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We analyze the asymptotic properties of a Euclidean optimization prob-
lem on the plane. Specifically, we consider a network with three bins and n

objects spatially uniformly distributed, each object being allocated to a bin at
a cost depending on its position. Two allocations are considered: the alloca-
tion minimizing the bin loads and the allocation allocating each object to its
less costly bin. We analyze the asymptotic properties of these allocations as
the number of objects grows to infinity. Using the symmetries of the problem,
we derive a law of large numbers, a central limit theorem and a large devia-
tion principle for both loads with explicit expressions. In particular, we prove
that the two allocations satisfy the same law of large numbers, but they do not
have the same asymptotic fluctuations and rate functions.

1. Introduction. In this paper we take an interest in a Euclidean optimization
problem on the plane. For ease of notation, we shall identify the plane with the
set of complex numbers C. Set λ = 2(3

√
3)−1/2, i = √−1 (the complex unit),

j = e2iπ/3 and consider the triangle T ⊂ C with vertices B2 = λi, B1 = j2B2 and
B3 = jB2. Note that T is an equilateral triangle with side length λ

√
3 and unit

area. We label by {1, . . . , n} n objects located in the interior of T and denote by
Xk , k = 1, . . . , n, the location of the kth object; see Figure 1. We assume that
{Xk}k=1,...,n are independent random variables (r.v.’s) with uniform distribution on
T. Suppose that there are three bins located at each of the vertices of T and that
each object has to be allocated to a bin. The cost of an allocation is described by
a measurable function c : T → [0,∞) such that ‖c‖∞ := supx∈T c(x) < ∞. More
precisely, c(x) = c1(x) denotes the cost to allocate an object at x ∈ T to the bin
in B1; the cost to allocate an object at x ∈ T to the bin in B2 is c2(x) = c(j2x); the
cost to allocate an object at x ∈ T to the bin in B3 is c3(x) = c(jx). Let

An = {
A = (akl)1≤k≤n,1≤l≤3 :akl ∈ {0,1}, ak1 + ak2 + ak3 = 1

}
be the set of allocation matrices: if akl = 1 the kth object is affiliated to the bin in
Bl . We consider the load relative to the allocation matrix A = (akl)1≤k≤n,1≤l≤3 ∈
An:

ρn(A) = max
1≤l≤3

(
n∑

k=1

aklcl(Xk)

)
,
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FIG. 1. The triangle T, the three bins and the n objects.

and the minimal load

ρn = min
A∈An

ρn(A).

Throughout this paper we refer to ρn as the optimal load. This simple instance
of Euclidean optimization problem has potential applications in operations re-
search and wireless communication networks. Consider three processors run-
ning in parallel and sharing a pool of tasks {1, . . . , n} located, respectively, at
{X1, . . . ,Xn} ⊆ T. Suppose that cl(x) is the time requested by the lth processor to
process a job located at x ∈ T. Then ρn is the minimal time requested to process
all jobs. For example, a natural choice for the cost function is c(x) = 2|x − B1|,
that is, the time of a round-trip from B1 to x at unit speed. In a wireless com-
munication scenario, the bins are base stations and the objects are users located
at {X1, . . . ,Xn} ⊆ T. For the base station located at Bl , the time needed to send
one bit of information to a user located at x ∈ T is cl(x). In this context ρn is the
minimal time requested to send one bit of information to each user and 1/ρn is the
maximal throughput that can be achieved. We have chosen a triangle T because
it is the fundamental domain of the hexagonal grid, which is a good model for
cellular wireless networks.

For 1 ≤ l ≤ 3, we define the Voronoi cell associated to the bin at Bl by

Tl =
{
x ∈ T : |x − Bl| = min

1≤m≤3
|x − Bm|

} ∖
Dl,

where D1 = {ij t : t < 0} and, for l = 2,3, Dl = {ij lt : t ≤ 0}. Note that T1 ∪ T2 ∪
T3 = T and T1 ∩ T2 = T1 ∩ T3 = T2 ∩ T3 = ∅, that is, {T1,T2,T3} is a partition
of T. Note also that 0 ∈ T1.
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Throughout the paper, we denote by | · | the Euclidean norm on C, by � the
Lebesgue measure on C and by x · z the usual scalar product on C, that is, x · z =
�(x)�(z) + (x)(z). We suppose that the value of the cost function is related to
the distance of a point from a bin as follows:

For all x ∈ T and l = 2,3 if |x − B1| < |x − Bl| then c1(x) < cl(x).(1.1)

For example, if c(x) = f (|x − B1|) and f : [0,∞) → [0,∞) is increasing, then
(1.1) is satisfied.

In this paper, as n goes to infinity, we study the properties of an allocation
which realizes the optimal load ρn, and, as a benchmark, we compare it with the
suboptimal load ρn = ρn(A), where A = (akl)1≤k≤n,1≤l≤3 is the random matrix
obtained by affiliating each object to its least costly bin

akl = 1(Xk ∈ Tl).

We shall prove that, using the strong symmetries of the system, it is possible to
perform a fine analysis of the asymptotic optimal load. It turns out that a law of
large number can be deduced for the optimal and suboptimal load. More precisely,
setting

γ =
∫

T1

c(x) dx,

we have the following theorem.

THEOREM 1.1. Assume (1.1). Then, almost surely (a.s.),

lim
n→∞

ρn

n
= lim

n→∞
ρn

n
= γ.

As a consequence, at the first order, the optimal and the suboptimal load perform
similarly.

The next result shows that, at the second order, the two loads differ significantly.
We first introduce an extra symmetry assumption on c, namely, its symmetry with
respect to the straight line determined by the points 0 and B1. If x = teiθ ∈ T,
t > 0, θ ∈ [0,2π ], then its reflection with respect to the straight line determined by
the points 0 and B1 is te−iθ−iπ/3 ∈ T. Formally, we assume

c(teiθ ) = c(te−iθ−iπ/3)

(1.2) for all θ ∈ [0,2π ] and t > 0 such that teiθ ∈ T and

c is Lipschitz in a neighborhood of D1 ∪ D3.

Setting

σ 2 =
∫

T1

c2(x) dx

and letting
d→ denote the convergence in distribution, we have the following theo-

rem.
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THEOREM 1.2. Assume (1.1) and (1.2). Then, as n goes to infinity,

n−1/2(ρn − γ n)
d→ G,

where G is a Gaussian r.v. with zero mean and variance σ 2/3 − γ 2. Moroever, as
n goes to infinity,

n−1/2(ρn − γ n)
d→ max{G1,G2,G3} − 1

3(G1 + G2 + G3) + G

and

n−1/2(ρn − ρn)
d→ max{G1,G2,G3} − 1

3(G1 + G2 + G3),

where G1, G2 and G3 are independent Gaussian r.v.’s with zero mean and vari-
ance σ 2, independent of G. Finally

E[ρn] = nγ + o
(√

n
)

and E[ρn] = nγ + m
√

n + o
(√

n
)
,

where m = E[max{G1,G2,G3}] > 0 depends linearly on σ .

Theorem 1.1 states that ρn is asymptotically optimal at scale n, but Theorem 1.2
says that it is not asymptotically optimal at scale

√
n. In the proof of Theorem 1.2,

we shall exhibit a suboptimal allocation which is asymptotically optimal at scale√
n (see Proposition 3.1).
We shall also prove a large deviation principle (LDP) for both the sequences

{ρn/n}n≥1 and {ρn/n}n≥1. Recall that a family of probability measures {μn}n≥1 on
a topological space (M, TM) satisfies a LDP with rate function I if I :M → [0,∞]
is a lower semi-continuous function such that the following inequalities hold for
every Borel set B

− inf
y∈ ◦

B

I (y) ≤ lim inf
n→∞

1

n
logμn(B) ≤ lim sup

n→∞
1

n
logμn(B) ≤ − inf

y∈B
I (y),

where
◦
B denotes the interior of B and B denotes the closure of B . Similarly,

we say that a family of M-valued random variables {Vn}n≥1 satisfies an LDP if
{μn}n≥1 satisfies an LDP and μn(·) = P(Vn ∈ ·). We point out that the lower
semi-continuity of I means that its level sets {y ∈ M : I (y) ≤ a} are closed for
all a ≥ 0; when the level sets are compact the rate function I (·) is said to be good.
For more insight into large deviations theory, see, for instance, the book by Dembo
and Zeitouni [4].

We introduce an assumption on the level sets of the cost function

�(c−1({t})) = 0 for all t ≥ 0,(1.3)

an assumption on the regularity of c

c is continuous on T,(1.4)
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and two further geometric conditions

c(B1) < c(x) < c(0) for any x ∈ T1 \ {0,B1},(1.5)

c1(x)c2(x)c3(x)

c1(x)c2(x) + c1(x)c3(x) + c2(x)c3(x)
<

c(0)

3
<

∫
T2

c(z) dz

(1.6)
for any x ∈ T \ {0}.

Assumption (1.5) fixes the extrema of the cost function on T1. The left-hand side
inequality of (1.6) imposes that 0 is the most costly position in terms of load [for
a more precise statement, we postpone to (4.5)]. For θ ∈ R, define the functions

	(θ) = log
(

3
∫

T1

eθc(x) dx

)
and 	(θ) = log

(∫
T1

eθc(x) dx + 2/3
)

and, for y ∈ R, their Fenchel–Legendre transforms

	∗(y) = sup
θ∈R

(
θy − 	(θ)

)
and 	∗(y) = sup

θ∈R

(
θy − 	(θ)

)
.

The following LDPs hold:

THEOREM 1.3. Assume (1.1), (1.3), (1.4), (1.5) and (1.6). Then:

(i) {ρn/n}n≥1 satisfies an LDP on R with good rate function

J (y) =
{

	∗(3y), if y ∈ (c(B1)/3, c(0)/3
)
,

+∞, otherwise.
(1.7)

(ii) {ρn/n}n≥1 satisfies an LDP on R with good rate function

J (y) =
⎧⎨⎩	∗(3y), if y ∈ (c(B1)/3, γ

]
,

	∗(y), if y ∈ (γ, c(0)),
+∞, otherwise.

(1.8)

The next proposition gives a more explicit expression for the rate functions.

PROPOSITION 1.4. Assume (1.1), (1.5) and c continuous at 0 and B1. Then
	∗ and 	∗ are continuous on (c(B1), c(0)) and

(i) 	∗(y) =
{

yθy − 	(θy), if c(B1) < y < c(0),
+∞, if c(B1) > y or y > c(0),

where θy is the unique solution of∫
T1

c(x)eθc(x) dx∫
T1

eθc(x) dx
= y;(1.9)

(ii) 	∗(y) =
{

yηy − 	(ηy), if c(B1) < y < c(0),
+∞, if c(B1) > y or y > c(0),
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FIG. 2. The rate functions J and J .

where ηy is the unique solution of∫
T1

c(x)eθc(x) dx∫
T1

eθc(x) dx + 2/3
= y.(1.10)

If γ < y < c(0)/3, then 	∗(y) < 	∗(3y).

Note that J (y) = 	∗(3y) except possibly at y ∈ {c(B1), c(0)}; J (y) = 	∗(3y)

on (−∞, γ ] except possibly at y = c(B1), and J (y) = 	∗(y) on (γ,∞) except
possibly at y = c(0). These gaps are treated in Proposition 4.4 with extra regularity
assumptions on c. See Figure 2 for a schematic plot of the rate functions. A simple
consequence of Theorem 1.3 and Proposition 1.4 is the following:

lim
n→∞

logP(ρn ≥ nt)

logP(ρn ≥ nt)
= J (t)

J (t)
and lim

n→∞
P(ρn ≥ nt)

P (ρn ≥ nt)
= 0 ∀t ∈ (γ, c(0)/3

)
.

In words, it means that the probability of an exceptionally large optimal load is
significantly lower than the probability of an exceptionally large suboptimal load;
although, on a logarithmic scale, the probability of an exceptionally small optimal
load does not differ significantly on the probability of an exceptionally small sub-
optimal load. It is not in the scope of this paper to discuss the trade-off between
algorithmic complexity and asymptotic performance. Moreover, we do not know
if the allocation that is asymptotically optimal at scale

√
n used in the proof of

Theorem 1.2 (see Proposition 3.1) has the same rate function than ρn/n.
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Unlike it may appear, we shall not prove Theorem 1.3 by first computing the
Laplace transform of ρn and ρn and then applying the Gärtner–Ellis theorem
(see, e.g., Theorem 2.3.6 in [4]). We shall follow another route. First, we com-
bine Sanov’s theorem (see, e.g., Theorem 6.2.10 in [4]) and the contraction prin-
ciple (see, e.g., Theorem 4.2.1 in [4]) to prove that the sequences {ρn/n}n≥1 and
{ρn/n}n≥1 obey a LDP, with rate functions given in variational form. Then, we
provide the explicit expression of the rate functions solving the related variational
problems. It is worthwhile to remark that, using Theorem 1.3 and Varadhan’s
lemma (see, e.g., Theorem 4.3.1 in [4]) it is easily seen that

lim
n→∞

1

n
log E[eθρn] = J ∗(θ) and lim

n→∞
1

n
log E[eθρn] = J ∗(θ) ∀θ ∈ R,

where J ∗ and J ∗ are the Fenchel–Legendre transforms of J and J , respectively.
A nice consequence of Theorems 1.1 and 1.2 is that, in terms of law of the large
numbers and central limit theorem, ρn has the same asymptotic behavior as

ρ̆n = 1

3

3∑
l=1

n∑
k=1

1{Xk ∈ Tl}cl(Xk).

