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Hierarchical models are a powerful tool for high-throughput data with
a small to moderate number of replicates, as they allow sharing information
across units of information, for example, genes. We propose two such mod-
els and show its increased sensitivity in microarray differential expression
applications. We build on the gamma–gamma hierarchical model introduced
by Kendziorski et al. [Statist. Med. 22 (2003) 3899–3914] and Newton et
al. [Biostatistics 5 (2004) 155–176], by addressing important limitations that
may have hampered its performance and its more widespread use. The mod-
els parsimoniously describe the expression of thousands of genes with a small
number of hyper-parameters. This makes them easy to interpret and analyt-
ically tractable. The first model is a simple extension that improves the fit
substantially with almost no increase in complexity. We propose a second
extension that uses a mixture of gamma distributions to further improve the
fit, at the expense of increased computational burden. We derive several ap-
proximations that significantly reduce the computational cost. We find that
our models outperform the original formulation of the model, as well as some
other popular methods for differential expression analysis. The improved per-
formance is specially noticeable for the small sample sizes commonly en-
countered in high-throughput experiments. Our methods are implemented in
the freely available Bioconductor gaga package.

1. Introduction. A main challenge in microarray and other high-throughput
experiments is the limited number of replicated measurements that are obtained
for each gene. That is, data is abundant at an overall level but it is scarce at the
gene level, and, therefore, there is much potential for methods that allow for the
sharing of information across genes. This feature is particularly important due to
the small sample sizes that are frequently encountered in these studies.

Hierarchical models naturally allow for this kind of information sharing. Typical
examples are Lönnstedt and Speed (2002) and Smyth (2004), who modeled gene-
specific parameter estimates via hierarchical empirical Bayes methods to obtain
improved testing procedures. Kendziorski et al. (2003), Newton et al. (2001) and
Newton and Kendziorski (2003) proposed hierarchical models that depend on few
hyper-parameters, that is, they greatly reduce the dimensionality of the problem.

We propose a novel approach for massive multiple inference. From here on
we focus on the analysis of differential expression in microarrays, although the
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approach can be used for other forms of high-throughput data as well. The pro-
posed model builds on the gamma–gamma hierarchical model of Kendziorski et
al. (2003). This model is methodologically and mathematically attractive, but has
only had a modest effect in the practice of expression analysis. We identify some
data analysis issues that might be limiting factors to prevent a more widespread ap-
plication of the gamma–gamma model, and propose an improved model to address
this issues. Our approach combines features from Lo and Gottardo (2007) by spec-
ifying varying coefficients of variation across genes, and Yuan and Kendziorski
(2006) by specifying a mixture prior on gene-specific parameters that induces gene
clustering.

In particular, the gamma–gamma model assumes that the observations for each
gene arise from a gamma distribution with common shape parameter across all
genes and a scale parameter that arises from a hierarchical gamma prior. Since
the model uses a single gamma prior, we refer to it as the Ga model. We find
the gamma choice appealing, for it is a flexible family that can capture the asym-
metric distributional shapes frequently encountered in microarrays, even after log-
transforming. As we show in this paper, although the Ga model is elegant and par-
simonious, it fails to provide an adequate fit in a number of examples. The main
challenge in adding flexibility to the model is that it seriously complicates the com-
putations required for model fit and inference. We propose an extension in two
directions. First, we specify a gamma prior on both the shape and the inverse mean
parameters (GaGa model). The extension is still parsimonious, requiring only one
additional hyper-parameter, and it can be fit in a computationally efficient manner.
We develop an algorithm that requires a computational effort comparable to the Ga
model. In a second extension we specify a gamma prior on the shape parameter
and a mixture of gamma priors on the inverse mean (MiGaGa model). This pro-
vides additional flexibility, albeit at the expense of reduced model parsimony and
increased computational cost.

In summary, the aim of this paper is to improve differential expression analysis
by providing a method with higher sensitivity than several standard approaches.
This is achieved by extending the basic Ga model while maintaining its method-
ological beauty and closed-form inference. The extension addresses data analytic
issues of practical relevance, and which may have prevented the more widespread
use of the model.

The paper is structured as follows. In Section 2 we review the Ga model and we
present its first extension: the GaGa model. We derive expressions for posterior
probabilities of interest, and point out several schemes to fit the model. In Sec-
tion 3 we propose as a further generalization the MiGaGa. For both extensions, the
posterior distributions of the gamma shape parameters are known only up to a con-
stant. We refer to this distribution, which to our knowledge has not been described
before, as the gamma shape distribution. In Section 4 we derive useful approx-
imations for this distribution. In Section 5 we outline how to find differentially
expressed (DE) genes, and in Section 6 we apply our approach to simulated data
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and several examples. Some concluding remarks follow in Section 7. The methods
described in this paper are implemented in the R package gaga, available as part
of Bioconductor 2.2.

