) = Qae
−τQa

1 − e−T Qa
, 0 ≤ τ ≤ T .(2.1)

The corresponding cumulative distribution function is

F(τ) = 1 − e−τQa

1 − e−T Qa
, 0 ≤ τ ≤ T ,

with explicit inverse

F−1(u) = − log[1 − u(1 − e−T Qa )]/Qa.

Thus, upon sampling u from a Uniform(0,1) distribution, transformation yields
the sample waiting time F−1(u) to the first state change of the CTMC.

ALGORITHM 2 (Modified rejection sampling). If a = b:

1. Simulate from {X(t) : 0 ≤ t ≤ T } using the forward sampling algorithm.
2. Accept the simulated path if X(T ) = a; otherwise, return to step 1 and begin

anew.

If a �= b:

1. Sample τ from the density (2.1) using the inverse transformation method, and
choose a new state c �= a from a discrete probability distribution with probabil-
ity masses Qac/Qa.

2. Simulate the remainder {X(t) : τ ≤ t ≤ T } using the forward sampling algo-
rithm from the beginning state X(τ) = c.
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3. Accept the simulated path if X(T ) = b; otherwise, return to step 1 and begin
anew.

In short, modified rejection sampling explicitly avoids simulating constant sam-
ple paths when it is known that at least one state change must take place. This is
particularly beneficial when T is small, as the naive approach will be dominated
by wasted constant sample paths whose ending state remains a [which occurs with
probability approximately (1 − QaT )]. Nevertheless, if the transition from a to b

is unlikely so that Qab/Qa is small, then essentially every sample path will still be
rejected. In such a setting, either direct sampling or uniformization is required.

2.2. Direct sampling. The direct sampling procedure of Hobolth (2008) re-
quires that the instantaneous rate matrix Q admits an eigenvalue decomposi-
tion. Under that assumption, let U be an orthogonal matrix with eigenvectors as
columns and let Dλ be the diagonal matrix of corresponding eigenvalues such that
Q = UDλU

−1. Then, for any time t , the transition probability matrix of the CTMC
can be calculated as

P(t) = eQt = UetDλU−1 and Pab(t) = ∑
j

UajU
−1
jb etλj .(2.2)

Consider first the case where the endpoints of the CTMC are identical so that
X(0) = X(T ) = a. The probability that there are no state changes in the time
interval [0, T ] conditional on X(0) = a and X(T ) = a is given by

pa = e−QaT

Paa(T )
.(2.3)

Thus, with probability pa , a sample path from the CTMC will be the constant
X(t) = a. Furthermore, with probability (1−pa), at least one state change occurs.
Thus, when X(0) = X(T ) = a, the sample path is constant with probability pa ,
and has at least one change with probability (1 − pa).

Next consider the case where X(0) = a and X(T ) = b, with a �= b. Let τ denote
the waiting time until the first state change. The conditional probability that the first
state change is to i at a time smaller than t is

P
(
τ ≤ t,X(τ) = i|X(0) = a,X(T ) = b

)
= P

(
τ ≤ t,X(τ) = i,X(0) = a|X(T ) = b

)
/P

(
X(0) = a|X(T ) = b

)

=
∫ t

0
Qae

−Qaz Qai

Qa

Pib(T − z)

Pab(T )
dz

=
∫ t

0
fi(z) dz,
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where fi(z) is the integrand. Specifically, conditional on the endpoints X(0) = a

and X(0) = b, the probability pi that the first state change is to i is

pi =
∫ T

0
fi(t) dt, i �= a, a �= b.(2.4)

Using (2.2), we can rewrite the integrand as

fi(t) = Qaie
−Qat Pib(T − t)

Pab(T )
= Qai

Pab(T )

∑
j

UijU
−1
jb eT λj e−t (λj+Qa),(2.5)

which renders the integral in (2.4) straightforward. We get

pi = Qai

Pab(T )

∑
j

UijU
−1
jb Jaj ,(2.6)

where

Jaj =
⎧⎪⎨
⎪⎩

T eT λj , if λj + Qa = 0,
eT λj − e−QaT

λj + Qa

, if λj + Qa �= 0.

We now have a procedure for simulating the next state and the waiting time before
the state change occurs. Iterating the procedure allows us to simulate a sample path
{X(t) : 0 ≤ t ≤ T } that begins in X(0) = a and ends in X(T ) = b.

ALGORITHM 3 (Direct sampling).

1. If a = b, sample Z ∼ Bernoulli(pa), where pa is given by (2.3). If Z = 1, we
are done: X(t) = a,0 ≤ t ≤ T .

2. If a �= b or Z = 0, then at least one state change occurs. Calculate pi for all
i �= a from (2.6). Sample i �= a from the discrete probability distribution with
probability masses pi/p−a, i �= a, where p−a = ∑

j �=a pj . [Note that p−a = 1
when a = b and p−a = (1 − pa) otherwise.]

3. Sample the waiting time τ in state a according to the continuous density
fi(t)/pi,0 ≤ t ≤ T , where fi(t) is given by (2.5). Set X(t) = a,0 ≤ t < τ .

4. Repeat procedure with new starting value i and new time interval of length
T − τ .

REMARK 4. In step 3 above, we simulate from the scaled density (2.5) by
finding the cumulative distribution function and then use the inverse transformation
method. To calculate the cumulative distribution function, note that

∫ t

0
eT λj e−s(λj+Qa) ds =

⎧⎪⎨
⎪⎩

teT λj , if λj + Qa = 0,

eT λj
1

λj + Qa

(
1 − e−t (λj+Qa)

)
, if λj + Qa �= 0.

To use the inverse transformation method, we must find the time t such that
F(t) − u = 0, where F(t) is the cumulative distribution function and 0 < u < 1.
In subsequent sections, we have used a (numerical) root finder for this purpose.
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2.3. Uniformization. The final strategy that we consider permits sampling
from X(t) through construction of an auxilliary stochastic process Y(t). Let
μ = maxc Qc and define the process Y(t) by letting the state changes be deter-
mined by a discrete-time Markov process with transition matrix

R = I + 1

μ
Q.(2.7)

Note that, by construction, we allow virtual state changes in which a jump occurs
but the state does not change. Indeed, virtual state changes for state a are possible
if Raa > 0. Next, let the epochs of state changes be determined by an independent
Poisson process with rate μ. The stochastic process Y(t) is called a Markov chain
subordinated to a Poisson process and is equivalent to the original continuous-time
Markov chain X(t) as the following calculation shows:

P(t) = eQt = eμ(R−I )t = e−μt
∞∑

n=0

(μtR)n

n! =
∞∑

n=0

e−μt (μt)n

n! Rn.(2.8)

This approach is commonly referred to as uniformization, and we adopt that lan-
guage here. In what follows, we describe how uniformization can be used to con-
struct an algorithm for exact sampling from X(t), conditional on the beginning
and ending states.