Moreover, if the cost function satisfies extra regularity assumptions (see Proposi-
tion 4.4), by Theorem 1.3 and the Gärtner–Ellis theorem, we have that ρn and ρ̆n

have the same asymptotic behavior even in terms of large deviations.
As can be seen from the proofs, if the left-hand side of assumption (1.6) does

not hold, then we have an explicit rate function J (y) only for y < c(0)/3. If the
right-hand side of assumption (1.6) also fails to hold, then we have an explicit
rate function J (y) only for y < y0 for some y0 > γ . We also point out that the
statements of Theorems 1.2 and 1.3 concerning ρn do not require the use of (1.2)
and (1.5).

In wireless communication, the typical cost function is the inverse of signal
to noise plus interference ratio (see, e.g., Chapter IV in Tse and Viswanath [9]),
which has the following shape:

c(x) = a + min{b, |x − B2|−α} + min{b, |x − B3|−α}
min{b, |x − B1|−α} , x ∈ T,

where α ≥ 2, a > 0 and b > (λ
√

3/2)−α [recall that λ = 2(3
√

3)−1/2 and λ
√

3 =
|B1 − B2|]. We shall check in the Appendix that this cost function satisfies (1.1),
(1.2), (1.3), (1.4) and (1.5). Moreover, the first inequality in (1.6) will be checked
numerically and, for arbitrarily fixed α > 2 and a > 0, we shall determine values
of the parameter b > (λ

√
3/2)−α such that the second inequality in (1.6) holds.

The remainder of the paper is organized as follows. In Section 2 we analyze
the sample path properties of the optimal allocation and we prove Theorem 1.1. In
Section 3 we show Theorem 1.2. Section 4 is devoted to the proof of Theorem 1.3
and Proposition 1.4. In Section 5, we discuss some generalizations of the model.
We include also an Appendix where we prove some technical lemmas and provide
an illustrative example.
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2. Sample path properties.

2.1. Structural properties of the optimal allocation. Throughout this paper we
denote by Mb(T) the space of Borel measures on T with total mass less than or
equal to 1 and by M1(T) the space of probability measures on T. These spaces are
both equipped with the topology of weak convergence (see, e.g., Billingsley [1]).
For a Borel function h and a Borel measure μ on T, we set μ(h) = ∫

T
h(x)μ(dx).

Consider the functional from Mb(T)3 to R defined by

φ(α1, α2, α3) = max(α1(c1), α2(c2), α3(c3)).(2.1)

Letting α|B denote the restriction of a measure α to a Borel set B , we define the
functionals  and � from M1(T) to R by

(α) = inf
(αl)1≤l≤3∈Mb(T)3 : α1+α2+α3=α

φ(α1, α2, α3)

and

�(α) = φ(α|T1, α|T2, α|T3).

Note that if δx denotes the Dirac measure with total mass at x ∈ T, then

ρn

n
= �

(
1

n

n∑
k=1

δXk

)
.(2.2)

LEMMA 2.1. Under assumption (1.4) we have that φ is continuous on
Mb(T)3 and � and  are continuous on M1(T) (for the topology of the weak
convergence).

The proof of Lemma 2.1 is postponed to the Appendix; the continuity of φ and
� is essentially trivial, but the continuity of  requires more work. Define the set
of matrices

Bn = {B = (bkl)1≤k≤n,1≤l≤3 :bkl ∈ [0,1], bk1 + bk2 + bk3 = 1}
and

ρ̃n = min
B∈Bn

ρn(B).

From the viewpoint of linear programming, this is the fractional relaxation of the
original optimization problem. Now, given a matrix B = (bkl) ∈ Bn, we define
the associated measures (α1, α2, α3) ∈ Mb(T)3 by setting αl = (1/n)

∑n
k=1 bklδXk

(l = 1,2,3). Due to this correspondence, it is straightforward to check that

ρ̃n

n
= 

(
1

n

n∑
k=1

δXk

)
.(2.3)

The next lemma is a collection of elementary statements, whose proofs are given
in the Appendix.
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LEMMA 2.2. Fix n ≥ 1 and let B∗ = (b∗
kl) ∈ Bn be an optimal allocation

matrix for ρ̃n. Then:

(i) For all α ∈ M1(T), there exists (α1, α2, α3) ∈ Mb(T)3 such that α = α1 +
α2 + α3 and (α) = φ(α1, α2, α3). Moreover, whenever such equality holds, we
have α1(c1) = α2(c2) = α3(c3). In particular, the choice αl = (1/n)

∑n
k=1 b∗

klδXk

(l = 1,2,3) yields
n∑

k=1

b∗
k1c1(Xk) =

n∑
k=1

b∗
k2c2(Xk) =

n∑
k=1

b∗
k3c3(Xk).

(ii) If assumption (1.3) holds, then

ρn − 3‖c‖∞ ≤ ρ̃n ≤ ρn a.s.

(iii) If assumption (1.3) holds then the sequences {ρ̃n/n} and {ρn/n} are expo-
nentially equivalent.

For the definition of exponential equivalence, see page 130 in [4].

2.2. Proof of Theorem 1.1. The law of large numbers yields, for all l = 1,2,3,

lim
n→∞

1

n

n∑
k=1

cl(Xk)1{Xk ∈ Tl} =
∫

Tl

cl(x) dx = γ a.s.

Therefore from the identity

ρn

n
= max

1≤l≤3

1

n

n∑
k=1

cl(Xk)1{Xk ∈ Tl},

we get limn→∞ ρn/n = γ a.s. We also have to prove that limn→∞ ρn/n = γ a.s.
Let A = (akl) ∈ An be an allocation matrix. By assumption (1.1), if x ∈ Tl then
cl(x) = min1≤m≤3 cm(x). Therefore

3ρn(A) ≥
3∑

l=1

n∑
k=1

aklcl(Xk)

≥
3∑

l=1

∑
Xk∈Tl

cl(Xk)(2.4)

≥ 3 min
1≤l≤3

(
n∑

k=1

cl(Xk)1{Xk ∈ Tl}
)
.

So taking the minimum over all the allocation matrices we deduce

min
1≤l≤3

(
n∑

k=1

cl(Xk)1{Xk ∈ Tl}
)

≤ ρn ≤ ρn.
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Thus by applying the law of large numbers, we have a.s.

γ ≤ lim inf
n→∞

ρn

n
≤ lim sup

n→∞
ρn

n
≤ γ.

REMARK 2.3. Assume that conditions (1.1), (1.3) and (1.4) hold. By The-
orem 1.1 we have limn→∞ ρn/n = γ a.s. So by Lemma 2.1, equation (2.2) and
the a.s. weak convergence of (1/n)

∑n
k=1 δXk

to � we get �(�) = γ . Similarly,
using (2.3) in place of (2.2), we deduce that limn→∞ ρ̃n/n = (�) a.s. By Lem-
ma 2.2(ii), |ρ̃n/n − ρn/n| ≤ 3‖c‖∞/n, so we obtain limn→∞ ρn/n = (�) a.s.,
and by Theorem 1.1 we have (�) = γ .

3. Proof of Theorem 1.2. Consider the random signed measure

Wn = √
n(μn − �) where μn = 1

n

n∑
k=1

δXk
.

The standard Brownian bridge W on T is a random signed measure specified by
the centered Gaussian process {W(f )} (indexed on the set of square integrable
functions on T, with respect to �), with covariance given by

E[W(f )W(g)] = �(fg) − �(f )�(g)

(see, e.g., Dudley [5]). By construction,

ρn = n max
1≤l≤3

(∫
Tl

cl(x)μn(dx)

)
or equivalently

ρn − nγ√
n

= max
1≤l≤3

(∫
Tl

cl(x)Wn(dx)

)
.(3.1)

Let f be a square integrable function on T. Then, as n → ∞,

Wn(f ) =
∑n

k=1 f (Xk) − n�(f )√
n

d→ W(f ).

Indeed, by the central limit theorem Wn(f ) converges in distribution to a Gaussian
r.v. with zero mean and variance equal to �(f 2) − �2(f ), which is exactly the law
of W(f ). Using the Lévy continuity theorem and the inversion theorem (see, e.g.,
Theorems 7.5 and 7.6 in [1]), we have, for all square integrable functions f1, f2
and f3,

(Wn(f1),Wn(f2),Wn(f3))
d→ (W(f1),W(f2),W(f3)).

For (x1, x2, x3) ∈ R
3, the function (x1, x2, x3) �→ max(x1, x2, x3) is continuous.

Therefore, by the continuous mapping theorem (see, e.g., Theorem 5.1 in [1]) and
(3.1) we have, as n goes to infinity,

ρn − nγ√
n

d→ max
1≤l≤3

(∫
Tl

cl(x)W(dx)

)
.(3.2)
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We shall show later on that the r.v. in the right-hand side of (3.2) has the claimed
distribution. Now we consider the optimal load ρn. By the second inequality in
(2.4) we have

3ρn ≥ n

3∑
l=1

∫
Tl

cl(x)μn(dx)

and therefore

3
ρn − nγ√

n
≥

3∑
l=1

∫
Tl

cl(x)Wn(dx).(3.3)

The following proposition is the heart of the proof. It will be shown later on.

PROPOSITION 3.1. Under the assumptions of Theorem 1.2, there exist ab-
solute constants L0 and L1, not depending on n, such that the following holds. For
any 1/4 < α < 1/2, with probability at least 1 − L1 exp(−L0n

1−2α), there exists
an allocation matrix Â = (âkl)1≤k≤n,1≤l≤3 ∈ An with associated load ρ̂n = ρn(Â)

such that ∣∣∣∣∣3 ρ̂n − nγ√
n

−
3∑

l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣≤ n1/2−2α.

Using this result, ρ̂n ≥ ρn and (3.3), we have that with probability at least 1 −
L1 exp(−L0n

1−2α)∣∣∣∣∣3ρn − nγ√
n

−
3∑

l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣≤ n1/2−2α.(3.4)

Therefore, as n goes to infinity,

ρn − nγ√
n

− 1

3

3∑
l=1

∫
Tl

cl(x)Wn(dx)
d→ 0.

The continuous mapping theorem yields

3∑
l=1

∫
Tl

cl(x)Wn(dx)
d→

3∑
l=1

∫
Tl

cl(x)W(dx).

So combining these latter two limits we get, as n goes to infinity,

ρn − nγ√
n

d→ 1

3

3∑
l=1

∫
Tl

cl(x)W(dx),

that is, n−1/2(ρn − nγ ) converges weakly to a centered Gaussian random variable
with variance σ 2/3 − γ 2. We have considered so far, the normalized sequences
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ρn and ρn separately. However, we can carry the same analysis on the normalized
difference ρn − ρn. More precisely, by (3.1) we have a.s.∣∣∣∣∣ρn − ρn√

n
−
[

max
1≤l≤3

(∫
Tl

cl(x)Wn(dx)

)
− 1

3

3∑
l=1

∫
Tl

cl(x)Wn(dx)

]∣∣∣∣∣
≤
∣∣∣∣ρn − nγ√

n
− max

1≤l≤3

(∫
Tl

cl(x)Wn(dx)

)∣∣∣∣
+
∣∣∣∣∣ρn − nγ√

n
− 1

3

3∑
l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣
=
∣∣∣∣∣ρn − nγ√

n
− 1

3

3∑
l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣.
Thus, by (3.4), we obtain, with probability at least 1 − L1 exp(−L0n

1−2α),∣∣∣∣∣ρn − ρn√
n

−
[

max
1≤l≤3

(∫
Tl

cl(x)Wn(dx)

)
− 1

3

3∑
l=1

∫
Tl

cl(x)Wn(dx)

]∣∣∣∣∣≤ 1

3
n1/2−2α.

Therefore, as n → ∞,

ρn − ρn√
n

−
[

max
1≤l≤3

(∫
Tl

cl(x)Wn(dx)

)
− 1

3

3∑
l=1

∫
Tl

cl(x)Wn(dx)

]
d→ 0.

The continuous mapping theorem yields

max
1≤l≤3

(∫
Tl

cl(x)Wn(dx)

)
− 1

3

3∑
l=1

∫
Tl

cl(x)Wn(dx)

d→ max
1≤l≤3

(∫
Tl

cl(x)W(dx)

)
− 1

3

3∑
l=1

∫
Tl

cl(x)W(dx)

and therefore, as n → ∞,

ρn − ρn√
n

d→ max
1≤l≤3

(∫
Tl

cl(x)W(dx)

)
− 1

3

3∑
l=1

∫
Tl

cl(x)W(dx).

For l ∈ {1,2,3}, set

Nl =
∫

Tl

cl(x)W(dx) − 1

3

3∑
l=1

∫
Tl

cl(x)W(dx).

By definition {W(f )} is a centered Gaussian process indexed on the set of square
integrable functions; therefore N = (N1,N2,N3) follows a multivariate Gaussian
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distribution with mean 0. A simple computation shows that the covariance matrix
of N is

σ 2

3

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ .

It implies that N has the same distribution as(
G1 − (G1 + G2 + G3)/3,G2 − (G1 + G2 + G3)/3,G3 − (G1 + G2 + G3)/3

)
,

where G1, G2 and G3 are independent Gaussian r.v.’s with mean 0 and vari-
ance σ 2. Moreover N is independent of 1

3
∑3

l=1
∫
Tl

cl(x)W(dx), and we deduce
the claimed expression for (3.2).

It remains to compute the asymptotic behavior of the expectation of the loads.
A direct computation gives, for any l = 1,2,3,

E
[(∫

Tl

cl(x)Wn(dx)

)2]
= σ 2

3
− γ 2

9n
≤ σ 2

3
.

Thus the sequences {∫
Tl

cl(x)Wn(dx)} (l = 1,2,3) are uniformly integrable. This
implies that the sequence {max1≤l≤3(

∫
Tl

cl(x)Wn(dx))} is uniformly integrable
and so using (3.1) we have

lim
n→∞ E[ρn − nγ ]/√n = lim

n→∞ E
[

max
1≤l≤3

(∫
Tl

cl(x)Wn(dx)

)]

= E
[

max
1≤l≤3

(∫
Tl

cl(x)W(dx)

)]
= m = E[max{G1,G2,G3}].