2. The GaGa model. We assume that the data has been background cor-
rected, normalized and quantified in a sensible manner [Dudoit et al. (2002);
Stafford (2008)]. Let xij be the measure of expression for gene i, i = 1, . . . , n,
in microarray j , j = 1, . . . , J . Let zj ∈ {1, . . . ,K} indicate group membership,
for example, zj = 1 for normal cells and zj = 2 for cancer cells. We denote the
vector of observations for gene i as xi and the whole data as x. We use Ga(·) to de-
note a gamma distribution, IGa(·) for the inverse gamma, Mult(·) for the multino-
mial, Dirichlet(·) for the Dirichlet and GaS(·) for the gamma shape distribution.
The GaS distribution arises as the posterior distribution of the gamma shape para-
meter conditional on the observed data and on some other model parameters. To
our knowledge it has not been introduced before, so we present its definition in
Section 4.

In the differential expression problem the investigator is interested in determin-
ing the expression pattern that each gene follows. This inference problem can be
viewed as a hypothesis testing problem. Throughout we use the terms hypothe-
sis and expression pattern interchangeably. The simplest setup is having K = 2
groups and 2 hypotheses: pattern 0 under which both groups are equally expressed
(null hypothesis) and pattern 1 under which they are differentially expressed (al-
ternative hypothesis). For K > 2 we may want to consider more than 2 patterns.
For example, if group 1 corresponds to normal cells, group 2 to cells with type A
cancer and group 3 to type B cancer, one may be interested in assigning each gene
to one of the following patterns:

Pattern 0: Normal = Cancer A = Cancer B,

Pattern 1: Normal �= Cancer A = Cancer B,(1)

Pattern 2: Normal �= Cancer A �= Cancer B.

Denote by H the number of hypotheses, and let the latent variable δi ∈ {0,1, . . . ,

H −1} indicate the true expression pattern for gene i. We refer to genes with δi = 0
as equally expressed (EE) and genes with δi �= 0 as differentially expressed (DE),
and we denote δ = (δ1, . . . , δn).

2.1. The model. The Ga model [Kendziorski et al. (2003); Newton et al.
(2001); Newton and Kendziorski (2003)] assumes that xij are independent re-
alizations from Ga(αi, λi,zj

) (i.e., the mean is αi/λi,zj
). The model assumes
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δi ∼ Mult(1,π), fixes αi = α for all i and specifies the hierarchical prior λi,zj
∼

Ga(α0, ν) for all distinct scale parameters under pattern δi . Here (α0, ν,α,π)

are hyper-parameters common to all genes. For δi = 0 (EE genes) we have
λi,1 = · · · = λi,K , and for δi �= 0 some of the λi,zj

are different from each other,
according to the specification of the hypotheses.

The Ga model imposes the restriction that 1/
√

αi , the within-groups coeffi-
cients of variation (CV), must be constant across all genes and groups. The as-
sumption is analytically convenient, but we have found it not to be reasonable
in typical data. Figure 1(a) shows empirical CVs for the Armstrong data, de-
scribed in Section 6. The sample CVs and mean expressions are roughly in-
dependent. This does not confirm, however, the constant CV assumption. If
the true CVs were indeed constant, the sample CVs should be similar to each
other (up to estimation error), whereas we observe CVs that range from 0.005
to 0.7. We conducted a simulation study and confirmed that, under the con-
stant CV assumption, the range of sample CVs should be much smaller. To as-
sess the extent to which this lack of fit affects the inference, Figure 1(a) high-
lights the genes declared DE by the Ga model. These are mostly genes with
above average CV. This is due, we believe, to the constant CV assumption,
which makes the Ga model view atypical CVs as evidence for differential expres-
sion.

In practice an analyst would certainly interrogate the identified genes and down-
weight cases like those identified in Figure 1(a). Still, it is desirable to allow
αi in the model to depend on the gene i and automate this step when possible.
The main difficulty with this generalization is that it seriously complicates com-
putations. We propose a generalization that addresses this limitation in a compu-
tationally efficient manner. We introduce gene-specific shape parameters αi and

(a) (b)

FIG. 1. Armstrong data. (a) Sample mean and CV for each gene (* denotes genes declared DE
by the Ga model). (b) Marginal distribution of data (log2 scale vs. prior predictive of GaGa and
MiGaGa with M = 2 and ω = ω̂).
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assume xij ∼ Ga(αi, αi/λi,zj
) (i.e., λi,zj

is the mean), with the following hierar-
chical prior:

λi,k|δi, α0, ν ∼ IGa(α0, α0/ν), indep. for i = 1, . . . , n
(2)

αi |δi, β,μ ∼ Ga(β,β/μ), indep. for i = 1, . . . , n,

and a prior for δi as before. We refer to (2) as the GaGa model. As in the Ga
model, when δi = 0 we have λi1 = · · · = λiK , whereas under δi �= 0 some of them
are different from each other (although they still arise from the same marginal
distribution). The GaGa model replaces the hyper-parameter α of the Ga model
with the pair (β,μ). That is, the additional flexibility is achieved with only one
more hyper-parameter.