It follows directly from (2.8) that the transition function of the Markov chain
subordinated to a Poisson process is given by

Pab(t) = P
(
X(t) = b|X(0) = a

) = e−μt1(a=b) +
∞∑

n=1

e−μt (μt)n

n! Rn
ab.

Thus, the number of state changes N (including the virtual) for the conditional
process that starts in X(0) = a and ends in X(T ) = b is given by

P
(
N = n|X(0) = a,X(T ) = b

) = e−μT (μT )n

n! Rn
ab/Pab(T ).(2.9)

Given the number of state changes N = n, the times t1, . . . , tn at which those
state changes occur are uniformly distributed in the time interval [0, T ]. Further-
more, the state changes X(t1), . . . ,X(tn−1) are determined by a Markov chain with
transition matrix R conditional on the beginning state X(0) = a and ending state
X(tn) = b.

Putting these things together, we have the following algorithm for simulating a
continuous-time Markov chain {X(t) : 0 ≤ t ≤ T } conditional on the starting state
X(0) = a and ending state X(T ) = b.

ALGORITHM 5 (Uniformization).

1. Simulate the number of state changes n from the distribution (2.9).
2. If the number of state changes is 0, we are done: X(t) = a,0 ≤ t ≤ T .
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3. If the number of state changes is 1 and a = b, we are done: X(t) = a,0 ≤ t ≤ T .

4. If the number of state changes is 1 and a �= b simulate t1 uniformly random in
[0, T ], we are done: X(t) = a, t < t1, and X(t) = b, t1 ≤ t ≤ T .

5. When the number of state changes n is at least 2, simulate n independent
uniform random numbers in [0, T ] and sort the numbers in increasing or-
der to obtain the times of state changes 0 < t1 < · · · < tn < T . Simulate
X(t1), . . . ,X(tn−1) from a discrete-time Markov chain with transition matrix
R and conditional on starting state X(0) = a and ending state X(tn) = b. De-
termine which state changes are virtual and return the remaining changes and
corresponding times of change.

REMARK 6. In Step 1 above, we find the number of state changes n by sim-
ulating u from a Uniform(0,1) distribution and letting n be the first time the cu-
mulative sum of (2.9) exceeds u. When calculating the cumulative sum we need
to raise R to powers 1 through n. These powers of R are stored because they are
required in Step 5 of the algorithm. We use the eigenvalue decomposition (2.2) of
Q to calculate Pab(t).

REMARK 7. In Step 5 above we simulate X(ti), i = 1, . . . , n − 1, from the
discrete distribution with probability masses

P
(
X(ti) = xi |X(ti−1) = xi−1,X(tn) = b

) = Rxi−1,xi
(Rn−i)xi ,b

(Rn−i+1)xi−1,b

.

Thus far we have outlined three competing strategies for simulating sample
paths from an endpoint-conditioned CTMC. Though our discussion has been ag-
nostic to the number of desired sample paths, this quantity has a direct and varied
impact on the computational efficiency of each sampler. For example, while both
direct sampling and uniformization require a possibly time-consuming eigende-
composition of Q, it is clear that one such computation will suffice even when
multiple sample paths are desired. The number of sample paths desired from an
endpoint-condtioned CTMC is application driven: estimation of some quantity,
such as the expected number of visits to a given state, may require many sample
paths, whereas the updating step in a Bayesian computation may require as few as
one. Rather than exhaust potential applications, we have chosen to formally ana-
lyze the static and dynamic costs associated with each sampling strategy. We defer
this discussion to Section 4, using the next section to demonstrate by example that
no one strategy dominates the others when only one sample path is required.

3. Comparison by example. To illustrate the strategies detailed above, in this
section we introduce three explicit examples of CTMCs for which the performance
of each sampler can be directly compared. We begin with a pair of CTMCs in
common use for molecular evolutionary studies; each provides a unique stochastic
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description of how DNA sequences evolve over time. For these and the remain-
ing example, we compare the computational demands (measured as CPU time) of
modified rejection sampling, of direct sampling, and of uniformization. For each
example, the computational demands are accumulated over 100 independent sam-
ples.

In what follows, note that while rejection sampling and uniformization do not
require any numerical approximations, direct sampling requires a root finder. The
numerical approximation of the root finder can be made arbitrarily precise, but
the choice of precision affects the running time. Without loss of generality, we
have chosen the default settings of the root finder in the statistical programming
language R (www.r-project.org, Version 2.0.0). The root finder typically converges
in 4 to 8 iterations. The programs are run on an Intel 2.40 GHz Pentium 4 processor
and are available in the supplementary material [Hobolth and Stone (2009)].

3.1. Example 1: Molecular evolution on the nucleotide level. We first consider
a popular model of DNA sequence evolution at the nucleotide level. The state
space for a particular site in a DNA sequence is of size 4 corresponding to the
DNA building blocks adenine (A), guanine (G), cytosine (C), and thymine (T). The
HKY model of Hasegawa, Kishino and Yano (1985) describes the evolution of one
site in a DNA sequence through an instantaneous rate matrix of the form

Q = (1/s)

⎡
⎢⎢⎣

· κπG πC πT
κπA · πC πT
πA πG · κπT
πA πG κπC ·

⎤
⎥⎥⎦ ,

where the states appear in the order A, G, C, T and the diagonal elements of Q are
such that the rows sum to zero. Note that state changes of the CTMC are called
‘substitutions’ in this context to reflect that the nucleotide in a particular site has
been substituted by another. The HKY model is reversible and has stationary distri-
bution π = (πA, πG, πC, πT). The ts/tv rate ratio parameter κ is used to distinguish
between transitions [substitutions between purines (A, G) or between pyrimidines
(C, T)] and transversions (substitutions between a purine and a pyrimidine). The
scaling parameter s = s(κ,π) is chosen such that

∑4
a=1 Qaπa = 1, implying that

t substitutions are expected in t time units. In this application, we use the parame-
ter values κ = 2 and π = (0.2,0.3,0.3,0.2). The scaling parameter calibrates the
intensity of substitutions per unit time; for context, note that the expected number
of substitutions per site between humans and chimpanzees is roughly 0.01 [The
Chimpanzee Sequencing and Analysis Consortium (2005)] and between humans
and mice is roughly 0.50 [Mouse Genome Sequencing Consortium (2002)].