Now we give the asymptotic behavior of E[ρn]. Note that by (3.4) we have

E

[∣∣∣∣∣3ρn − nγ√
n

−
3∑

l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣
]

≤ n1/2−2α + E

[∣∣∣∣∣3ρn − nγ√
n

−
3∑

l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣1{| · · · | > n1/2−2α}
]

≤ n1/2−2α + 10‖c‖∞L1
√

n exp(−L0n
1−2α)

= n1/2−2α + L̃1
√

n exp(−L0n
1−2α),

where the latter inequality follows since γ ≤ ‖c‖∞, ρn ≤ ‖c‖∞n and |∫
Tl

cl(x) ×
Wn(dx)| ≤ 2‖c‖∞

√
n. Therefore, since E[∫

Tl
cl(x)Wn(dx)] = 0 and 1/4 < α <

1/2, our computation leads to

lim
n→∞ E[ρn − nγ ]/√n = 0.
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PROOF OF PROPOSITION 3.1. We start describing the allocation matrix Â.
For l,m ∈ {1,2,3} and t ∈ [−λ

√
3/2, λ

√
3/2], denote by Blm(t) the point on the

segment BlBm at distance t + λ
√

3/2 from Bl . We extend the definition of Blm(t)

for all t ∈ [−λ
√

3, λ
√

3] by following the edges of T. More precisely, we set

B12(t) =
{

B31
(
λ
√

3 + t
)
, if t ∈ [−λ

√
3,−λ

√
3/2

]
,

B23
(
λ
√

3 − t
)
, if t ∈ [λ√

3/2, λ
√

3
]
.

For l,m ∈ {1,2,3}, Blm(t) is defined similarly by a circular permutation of the
indices. For t = (t1, t2, t3) ∈ [−λ

√
3, λ

√
3]3, let

C1(t) = {0} ∪ ({z ∈ C : z · (B12(t
1)e−iπ/2) ≥ 0} ∩ {z ∈ C : z · (B31(t

3)eiπ/2) > 0})
be the (possibly empty) cone delimited by the straight line determined by the
points 0, B12(t

1) and B31(t
3). We define �1(t) = C1(t)∩ T. Similarly, let �2(t) =

C2(t) ∩ T and �3(t) = C3(t) ∩ T with

C2(t) = {z ∈ C : z · (B12(t
1)eiπ/2) > 0} ∩ {z ∈ C : z · (B23(t

2)e−iπ/2) ≥ 0},
C3(t) = {z ∈ C : z · (B23(t

2)eiπ/2) > 0} ∩ {z ∈ C : z · (B31(t
3)e−iπ/2) ≥ 0}.

By construction, the sets �1(t), �2(t) and �3(t) are disjoint and their union is T.
For l ∈ {1,2,3}, set

ρl
n(t) =

n∑
k=1

cl(Xk)1{Xk ∈ �l(t)}

and consider the following recursion. At step 0: for t0 = (0,0,0), define

m0 = arg min
1≤l≤3

ρl
n(t0)

(breaking ties with the lexicographic order) and

M0 = arg max
1≤l≤3

ρl
n(t0)

(again breaking ties with the lexicographic order). If ρ
M0
n (t0) − ρ

m0
n (t0) ≤

2‖c‖∞, the recursion stops. Otherwise, ρ
M0
n (t0) − ρ

m0
n (t0) > 2‖c‖∞ and there

is at least one point Xi (i = 1, . . . , n) in �M0(t0). Note also that, a.s., for all
θ ∈ [0,2π ], there is at most one point of {X1, . . . ,Xn} on the straight line
(xeiθ , x > 0). As a consequence there exists a random variable 0 ≤ t1 ≤ λ

√
3

such that, a.s., there is exactly one point Xi (i = 1, . . . , n) in the triangle with
vertices {0,Bm0M0(t1),Bm0M0(0)} for 0 ≤ t1 ≤ λ

√
3/2, or in the polygon with

vertices {0,Bm0M0(t1),BM0,Bm0M0(0)} for λ
√

3/2 < t1 ≤ λ
√

3. We then set
t1 = (t1

1 , t2
1 , t3

1 ) := (t1,0,0) if m0 = 1, M0 = 2; t1 = (−t1,0,0) if m0 = 2,
M0 = 1; t1 = (0, t1,0) if m0 = 2, M0 = 3; t1 = (0,−t1,0) if m0 = 3, M0 = 2;
t1 = (0,0,−t1) if m0 = 1, M0 = 3; t1 = (0,0, t1) if m0 = 3, M0 = 1. The sets
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(�1(t1),�
2(t1),�

3(t1)) are thus designed to allocate one extra point to bin m0 and
one less to M0. By construction, we have

ρm0
n (t1) < ρM0

n (t1), max
1≤l≤3

ρl
n(t1) < max

1≤l≤3
ρl

n(t0)

and

min
1≤l≤3

ρl
n(t1) > min

1≤l≤3
ρl

n(t0).

At step 1: define

m1 = arg min
1≤l≤3

ρl
n(t1)

(breaking ties with the lexicographic order) and

M1 = arg max
1≤l≤3

ρl
n(t1)

(again breaking ties with the lexicographic order). Similarly to step 0, if ρ
M1
n (t1)−

ρ
m1
n (t1) > 2‖c‖∞, then there is at least one point of {X1, . . . ,Xn} in �M1(t1) and

we build the random vector t2 = (t1
2 , t2

2 , t3
2 ) in order to allocate one extra point to

bin m1 and one less to M1. The recursion stops at the first step k ≥ 0 such that

ρMk
n (tk) − ρmk

n (tk) ≤ 2‖c‖∞
(where mk , Mk and tk are defined similarly to m0,m1, . . . ,M0,M1, . . . and
t1, t2, . . .). As we shall check soon, the recursion stops after at most n steps. When
the recursion stops, say at step kn ≤ n, we set �l

n = �l(tkn) and tn = tkn . The al-
location matrix Â is defined by allocating Xk to the bin in Bl if Xk ∈ �l

n, that
is,

Â = (âkl)1≤k≤n,1≤l≤3 where âkl = 1{Xk ∈ �l
n}.

By construction, we have for all l,m ∈ {1,2,3},
|ρl

n(tn) − ρm
n (tn)| ≤ 2‖c‖∞.(3.5)

We now analyze the recursion more closely. Assume that at step 0 we have m0 = 3
and M0 = 1, that is, ρ1

n(t0) ≥ ρ2
n(t0) ≥ ρ3

n(t0). Then, for all k ≤ kn,

ρ1
n(tk) ≥ ρ2

n(tk) − ‖c‖∞ and ρ3
n(tk) ≤ ρ2

n(tk) + ‖c‖∞.(3.6)

Indeed, if for all k < kn, mk = 3 and Mk = 1, there is nothing to prove since
|ρl

n(tk+1) − ρl
n(tk)| ≤ ‖c‖∞. Assume that there exists k < kn such that mk �= 3 or

Mk �= 1. We define

k0 = min{k ≥ 1 :mk �= 3 or Mk �= 1}.
For concreteness, assume, for example, that Mk0 �= 1. By construction, k0 −1 < kn

so that ρ1
n(tk0−1) > ρ3

n(tk0−1) + 2‖c‖∞. Since ρ1
n(tk0−1) ≥ ρ2

n(tk0−1) ≥ ρ3
n(tk0−1),
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we deduce that Mk0 = 2 and mk0 = 3. Recall that, for k < kn, ρ
Mk
n (tk) − ‖c‖∞ ≤

ρ
Mk
n (tk+1) < ρ

Mk
n (tk). Thus, for k = k0 − 1, from ρ1

n(tk0) ≤ ρ2
n(tk0) = ρ2

n(tk0−1) ≤
ρ1

n(tk0−1), we obtain

ρ2
n(tk0) − ‖c‖∞ ≤ ρ1

n(tk0).

Similarly, for k < kn, ρ
mk
n (tk) + ‖c‖∞ ≥ ρ

mk
n (tk+1) > ρ

mk
n (tk). Thus, from

ρ3
n(tk0−1) ≤ ρ2

n(tk0) = ρ2
n(tk0−1), we have

ρ3
n(tk0) ≤ ‖c‖∞ + ρ2

n(tk0).

We have proved so far that the inequalities in (3.6) hold for all k ≤ k0. Since
|ρl

n(tk+1) − ρl
n(tk)| ≤ ‖c‖∞ and ρ1

n(tk0−1) − ρ3
n(tk0−1) > 2‖c‖∞ we get

ρ1
n(tk0) − ρ3

n(tk0) > 0.

Thus mk0 = 3 and ρ3
n(tk0) ≤ ρ1

n(tk0) ≤ ρ2
n(tk0). Define

k1 = min
{
kn,min{k > k0 :mk �= 3 or Mk �= 2}}.

For k = k0, . . . , k1 − 1, ρ2
n(tk+1) < ρ2

n(tk) and ρ1
n(tk+1) = ρ1

n(tk) is constant, so
the left-hand side inequality of (3.6) holds. Also, since k1 ≤ kn, for k ∈ {k0 +
1, . . . , k1 − 1}, ρ3

n(tk) < ρ2
n(tk) + 4‖c‖∞. So finally, (3.6) holds for k = 0, . . . , k1.

Moreover, if k1 < kn, then Mk1 = 1 and mk1 = 3. Indeed, as above, ρ2
n(tk1−1) −

ρ3
n(tk1−1) > 2‖c‖∞ implies

ρ2
n(tk1) > ρ3

n(tk1).

So Mk1 �= 3 and mk1 �= 2. If mk1 = 1 and Mk1 = 2, then we write, by (3.6),

ρ1
n(tk1) + ‖c‖∞ ≥ ρ2

n(tk1) > ρ3
n(tk1) ≥ ρ1

n(tk1).

So k1 = kn, a contradiction. Therefore, we necessarily have Mk1 = 1 and mk1 = 3.
By recursion, it shows that for all k < kn, mk = 3. Hence, at each step one point is
added to the bin at B3. No point is added to the bins at B1 and B2, points may only
be removed from the bins at B1 and B2. Since there are at most n points, we deduce
kn ≤ n, as claimed. Also, since �l(t0) = Tl , we obtain, for all k = 1, . . . , kn, T3 ⊂
�3(tk), T2 ⊇ �2(tk) and T1 ⊃ �1(tk). The other case, where mk0 = 2 could be
treated similarly. So more generally, if, at some step, l = mk then l �= Mj for all
k < j < kn, and conversely, if l = Mk then l �= mj for all k < j < kn. It implies
that �l(tk) is a monotone sequence in k. Since �l(t0) = Tl , for all l ∈ {1,2,3},

�l
n ⊆ Tl or Tl ⊆ �l

n.(3.7)

Assume now, that t1
n > zn−α with z > 0 then, from (3.7), T1 ⊆ �1

n and �2
n ⊆ T2.

For t ∈ R, define the set V 1(t) = �1(t,0,0) \ T1. On the event {t1
n > zn−α} we

have

ρ1
n(tn) ≥ n

∫
T1

c(x)μn(dx) + n

∫
V 1(zn−α)

c(x)μn(dx)
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and

ρ2
n(tn) ≤ n

∫
T2

c2(x)μn(dx).

So, by inequality (3.5), we deduce that on {t1
n > zn−α}∫

T1

c(x)μn(dx) +
∫
V 1(zn−α)

c(x)μn(dx) ≤
∫

T2

c2(x)μn(dx) + 2‖c‖∞
n

.

Or, equivalently,

{t1
n > zn−α} ⊆

{√
n

∫
V 1(zn−α)

c(x)μn(dx)

(3.8)

≤
∫

T2

c2(x)Wn(dx) −
∫

T1

c(x)Wn(dx) + 2‖c‖∞√
n

}
.

Let A be a Borel set in T. By Hoeffding’s concentration inequality (see, e.g., Corol-
lary 2.4.14 in [4]) we have, for all s ≥ 0 and l ∈ {1,2,3},

P

(∫
A

cl(x)μn(dx) −
∫
A

cl(x) dx ≥ s

)
≤ exp(−K0s

2n),(3.9)

P

(∫
A

cl(x)μn(dx) −
∫
A

cl(x) dx ≤ −s

)
≤ exp(−K0s

2n),(3.10)

where K0 = 2‖c‖−2∞ . Taking s = yn−α , where y > 0, we have

P

(∫
Tl

cl(x)Wn(dx) ≥ yn1/2−α

)
≤ exp(−K0y

2n1−2α),

(3.11)

P

(∫
Tl

cl(x)Wn(dx) ≤ −yn1/2−α

)
≤ exp(−K0y

2n1−2α).

Similarly, by (3.10) we deduce, for s ≥ 0,

P

(∫
V 1(zn−α)

c(x)μn(dx) ≤
∫
V 1(zn−α)

c(x) dx − s

)
≤ exp(−K0s

2n).

By assumption (1.1), there exists c0 > 0 such that c(x) > c0, for all x ∈ V 1(zn−α).
If 0 ≤ s ≤ λ

√
3/2, the area of V 1(s) is equal to λs/4. Therefore, for all 0 ≤ z ≤

λ
√

3nα/2,

K1zn
−α ≤

∫
V 1(zn−α)

c(x) dx ≤ K2zn
−α

with K1 = c0λ/4 and K2 = ‖c‖∞λ/4. So, taking s = K1zn
−α/2, we get, for all

0 ≤ z ≤ λ
√

3nα ,

P

(√
n

∫
V 1(zn−α)

c(x)μn(dx) ≤ K1

2
zn1/2−α

)
≤ exp(−K3z

2n1−2α),(3.12)
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where K3 = K0K
2
1/4. Similarly, for t ≥ 0, if e1 = (1,0,0), e2 = (0,1,0), e3 =

(0,0,1), we define

Ul(t) = (
�l(tel) \ Tl

)∪ (
�l(−tel) \ Tσ(l)

)
,

where σ = (1 2 3) is the cyclic permutation. By (3.9) we have, for all s ≥ 0,

P

(∫
U1(zn−α)

c(x)μn(dx) ≥
∫
U1(zn−α)

c(x) dx + s

)
≤ exp(−K0s

2n).