Note that we assume that αi is constant across groups. Allowing it to vary across
groups would allow to compare not only mean expression levels but the full distri-
bution, which is biologically relevant (Lapointe et al. (2004); Coombes, Wang and
Baggerly (2007)). Even though in this paper we focus on the comparison of λi,zj

,
we have also derived and implemented the comparison of αi in our Bioconductor
package gaga.

2.2. Posterior distributions. We derive the posterior probability that a gene
follows each expression pattern, which is needed to obtain lists of differentially
expressed genes. We also present the posterior distribution of the first-stage para-
meters, which are needed to obtain fold change estimates. Both posterior prob-
abilities and distributions are derived assuming that the hyper-parameters ω =
(α0, ν, β,μ,π) are fixed, as was done for the Ga model. We denote the vector
of means for a single gene as λi = (λi,1, . . . , λi,K) and we let λ = (λ1, . . . ,λn),
α = (α1, . . . , αn) be the collection of these parameters. From (2) we see that, con-
ditional on ω, the gene-specific parameters (δi, αi,λi ) are independent a posteri-
ori across genes i = 1, . . . , n. Therefore, it suffices to derive the posterior for each
gene separately.

Let Pi be the log-product of the observations for gene i, that is, Pi =
log

∏J
j=1 xij , and let Nδi

be the number of groups that are distinct under pat-
tern δi . In our example in (1) we have H = 3 patterns: under pattern 0 we have
N0 = 1 distinct groups, and, similarly, N1 = 2, N2 = 3. Let Si,δi ,k for i = 1, . . . , n,
δi = 0, . . . ,H − 1 and k = 1, . . . ,Nδi

be the sum of observations from gene i that
under pattern δi correspond to the kth distinct group and Ji,δi ,k be the number of
terms in the sum. In our example S10,0,1 denotes the sum of all observations from
gene 10 (since under pattern 0 there is only one distinct group), S10,1,1 denotes the
sum of observations from normal samples (since it is the first distinct group under
pattern 1) and S10,1,2 the sum from cancers of type A and B. We denote by Si,δi

and Ji,δi
the collection of Si,δi ,k and Ji,δi ,k for k = 1, . . . ,Nδi

.
The posterior probability that gene i follows expression pattern l, which we

denote as vil , is given by vil = P(δi = l|x,ω) ∝ f (xi |δi = l,ω)πl for l = 0, . . . ,
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H − 1, where f (xi |δi,ω) is equal to

[
(α0/ν)α0(β/μ)β

�(α0)�(β)

]Nδi
Nδi∏
k=1

1

C(Ji,δi
, β,β/μ − Pi,α0, α0/ν,Si,δi

)
,(3)

and C(·) is the gamma shape normalization constant, defined in Section 4.
The distribution of (αik, λik) conditional on the observed data, δi and the hyper-

parameters ω is

αi |δi,ω,x ∼ GaS(Ji,δi
, β,β/μ − Pi,α0, α0/ν,Si,δi

),
(4)

λi,k|αi, δi,ω,x ∼ IGa(αiJi,δi ,k + α0, α0/ν + αiSi,δi ,k).

For any given ω, (4) can be used to obtain posterior credibility intervals in the
usual fashion. Note that αi and λi,k are not conditionally independent a posteriori
given (δi,ω) as they are a priori.

2.3. Model fitting. The model can be fit by estimating (α0, ν, β,μ,π) with
an empirical Bayes argument. To this end, we implemented an expectation-
maximization algorithm completely analogous to that for the Ga model
[Kendziorski et al. (2003), Appendix]. The EM algorithm is described in the
Supplementary Material [Rossell (2009)]. Alternatively, fully Bayesian model fit-
ting schemes which specify a hyper-prior on (α0, ν, β,μ,π) are also possible and
are provided in the Supplementary Material [Rossell (2009)]. Both EM and fully
Bayesian approaches are implemented in our gaga package, and they usually
deliver virtually identical results. This is to be expected, as microarray data is
strongly informative about parameters that are common to all genes.

Both the empirical and fully Bayesian algorithms require the evaluation of the
normalization constants in the posterior distribution of the gamma shape parame-
ters α1, . . . , αn, which are not available in closed form. In Section 4 we derive
useful approximations that reduce the computational burden.