Figure 1 plots the computational demands of each sampling strategy against
evolutionary distance, measured equivalently as the expected number of substitu-
tions (CTMC state changes) or as units of time. The plot on the left demonstrates
the case where the beginning and ending states are both A; by contrast, on the

http://www.r-project.org
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FIG. 1. CPU time versus evolutionary distance for the HKY model. In both plots the beginning state
is A. In the left plot the ending state is also A and in the right plot the ending state is G. Rejection
sampling requires less CPU time than direct sampling and uniformization. The solid thick lines show
predicted CPU times when the cost of initialization and recursion is fitted to the observed CPU times
(see Sections 4.1–4.3). The solid thin lines show predicted CPU times when the cost of initialization
and recursion is estimated from a simulation study of reversible rate matrices (see Section 4.4). Here
and in Figures 2 and 3 the expected number of recursion steps was calculated analytically using the
formulas in the text.

right the beginning state remains A while the ending state is G. The figure reveals
rejection sampling to be by far the most efficient algorithm here. Moreover, di-
rect sampling is more efficient than uniformization when the endpoints are the
same and the evolutionary distance is shorter than one expected substitution per
site. When the endpoints are different, uniformization is more efficient than direct
sampling.

3.2. Example 2: Molecular evolution on the codon level. For protein-coding
DNA sequences, the natural state space consists of nucleotide triplets (called
codons). There are 43 = 64 possible nucleotide triplets, but the three stop codons
TGA, TAG, and TAA do not appear within a protein. The 64 − 3 = 61 remaining
codons constitute the state space and are called the sense codons. Each of the 61
sense codons deterministically translates into one of 20 amino acids, and thus dis-
tinct codons translate into the same amino acid. Substitutions between codons that
translate into the same amino acid are called synonymous (or silent), while substi-
tutions between different amino acids are called nonsynonymous (or nonsilent).

In 1994, Goldman and Yang (1994) formulated a model on the space of sense
codons that is still in common use today. The GY model, a natural extension
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of the HKY model described above, is reversible with stationary distribution
π = (π1, . . . , π61) and incorporates a ts/tv rate ratio κ . The GY model also dis-
tinguishes between synonymous and nonsynonymous substitutions through a pa-
rameter ω. The off-diagonal entries in the instantaneous GY rate matrix are given
by

Qab = (1/s)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if a and b differ at more that one position,
πb, for synonymous transversions,
κπb, for synonymous transversions,
ωπb, for nonsynonymous transversions,
ωκπb, for nonsynonymous transversions,

where s = s(ω, κ,π) is again chosen such that t substitutions are expected in t

time units (i.e.,
∑

a Qaπa = 1).
In our application, we choose κ = 2 so that transitions are favored over transver-

sions and take ω = 0.01 so that synonymous changes are far more likely than non-
synonymous changes. We choose π based on established patterns of codon usage,
and note that these frequencies are quite heterogenous: the smallest entry is GGG
(πGGG = 0.0042) and the largest entry is GAG (πGAG = 0.0426).

For these specifications, Figure 2 plots the computational demands of each sam-
pling strategy against evolutionary distance. In each plot, the starting state is AAA.
The leftmost plot compares performance when the ending state is AAG. Note that
the substitution from AAA to AAG is a synonymous transition (both AAA and AAG
code for the amino acid lysine) and that the frequency for AAG is 0.0396. Because
synonymous transitions are very likely, the plot confirms that rejection sampling
will be very efficient. Contrast this observation with the middle plot in which the
ending state is AAC. The codon AAC translates to asparagine so the substitution
from the beginning to the ending state is a less likely nonsynonymous transver-
sion. This is reflected in the poor performance of the rejection sampling algorithm.
Finally, the rightmost plot demonstrates what occurs when the final state is TTT.
In this case, rejection sampling is not feasible because the probability of ending in
the final state is effectively zero.

3.3. Example 3: Molecular evolution on the sequence level. The examples
above seem to indicate that rejection sampling and uniformization have the most
utility, but it is easy to conceive of an application for which direct sampling is most
efficient. As the two previous examples show, the efficiency of rejection sampling
is tied to its acceptance probability; if the observed ending state is unlikely, a large
fraction of sample paths will be destined for rejection. Uniformization, on the other
hand, can be inefficient when many virtual substitutions are required. With that
background, we consider the extension of the HKY model described below.
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FIG. 2. CPU time versus evolutionary distance for the GY model. In all plots the beginning state
is AAA. In the left plot the ending state is AAG, in the middle plot the ending state is AAC, and in the
right plot the ending state is TTT. Rejection sampling is most efficient in the situation depicted on
the left, but it enters an infinite while loop on the right (and is therefore not shown). Direct sampling
and uniformization have similar running times, with uniformization being slightly faster. The solid
thick lines show predicted CPU times when the cost of initialization and recursion is fitted to the
observed CPU times (see Sections 4.1–4.3). The solid thin lines show predicted CPU times when the
cost of initialization and recursion is estimated from a simulation study of reversible rate matrices
(see Section 4.4). Finally, the dashed lines show predicted CPU times when the initialization and
recursion costs are estimated from a simulation study of sparse rate matrices (see Section 4.4).

Recall the HKY rate matrix (with ν instead of π )

Q =

⎡
⎢⎢⎣

· κνG νC νT
κνA · νC νT
νA νG · κνT
νA νG κνC ·

⎤
⎥⎥⎦ .

Jensen and Pedersen (2000) consider so-called neighbor dependent models where
the instantaneous rate at a site depends on the neighbors of the site. Jensen and
Pedersen (2000) are particularly interested in CG avoidance where the rate away
from C is particularly high if its right neighbor is a G. Such a model implies CG
deficiency in a single sequence, which is an often observed phenomenon for mam-
malian sequences due to the process of CpG methylation-deamination. Neighbor-
dependent nucleotide models are also considered in Hwang and Green (2004) and
Hobolth (2008). In these two papers, a Gibbs sampling scheme is used to estimate
the parameters of the model while taking the uncertainty of the neighbors into ac-
count. In particular, each single site is updated conditionally on the current values
of the complete evolutionary history of the neighboring nucleotides.