Thus, setting s = zn−α , we get

P
(
μn(U

1(zn−α)) ≥ K4zn
−α)≤ exp(−K0z

2n1−2α)(3.13)

with K4 = 1 + 2K2. Now, note that by (3.8), from the union bound, for y > 0,

{t1
n > zn−α} ⊆

{√
n

∫
V 1(zn−α)

c(x)μn(dx) ≤ yn1/2−α

}

∪
{
−
∫

T1

c1(x)Wn(dx) + ‖c‖∞√
n

>
1

2
yn1/2−α

}

∪
{∫

T2

c2(x)Wn(dx) + ‖c‖∞√
n

>
1

2
yn1/2−α

}
.

Now take y = K1z/2. By (3.11) and (3.12), if 4‖c‖∞nα−1K1
−1 ≤ z ≤ λ

√
3nα we

deduce

P(t1
n > zn−α) ≤ exp(−K3z

2n1−2α) + 2 exp
(
−K0

16
n1−2α(K1z − 4‖c‖∞nα−1)2

)
≤ 3 exp

(−K5n
1−2α(K1z − 4‖c‖∞nα−1)2)

with K5 = min{K3K
−2
1 ,K0/16}. Therefore, by symmetry, for all n and z > 0 such

that 4‖c‖∞nα−1K−1
1 ≤ z ≤ λ

√
3nα/2

P
(

max
1≤l≤3

|t ln| > zn−α
)

≤ 18e−K5n
1−2α(K1z−4‖c‖∞nα−1)2

.(3.14)

Note that ρ̂n = ρn(Â) = max1≤l≤3 ρl
n(t

l
n), so by (3.5) we have

3ρ̂n − 4‖c‖∞ ≤ ρ1
n(tn) + ρ2

n(tn) + ρ3
n(tn) ≤ 3ρ̂n.

Subtracting 3
√

nγ , it follows

3
ρ̂n − nγ√

n
− 4‖c‖∞√

n
≤ √

n

3∑
l=1

(∫
�l

n

cl(x)μn(dx) − γ

)
≤ 3

ρ̂n − nγ√
n

.

Then we subtract the quantity

3∑
l=1

∫
Tl

cl(x)Wn(dx) = √
n

3∑
l=1

(∫
Tl

cl(x)μn(dx) − γ

)
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and we get∣∣∣∣∣3 ρ̂n − nγ√
n

−
3∑

l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣
(3.15)

≤ √
n

∣∣∣∣∣
3∑

l=1

∫
�l

n

cl(x)μn(dx) −
3∑

l=1

∫
Tl

cl(x)μn(dx)

∣∣∣∣∣+ 4‖c‖∞√
n

.

Set cmin(x) = min(c1(x), c2(x), c3(x)), and note that if x ∈ Tl then cmin(x) =
cl(x). If t ln ≥ 0, we set V l

n = V l(t ln) = �l
n \Tl , and, if t ln < 0, we set V l

n = �
σ(l)
n \Tl ,

where σ = (1 2 3) is the cyclic permutation. So

3∑
l=1

∫
�l

n

cl(x)μn(dx) −
3∑

l=1

∫
Tl

cl(x)μn(dx)

=
3∑

l=1

∫
�l

n

(
cl(x) − cmin(x)

)
μn(dx)

(3.16)

=
3∑

l=1

1{t ln ≥ 0}
∫
V l

n

(
cl(x) − cmin(x)

)
μn(dx)

+
3∑

l=1

1{t ln < 0}
∫
V l

n

(
cσ(l)(x) − cmin(x)

)
μn(dx).

Note that if x ∈ Tm, with m �= l, then |cl(x) − cmin(x)| = |cl(x) − cm(x)|. For
example, assume l = 1, m = 2 and x = teiπ/6+iθ ∈ T2, with 0 ≤ θ ≤ π/3, we then
have

|c1(x) − cmin(x)| = |c1(x) − c2(x)| = |c(teiπ/6+iθ ) − c(teiπ/6+iθ e−i2π/3)|
= |c(teiπ/6+iθ ) − c(te−iπ/2+iθ )|.

By the symmetry assumption (1.2), we deduce

|c1(x) − cmin(x)| = |c(teiπ/6+iθ ) − c(teiπ/6−iθ )|.
Again by assumption (1.2), c is Lipschitz in a neighborhood of D1 ∪ D3. Letting
L > 0 denote the Lipschitz constant, if x is close enough to D1, say the distance
d(x,D1) from x to D1 is less than or equal to ε with 0 < ε < λ

√
3/2, we have

|c1(x) − cmin(x)| ≤ Lt |eiπ/6+iθ − eiπ/6−iθ | = Lt |eiθ − e−iθ |
= 2Lt sin θ = 2Ld(x,D1).

By symmetry, for all l ∈ {1,2,3}, if d(x,Dl) ≤ ε, then

|cl(x) − cmin(x)| ≤ 2Ld(x,Dl) and
∣∣cσ(l)(x) − cmin(x)

∣∣≤ 2Ld(x,Dl).
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Fix α ∈ (1/4,1/2), z > 0 and choose n large enough so that 4‖c‖∞nα−1K−1
1 ≤

z ≤ εnα . Then, by (3.14) with probability at least 1−18e−K5n
1−2α(K1z−4‖c‖∞nα−1)2

,
we have max1≤l≤3 |t ln| ≤ zn−α . On this event, if x ∈ V l(t ln) then d(x,Dl) ≤
zn−α ≤ ε. It follows by (3.16) that, with probability at least 1 − 18 ×
e−K5n

1−2α(K1z−4‖c‖∞nα−1)2
,

√
n

∣∣∣∣∣
3∑

l=1

∫
�l

n

cl(x)μn(dx) −
3∑

l=1

∫
Tl

cl(x)μn(dx)

∣∣∣∣∣
≤ √

n

3∑
l=1

2Lzn−αμn(V
l
n)

≤ 2Lzn1/2−α
3∑

l=1

μn(U
l(zn−α)).

By (3.13), with probability at least 1 − 3 exp(−K0z
2n1−2α), it holds∑3

l=1 μn(U
l(zn−α)) ≤ 3K4zn

−α . Using that for all events A,B it holds P(A ∩
B) ≥ 1 − P(Ac) − P(Bc), we obtain, for all n large enough so that 4‖c‖∞nα−1 ×
K−1

1 ≤ z ≤ εnα ,

√
n

∣∣∣∣∣
3∑

l=1

∫
�l

n

cl(x)μn(dx) −
3∑

l=1

∫
Tl

cl(x)μn(dx)

∣∣∣∣∣≤ 12LK4z
2n1/2−2α

with probability at least 1−21 exp(−K6n
1−2α(K1z−4‖c‖∞nα−1)2), where K6 =

min{K0K1
−2,K5}. By this latter inequality and (3.15), with the same probability,∣∣∣∣∣3 ρ̂n − γ√
n

−
3∑

l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣≤ 12LK2z
2n1/2−2α + 4‖c‖∞n−1/2.

Fix z = (24LK2)
−1/2 so that 12LK2z

2 = 1/2. Then there exists n0 such that, for
all n ≥ n0, 4‖c‖∞nα−1K−1

1 ≤ z ≤ εnα and 8‖c‖∞n−1/2 ≤ n1/2−2α . Then, for all
n ≥ n0, ∣∣∣∣∣3 ρ̂n − γ√

n
−

3∑
l=1

∫
Tl

cl(x)Wn(dx)

∣∣∣∣∣≤ n1/2−2α(3.17)

with probability at least

1 − 21 exp
(−K6n

1−2α(K1(24LK2)
−1/2 − 4‖c‖∞nα−1

0

)2)
= 1 − K7 exp(−K8n

1−2α).

Finally, we set L0 = K8 and L1 = max{K7,K9}, where K9 = exp(K8n
1−2α
0 ). With

this choice of L0 and L1, (3.17) holds for all n ≥ 1 with probability at least 1 −
L1 exp(−L0n

1−2α). �
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4. Large deviation principles. In this section we provide LDPs for the opti-
mal and suboptimal load. Letting � denote absolute continuity between measures,
we define by

H(ν|�) =
⎧⎨⎩
∫

T

dν

d�
(x) log

dν

d�
(x) d�, if ν � �,

+∞, otherwise,

the relative entropy of ν ∈ M1(T) with respect to the Lebesgue measure �. More-
over, if f is a nonnegative measurable function on T, we denote by �f the measure
on T with density f . In particular, if

∫
T

f (x) dx = 1, we set

H(f ) = H(�f |�) =
∫

T

f (x) logf (x) dx.

4.1. Combining Sanov’s theorem and the contraction principle. Next Theo-
rem 4.1 follows combining Sanov’s theorem and the contraction principle.

THEOREM 4.1. Assume (1.3) and (1.4). Then:

(i) {ρn/n}n≥1 satisfies an LDP on R with good rate function

J (y) = inf
α∈M1(T) : (α)=y

H(α|�).(4.1)

(ii) {ρn/n}n≥1 satisfies an LDP on R with good rate function

J (y) = inf
α∈M1(T) : �(α)=y

H(α|�).(4.2)

PROOF. By Sanov’s theorem (see, e.g., Theorem 6.2.10 in [4]) the sequence
{ 1
n

∑n
i=1 δXi

}n≥1 satisfies an LDP on M1(T), with good rate function H(·|�). Re-
call that the space M1(T), equipped with the topology of weak convergence, is a
Hausdorff topological space (refer to [1]). By Lemma 2.1 the function  is con-
tinuous on M1(T). Therefore, using (2.3) and the contraction principle (see, e.g.,
Theorem 4.2.1 in [4]) we deduce that the sequence {ρ̃n/n}n≥1 satisfies an LDP
on R with good rate function given by (4.1). Consequently, by Lemma 2.2(iii)
and Theorem 4.2.13 in [4], {ρn/n}n≥1 obeys the same LDP. The proof of (ii) is
identical and follows from (2.2). �

REMARK 4.2. It is worthwhile noticing that one can prove Theorem 4.1 also
by applying Lemmas 2.1, 2.2(iii) and the results in O’Connell [7].

4.2. Computing 	∗ and 	∗. In this subsection we compute the Fenchel–
Legendre transforms 	∗ and 	∗.
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4.2.1. Proof of Proposition 1.4. We only compute 	∗ in (i). The expression
of 	∗ in (ii) can be computed similarly. Clearly, for θ ∈ R,

	′(θ) =
∫
T1

c(x)eθc(x) dx∫
T1

eθc(x) dx

and

	′′(θ) =
∫

T1

c2(x)
eθc(x)∫

T1
eθc(x) dx

dx −
(∫

T1

c(x)
eθc(x)∫

T1
eθc(x) dx

dx

)2

> 0

[the strict inequality comes from the assumption that c(·) is not constant on T1].
Therefore, the function 	′ is strictly increasing. Consider the probability measure
on T1:

Pθ (dx) = eθc(x) dx∫
T1

eθc(x) dx
.

Next Lemma 4.3 is classical; we give a proof for completeness.

LEMMA 4.3. Under the assumptions of Proposition 1.4, the following weak
convergence holds:

Pθ ⇒ δ0 as θ → +∞ and Pθ ⇒ δB1 as θ → −∞.

PROOF. We only prove the first limit. Indeed, the second limit can be showed
similarly. We need to show

Pθ (A) → δ0(A) as θ → +∞ for any Borel set A ⊆ T1 such that 0 /∈ ∂A.

If 0 /∈ A ⊆ T1 then, by assumption (1.5), c(x) < c(0) for any x ∈ A. So A ⊆ It , for
some t > 0, where It = {x ∈ T1 : c(x) ≤ c(0) − t}. By assumption c is continuous
at 0, so there exists an open neighborhood of 0, say Vt , such that, for all x ∈ Vt ,
c(x) ≥ c(0) − t/2. Note that, for any θ > 0,

Pθ (It ) =
∫
It

eθc(x)∫
T1

eθc(x) dx
dx

≤
∫

T1

eθc(0)−θt∫
Vt∩T1

eθc(0)−θt/2 dx
dx

≤ �(Vt ∩ T1)
−1e−θt/2.

Thus, for all t > 0, limθ→+∞ Pθ (It ) = 0. This guarantees the claim in the case
when the Borel set A ⊆ T1 does not contain 0. Suppose now 0 ∈ A, then 0 /∈ T1 \A,
and we get Pθ (A) = 1 − Pθ (T1 \ A) → 1 as θ goes to infinity. �
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We can now continue the proof of the proposition. Let c(B1) < y < c(0). By
Lemma 2.3.9(b) in [4], we need to show that there exists a unique solution θy of
	′(θ) = y. To this end, note that 	′(θ) = ∫

T1
c(x)Pθ (dx). By assumption, c is

continuous at 0 and B1, so by Lemma 4.3 and Theorem 5.2 in [1] it follows

lim
θ→−∞	′(θ) = c(B1) < y < c(0) = lim

θ→+∞	′(θ).

Since 	′ is continuous and strictly increasing, the mean value theorem implies
the existence and uniqueness of θy . Consider now y > c(0). Note that, for θ ≥ 0,
	(θ) ≤ θc(0). Therefore

θy − 	(θ) ≥ θ
(
y − c(0)

)
.