3. The MiGaGa model. The GaGa model addresses the problem illustrated
in Figure 1(a) by allowing varying CVs across genes. However, another limitation
remains. In practice, some normalization procedures, such as RMA [Irizarry et al.
(2003)] or GCRMA [Wu et al. (2004)], oftentimes result in a distinctly bimodal
distribution for the gene expressions. Figure 1(b) shows a kernel density estimate
of the density of xij for the Armstrong data (see Section 6.1), and compares it
with the prior-predictive under the GaGa model. The model does not capture the
bimodality. To address this limitation, we introduce a further generalization, by
letting λi,k arise from the mixture

λi,k|δi,ρ,α0, ν ∼
M∑

m=0

ρm IGa(α0m,α0m/νm),

(5)
ρ ∼ Dirichlet(r),
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where M is the number of components in the mixture. The rest of the model is as
in (2). The posterior distributions and model fitting procedures are largely analo-
gous to that for the GaGa model and are detailed in the Supplementary Material
[Rossell (2009)]. The main difference is that for the MiGaGa one introduces latent
variables indicating the cluster to which each gene belongs.

Compared to the GaGa prior, the additional flexibility in MiGaGa potentially
allows us to obtain a better fit to the data, albeit this comes at the cost of increased
model complexity and computational burden. Figure 1(b) shows how the MiGaGa
prior predictive improves the GaGa fit substantially. We selected M = 2 clusters
as they capture the bi-modality observed in Figure 1(b). In general, one can either
select M maximizing some criterion such as the BIC [Schwarz (1978)] or simply
fit a MiGaGa model with large M . In the latter case, after the model fit one could
remove the clusters with estimated weights ρm below some threshold.

4. The gamma shape distribution. The posterior distribution of the shape
parameter αi in (2), which we refer to as gamma shape distribution, has not been
described before. It is similar to the distribution that arises when the parametriza-
tion is in terms of the shape and scale parameters [Damsleth (1975); Miller (1980)].
To simplify notation, we denote by y a positive continuous random variable that
follows this distribution. Its probability density function, indexed by the parame-
ters a = (a1, . . . , ap) where ai ≥ 0, b > 0, d > 0, r > 0, s = (s1, . . . , sp) where
si > 0, c > −∑p

i=1 ai log(si/ai), can be written as f (y|a, b, c, d, r, s) =

C(a, b, c, d, r, s)yb−pd−1e−yc
p∏

i=1

�(aiy + d)

�(y)ai

(
y

r + siy

)aiy+d

(6)

for y > 0. C(a, b, c, d, r, s) is the normalization constant and �(·) is the gamma
function. For a1 = · · · = ap = d = 0, (6) simplifies to a gamma distribution.

In general, to obtain random draws from (6) or to evaluate C(a, b, c, d, r, s), one
has to resort to numerical methods. This is impractical in our setup, since both the
EM algorithm and the fully Bayesian fitting schemes [see Supplementary Material
in Rossell (2009)] require performing these steps a very large number of times.
Approximations are required to decrease the computational burden.

We start by deriving an approximation to (6) that is appropriate for large values
of y. By approximating �(·) with Stirling’s formula and evaluating the limit of
the resulting expression as y → ∞ and aiy + d → ∞, we find that (6) is roughly
proportional to a Ga(b + 0.5

∑p
i=1(ai − 1), c + ∑p

i=1 ai log(si/ai)). This gives a
straightforward manner to obtain approximate draws from (6). To approximate
C(a, b, c, d, r, s), one could simply use the normalization constant of the approxi-
mating gamma distribution. Instead, we use an alternative approach that in practice
improves the quality of the approximation. Denote as g(y) the probability density
function of the gamma approximation, and let m be its mode. Evaluating g and (6)
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at m gives

C(a, b, c, d, r, s)
(7)

≈ g(m)m−b+pd+1emc
p∏

i=1

�(m)ai

�(aim + d)

(
m

r + sim

)−(aim+d)

.

In the Supplementary Material [Rossell (2009)] we show examples comparing
the gamma shape distribution and its gamma approximation. In our examples the
approximation error is below 10−5 for the density and 10−14 for C(a, b, c, d, r, s).
In the microarray data that we have analyzed so far the approximation worked well,
as most coefficients of variation are � 1 and, therefore, the posterior distribution
is centered around large y values. Also, ai ≥ 1 as it is the sample size in group
i and d > 0, and, hence, aiy + d is also large. In some rare cases we detected
that the mode of the approximation did not match that of (6) (indicated by the
first derivative of log[f (y|a, b, c, d, r, s)] not being close to zero). In these cases
we used a few Newton–Raphson steps to locate the mode and used the gamma
approximation that matches the location of the mode as well as the value of the
second derivative of log[f (y|a, b, c, d, r, s)] evaluated at the mode.