Consider the evolution at a single site and assume for simplicity that the evolu-
tionary history of the left neighbor is never a C, and the evolutionary history of the
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right neighbor is always a G. In this situation, a CG dinucleotide is present when
the site that we consider is a C. Jensen and Pedersen (2000) model the CpG effect
through increasing the rate away from CG nucleotides by multiplying each entry in
the HKY rate matrix (3.3) corresponding to C with a parameter γ > 1. When the
left neighbor is not a C and the right neighbor is a G, the rate matrix thus becomes

QHKY+CG =

⎡
⎢⎢⎣

· κνG νC νT
κνA · νC νT
γ νA γ νG · γ κνT
νA νG κνC ·

⎤
⎥⎥⎦ .(3.1)

The stationary distribution π of QHKY+CpG is given by

(πA, πG, πC, πT) = (νA, νG, νC/γ, νT)/(νA + νG + νC/γ + νT).

If the parameters are (νA, νG, νC, νT) = (0.3,0.3,0.2,0.2) and γ = 20, we obtain
the stationary distribution (πA, πG, πC, πT) = (0.3,0.3,0.01,0.2)/0.81. Note that
the stationary probability of a C nucleotide is now 0.01/0.81 = 0.012.

The left-hand plot of Figure 3 illustrates the performance of the three samplers
when the CTMC begins in T and ends in state C. Here the most efficient sampler

FIG. 3. CPU usage versus time for the HKY + CpG rate matrix (3.1). In the left plot, the begin-
ning state is T and ending state is C. In the right plot, the beginning state is C and ending state is
T. Rejection sampling is very fast in the situation depicted on the right, but it is slow for large evo-
lutionary distances on the left. Direct sampling and uniformization have similar running times, but
direct sampling is faster for large evolutionary distances. The solid thick lines show predicted CPU
times when the cost of initialization and recursion is fitted to the observed CPU times (see Sections
4.1–4.3). The solid thin lines show predicted CPU times when the cost of initialization and recursion
is estimated from a simulation study of reversible rate matrices (see Section 4.4).
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depends on the time between the states: if T < 0.3, rejection sampling is the most
efficient, if 0.3 < T < 0.9, uniformization is the most efficient, and if T > 0.9, di-
rect sampling is the most efficient. For large times, rejection sampling is inefficient
because it is unlikely to end in state C, and direct sampling becomes more efficient
than uniformization because many virtual changes are required in the uniformiza-
tion procedure. The right-hand plot of Figure 3 shows the case when the beginning
state is C and the ending state is T. Under this scenario, rejection sampling is the
most efficient sampling algorithm because the acceptance probability is high.

4. Complexity of samplers. The examples in the previous section were cho-
sen to demonstrate the heterogenous dependence of each sampling strategy upon
the characteristics of the endpoint-conditioned CTMC. In particular, efficiency was
shown to be impacted by each aspect of the process: the instantaneous rate matrix
Q, the sampling time T , and the beginning and ending states a and b. This sec-
tion translates the qualitative observations above into quantitative proof of which
sampler will be most efficient for any specification of CTMC. To accomplish this,
we rely on the algorithmic descriptions of the three sampling strategies as given
in Section 2. Note that the algorithms are schematically consistent, with each pro-
gressing through (1) initialization, (2) recursion, and (3) termination. Our approach
is to define the fixed computational costs for the initialization and recursion steps,
which we call α and β , respectively. As shown in Section 2, the number of recur-
sion steps required to generate an entire sample path is stochastic, and we capture
this in a random variable L. Thus, the computation cost of generating one sample
path is

α + βL

and the mean cost is obviously α + βE[L]. In the case of rejection sampling, note
that only a certain fraction of the generated sample paths will be consistent with
the observed ending state and hence accepted. Ultimately, the results of this sec-
tion demonstrate our ability to accurately predict the CPU time needed to produce
one valid sample path from an endpoint-conditioned process. Such analysis is of
great practical importance, as it allows the researcher to choose the most efficient
sampler in advance.

The rest of this section is organized as follows. In Sections 4.1–4.3 we discuss
complexity and derive the mean number of recursions E[L] for each sampler. In
Section 4.4 we first demonstrate that α and β can be estimated from the size of
the state space and structure of the rate matrix only. Thus, determining the values
of α and β is a one-time calculation. Second, we provide a strategy for choosing
the most efficient sampler. The strategy depends on the mean number of recursions
and estimated values of α and β . In case of rejection sampling, the strategy also
depends on the acceptance probability. Third, we give further insight into the sam-
pling strategies by analyzing the proposed strategy in detail for moderately large
time intervals.
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4.1. Rejection sampling complexity. Let pacc be the acceptance probability for
the rejection sampling algorithm first described in Section 2.1. Then the expected
number of samples before acceptance is its reciprocal 1/pacc. In the notation de-
scribed above, the mean CPU time required to simulate one sample path is thus

(α + βE[L])/pacc.(4.1)

When the beginning and ending states take the same value, say, a, the accep-
tance probability is simply Paa(T ). In particular, for small T we have pacc ≈
(1 − QaT ), and for large T we have pacc ≈ πa . Furthermore, the expected num-
ber of recursion steps required to generate one sample path is given by

E[L] = ∑
i

∑
j �=i

E[Nij (T )|X(0) = a],(4.2)

where Nij (T ) is the number of state changes from i to j in the time interval [0, T ].
This expectation is given by [e.g., Proposition 3.6 of Guttorp (1995)]

E[Nij (T )|X(0) = a] = Qij

∫ T

0
P

(
X(t) = i|X(0) = a

)
dt.

Analytical expressions for the integral can be found by appealing to an eigende-
composition of Q (see Section 2.2).

Figure 4 provides an illustration of the above considerations using the HKY
model from Section 3.1 as an example. The top panel of the figure details the
case when the beginning and ending states are the same (speficially, the nucleotide
A). From the left, the first column plots the acceptance probability exp(QT )AA
against the time T , showing a nonlinear decrease from pacc ≈ 1 when T is small
to pacc ≈ πA when T is large. The sloped dashed line plots the first-order Taylor
approximation 1 − QAT of pacc that is valid for small T ; the horizontal dashed
line indicates the stationary probability πA that is the limit of pacc when T grows
large.