It follows that 	∗(y) = +∞. Similarly, for y < c(B1), we use that, for θ ≤ 0,
	(θ) ≤ θc(B1) and deduce 	∗(y) = +∞. Finally we prove (iii). We first show
that

	(θ/3) < 	(θ) for all θ > 0.(4.3)

Showing (4.3) amounts to show that, for all θ > 0,∫
T1

eθc(x) dx + 2/3 − 3
∫

T1

eθc(x)/3 dx > 0.(4.4)

By Jensen’s inequality it follows that(∫
T1

eθc(x)/3 dx

)3

<
1

9

∫
T1

eθc(x) dx

(the strict inequality derives from the strict convexity of the cubic power on [0,∞),
and the fact that c is not constant on T1). Hence the left-hand side of (4.4) is larger
than 9(

∫
T1

eθc(x)/3 dx)3 − 3
∫
T1

eθc(x)/3 dx + 2/3, which is equal to

9
(∫

T1

eθc(x)/3 dx − 1

3

)2(∫
T1

eθc(x)/3 dx + 2

3

)
,

and inequality (4.4) follows. Now, let γ < y < c(0)/3. By Theorem 1.1,
limn→∞ ρn/n = limn→∞ ρn/n = γ < y. Thus, by Lemma 2.2.5 in [4] we have

	∗(3y) = sup
θ>0

(
θy − 	(θ/3)

)
and 	∗(y) = sup

θ>0

(
θy − 	(θ)

)= ηyy − 	(ηy),

where ηy is the unique positive solution of (1.10). Finally, (4.3) yields

	∗(y) = yηy − 	(ηy) < yηy − 	(ηy/3) ≤ sup
θ>0

(
θy − 	(θ/3)

)= 	∗(3y).
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4.2.2. Value of the Fenchel–Legendre transforms at the extrema. In this para-
graph, for the sake of completeness, we deal with the value of 	∗ and 	∗ at
c(B1) and c(0). If c is differentiable as a function from T ⊂ C to R, we denote
by gradx(c) its gradient at x. The following proposition holds:

PROPOSITION 4.4. Suppose that the assumptions of Proposition 1.4 hold and
that c is differentiable at 0 and B1. If, moreover, for all ω ∈ [−π/2, π/6], grad0(c) ·
eiω < 0 and, for all ω ∈ [2π/3, π], gradB1

(c) · eiω > 0, then

	∗(c(B1)) = 	∗(c(B1)) = 	∗(c(0)) = 	∗(c(0)) = +∞.

PROOF. We show the proposition only for 	∗(c(0)). The other three cases can
be proved similarly. Using polar coordinates, we have∫

T1

eθc(x) dx =
∫ π/6

−π/2

∫
Iω

eθc(reiω)r dr dω

for some segment Iω = [0, aω]. Laplace’s method (see, e.g., Murray [6]) gives, for
all ω ∈ [−π/2, π/6],∫

Iω

eθc(reiω)r dr ∼ eθc(0)

θ2|grad0(c) · eiω| as θ → +∞,

where we write f ∼ g if f and g are two functions such that, as x → +∞, the
ratio f (x)/g(x) converges to 1. We deduce that, as θ → +∞,∫

T1

eθc(x) dx ∼ eθc(0)θ−2
∫ π/6

−π/2

1

|grad0(c) · eiω| dω.

Since the integral in the right-hand side is a finite positive constant, we have
	(θ) = θc(0) − 2 log θ + o(log θ), and therefore

	∗(c(0)) = sup
θ∈R

(
θc(0) − 	(θ)

)= sup
θ∈R

(
2 log θ + o(log θ)

)= +∞. �

In the next two subsections, we solve some variational problems. We refer the
reader to the book by Buttazzo, Giaquinta and Hildebrandt [3] for a survey on
calculus of variations.

4.3. Proof of Theorem 1.3(i). We divide the proof of Theorem 1.3(i) in 5 steps.

Step 1: Case y /∈ (c(B1)/3, c(0)/3). We have to prove that J (y) = ∞. Denote
by Mac

1 (T) ⊆ M1(T) the set of probability measures on T which are absolutely
continuous with respect to �. For α ∈ Mac

1 (T), define the measures in Mb(T)

αl( dx) = cσ 2(l)(x)cσ(l)(x)

c1(x)c2(x) + c1(x)c3(x) + c2(x)c3(x)
α(dx), l ∈ {1,2,3},
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where σ = (1 2 3) is the cyclic permutation. Clearly α1 + α2 + α3 = α and

(α) ≤ φ(α1, α2, α3) < c(0)/3,(4.5)

where the strict inequality follows by assumption (1.6) and the fact that α is
a probability measure on T such that α � �. The above argument shows that
{α ∈ Mac

1 (T) :(α) = y} = ∅, for all y ≥ c(0)/3. Therefore, by Theorem 4.1(i),
we have J (y) = +∞ if y ≥ c(0)/3. Using assumptions (1.1) and (1.5), one can
easily realize that, for any measure β ∈ Mb(T), β(cl) ≥ c(B1)β(T) and the equal-
ity holds only if β = δBl

. By Lemma 2.2(i) we deduce that, for all α ∈ M1(T),
3(α) > c(B1). This gives J (y) = ∞ for all y ≤ c(B1)/3, and concludes the proof
of this step.

Step 2: The set function ν and an alternative expression for 	∗(3y). For the
remainder of the proof we fix y ∈ (c(B1)/3, c(0)/3). For this we shall often omit
the dependence on y of the quantities under consideration. In this step we give an
alternative expression for 	∗(3y) that will be used later on. Let B ⊂ T be a Borel
set with positive Lebesgue measure. Define the function of (η0, η1) ∈ R

2

m(B,η0, η1) =
∫
B

e−1−η0−η1c(x) dx.

It turns out that m(B, ·) is strictly convex on R
2 (the second derivatives with re-

spect to η0 and η1 are strictly bigger than zero). Define the strictly concave function

F(B,η0, η1) = −η0 − 3yη1 − 3m(B,η0, η1)

and the set function

ν(B) = sup
(η0,η1)∈R2

F(B,η0, η1).

Arguing as in the proof of Lemma 2.2.31(b) in [4], we have

grad(γ0,γ1)
(3m(B, ·)) = (−1,−3y)

⇒ ν(B) = (γ0, γ1) · (−1,−3y) − 3m(B,γ0, γ1),

where · denotes the scalar product on R
2. Therefore, if there exist γ0 = γ0(B) and

γ1 = γ1(B) such that∫
B

e−γ1c(x) dx = e1+γ0/3 and
∫
B

c(x)e−γ1c(x) dx = ye1+γ0,(4.6)

then it is easily seen that

ν(B) = −(1 + γ0(B)
)− 3yγ1(B).

In particular, by Proposition 1.4(i), setting γ1(T1) = −θ3y and γ0(T1) = 	(θ3y) −
1, one has

	∗(3y) = ν(T1) = −(1 + γ0(T1)
)− 3yγ1(T1),(4.7)
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and γ0(T1) and γ1(T1) are the unique solutions of the equations in (4.6) with
B = T1. Note also that, for Borel sets A and B such that A ⊆ B ⊆ T, we have for
all η0, η1 ∈ R,

m(B,η0, η1) − m(A,η0, η1) =
∫

T

(
1B(x) − 1A(x)

)
e−1−η0−η1c(x) dx ≥ 0.

In particular, for all η0, η1 ∈ R, F(A,η0, η1) ≥ F(B,η0, η1). This proves that the
set function ν is nonincreasing (for the set inclusion). An easy consequence is the
following lemma. For B ⊂ T and z ∈ C, define zB = {zx :x ∈ B} and

T = {
Borel sets B ⊂ T :�(B) > 0 and

�
(
B ∩ (jB)

)= �
(
B ∩ (j2B)

)= �
(
(jB) ∩ (j2B)

)= 0
}
.

LEMMA 4.5. Under the foregoing assumptions and notation, it holds

inf{ν(B) :B ∈ T } = inf{ν(B) :B ∈ T and �(B) = 1/3} < +∞.

PROOF. The monotonicity of ν implies ν(T) ≤ ν(T1). So the finiteness of the
infimum follows by ν(T1) < +∞ that we proved above. Note that if B ∈ T , then
B ∪ (jB)∪ (j2B) ⊂ T and 1 ≥ �(B ∪ (jB)∪ (j2B)) = �(B)+ �(jB)+ �(j2B) =
3�(B). So

inf{ν(B) :B ∈ T } = inf{ν(B) :B ∈ T and �(B) ≤ 1/3}.
Now, if B ∈ T is such that �(B) < 1/3, define the set C = T\ (B ∪ (jB)∪ (j2B));
note that �(C) = 1 − 3�(B) > 0 and C = jC = j2C. Set C1 = C ∩ T1 and define
D = B ∪ C1. Clearly, B ⊂ D and therefore ν(B) ≥ ν(D). Moreover, it is easily
checked that D ∈ T . Indeed, �(D) ≥ �(B) > 0 and, for instance,

�
(
D ∩ (jD)

)= �
(
(B ∪ C1) ∩ (

(jB) ∪ (jC1)
))

≤ �
(
B ∩ (jB)

)+ �
(
B ∩ (jC1)

)+ �
(
C1 ∩ (jB)

)+ �
(
C1 ∩ (jC1)

)
= 0.

The claim follows since

�(D) = �(B) + �(C1) = �(B) + �(C)/3 = 1/3. �

Step 3: The related variational problem. As above, we fix y ∈ (c(B1)/3,
c(0)/3). Recall that H(α|�) = +∞ if α is not absolutely continuous with respect
to �. So, by Theorem 4.1(i),

J (y) = inf
α∈Mac

1 (T) : (α)=y
H(α|�).

Define the following functional spaces:

B = {measurable functions defined on T with values in [0,∞)}
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and

B3
 =

{
(f1, f2, f3) ∈ B3 :�

( 3∑
l=1

fl

)
= 1 and

φ(�f1, �f2, �f3) = (�f1 + �f2 + �f3)

}
(recall that �f is the measure with density f ). By Lemma 2.2(i) it follows

J (y) = inf
(f1,f2,f3)∈R3



H

( 3∑
l=1

fl(x)

)
,(4.8)

where

R3
 = {(f1, f2, f3) ∈ B3

 :φ(�f1, �f2, �f3) = y}
(note that the superscript “3” in B3

 and R3
 is a reminder that these spaces are

defined on triplets of functions in B; it is not related to the Cartesian product of
three spaces). Computing the value of J (y) from (4.8) is far from obvious; in-
deed R3

 is not a convex set, and the standard machinery of calculus of variations
cannot be applied directly. The key idea is the following: consider the same min-
imization problem on a larger convex space, defined by linear constraints; com-
pute the solution of this simplified variational problem; show that this solution is
in R3

. To this end, note that, again by Lemma 2.2(i), if (f1, f2, f3) ∈ B3
, then

�f1(c1) = �f2(c2) = �f3(c3). Therefore, we have R3
 ⊂ S 3

φ where

S 3
φ =

{
(f1, f2, f3) ∈ B3 :�

( 3∑
l=1

fl

)
= 1 and, for all l ∈ {1,2,3}, �fl

(cl) = y

}
.

It follows that

J (y) ≥ inf
(f1,f2,f3)∈S 3

φ

H

( 3∑
l=1

fl(x)

)
.

Step 4: The simplified variational problem. Recall that y ∈ (c(B1)/3, c(0)/3)

is fixed in this part of the proof. In this step, we prove that

I (y) := inf
(f1,f2,f3)∈S 3

φ

H

( 3∑
l=1

fl(x)

)
(4.9)

is equal to 	∗(3y). Clearly, the set S 3
φ is convex. Therefore, if S 3

φ is not empty,
due to the strict convexity of the relative entropy, the solution of the variational
problem (4.9), say f∗ = (f ∗

1 , f ∗
2 , f ∗

3 ) ∈ S 3
φ , is unique, up to functions which are
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null �-almost everywhere (a.e.). The variational problem (4.9) is an entropy max-
imization problem. We now compute f∗ and check retrospectively that S 3

φ is not
empty. Consider the Lagrangian L defined by

L(f1, f2, f3, λ0, λ1, λ2, λ3)(x)

=
( 3∑

l=1

fl(x)

)
log

( 3∑
l=1

fl(x)

)
+ λ0

( 3∑
l=1

fl(x) − 1

)

+
3∑

l=1

λl

(
cl(x)fl(x) − y

)
,

where the λi ’s (i = 0, . . . ,3) are the Lagrange multipliers. For l ∈ {1,2,3}, define
the Borel sets

Al = {x ∈ T :f ∗
l (x) > 0}.

Since f∗ is the solution of (4.9), by the Euler equations (see, e.g., Chapter 1 in [3])
we have, for l ∈ {1,2,3},(

∂L
∂fl

)∣∣∣∣
(f1,f2,f3)=f∗

= 0 on Al.

We deduce that, for all x ∈ Al ,

f ∗
1 (x) + f ∗

2 (x) + f ∗
3 (x) = e−1−λ0−λlcl(x).(4.10)

Define the functions g1(x) := f ∗
2 (jx), g2(x) := f ∗

3 (jx) and g3(x) := f ∗
1 (jx). By

a change of variable, it is straightforward to check that (g1, g2, g3) ∈ S 3
φ and

∫
T

( 3∑
l=1

gl(x)

)
log

( 3∑
l=1

gl(x)

)
dx =

∫
T

( 3∑
l=1

f ∗
l (x)

)
log

( 3∑
l=1

f ∗
l (x)

)
dx.

The uniqueness of the solution implies that a.e.

f ∗
2 (jx) = f ∗

1 (x), f ∗
3 (jx) = f ∗

2 (x) and f ∗
1 (jx) = f ∗

3 (x).

In particular, up to a null measure set, Al = j l−1A1. Moreover, on A1, the equality,
a.e.

∑3
l=1 gl(x) =∑3

l=1 f ∗
l (x) applied to (4.10) gives, a.e. on A1, exp(−1 − λ0 −

λ2c2(jx)) = exp(−1−λ0 −λ1c1(x)) (indeed x ∈ A1 implies jx ∈ A2). We deduce
that λ2 = λ1. The same argument on A3 carries over by symmetry, so finally λ1 =
λ2 = λ3. We now use the following lemma that will be proved at the end of the
step.