5. Inference. We formalize inference for differential expression by mini-
mizing the Bayesian false negative rate (BFNR) subject to an upper bound on
the Bayesian false discovery rate (BFDR) [Müller, Parmigiani and Rice (2007)].
Briefly, BFNR is the posterior expected false negative rate (i.e., genes declared EE
that are actually DE), and BFDR is the posterior expected false positive rate (i.e.,
genes declared DE that are actually EE). The definition is analogous to the frequen-
tist FDR and FNR definitions, and it remains valid for more than two hypotheses.
The Bayes rule is to declare a gene as DE whenever its posterior probability of
DE is above a certain threshold. Müller, Parmigiani and Rice (2007) provided a
simple expression to determine the threshold. The result extends trivially to our
multiple hypotheses setup with a slight adjustment: given that a gene is not classi-
fied into pattern 0, we propose assigning it to the pattern with the highest posterior
probability. That is, for given BFDR and BFNR we maximize the number of genes
correctly classified into their expression pattern.

Since the posterior probabilities in Section 2.2 are derived under an assumed
probability model, deviations from the model assumptions may result in poor per-
formance of the procedure. In Section 6.2 we assess its frequentist operating char-
acteristics by bootstrapping one example. For further details see the supplementary
material [Rossell (2009)].

6. Results. We assess the performance of the GaGa and MiGaGa models in
simulated data and several examples. We fit MiGaGa with M = 2 clusters, as we
believe it offers a reasonable compromise between model flexibility and compu-
tational speed. In Section 6.1 we analyze the leukemia data of Armstrong et al.
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(2002), and in Section 6.2 we use this data to conduct several simulation studies.
We also analyze the Affymetrix data from the MAQC study [MAQCconsortium
(2006)]. This study is a valuable resource, as the differential expression status of
over 1,000 genes was validated via quantitative PCR Taqman assays. The models
were fit via an EM scheme, as described in Section 2.3.

We compare our methodology to the Ga model, BRIDGE [Gottardo et
al. (2006)], limma with Benjamini–Hochberg p-value adjustment (limma-BH)
[Smyth (2005); Benjamini and Hochberg (1995)], the Significance Analysis of
Microarrays (SAM) of Tusher, Tibshirani and Chu (2001), and a t-test/F -test with
beta-uniform mixture p-value adjustment (t-BUM) [Pounds and Morris (2003)].
For limma-BH, SAM and t-BUM we use log2-transformed data BRIDGE to auto-
matically log-transform the data, so we gave un-logged data as input to the routine.
For Ga, GaGa and MiGaGa we use the original scale, as these methods have been
designed to work with positive real values. All methods are used as implemented
in their respective Bioconductor packages [Gentleman et al. (2004)]. Ga is one
of the methods implemented in the package EBarrays [Kendziorski, Newton
and Sarkar (2005)]. We do not perform a comparison with the lnnmv procedure
within EBarrays, which formulates a log-normal model that allows genes to
have different variances in a manner similar to limma. BRIDGE is implemented
in bridge [Gottardo (2004)], limma-BH in limma [Smyth (2005)], SAM in
siggenes [Schwender (2007)], and t-BUM in ClassComparison [Coombes
(2007)].

All methods were set up to control the FDR below 0.05.

6.1. Armstrong data. The data (http://www.broad.mit.edu/cgi-bin/cancer/
publications/pub_paper.cgi?mode=view&paper_id=63) consists of 24 Affymetrix
U95A arrays from acute lymphoblastic leukemia (ALL) samples, 18 U95A arrays
from lymphoblastic leukemia with MLL translocations (MLL), and 2 U95Av2 ar-
rays also from the MLL group. The U95Av2 arrays were obtained at a later date
than the rest, possibly under different experimental conditions, so we excluded
them from the analysis. The data also contained samples with acute myelogenous
leukemia, but for illustration we restrict attention to the ALL and MLL groups.

The data was background corrected, normalized and summarized using the
function just.gcrma from the R package gcrma [Wu and Irizarry (2007)].

6.1.1. Model fit. Figure 1(a) reveals a violation of the constant CV assumption
of the Ga model, and that the model tends to flag genes with large CVs as DE.
Figure 1(b) shows that a MiGaGa fit with M = 2 components describes the data
better than a single-component GaGa. Further assessment of goodness of fit can
be found in Supplementary Material [Rossell (2009)].

http://www.broad.mit.edu/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=63
http://www.broad.mit.edu/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=63
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TABLE 1
Gene discoveries in the Armstrong data. # DE: average number of genes declared DE; % rep.:

average percentage of # DE also found when analyzing the full data

5 arrays 10 arrays 15 arrays All data

# DE % rep. # DE % rep. # DE % rep. # DE

GaGa 58.5 0.856 431.0 0.893 784.0 0.889 991
MiGaGa (M = 2) 61.5 0.860 445.0 0.893 815.0 0.890 1040
Ga 900.0 0.810 1261.0 0.885 1526.0 0.918 1744
BRIDGE 21.5 0.944 182.5 0.960 439.0 0.959 716
limma-BH 21.5 0.947 181.5 0.957 543.0 0.946 972
SAM 0.0 0.937 274.0 0.973 804.0 0.956 1477
t-BUM 7.5 1.000 168.5 0.975 586.0 0.965 1194