The second column plots CPU time spent on initialization against T for a col-
lection of simulated sample paths. A linear regression was used to estimate the ini-
tialization cost. More specifically, we generated 500 independent samples from the
modified rejection sampler and recorded the time spent on initialization and recur-
sion, respectively. The CPU time spent on initialization is proportional to 1/pacc

[recall (4.1)]; we estimated α using linear regression and obtained α̂ = 0.0509. The
third column shows the expected number of state changes E[L], calculated from
(4.2), as a function of time. In the fourth column we show the CPU time spent on
sampling. The CPU time spent on sampling is proportional to E[L]/pacc [recall
(4.1)]; we estimated β using linear regression and obtained β̂ = 0.0365. Adding
the CPU time spent on initialization and sampling gives the total CPU time spent
on producing a sample path. The total CPU time and predicted CPU time is shown
in the left plot of Figure 1.
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FIG. 4. Summary statistics for the HKY model from Section 3.1. The top row shows the case when
the beginning state is A and the ending state is A. In the bottom row, the beginning state is A and the
ending state is G. The first column shows the probability of ending in the correct state (the acceptance
probability), and the second column shows the CPU time spent on initialization. The third column
shows the expected number of recursions required in each forward sample, and the fourth column
shows the CPU time spent on sampling. Summing the CPU times spent on initialization and on
sampling gives the total CPU time spent to produce a sample path. This total time is shown in the
left-hand plot of Figure 1.

When the beginning and ending states are different, the calculations are only
slightly more complicated. To compute the acceptance probability in the case a �=
b, let N(t) be the number of state changes of X(t) in the interval [0, t]. We have

Pab(T ) = Pr
(
X(T ) = b|X(0) = a

)
= Pr

(
X(T ) = b,N(T ) > 0|X(0) = a

)
(4.3)

= Pr
(
X(T ) = b|N(T ) > 0,X(0) = a

)
Pr

(
N(T ) > 0

)
= pacc Pr

(
N(T ) > 0

)
,

from which it is clear that

pacc = Pab(T )

1 − Pr(N(T ) = 0)
= Pab(T )

1 − e−T Qa
.(4.4)
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For small T we have the first-order approximation

pacc ≈ Qab

Qa

(
1 − Qb

T

2

)
+ ∑

i �=(a,b)

Qai

Qa

T

2
Qib,(4.5)

and for large T it is clear that pacc ≈ πb.
Next we consider the number of recursion steps L. We know that the number

of state changes is at least one because we have assumed that the beginning and
ending states a and b are different. The probability of the first change being to state
k (k �= a) is Qak/Qa , and the density of the time to this change is given by (2.1).
Let the number of state changes from i to j (j �= i) when the first substitution is to
k be denoted Nij,k . The expected number of such changes in a time interval [0, T ]
is given by

E[Nij,k(T )] =
∫ T

t=0

Qae
−tQa

1 − e−T Qa

Qak

Qa

Qij

∫ T

s=t
Pki(s) ds dt.

Again, this integral can be calculated analytically using an eigenvalue decomposi-
tion of Q. The expected value of L is given by

E[L] = 1 + ∑
i

∑
j �=i

∑
k �=a

E[Nij,k(T )].

The bottom row of Figure 4 mirrors the top row, except that here the ending state
G has been chosen to be distinct from the beginning state A. As before, the first
plot from the left shows the acceptance probability (4.4) against the time T . The
sloped dashed line now shows the linear approximation (4.5), while the horizontal
dashed line indicates the stationary probability πG of the ending state G. In the
second plot, the CPU time spent on initialization is explained by the reciprocal
of the acceptance probability. In the third plot, we show the expected number of
substitutions, and in the last plot the CPU time spent on sampling is explained by
the expected number of substitutions divided by the acceptance probability. The
regression coefficient for initialization is 0.0509 and for sampling 0.0366. Note
that these coefficients are very similar to what was observed in the case of equal
beginning and ending states.

To complement the observations of Figure 4, recall the GY model introduced
in Section 3.2. The three plots in Figure 5 mirror those in Figure 2, with each
showing how the acceptance probability scales with time in the previously depicted
scenario. In all cases, the beginning state is the codon AAA: from the left, the first
plot considers the ending state AAG (a synonymous transition away from AAA), the
second plot considers the ending state AAC (a nonsynonymous transversion away
from AAA), and the third plot considers the ending state TTT (a minimum of three
state changes away from AAA). In the first case, the acceptance probability is high
and rejection sampling is efficient. In the second case, the acceptance probability
is low, particularly for small T , and rejection sampling is less efficient. In the
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FIG. 5. Acceptance probabilities for the GY model from Section 3.2. In all cases the beginning state
is AAA. In the left-hand plot, the ending state is AAG, in the middle plot the ending state is AAC, and
in the right-hand plot the ending state is TTT. Rejection sampling is very efficient in the situation
depicted on the left, less efficient in the middle, and not practical in the right.

third case, the probability of ending up in the desired state TTT is smaller than
1/106, and rejection sampling cannot be used. In this final case, one must use
direct sampling or uniformization.

4.2. Direct sampling complexity. The computational costs for direct sampling
are dependent upon its initialization and the CPU time spent on sampling a new
state and its corresponding waiting time. As before, the cost of generating one
sample path can be written as

α + βL,

but the initial cost α is much more expensive than for rejection sampling because
an eigendecomposition of Q is required. The expected number of recursion steps
is equivalent to the number of state changes N and can be found through

E[L] = E[N(T )|X(0) = a,X(T ) = b]
= ∑

i

∑
j �=i

E[Nij (T )|X(0) = a,X(T ) = b],

where Nij (T ) is the number of state changes from i to j in the time interval [0, T ].
These expectations can be calculated using formulas in Hobolth and Jensen (2005).

In Figure 6 we illustrate the above considerations for the HKY model from
Section 3.1. The initialization cost is constant, and the number of state changes
explains the cost of sampling. The initialization cost α is around 0.85, which is
much larger than the 0.05 observed when doing rejection sampling. Moreover, the
cost β for each recursion step is 0.56, as compared to 0.04 for rejection sampling.
This may seem an unfavorable comparison, but recall that rejection sampling does
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FIG. 6. CPU time spent on direct sampling in the HKY model from Section 3.1. Two cases are
considered: beginning state A and ending state A (first two plots from the left) and beginning state A
but ending state G (last two plots). In both cases, the initialization CPU is constant (first and third
plot). The sampling CPU is proportional to the expected number of substitutions (second and fourth
plot).

not guarantee that the endpoint conditions are met by its generated sample paths; if
the probability of acceptance pacc is low, then the cost of rejection sampling given
by (4.1) will be dominated by 1/pacc.