LEMMA 4.6. Under the foregoing assumptions and notation, up to a Borel set
of null Lebesgue measure it holds A1 ⊂ T1.
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By Lemma 4.6 and the a.e. equality Al = j l−1A1, we deduce that A1 ∈ T , up to
a Borel set of null Lebesgue measure. So, by (4.10) and the equality λ1 = λ2 = λ3,
it follows that

f ∗
1 (x) = e−1−λ0−λ1c(x)1(x ∈ A1) a.e.

and f ∗
2 (x) = f ∗

1 (j2x), f ∗
3 (x) = f ∗

1 (jx). Note that the constraints

�

( 3∑
l=1

f ∗
l

)
= 1 and �f ∗

1
(c1) = y

read, respectively,∫
A1

e−1−λ0−λ1c(x) dx = 1/3 and
∫
A1

c(x)e−1−λ0−λ1c(x) dx = y.

This implies that the Lagrange multipliers λ0 and λ1 are solutions of the equations
in (4.6) with B = A1. Moreover∫

T

( 3∑
l=1

f ∗
l (x)

)
log

( 3∑
l=1

f ∗
l (x)

)
dx = 3

∫
A1

(−1 − λ0 − λ1c(x)
)
e−1−λ0−λ1c(x) dx

= −(1 + λ0) − 3yλ1.

Therefore (see the beginning of step 2)

I (y) =
∫

T

( 3∑
l=1

f ∗
l (x)

)
log

( 3∑
l=1

f ∗
l (x)

)
dx = ν(A1).

Since A1 ∈ T we deduce that

I (y) ≥ inf{ν(B) :B ∈ T }.
For the reverse inequality, take B ∈ T such that ν(B) = sup(η0,η1)∈R2 F(B,η0, η1)

is finite. Since the function (η0, η1) �→ F(B,η0, η1) is finite and strictly concave, it
admits a unique point of maximum. Arguing exactly as at the beginning of step 2,
we have that the point of maximum is (γ0(B), γ1(B)), whose components are so-
lutions of equations in (4.6), and

ν(B) = −(1 + γ0(B)
)− 3yγ1(B).

For l ∈ {1,2,3}, define the functions on T

gl,B :x �→ e−1−γ0(B)−γ1(B)cl(x)1(x ∈ j l−1B).

Since γ0(B) and γ1(B) solve the equations in (4.6), it follows easily that (g1,B,

g2,B, g3,B) ∈ S 3
φ . Therefore

ν(B) =
∫

T

( 3∑
l=1

gl,B(x)

)
log

( 3∑
l=1

gl,B(x)

)
dx

≥ inf
(f1,f2,f3)∈S 3

φ

H

( 3∑
l=1

fl(x)

)
.
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Thus

I (y) = ν(A1) = inf{ν(B) :B ∈ T }.
Since A1 ∈ T , by Lemma 4.5 we get that �(A1) = 1/3. So, by Lemma 4.6, we
deduce that A1 = T1 up to a Borel set of null Lebesgue measure. Then by (4.7) we
conclude

I (y) = 	∗(3y).

PROOF OF LEMMA 4.6. The argument is by contradiction. Define the Borel
set

C := (A1 ∩ T
c
1) ∪ (jA1 ∩ T

c
2) ∪ (j2A1 ∩ T

c
3)

and assume that �(A1 ∩ T
c
1) > 0. For l ∈ {1,2,3}, define Ãl = (Al \ C) ∪ (C ∩ Tl)

and g̃l(x) = (f ∗
1 (x)+f ∗

2 (x)+f ∗
3 (x))1(x ∈ Ãl). Since Al = j l−1A1 up to a Borel

set of null Lebesgue measure, then j l−1C = C and Ãl = j l−1Ã1 up to a Borel set
of null Lebesgue measure. So by (4.10) it follows that �g̃1(c1) = �g̃2(c2) = �g̃3(c3),
and therefore

3
∫

T

cl(x)g̃l(x) dx =
∫

T

( 3∑
l=1

1(x ∈ Ãl)cl(x)

)( 3∑
l=1

f ∗
l (x)

)
dx.(4.11)

Now, note that Ãl ⊆ Tl and, up to a Borel set of null Lebesgue measure,

Ã1 ∪ Ã2 ∪ Ã3 = A1 ∪ A2 ∪ A3.(4.12)

So by assumption (1.1), a.e.

1(x ∈ Ãl)cl(x) ≤
3∑

m=1

1(x ∈ Am)cm(x),

and the inequality is strict if x is in C ∩ ◦
Tl . Indeed if x ∈ C ∩ ◦

Tl , then a.e. x ∈ Am

for some m �= l, and so cl(x) < cm(x) by (1.1). Therefore, since �(A1 ∩ T
c
1) > 0

then �(C ∩ ◦
Tl) > 0 and, using (4.11), we get∫

T

cl(x)g̃l(x) dx <

∫
T

cl(x)f ∗
l (x) dx = y.

For p ∈ [0,1], define the functions

g̃l,p(x) = (1 − p)g̃l(x) + p1
(
x ∈ Tσ(l)

)
,

where σ = (1 2 3) is the cyclic permutation. By assumption (1.6) it follows that∫
T

cl(x)g̃l,1(x) dx > c(0)/3 > y.
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We have already checked that �g̃l,0(cl) < y, thus, by the mean value theorem, there
exists p ∈ (0,1) such that (g̃1,p, g̃2,p, g̃3,p) ∈ S 3

φ . The convexity of the relative
entropy gives

H(g̃1,p + g̃2,p + g̃1,p|�) ≤ pH(g̃1 + g̃2 + g̃3|�) + (1 − p)H(�|�)
= pH(f ∗

1 + f ∗
2 + f ∗

3 |�),
where the latter equality follows by (4.12) and the definition of g̃l . This leads to a
contradiction since f = (f ∗

1 , f ∗
2 , f ∗

3 ) minimizes the relative entropy on S 3
φ . �

Step 5: End of the proof. It remains to check that f∗ = (f ∗
1 , f ∗

2 , f ∗
3 ) ∈ R3

. For
this we need to prove that (�f ∗

1 +f ∗
2 +f ∗

3
) = φ(�f ∗

1
, �f ∗

2
, �f ∗

3
) = y. Since f∗ ∈ S 3

φ

then �f ∗
1
(c1) = �f ∗

2
(c2) = �f ∗

3
(c3) = y; moreover, by the properties of the func-

tions f ∗
l it holds �f ∗

l
(cl) = ∫

Tl
cl(x)fl(x) dx. So the claim follows if we check

that

(�f ∗
1 +f ∗

2 +f ∗
3
) ≥

∫
T1

c1(x)f1(x) dx.

By Lemma 2.2(i) we have that there exists (g1, g2, g3) ∈ B3 such that �f ∗
1 +f ∗

2 +f ∗
3

=
�g1 +�g2 +�g3 , (�f ∗

1 +f ∗
2 +f ∗

3
) = φ(�g1, �g2, �g3) and �g1(c1) = �g2(c2) = �g3(c3).

In particular,

3(�f ∗
1 +f ∗

2 +f ∗
3
) =

3∑
l=1

∫
T

cl(x)gl(x) dx =
3∑

m=1

∫
Tm

3∑
l=1

cl(x)gl(x) dx

≥
3∑

m=1

∫
Tm

cm(x)

3∑
l=1

gl(x) dx

(4.13)

≥
3∑

m=1

∫
Tm

cm(x)f ∗
m(x)dx

= 3
∫

T1

c1(x)f ∗
1 (x) dx,

where in (4.13) we used assumption (1.1). This concludes the proof of Theo-
rem 1.3(i).

4.4. Proof of Theorem 1.3(ii). Some ideas in the following proof of Theo-
rem 1.3(ii) are similar to those one in the proof of Theorem 1.3(i). Therefore, we
shall omit some details. We divide the proof of Theorem 1.3(ii) in 3 steps.

Step 1: Case y /∈ (c(B1)/3, c(0)). As noticed in step 1 of the proof of The-
orem 1.3(i), for any measure β ∈ Mb(T), β(cl) ≥ c(B1)β(T), and the equal-
ity holds only if β = δBl

. We deduce that, for all α ∈ M1(T), 3�(α) > c(B1).
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Therefore, by Theorem 4.1(ii), J (y) = +∞ if y ≤ c(B1)/3. Now, note that, for
α ∈ M1(T) it holds that

�(α) = max
1≤l≤3

(∫
Tl

cl(x)α(dx)

)
< c(0) max

1≤l≤3
α(Tl) ≤ c(0),

where the strict inequality follows by assumption (1.5) and α � �. Therefore, us-
ing again Theorem 4.1(ii), we easily deduce that J (y) = +∞ if y ≥ c(0).

Step 2: The set function μ. For the remainder of the proof we fix y ∈
(c(B1)/3, c(0)), and we shall often omit the dependence on y of the quantities
under consideration. In the following we argue as in step 2 of the proof of Theo-
rem 1.3(i). Let B ⊂ T be a Borel set with positive Lebesgue measure and define
the function of (η0, η1) ∈ R

2

q(B,η0, η1) = 2e−1−η0�(B ∩ T2) +
∫
B∩T1

e−1−η0−η1c(x) dx.

Clearly, q(B, ·) is strictly convex on R
2. Define the strictly concave function

G(B,η0, η1) = −η0 − yη1 − q(B,η0, η1)

and the set function

μ(B) = sup
(η0,η1)∈R2

G(B,η0, η1).

If there exist γ 0 = γ 0(B) and γ 1 = γ 1(B) such that∫
B∩T1

e−γ 1c(x) dx + 2�(B ∩ T2) = e1+γ 0 and

(4.14) ∫
B∩T1

c(x)e−γ 1c(x) dx = ye1+γ 0,

then we have

μ(B) = −(1 + γ 0(B)
)− yγ 1(B).

In particular, by Proposition 1.4(ii), setting γ 1(T) = −ηy and γ 0(T) = 	(ηy) − 1
one has

	∗(y) = μ(T) = −(1 + γ 0(T)
)− yγ 1(T) if γ < y < c(0),(4.15)

and γ 0(T) and γ 1(T) are the unique solutions of the equations in (4.14) with
B = T. Recall also that in step 2 of the proof of Theorem 1.3(i) we showed

	∗(3y) = −(1 + γ0(T1)
)− 3yγ1(T1) if c(B1)/3 < y ≤ γ,

where γ0(T1) and γ1(T) are the unique solutions of the equations in (4.6) with
B = T1. Note that, for Borel sets A and B such that A ⊆ B ⊆ T, we have, for
all η0, η1 ∈ R, G(A,η0, η1) ≥ G(B,η0, η1). This proves that the set function μ is
nonincreasing (for the set inclusion). An easy consequence is the following lemma:
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LEMMA 4.7. Under the foregoing assumptions and notation, it holds that

inf{μ(B) :B ⊆ T} = 	∗(y) if γ < y < c(0).

Step 3: The related variational problem. As above we fix y ∈ (c(B1)/3, c(0));
as in the proof of Theorem 1.3(i) we denote by B the set of Borel functions defined
on T with values in [0,∞). By Theorem 4.1(ii), we have

J (y) = inf
f ∈U

H(f ),

where

U =
{
f ∈ B :�(f ) = 1 and max

1≤l≤3

(∫
Tl

cl(x)f (x) dx

)
= y

}
.

Note that f ∈ U if and only if the functions x �→ f (jx) and x �→ f (j2x) are also
in U and so

J (y) = inf
f ∈V

H(f ),(4.16)

where

V = {f ∈ B :�(f ) = 1, �f |T1
(c1) = y, �f |T2

(c2) ≤ y, �f |T3
(c3) ≤ y}.

The optimization problem (4.16) is a minimization of a convex function on a con-
vex set defined by linear constraints. Thus it can be solved explicitly. Therefore,
if V is not empty, since the relative entropy is strictly convex, the solution of the
variational problem (4.16), say f ∗ ∈ V , is unique, up to functions which are null
�-almost everywhere. We will compute f ∗ and show that V is not empty at the
same time. So assume that V is not empty and define the function

g(x) = f ∗(x)1T1(x) + f ∗(jx)1T2(x) + f ∗(j2x)1T3(x).

It is easily checked that g ∈ V and H(g) = H(f ). The uniqueness of f ∗ implies
that

for almost all x ∈ T2 f ∗(jx) = f ∗(x).(4.17)

Therefore, up to modifying f ∗ on a set of null measure, f ∗ ∈ V ′ where

V ′ = {f ∈ B :�(f ) = 1, �f |T1
(c1) = y, �f |T2

(c2) ≤ y}
and the variational problem reduces to J (y) = inff ∈V ′ H(f ). Consider the La-
grangian L defined by

L(f,λ0, λ1, λ2)(x) = f (x) logf (x) + λ0
(
f (x) − 1

)+ λ1
(
c1(x)f (x)1T1(x) − y

)
+ λ2

(
c2(x)f (x)1T2(x) − y

)
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with

λ2

(∫
T2

c2(x)f ∗(x) dx − y

)
= 0.

The two cases λ2 = 0 (i.e., f ∗ is not constrained on T2) and λ2 �= 0 (i.e., f ∗ is
constrained on T2) are treated separately. For each case, we solve the variational
problem. The optimal function is denoted by fu for λ2 = 0 and by fc for λ2 �= 0,
so that f ∗ = arg min(H(fu),H(fc)). Assume first that λ2 = 0 so that f ∗ = fu and
define the Borel set

Au = {x ∈ T :fu(x) > 0}.
By the Euler equations (see, e.g., Chapter 1 in [3]) we get, for all x ∈ T,

fu(x) = 1T1∩Au
(x)e−1−λ0−λ1c1(x) + 1(T2∪T3)∩Au

(x)e−1−λ0 .(4.18)

By (4.17) we have �(Au ∩ T2) = �(Au ∩ T3), and so the constraints �(fu) = 1 and
�fu |T1

(c1) = y read, respectively,∫
Au∩T1

e−λ1c(x) dx + 2�(Au ∩ T2) = e1+λ0

and ∫
Au∩T1

c(x)e−λ1c(x) dx = ye1+λ0 .