6.1.2. Differential expression analysis. To study the behavior of the methods
under small sample sizes and evaluate the reliability of the results, we analyze
multiple random subsets of chips and report averaged results. We start by fitting
the model to 5 randomly chosen arrays from each group. We then add 5 more
arrays per group, then 10 and finally we analyze the full data set. We repeat this
process 20 times.

Table 1 shows the average number of genes declared DE when analyzing a sub-
set of 5, 10 and 15 arrays per group, as well as the full data. The table also provides
the percentage of reproducibility, that is, how many among those genes were found
again when analyzing the full data set. For instance, with 5 arrays per group Mi-
GaGa found 61.5 genes on the average, 86.0% of which were confirmed in the full
data. Ga was the method declaring the most genes as DE. The observed lack of
fit of the Ga model and the simulation study conducted in Section 6.2 suggest that
Ga produces lists of DE genes with an FDR well above the desired 5%. For most
sample sizes, GaGa and MiGaGa found more genes than the remaining competi-
tors, and presented reasonably high reproducibility. The advantage is especially
noticeable for small sample sizes, where GaGa and MiGaGa find at least twice as
many genes as the competitors.

6.2. Simulation study. We conduct a parametric and a nonparametric simula-
tion study. For both we use the Armstrong data, so that the simulations are as real-
istic as possible. We simulate 200 data sets, conduct analyses analogous to those in
Section 6.1 and compute average power, FDR, Receiver Operating Characteristics
(ROC) curves and areas under the curve (AUC).

For the parametric simulation, we generate data from the posterior predictive
distribution of the GaGa model fit to the Armstrong data. That is, gene expressions
are gamma distributed and, for each gene, the simulated means and CVs are con-
sistent with the sample means and CVs. The genes DE status are determined based
on the DE posterior probabilities.
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For the nonparametric simulation, we also determine which genes are differen-
tially expressed using the GaGa posterior probabilities from Armstrong data. Ex-
pression values for EE genes are generated by re-sampling the Armstrong data ar-
rays with replacement, regardless of which group they came from. This conserves
both the marginal distribution for each gene and also the correlations between EE
genes. For DE genes, we again sample arrays with replacement, but the ALL data
is simulated by sampling from the ALL group only, and similarly for MLL data.
We repeat this process 200 times and report average power and FDR.

6.2.1. Differential expression. Table 2 shows the observed FDR and power for
several sample sizes. As suggested by the lack of fit discussed above, Ga presents
FDR rates well above the desired 5%. In the parametric simulations, GaGa and Mi-
GaGa appropriately control the FDR below 5% and they present a higher average
power than the remaining competitors for all sample sizes. In the nonparametric
simulations, the advantage in power is more noticeable, that is, from 0.449 for
limma-BH to 0.671 for MiGaGa. However, the FDR was slightly above 5% in
several scenarios. Among the competitors, limma-BH and SAM performed best.

6.2.2. ROC curves. We computed the average ROC curve over the 200 non-
parametric simulations with 20 arrays per group. Figure 2(a) shows the average
FDR and power. GaGa and MiGaGa presented very similar curves and dominated

TABLE 2
Average FDR and power for different sample sizes. Data simulated from GaGa posterior predictive

5 arrays 10 arrays 15 arrays 20 arrays

FDR Power FDR Power FDR Power FDR Power

Parametric simulation
GaGa 0.011 0.066 0.000 0.322 0.007 0.512 0.002 0.608
MiGaGa (M = 2) 0.011 0.066 0.000 0.328 0.008 0.520 0.002 0.615
Ga 0.159 0.434 0.133 0.587 0.117 0.667 0.105 0.712
BRIDGE 0.000 0.034 0.016 0.232 0.032 0.424 0.022 0.553
limma-BH 0.012 0.063 0.035 0.288 0.034 0.487 0.036 0.580
SAM 0.000 0.000 0.044 0.272 0.043 0.492 0.042 0.582
t-BUM 0.065 0.021 0.040 0.266 0.034 0.480 0.042 0.577