This illustrates the tradeoff that distinguishes rejection sampling from the two
remaining approaches: the computational costs of rejection sampling are compar-
atively inexpensive, but only a fraction of the simulated sample paths from that
method will be viable.

4.3. Uniformization complexity. The computational costs for uniformization
are similar in structure to those of direct sampling. Initialization requires an eigen-
decomposition of Q and construction of the auxiliary transition matrix R in order
to carry out Step 1 of the algorithm (recall Remark 6). Each recursion step consists
of sampling a new state and its corresponding waiting time; examination of the
uniformization algorithm reveals that the number of recursion steps L is equal to
the number of state changes N(T ) accumulated by the auxiliary chain. Thus,

E[L] = E[N(T )|X(0) = a,X(T ) = b]

= 1

Pab(T )

∞∑
n=0

ne−μT (μT )n

n! (Rn)ab

= 1

Pab(T )
μT (ReQT )ab

= 1

Pab(T )
μT

∑
c

RacPcb(T ).

In particular, when T is large we get E[L] ≈ μT .
Figure 7 illustrates the above considerations for the HKY model from Sec-

tion 3.1. As with direct sampling, the initialization cost is constant and the number
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FIG. 7. CPU time spent on uniformization in the HKY model from Section 3.1. Two cases are
considered: beginning state A and ending state A (first two plots) and beginning state A but ending
state G (last two plots). In both cases, the initialization CPU time is constant (first and third plot).
The sampling CPU time is proportional to the expected number of substitutions (second and fourth
plot).

of state changes (both real and virtual) explains the cost of sampling. We find
α̂ = 1.05, which is about the same magnitude as the initialization cost for di-
rect sampling. In uniform sampling, the recursion step is immediate if we enter
Steps 2–4. Each recursion in Step 5 is also very fast because we just have to simu-
late from a discrete-state Markov chain with transition probability matrix R given
the endpoints, and where all the relevant powers of the transition matrix R are al-
ready calculated. The recursion cost β̂ = 0.09 is around 1/6 of the recursion cost
for direct sampling and twice as much as the recursion cost of rejection sampling.

4.4. Comparison and recommendation.

4.4.1. Comparison and recommendation for general T . The preceding results
explicitly relate the computational complexity of each sampling strategy to char-
acteristics of the CTMC. This permits the three strategies to be compared to each
other, but only after reliable values for α and β have been obtained. We also note
that the values of α and β depend on the choice of computer language. Running
simulations as we have to estimate these parameters is not practical, as it compro-
mises the gains in choosing an efficient sampler. For that reason, and to establish
the generality of our observations, we sought to relate α and β to the size of the
state space of the CTMC.

For each of the three sampling algorithms, we estimated the values of α and
β for randomly simulated reversible rate matrices. Specifically, we first gener-
ated a symmetric matrix S with randomly generated exponentially distributed off-
diagonal entries Sij ∼ Exp(1), i > j . Second, we generated the stationary dis-
tribution π of the CTMC by sampling from a Dirichlet distribution Dir(α) with
α = (1, . . . ,1), that is, a vector of ones. The off-diagonal entries in the rate matrix
become Qij = Sijπj , i > j, and Qij = Sjiπi, i < j . We considered seven differ-
ent state space sizes (5,10,20,40,60,80,100), and repeated each of the simula-
tions five times. The results are summarized in Figure 8.
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FIG. 8. Values of α (left) and β (right) for the three algorithms and four examples. Both x-axes
show the size of the state space considered in each example, with α and β on the y-axes for the left
and right plot, respectively. A constant fit is shown for rejection sampling and a quadratic fit between
β and the size of the state space is shown for direct sampling; the remaining relationships in the
figure are described as a linear dependency of size to the power 2.5. Results for randomly generated
61 × 61 rate matrices with nonzero off-diagonal entries, when the entry corresponds to two codons
that are exactly one point substitution away from each other, is shown in the left plot. These sparse
rate matrices have a lower value of α in case of direct sampling and uniformization.

Figure 8 supports our previous observations on the three sampling strategies.
The costs of initialization, as quantified by α, are as expected, with direct sampling
and uniformization slowed relative to rejection sampling by their dependence on
an eigenvalue decomposition of the rate matrix Q. Indeed, whereas the initializa-
tion cost of rejection sampling remains essentially unchanged as the state space
grows, the other methods increase in runtime nonlinearly. Theory suggests that
the eigenvalue decomposition that domimates direct sampling and uniformization
should depend on the cube of the size of the state space, and we find in our limited
sample that the relationship is best explained by an exponent of 2.5. In any case, di-
rect sampling and uniformization are comparable in their initialization costs, with
uniformization always slightly slower because it requires powers of the transition
probability matrix R to also be calculated. By contrast, for the state space sizes
that we considered, uniformization has a substantially smaller value of β . Com-
pare these observations to the results shown in Figures 4, 6, and 7 for the HKY
model: what was true in that example with a state space of size four appears to
hold consistently across our sample of simulated rate matrices of various sizes.

The most encouraging feature of Figure 8 is the apparent ease with which α

and β can be predicted solely from the size of the state space. As illustrated in
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the figure, we fit six simple models to predict α and β for each of the three sam-
pling strategies from the state space size alone. The utility of these predictions
becomes clear in reference to the four-state HKY model. Previously we found
α and β by simulating endpoint-conditioned samples from the model of interest
itself. For rejection sampling, these values were α̂ = 0.0149 and β̂ = 0.0094 (Fig-
ure 4), which we compare to α = 0.0165 and β = 0.0109 predicted for a state space
of size four. Similarly, as shown in Figure 6, for direct sampling (α̂, β̂) ranges
from (0.2274,0.1342), when the beginning and ending states were the same, to
(0.2258,0.1370), when they were different. By comparison, the predicted values
for direct complexity are α = 0.2155 and β = 0.1285. Last, recall from Figure 7
that for uniformization (α̂, β̂) ranges from (0.2503,0.0253) for identical begin-
ning and ending states to (0.2419,0.0206) when different. These values agree with
our predictions of α = 0.2286 and β = 0.0143, although the predicted value of β

is somewhat lower than the fit from the model itself.
It should be emphasized that the goal here is not to perfectly predict α and β