With the notation of step 2, this implies that λ0 = γ 0(Au) and λ1 = γ 1(Au) are the
solution of the equations in (4.14) with B = Au. In particular,

μ(Au) = −(1 + γ 0(Au)
)− yγ 1(Au) = H(fu),

where the latter equality follows from the computation of the entropy using (4.18).
By Lemma 4.7 we deduce that

H(fu) ≥ 	∗(y) if γ < y < c(0).

By (4.15) we have H(h) = 	∗(y), where

h(x) = 1T1(x)e−1−γ 0(T)−γ 1(T)c(x) + 1T2∪T3(x)e−1−γ 0(T),

and γ 0(T), γ 1(T) are the unique solutions of the equations in (4.14) with B = T.
Now we prove that h ∈ V , for γ < y < c(0), so that

H(fu) = 	∗(y) if γ < y < c(0).(4.19)

Recall that −γ 1(T) is the unique solution of∫
T1

c(x)eθc(x) dx∫
T1

eθc(x) dx + 2/3
= y.
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The function

θ �→
∫
T1

c(x)eθc(x) dx∫
T1

eθc(x) dx + 2/3

is strictly increasing (as can be checked by a straightforward computation) and, for
θ = 0, it is equal to γ . Therefore, since y > γ , we have −γ 1(T) > 0. It implies
that∫

T1

c(x)e−1−γ 0(T)−γ 1(T)c(x) dx = y >

∫
T1

c(x)e−1−γ 0(T) dx = γ e−1−γ 0(T).

In particular, h ∈ V . Now we deal with the case λ2 �= 0. We have

�fc |T1
(c1) = �fc |T2

(c2) = �fc |T3
(c3) = y.

In particular, if we set fc,l(x) = 1(x ∈ Tl)fc(x), we get (fc,1, fc,2, fc,3) ∈ S 3
φ . By

step 4 of the proof of Theorem 1.3(i), it implies that

H(fc) ≥ inf
(f1,f2,f3)∈S 3

φ

H(f1 + f2 + f3) = 	∗(3y) = H(f ∗
1 + f ∗

2 + f ∗
3 ),

where f∗ = (f ∗
1 , f ∗

2 , f ∗
3 ) was defined above. Since f ∗

1 + f ∗
2 + f ∗

3 ∈ V , we deduce
directly that a.e. fc = f ∗

1 + f ∗
2 + f ∗

3 and

H(fc) = 	∗(3y).(4.20)

It remains to find out for which values of y the Lagrange multiplier λ2 is equal
to zero. First of all note that if y = γ , then the function identically equal to 1
is in V . We deduce that f ∗ ≡ 1 and so λ2 = 0 (since the optimal solution is
not constrained on T2) and J (γ ) = 0 = 	∗(3γ ). Now assume γ < y < c(0). By
Proposition 1.4(iii), we deduce 	∗(y) < 	∗(3y). It follows by (4.19) and (4.20)
that H(fu) < H(fc). Recall that f ∗ = arg min(H(fu),H(fc)), thus λ2 = 0 and
J (y) = 	∗(y). It remains to deal with the case c(B1)/3 < y < γ . The following
lemma holds:

LEMMA 4.8. Under the foregoing assumptions and notation, if c(B1)/3 <

y < γ , then J (y) ≥ J (y).

Then, by Theorem 1.3(i) and (4.20) we get

	∗(3y) = J (y) ≤ J (y) = min(H(fu),H(fc)) ≤ 	∗(3y).

This completes the proof.

PROOF OF LEMMA 4.8. Choose y < z < γ . By construction P(ρn ≤ nz) ≤
P(ρn ≤ nz). Taking the logarithm, applying Theorem 4.1 and recalling that
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J (y) = J (y) = +∞ for y ≤ c(B1)/3 we have

− inf
t∈(c(B1)/3,z)

J (t) ≤ lim inf
n→∞

1

n
logP(ρn ≤ nz)

≤ lim sup
n→∞

1

n
logP(ρn ≤ nz)

≤ − inf
t∈(c(B1)/3,z]J (t).

Therefore

J (y) ≥ inf
t∈(c(B1)/3,z)

J (t) ≥ inf
t∈(c(B1)/3,z]J (t) = J (z),

where the latter equality follows since J (y) = 	∗(3y) is decreasing on (c(B1)/

3, γ ). Recalling that J (y) = 	∗(3y) is also continuous on (c(B1)/3, γ ), the claim
follows letting z tend to y. �

5. Model extension.

5.1. The analog one-dimensional model. The analog one-dimensional model
is obtained as follows. There are n objects on (0,1), say {1, . . . , n}, and two bins
located at 0 and 1, respectively. The location of the kth object is given by a r.v.
Xk and it is assumed that the r.v.’s {Xk}1≤k≤n are i.i.d. and uniformly distributed
on [0,1]. The cost to allocate an object at x ∈ [0,1] to the bin at 0, respectively,
at 1, is c(x), respectively, c(1 − x). The asymptotic analysis of allocations which
realize the optimal and the suboptimal load can be carried on using the ideas and
the techniques developed in this paper. Due to the simpler geometry of the one-
dimensional model, many technical difficulties met in the two-dimensional case
disappear, and with the proper assumptions on the cost function, it is possible to
state and prove the analog of Theorems 1.1, 1.2 and 1.3.

5.2. Random cost function. An interesting and natural extension of the model
takes into account random cost functions. Let Z be a Polish space and Zk =
(Z1

k ,Z
2
k ,Z

3
k ) (k = 1, . . . , n) a r.v. taking values on Z 3. Assume that: the sequences

{Xk}1≤k≤n and {Zk}1≤k≤n are independent; the r.v.’s {Zk}1≤k≤n are i.i.d. with com-
mon distribution Q; the r.v.’s Z1

1 , Z2
1 and Z3

1 are i.i.d. Let c : T × Z 3 → [0,∞) be
a measurable function. We consider an extension of the basic model where the cost
to allocate the kth object to the bin at Bl (l = 1,2,3) is equal to cl(Xk,Zk). Here,
for z = (z1, z2, z3), the cost functions are defined in such a way that they pre-
serve the spatial symmetry c1(x, z) = c(x, z), c2(x, z) = c(j2x, (z2, z3, z1)) and
c3(x, z) = c(jx, (z3, z1, z2)). The load associated to an allocation matrix A ∈ An

is

ρn(A) = max
1≤l≤3

(
n∑

k=1

aklcl(Xk,Zk)

)
.
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In a wireless communication scenario we have Z = R+, and the typical cost func-
tion is of the form

c(x, z) = a + min{b, z2|x − B2|−α} + min{b, z3|x − B3|−α}
min{b, z1|x − B1|−α} ,

where a > 0, α ≥ 2 and b > (λ
√

3/2)−α . The additional randomness in the cost
function models the fading along the channel (see, e.g., [9]). The suboptimal allo-
cation A = (ak,l)1≤k≤n,1≤l≤3 is obtained by allocating each point to its less costly
bin. To be more precise, assume that �⊗Q-a.s., for any l �= m, cl(x, z) �= cm(x, z).
Then, setting

ak,l = 1
(
cl(Xk,Zk) < min

m�=l
cm(Xk,Zk)

)
,

the suboptimal allocation matrix is a.s. well defined. Consider the suboptimal load
ρn = ρn(A) and the optimal load ρn = minA∈An ρn(A). Exactly as in the proof of
Theorem 1.1, one can prove that, a.s.

lim
n→∞

ρn

n
= lim

n→∞
ρn

n
=
∫

T×Z 3
1
(
cl(x, z) < min

m�=l
cm(x, z)

)
dxQ(dz).

Deriving analogs of Theorem 1.2 and Theorem 1.3 is an interesting issue. For the
central limit theorem, an analog of the suboptimal allocation matrix Â in Proposi-
tion 3.1 should be defined. For the large deviation principles, the contraction prin-
ciple can be applied as well, but it might be more difficult to solve the associated
variational problems.

5.3. Asymmetric models. Most techniques of the present paper collapse when
the symmetry of the model fails, for example, the region is not an equilateral tri-
angle, the locations are not uniformly distributed on the triangle, the cost of an
allocation is not properly balanced among the bins. For a result on the law of large
numbers in the case of an asymmetric model, we refer the reader to Bordenave [2].

APPENDIX

A.1. Proof of Lemma 2.1.

Continuity of φ. By the inequality, for all a1, a2, a3, b1, b2, b3 ≥ 0,

|max{a1, a2, a3} − max{b1, b2, b3}| ≤ |a1 − b1| + |a2 − b2| + |a3 − b3|,
we get

|φ(α1, α2, α3) − φ(β1, β2, β3)| ≤
3∑

l=1

|αl(cl) − βl(cl)|.(A.1)
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Since c is continuous, if the sequence ((αn
1 , αn

2 , αn
3 ))n≥1 ∈ Mb(T)3 converges to

(β1, β2, β3) (with respect to the product weak topology), then

lim
n→∞|αn

1 (c1) − β1(c1)| = 0, lim
n→∞|αn

2 (c2) − β2(c2)| = 0

and

lim
n→∞|αn

3 (c3) − β3(c3)| = 0.

The conclusion follows combining these latter three limits with (A.1).

Continuity of � . For each l ∈ {1,2,3}, the projection mapping α �→ α|Tl
is

continuous. Hence, the continuity of � follows by the continuity of φ.

Continuity of . Note that, for each fixed α ∈ M1(T), it holds

(α) = φ(α1, α2, α3) for some α1, α2, α3 ∈ Mb(T) :α1 + α2 + α3 = α

[indeed, the set {(α1, α2, α3) ∈ Mb(T)3 :α1 + α2 + α3 = α} is compact with re-
spect to the product weak topology and the functional φ is continuous]. For each
integer K > 0, consider the open covering of T given by the family formed by the
open balls centered at x ∈ T with radius 1/K . Then by a classical result (see, e.g.,
Proposition 16, page 200, in Royden [8]) there exists a finite collection {ψn}1≤n≤N

of continuous functions from T to T such that
N∑

n=1

ψn(x) = 1 for each x ∈ T,

�(supp(ψn)) ≤ π/K2 for each n = 1, . . . ,N.

Here the symbol supp(ψn) denotes the support of ψn. Let f be a continuous
function on T, consider the modulus of continuity of f defined by wδ(f ) =
sup|s−t |≤δ|f (s) − f (t)| and set fn = supx∈supp(ψn) f (x). Note that, for all mea-
sures μ ∈ Mb(T),

N∑
n=1

|μ(f ψn) − fnμ(ψn)| ≤ w2/K(f )

N∑
n=1

μ(ψn) = w2/K(f )μ(T).(A.2)

For i = 1,2,3, define ri
n = αi(ψn)

α(ψn)
if α(ψn) > 0 and ri

n = 0 otherwise. Moreover,
for β ∈ Mb(T), set

βi(dx) =
N∑

n=1

ri
nψn(x)β(dx), i = 1,2,3.(A.3)

Since α1(ψn) + α2(ψn) + α3(ψn) = α(ψn), by the properties of the sequence
{ψn}1≤n≤N we have β1 + β2 + β3 = β . For any continuous function f on T we
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have, for i = 1,2,3,

|βi(f ) − αi(f )|

=
∣∣∣∣∣

N∑
n=1

(
ri
nβ(f ψn) − αi(f ψn)

)∣∣∣∣∣
(A.4)

≤
∣∣∣∣∣

N∑
n=1

ri
n

(
β(f ψn) − α(f ψn)

)∣∣∣∣∣+
∣∣∣∣∣

N∑
n=1

ri
n

(
fnα(ψn) − α(f ψn)

)∣∣∣∣∣
+
∣∣∣∣∣

N∑
n=1

(
ri
nfnα(ψn) − αi(f ψn)

)∣∣∣∣∣.
Note that ri

n ≤ 1, and therefore∣∣∣∣∣
N∑

n=1

ri
n

(
β(f ψn) − α(f ψn)

)∣∣∣∣∣≤ N max
1≤n≤N

|β(f ψn) − α(f ψn)|.(A.5)

Using again that ri
n ≤ 1 and (A.2) with μ = α, we have∣∣∣∣∣

N∑
n=1

ri
n

(
fnα(ψn) − α(f ψn)

)∣∣∣∣∣≤
N∑

n=1

|fnα(ψn) − α(f ψn)| ≤ w2/K(f ).(A.6)

By the definition of ri
n and (A.2) it follows that∣∣∣∣∣

N∑
n=1

(
ri
nfnα(ψn) − αi(f ψn)

)∣∣∣∣∣=
∣∣∣∣∣

N∑
n=1

(
fnαi(ψn) − αi(f ψn)

)∣∣∣∣∣
(A.7)

≤ w2/K(f ).

Collecting (A.4), (A.5), (A.6) and (A.7) we have

|βi(f ) − αi(f )| ≤ N max
1≤n≤N

|β(f ψn) − α(f ψn)| + 2w2/K(f ).(A.8)

Now, let {βm} ⊂ M1(T) be a sequence of probability measures converging to α

for the topology of the weak convergence. We shall prove

lim
m→∞(βm) = (α).

We first prove

lim sup
m→∞

(βm) ≤ (α).(A.9)

Let K be as above and define the Borel measure βm
i as in (A.3), with βm in place

of β (the definition of ri
n remains unchanged). By inequality (A.8) and the weak

convergence of βm to α, it follows that

lim sup
m→∞

|βm
i (f ) − αi(f )| ≤ 2w2/K(f ).