Nonparametric simulation
GaGa 0.043 0.054 0.066 0.319 0.067 0.529 0.065 0.660
MiGaGa (M = 2) 0.047 0.057 0.066 0.327 0.068 0.541 0.068 0.671
Ga 0.342 0.397 0.289 0.567 0.254 0.666 0.239 0.740
BRIDGE 0.099 0.048 0.045 0.133 0.035 0.240 0.041 0.339
limma-BH 0.047 0.029 0.021 0.168 0.019 0.321 0.024 0.449
SAM 0.049 0.020 0.050 0.197 0.051 0.360 0.048 0.481
t-BUM 0.070 0.022 0.043 0.156 0.053 0.324 0.048 0.454
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(a) (b)

FIG. 2. ROC curves. (a) Averaged over Armstrong bootstrap simulations. AUC: GaGa = 0.781,
MiGaGa = 0.782, Ga = 0.707, BRIDGE = 0.595, limma-BH = 0.631, SAM = 0.620, t-BUM = 684.
(b) MAQC data. AUC: GaGa = 0.0585, MiGaGa = 0.0581, Ga = 0.0570, BRIDGE = 0.0567,
limma-BH = 0.0596, SAM = 0.0580, t-BUM = 0.0599.

uniformly the competing methods. limma-BH, SAM and t-BUM performed better
than Ga and BRIDGE when the FDR was below 0.2, that is, the range typically
considered in practice. The GaGa AUC was significantly lower than the MiGaGa
AUC, and significantly higher than the other methods’ AUC (Wilcoxon paired test,
Bonferroni corrected P < 0.01). However, the numerical difference between the
GaGa and MiGaGa AUCs is of no practical relevance.

6.3. MAQC study. The MicroArray Quality Control (MAQC) project was ini-
tiated to assess the reliability and reproducibility of findings obtained from mi-
croarray experiments. Expression data was obtained for four titration pools (A, B,
C and D) generated from two distinct reference RNA samples, at multiple sites and
using several technology platforms. The two RNA samples types were Universal
Human Reference RNA (UHRR) from Stratagene and a Human Brain Reference
RNA (HBRR) from Ambion. The four pools included the two reference RNA sam-
ples and two mixtures: Sample A, 100% UHRR; Sample B, 100% HBRR; Sam-
ple C, 75% UHRR :25% HBRR; and Sample D, 25% UHRR :75% HBRR. Con-
firmatory qPCR assays were performed for the 1,296 genes with the largest t-test
statistic values comparing groups A vs. B. qPCR assays have a much higher sen-
sitivity than microarrays, and are therefore a powerful tool to assess the DE status
of a selected list of genes.

We restrict attention to the 20 Affymetrix hgu133plus2 arrays obtained in the
first site, and we analyze the microarray data as pre-processed in MAQCcon-
sortium (2006). We consider that qPCR confirms that a gene is DE whenever the
limma F -test unadjusted p-value for the qPCR data is less than 0.05.
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6.3.1. Differential expression. When fitting the GaGa and MiGaGa (M = 2)
models we reflect the experimental setup considering the following 5 hypotheses
for each gene:

Pattern 0: A = C = D = B,

Pattern 1: A �= C = D = B,

Pattern 2: A = C �= D = B,(8)

Pattern 3: A = C = D �= B,

Pattern 4: A �= C �= D �= B.

As groups C and D contain both UHRR and HBRR, one expects a priori that most
genes follow either Pattern 0 or Pattern 4. Patterns 1–3 include DE genes for which
not all titrations are different. For instance, Pattern 1 contains genes for which 25%
HBRR is enough to modify its expression levels as much as 100% HBRR.

GaGa assigns 20272, 0, 1429, 3935 and 29039 genes to patterns 0, 1, 2, 3 and 4
(respectively), whereas MiGaGa assigns 16328, 0, 1323, 3697 and 33327. That is,
most of the differentially expressed genes are assigned to Pattern 4, as expected.
We assessed the biological interpretation of these gene lists by conducting a gene
ontology enrichment analysis. To this end, we created (i) a list with the 1000 genes
with the highest posterior probability for Pattern 4 and that presented group B
mean > group A mean, and (ii) another list with 1000 with highest posterior prob-
abilities for Pattern 4 and group A mean > group B mean. After obtaining these
two lists both for GaGa and MiGaGa, we tested for enriched biological process
categories using the DAVID software [Dennis et al. (2003)]. The highest enrich-
ment in genes over-expressed in group B with respect to group A was observed
in transmission of nerve impulse, synaptic transmission, nervous system develop-
ment, cell–cell signaling and cell communication. All these functions are needed
specifically in the brain, and, hence, they should indeed be enriched in HBRR.
The highest enrichment in genes under-expressed in group B was observed for cell
cycle, cell cycle phase, mitotic cell cycle, cell cycle process and M phase. These
functions are all related to cell proliferation, and are expected to be turned off
in differentiated organs like the brain. The complete listings of the significantly
enriched categories were also highly consistent with the experiment’s biological
background, and are provided in the Supplementary Material [Rossell (2009)].