for any particular CTMC. Rather, the purpose of the simple models illustrated in
Figure 8 is to obtain values accurate enough to decide which sampling strategy
will be most efficient. With that in mind, reconsider the CPU times observed for
the three examples in Section 3. In Figures 1–3 respectively, CPU time estimates
for the HKY, GY, and HKY + CpG models are shown as thin lines obtained from
the new predictions of α and β . It is clear that a practitioner, armed with only these
predictions derived from the state space size, would choose the most efficient sam-
pler in each example for virtually any combination of time and specific endpoint
conditions. On the other hand, despite that success, the CPU times we predict are
not uniformly accurate; the predictions for the GY model shown in Figure 2, for
example, do not fit the observed data well at all. We speculated that this observed
lack of fit might be a result of the structure of the GY model being too different
from that of the randomly generated rate matrices used to establish our models. To
pursue this hypothesis, we generated 61 × 61 rate matrices with the same structure
as the GY model. In particular, the only nonzero off-diagonal entries in the random
rate matrix are those entries where the two codons are exactly one point substitu-
tions away from eacy other. These sparse rate matrices result in smaller values for
α in the cases of direct sampling and uniformization, as indicated in Figure 8. As
expected from Figure 2, the value of α for rejection sampling and β values for all
samplers are largely unaffected. The predicted CPU times from the new values of
α and β are shown as dashed lines and present a satisfactory fit. Thus, while our
models for α and β appear to be of sufficent quality to guide the correct choice of
sampler, it is clear that differently structured rate matrices of the same size may
yield substantially different values of α and β and hence CPU times.

The preceding discussion motivates the following guidelines for choosing the
most efficient sampling strategy:
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1. Estimate α and β for the three sampling strategies. As discussed, α and β can be
estimated reliably from the size of the rate matrix, allowing for some variability
due to its structure.

2. Predict CPU times for rejection sampling (αR + βRER[L])/pacc, for direct
sampling (αD + βDED[L]), and for uniformization (αU + βUEU [L]).

3. Choose the sampler with the lowest predicted CPU time.

4.4.2. Comparison for moderately large T . We end the comparison by con-
sidering the special case when T is at least moderately large. In this case some
useful rules of thumb emerge. To begin, note that the expected number of it-
erations required for rejection sampling and for direct sampling should be ap-
proximately equal. For moderately large T , we can make the substitution of
(
∑

c πcQc)T for E[L], or just T , provided that the chain has been calibrated
such that

∑
c πcQc = 1. For uniformization, E[L] is larger because of virtual state

changes; under the same assumptions, here E[L] can be roughly approximated by
μT = (maxc Qc)T . Under these assumptions, virtual changes increase the number
of iterations required in uniformization by a factor of

ν = max
c

Qc

/(∑
c

πcQc

)
= max

c
Qc,

again assuming that the chain has been calibrated. In other words, the inflation
factor ν is the ratio of the maximum diagonal entry of the rate matrix Q to its
(weighted) average diagonal entry. We obtain ν = (1.12,2.22,16.2) for the rate
matrices in Examples 1–3, respectively. As expected, the inflation factor is very
high for the rate matrix in Example 3 and explains the observations in Figure 3.

Finally, with E[L] = T for both rejection sampling and direct sampling, the
approximate complexities can be expressed as follows:

Rejection sampling Direct sampling Uniformization.

(αR + βRT )/pacc αD + βDT αU + βUT ν
(4.6)

To see the utility of these formulas, recall the results for the HKY model
shown in Figure 1 and consider the moderately large time T = 2. Noting that
for direct sampling and uniformization our approximations are not endpoint-
dependent, and using estimates of (0.2155,0.1285) for (α,β) for direct sampling
and (0.2286,0.0143) for uniformization, the formulas predict their CPU times to
be 0.472 and 0.261, respectively, in both panels of Figure 1. Rejection sampling, of
course, is dependent on the ending state, and thus the complexities for that method
illustrated in the left and right plots differ. In this case, the difference is subtle be-
cause (1) the chain is nearly mixed and (2) the stationary probabilities that govern
the acceptance probabilities are similar. Using 0.2 and 0.3 as the respective accep-
tance probabilities for A and G, and (0.016,0.010) for (α,β), we obtain 0.19 for
the left plot and 0.13 for the right plot. Inspection of Figure 1 gives validity to
our approximations, showing all of the predictions to be highly accurate. For the



A CONTINUOUS-TIME MARKOV CHAIN 1227

HKY + CpG model in Figure 3 we can make similar predictions. We predict the
CPU times for direct sampling and uniformization to be 0.472 and 0.693, again
in good agreement with both figures. Using the stationary probabilities 0.012 and
0.246 for C and T, we obtain 3.112 for the left plot and 0.155 for the right plot.
These predictions are again very accurate.

In the particular case of moderately large T , the guideline for choosing the most
efficient sampling strategy can be made even more explicit. It follows immediately
from (4.6) that uniformization is more efficient than direct sampling if

ν <
αD + βDT − αU

βUT
= νcritical.

Recall the transition matrix (2.7) of the auxiliary process. It is evident that if
the inflation factor ν is large, then the transition matrix has one or more states
where virtual state changes are very likely. In the uniformization sampling proce-
dure, these virtual state changes have to be simulated, although they are elim-
inated in the final sample path. Many invisible virtual jumps thus makes uni-
formization less efficient. For the state space of size 4 with (αD,βD,αU,βU) =
(0.2155,0.1285,0.2286,0.0143), we obtain νcritical = 8.5. For the HKY model
we have νHKY = 1.12 and for the HKY + CpG model we have νHKY+CpG = 16.2,
and, thus, we predict uniformization to be more efficient for large T for the HKY
model, while direct sampling is more efficient for the HKY + CpG model.

Similarly, it follows from (4.6) that rejection sampling is more efficient than
uniformization if

pacc >
αR + βRT

αU + βUT ν
= pU

critical,(4.7)

and more efficient than direct sampling if

pacc >
αR + βRT

αD + βDT
= pD

critical.(4.8)

For the HKY model, we get pU
critical = 0.147. In the case of beginning state A,

ending state A and for T = 2, we get from (4.4) that pacc = 0.254. If the beginning
state is A, ending state is G and T = 2, we get pacc = 0.347. Both acceptance
probabilities are larger than, and we predict correctly (recall Figure 1) that rejection
sampling is the most efficient algorithm in both cases.