LOAD OPTIMIZATION IN A PLANAR NETWORK 2079

Applying the above inequality for f = c1, f = c2, f = c3 and using the inequality
(A.1), we get

lim sup
m→∞

|φ(βm
1 , βm

2 , βm
3 ) − φ(α1, α2, α3)| ≤ 6w2/K(c).

Note that by the definition of  and the choice of the αi’s, (α) = φ(α1, α2, α3)

and (βm) ≤ φ(βm
1 , βm

2 , βm
3 ), therefore

lim sup
m→∞

(βm) ≤ (α) + 6w2/K(c).

The above inequality holds for all K , and letting K tend to infinity, we obtain
(A.9). We finally check the lower semi-continuity bound

lim inf
m→∞ (βm) ≥ (α).(A.10)

Arguing as at the beginning of the proof, we have, for each fixed m ≥ 1,

(βm) = φ(βm
1 , βm

2 , βm
3 )

for some βm
1 , βm

2 , βm
3 ∈ Mb(T) :βm

1 + βm
2 + βm

3 = βm.

Now, consider an extracted subsequence (mk)k≥1 such that

lim inf
m→∞ (βm) = lim

k→∞φ(β
mk

1 , β
mk

2 , β
mk

3 ).

As already pointed out, Mb(T)3 is compact with respect to the product weak
topology. Therefore, up to extracting a subsequence of (mk)k≥1, we may as-
sume that (β

mk

1 , β
mk

2 , β
mk

3 ) converges to (β1, β2, β3) ∈ Mb(T)3. By construction,
βm

1 + βm
2 + βm

3 = βm and βm converges to α, and thus we have β1 + β2 + β3 = α.
Then the definition of  gives

φ(β1, β2, β3) ≥ (α).

Also the continuity of φ implies

lim
k→∞φ(β

mk

1 , β
mk

2 , β
mk

3 ) = φ(β1, β2, β3).

The matching lower bound (A.10) follows.

A.2. Proof of Lemma 2.2.

Proof of (i). For each α ∈ M1(T), the set

{(α1, α2, α3) ∈ Mb(T)3 :α1 + α2 + α3 = α}
is convex; moreover, the functional φ is convex on Mb(T)3. Therefore, by a
classical result of convex analysis, there exists, (α1, α2, α3) ∈ Mb(T)3, such that
(α) = φ(α1, α2, α3).
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In order to prove that α1(c1) = α2(c2) = α3(c3), we reason by contradiction.
Assume, for example, that (α) = α1(c1) > max(α2(c2), α3(c3)). For p ∈ (0,1),
define (β1, β2, β3) = (pα1, (1 − p)α1 + α2, α3). We have β1 + β2 + β3 = α and

φ(β1, β2, β3) = max
(
pα1(c1), (1 − p)α1(c2) + α2(c2), α3(c3)

)
.

In particular, for p large enough, φ(β1, β2, β3) = pα1(c1) < φ(α1, α2, α3). This
is in contradiction with (α) = φ(α1, α2, α3). Now, assume, for example, that
(α) = α1(c1) = α2(c2) > α3(c3). The same argument carries over, by consid-
ering, for p ∈ (0,1), (β1, β2, β3) = (pα1,pα2, α3 + (1 − p)(α1 + α3)). All the
remaining cases can be proved similarly.

Proof of (ii). Since An ⊂ Bn, we have ρ̃n ≤ ρn, and therefore we only need to
establish the claimed lower bound on ρ̃n. Let B∗ be an optimal allocation matrix
for ρ̃n and define the set

I = {
k ∈ {1, . . . , n} : there exists l ∈ {1,2,3} such that b∗

kl ∈ (0,1)
}
.

Define the matrix A = (akl) ∈ An by setting akl = b∗
kl , for any l ∈ {1,2,3}, if k /∈ I ,

and ak1 = 1, ak2 = ak3 = 0 if k ∈ I . Letting |I | denote the cardinality of I , we have

ρ̃n = max
1≤l≤3

(∑
k∈I

b∗
klcl(Xk) +∑

k /∈I

b∗
klcl(Xk)

)

≥ max
(∑

k∈I

ak1c(Xk) +∑
k /∈I

ak1c(Xk) − |I |‖c‖∞, max
l∈{2,3}

(∑
k /∈I

aklcl(Xk)

))

≥ max
1≤l≤3

( n∑
k=1

aklcl(Xk)

)
− |I |‖c‖∞ ≥ ρn − |I |‖c‖∞.

Thus, the claim follows if we prove that |I | ≤ 3. Reasoning by contradiction, as-
sume that |I | ≥ 4 and, for j = 1,2,3,4, denote by kj ∈ I four distinct indices in I .
For each kj there exists lj ∈ {1,2,3} such that b∗

kj lj
∈ (0,1). Since

b∗
kj lj

+ ∑
m∈{1,2,3}\{lj }

b∗
kjm = 1

we deduce that there exist mj ∈ {1,2,3} \ {lj } such that b∗
kjmj

∈ (0,1). Thus if
|I | ≥ 4, there exist distinct ki, kj ∈ {1, . . . , n}, distinct li ,mi ∈ {1,2,3} and dis-
tinct lj ,mj ∈ {1,2,3} such that bki li , bkimi

, bkj lj , bkjmj
∈ (0,1). Choose ε ∈ (0,

min{b∗
ki li

, b∗
kimi

, b∗
kj lj

, b∗
kjmj

}) and define the matrix Bε = (bε
kl) ∈ Bn by

bε
ki li

= b∗
ki li

− ε, bε
kimi

= b∗
kimi

+ ε,

bε
kj lj

= b∗
kj lj

+ ε, bε
kjmj

= b∗
kjmj

− ε,
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and bε
kl = b∗

kl otherwise. We define similarly B−ε by replacing ε by −ε. By part
(i) of the lemma, the optimal allocation matrix B∗ satisfies

max
1≤l,m≤3

(
n∑

k=1

b±ε
kl cl(Xk),

n∑
k=1

b±ε
kmcm(Xk)

)

≥
n∑

k=1

b∗
k1c1(Xk) =

n∑
k=1

b∗
k2c2(Xk)

=
n∑

k=1

b∗
k3c3(Xk).

Therefore

max
1≤l,m≤3

(
n∑

k=1

(b±ε
kl − b∗

kl)cl(Xk),

n∑
k=1

(b±ε
km − b∗

km)cm(Xk)

)

= max
(∓ε

(
cli (Xki

) − clj (Xkj
)
)
,±ε

(
cmi

(Xki
) − cmj

(Xkj
)
))

≥ 0.

It gives cli (Xki
) = clj (Xkj

) and cmi
(Xki

) = cmj
(Xkj

) but it a.s. cannot happen
since, by assumption, �(c−1({t})) = 0 for all t ≥ 0.

Proof of (iii). It is an immediate consequence of (ii).

A.3. A particular cost function: The inverse of signal to noise plus interfer-
ence ratio. In this subsection, we prove that the following cost function:

c(x) = a + min{b, |x − B2|−α} + min{b, |x − B3|−α}
min{b, |x − B1|−α} , x ∈ T,

where α ≥ 2, a > 0 and b > (λ
√

3/2)−α , satisfies (1.1), (1.2), (1.3), (1.4) and (1.5).
To avoid lengthy computations we only checked numerically the first inequality in
(1.6). The typical shape of the function

L(x) = c1(x)c2(x)c3(x)

c1(x)c2(x) + c1(x)c3(x) + c2(x)c3(x)

is plotted in Figure 3, which shows that L attains the supremum at x = 0. Finally,
we show that, for fixed α > 2 and a > 0, for all b large enough, the second in-
equality in (1.6) holds.

We first check assumption (1.1). We consider only the case l = 2, being the
case l = 3 similar. Let x ∈ T be such that |x − B1| < |x − B2|. Then necessarily,
|x − B2| > λ

√
3/2. With our choice of b, we deduce that

min{b, |x − B2|−α} = |x − B2|−α < min{b, |x − B1|−α}.
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FIG. 3. The function L with α = 2.5, a = 1 and b = 10.

By construction

c2(x) = a + min{b, |x − B1|−α} + min{b, |x − B3|−α}
min{b, |x − B2|−α} , x ∈ T,

and so (1.1) follows easily.
It is immediate to check that c is a Lipschitz function, and the axial symmetry

around the straight line determined by 0 and B1 maps B2 into B3. Thus assump-
tions (1.2) and (1.4) follow.

In order to check (1.5), we note that if x ∈ T1, then, for l = 2,3, |x − Bl| ≥
|x − B1|. Thus, for l = 2,3, min{b, |x − Bl|−α} ≤ min{b, |x − B1|−α}, and we
deduce

c(x) = a + min{b, |x − B2|−α} + min{b, |x − B3|−α}
min{b, |x − B1|−α}

≤ a

min{b, |x − B1|−α} + 2

≤ λαa + 2 = c(0),

where the last inequality is strict if x �= 0. Similarly, a + min{b, |x − B2|−α} +
min{b, |x −B3|−α} is minimized for x = B1 and min{b, |x −B1|−α} is maximized
for x = B1. So, for x �= B1, c(x) > c(B1).

Now we check assumption (1.3). Define

Al = {x ∈ T : |x − Bl| < b−1/α}, l = 1,2,3.
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With our choice of b, if l �= m, we have Al ∩ Am = ∅. Define

A0 = T \ (A1 ∪ A2 ∪ A3).

Note that, by construction, on each set Al , l = 0,1,2,3, the sign of b−|x −Bm|−α

is constant for each m = 1,2,3. To prove (1.3), we shall check that, for all t ≥ 0
and l = 0,1,2,3,

�
(
Al ∩ c−1({t}))= 0.(A.11)

We shall only prove the above equality for l = 0, the other cases can be shown
similarly. Note that

c(x) = |x − B1|α(a + |x − B2|−α + |x − B3|−α) ∀x ∈ A0.

Using polar coordinates we have

�
(
A0 ∩ c−1({t}))=

∫ 2π

0
dθ

∫ ∞
0

1{reiθ ∈ A0}1{c(reiθ ) = t}r dr.

We shall check that, for an arbitrarily fixed θ ∈ [0,2π), the function

cθ (r) = a|reiθ − B1|α +
( |reiθ − B1|

|reiθ − B2|
)α

+
( |reiθ − B1|

|reiθ − B3|
)α

, r ∈ Iθ ,

is strictly monotone, where

Iθ = {r : r ≥ 0, reiθ ∈ T}.
So, for any fixed θ ∈ [0,2π), the function 1{reiθ ∈ A0}1{c(reiθ ) = t} is differ-
ent from 0 for at most one r , and therefore equality (A.11) for l = 0 follows.
In the following we shall only prove that cθ is strictly decreasing on Iθ for
θ ∈ [−π/6, π/6], the other cases can be treated similarly. First, note that since
θ ∈ [−π/6, π/6], as r increases, |reiθ − B1|α decreases, while |reiθ − B3|α in-

creases. Thus, r �→ a|reiθ − B1|α and r �→ (
|reiθ−B1|
|reiθ−B3|)

α are decreasing. Note also

that, for θ ∈ [−π/6,0], as r increases, |reiθ − B2|α increases. Thus it suffices to
prove that, for a fixed θ ∈ (0, π/6], the function

Lθ(r) = |reiθ − B1|2
|reiθ − B2|2 , r ∈

[
0, λ

(
2 cos

(
π

6
− θ

))−1]
,

is nonincreasing. Consider the orthonormal basis {e1, e2} with e1 = eiπ/6 and e2 =
e−iπ/3. Setting β = π/6 − θ ∈ [0, π/6), y1 = λ/2 and y2 = λ

√
3/2, we have

reiθ = r cosβe1 + r sinβe2, B1 = y1e1 + y2e2, B2 = y1e1 − y2e2

and

Lθ(r) = (y1 − r cosβ)2 + (y2 − r sinβ)2

(y1 − r cosβ)2 + (y2 + r sinβ)2 .
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The derivative L′
θ (r) of Lθ(r) has the same sign of

−(cosβ(y1 − r cosβ) + sinβ(y2 − r sinβ)
)(

(y1 − r cosβ)2 + (y2 + r sinβ)2)
+ (

cosβ(y1 − r cosβ) − sinβ(y2 + r sinβ)
)

× (
(y1 − r cosβ)2 + (y2 − r sinβ)2).

After simplification, we get easily that L′
θ (r) has the same sign of

−2r cosβ sinβ − (
(y1 − r cosβ)2 + y2

2 − r2 sin2 β
)

sinβ.

This last expression is less than or equal to 0. Indeed, for r ∈ [0, λ(2 cosβ)−1], we
have 0 ≤ r sinβ ≤ y2. Hence Lθ is nonincreasing on its domain.

Finally, we check that, for fixed α > 2 and a > 0, it is possible to determine
b > (λ

√
3/2)−α so that the second inequality in (1.6) holds. We deduce∫

T2

c(x) dx ≥
∫

T2

a +∑3
l=2 min{b, |x − Bl|−α}

(λ
√

3/2)−α
dx(A.12)

=
∫

T2

a + min{b, |x − B2|−α} + |x − B3|−α

(λ
√

3/2)−α
dx(A.13)

≥ a/3

(λ
√

3/2)−α
+ πb1−(2/α)/6

(λ
√

3/2)−α

(A.14)
+ (

λ
√

3/2
)α ∫

T2

|x − B3|−α dx.

Here (A.12) and (A.13) follow since on T2 we have |x −Bl|−α < (λ
√

3/2)−α < b

for l = 1,3; (A.14) is consequence of the inequality |x − B2|−α > b, for any x ∈
A2 ∩ T2. The claim follows noticing that, due to our choice of α, c(0)/3 is strictly
less than the quantity in (A.14), for b large enough.
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