6.3.2. ROC curves. We compare our approach to the competing methods by
computing ROC curves, using only qPCR-validated genes. It should be noted that,
as only genes with large t-test statistic values were selected for qPCR validation,
this puts the t-test based methods (limma-BH, SAM, t-BUM) at an advantage with
respect to Ga, GaGa, MiGaGa and BRIDGE. That is, a number of the potentially
interesting genes found by the latter methods were never validated due to having
small to moderate t-test statistic values.
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For Ga, we specify the same 5 expression patterns considered for GaGa and Mi-
GaGa. For the remaining methods, we simply test the null hypothesis (Pattern 0)
against the full alternative (Pattern 4). As the Bioconductor bridge package cur-
rently does not support more than 3 groups, for BRIDGE we only analyzed data
from groups A and B.

Figure 2(b) displays the results. The x-axis provides proportion of nonvalidated
qPCR genes (i.e., with limma-BH p-value >0.05 for qPCR data), and the y-axis
the proportion of validated qPCR genes (i.e., p-value >0.05). Among the 1296
genes selected for qPCR validation in the original MAQC paper, only 7.8% were
not confirmed. Therefore, for all considered analysis methods the proportion of
nonvalidated genes (x-axis) can at the most be 7.8%.

In contrast with Figure 2(a), the differences between methods are not large.
The t-test based methods present slightly higher AUC than GaGa and MiGaGa,
which in turn present slightly higher AUC than Ga and BRIDGE. Qualitatively, all
methods achieve good levels of qPCR validation.

7. Discussion. We introduced two hierarchical models for high-throughput
data based on the gamma distribution. This flexible parametric choice allows to
capture the asymmetric data frequently encountered in this field, even after log-
transformations. GaGa builds on the Ga model by relaxing the constant coefficient
of variation assumption. This results in a parsimonious model with a substantial
improvement in the model fit and therefore in reliability of the resulting inference.
The increased generality comes at a negligible computational cost. We derived an
approximation for the posterior distribution of the gamma shape parameter that
further simplifies computation. The second extension, the MiGaGa, increases the
model flexibility by incorporating a mixture prior, at the expense of model parsi-
mony. In practice, a mixture with as few as two components may suffice to provide
a satisfactory fit. We have shown that, in many situations, GaGa achieves almost
the same degree of performance compared to MiGaGa, and hence that it is a sen-
sible default choice.

The hierarchical nature of the models allows for the sharing of information
across genes. This is specially beneficial for the small sample sizes often encoun-
tered in high-throughput experiments.

We compared our models with two other gamma-based models and three t-test
and normal linear model based approaches. In simulations and in several examples
we have shown how both GaGa and MiGaGa find more genes than the competing
methods, while controlling the FDR around the desired levels. For instance, when
analyzing a subset with 5 arrays per group from the Armstrong data we detect
around 60 differentially expressed genes, while the best competing methods found
around 20. The fact that around 86% of these genes were found again when ana-
lyzing the full data gives us confidence that these are not spurious findings. Both in
parametric and nonparametric simulations we have seen that GaGa and MiGaGa
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present improved operating characteristics. ROC curves showed potential for sub-
stantial increases in power at fixed FDR levels. Even in a list of qPCR-validated
genes selected for having a large t-test statistic, our models performed almost as
well as the t-test based methods, and delivered biologically meaningful results.

Some extensions of the model are possible. For instance, the interest might
be not only in seeking differences in mean expression but also in distributional
shape. This is frequently of biological interest, since many mutations, deletions
and translocations affect only a proportion of the diseased individuals, and, hence,
one expects to see differences in the tail behavior between groups. Although not
presented in this paper, we derived such an approach and implemented it as an
option in the Bioconductor gaga library.

Also, we have not explicitly modeled the dependence between genes. Not learn-
ing about the dependence structure limits the use of the model in finding gene net-
works or gene interactions. Interesting future work will be to include dependence.
Other possibilities are extending the model to include covariate information and
study-specific random effects, which would make it appealing for meta-analysis
purposes, or using the model for sample size calculation as in Müller et al. (2004)
or sequential sample size calculation. In the latter application, the computational
efficiency of the GaGa model should prove a major asset.

Acknowledgments. We thank Peter Müller and Jens Luders for their very use-
ful comments.

SUPPLEMENTARY MATERIAL

Supplement to GaGa: A parsimonious and flexible model for differen-
tial expression analysis (DOI: 10.1214/09-AOAS244SUPP; .pdf). We detail an
EM algorithm and two fully Bayesian MCMC schemes for model fitting, and a
Bayesian procedure for FDR control. We also assess model goodness-of-fit, assess
the quality of the gamma approximation to the gamma shape distribution and detail
the gene ontology analysis performed for the MAQC study.
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