For the HKY + CpG model we get pD
critical = 0.081. In the case where the be-

ginning state is T, ending state is C and T = 2, we obtain pacc = 0.017, and with
beginning state C, ending state T and T = 2, we get pacc = 0.272. We thus cor-
rectly predict (recall Figure 3) that direct sampling is the most efficient algorithm
in the first situation, while rejection sampling is more efficient in the second situ-
ation.

The approximations in (4.6) are less precise for the GY model because the larger
state space increases the dependency of the beginning and ending states. However,



1228 A. HOBOLTH AND E. STONE

we still get reliable predictions when applying the moderately large T approxima-
tions. The predicted values in Figure 8 for the sparse codon rate matrices size 61
are (αR,βR,αD,βD,αU,βU) = (0.017,0.011,1.072,0.305,1.124,0.105). For
T = 2 we get νcritical = 2.66 and since νGY = 2.22, we correctly predict uni-
formization to be more efficient than direct sampling. We get pU

critical = 0.024,
meaning that uniformization is also more efficient than rejection sampling if the
acceptance probability is smaller than 2.4%. With T = 2 and beginning state AAA,
we get acceptance probabilities 0.65, 0.01, and 1/105 for ending states AAG, AAC,
and TTT, respectively (recall Figure 5). We thus correctly predict rejection sam-
pling to be faster than uniformization when the ending state is AAG, and slower
when the ending state is AAC or TTT.

To summarize, this section shows that when the cost of initialization α and
the cost of a recursion step β are known, we can accurately predict the time it
takes to produce a single sample from any of the three simulation procedures.
We have thus demonstrated that choosing among the simulation procedures is an
objective task that can be automated. In our analysis, we have demonstrated that
it is straightforward and inexpensive to estimate α and β reliably. An alternative,
which we have not addressed, would be to obtain these directly by translating the
necessary calculations for each sampling strategy into floating point operations. In
practice, our derivations serve well even without quantification of the initialization
and recursion costs; for reasonable values of α and β , the acceptance probability
pacc and the inflation factor ν can inform which of the three sampling strategies
works best.

5. Conclusion. The prevalence of endpoint-conditioned CTMCs as an infer-
ential tool in interdisciplinary studies has led to the development of several path-
sampling algorithms. As the scope of application continues to grow, so too will the
need for computationally efficient approaches, and yet this aspect has to our knowl-
edge yet to be considered. To that end, we have presented a formal comparison of
three sampling strategies: (1) modified rejection sampling, (2) direct sampling, and
(3) uniformization. Significantly, we show that efficiency is a relative measure that
depends heavily on the specification of the conditioned stochastic process; indeed,
as demonstrated in Section 3, the computational requirements for each algorithm
depend on the rate matrix Q, the time interval T , and the endpoints a and b. We
have shown that no one algorithm dominates the other two, and that each algorithm
has its specific strengths and weaknesses. The previous section served to demys-
tify those strengths and weaknesses by completely quantifying the computational
costs associated with each sampling strategy.

We have concentrated our efforts on one specific application, namely, the simu-
lation of a single sample path provided the rate matrix Q, the time interval T , and
the endpoints a and b upon which the process is conditioned. We framed each of
the three path-sampling algorithms as a progression through (1) initialization, (2)
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recursion, and (3) termination, and our discussion was based on an in-depth analy-
sis of the computational requirements of each step. It should be noted that our the-
ory is easily amenable to application-specific situations where these requirements
vary; for example, it is reasonable in some cases to expect that an eigenvalue de-
composition of the rate matrix has already been provided, and it is clear from the
previous section how this impacts each algorithmic step.

Perhaps the most important variant to consider is the extension to the simu-
lation of multiple sample paths. When simulating k sample paths from the same
endpoint-conditioned CTMC using any of the aforementioned strategies, the ini-
tialization step need only be done once. On the other hand, the iterations required
for each sample path cannot in general be consolidated, and, thus, k affects com-
plexity as a scale factor of β . It follows that for large enough k the initialization
cost is of negligible concern, and because our examples have shown that α and
β are somewhat comparable, in practice, k need not be that large. In such cases,
complexity is determined by kβE[L] for direct sampling and uniformization, and
by kβE[L]/pacc for rejection sampling. As a result of the virtual state changes
that occur when sampling by uniformization, E[L] for that method will typically
be somewhat larger than for the other two. For direct sampling, this is offset by a
larger β , and, thus, the decision between direct sampling and uniformization rests
upon the number of virtual state changes required. Rejection sampling, by contrast,
completes each iteration quickly without the use of virtual transitions; it is once
again the path acceptance probability that determines whether or not rejection sam-
pling is viable. In the direct sampling algorithm we use a root finder to simulate the
waiting time before the next state change. If multiple sample paths are required,
it would be beneficial to completely characterize (or very accurately approximate)
the cumulative distribution function for the waiting time. As soon as this task is
done, drawing from the conditional waiting time distribution would be almost in-
stantaneous. Similarly, one could, in the case of uniformization, store the values of
probability masses in Remark 7 for i ≤ 3, say. Storing the calculations allow for
very fast generation of state changes from the discrete Markov chain determined
by the transition probability matrix R. In short, the primary distinction when multi-
ple sample paths are required is that the front-loaded procedures—direct sampling
and uniformization—become comparatively more desirable, the reason being that
more knowledge about the particular CTMC under consideration can be taken into
account.

Finally, it should be noted that the efficiency of rejection sampling increases as
the space of valid endpoint conditions is enlarged. As an example, consider the
case of a CTMC observed at equidistant time points, so that the goal is to simulate
sample paths using the same rate matrix Q and time interval T for a set of endpoint
pairs {(ai, bi) : i = 1, . . . , n}. In this case we can first use (unmodified) rejection
sampling and assign each sample path to a pair (ai, bi) that matches the beginning
and ending state of the simulated path. If the model is appropriate, this procedure
could easily account for the majority of the needed sample paths, and very few
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rejections would be required. The remaining sample paths can subsequently be
simulated using one of the three endpoint-conditioned samplers described in this
paper.
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SUPPLEMENTARY MATERIAL

Efficient simulation from finite-state, continuous-time Markov chains with
incomplete observations (DOI: 10.1214/09-AOAS247SUPP; .zip). We accom-
pany our paper with R code (www.r-project.org) that can reproduce the figures
in the manuscript [Hobolth and Stone (2009)]. A description of how the code is
organized is included in the supplementary material.
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