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APPLICATIONS OF WEAK CONVERGENCE FOR HEDGING OF
GAME OPTIONS1

BY YAN DOLINSKY

Hebrew University

In this paper we consider Dynkin’s games with payoffs which are func-
tions of an underlying process. Assuming extended weak convergence of
underlying processes {S(n)}∞n=0 to a limit process S we prove convergence

Dynkin’s games values corresponding to {S(n)}∞n=0 to the Dynkin’s game
value corresponding to S. We use these results to approximate game options
prices with path dependent payoffs in continuous time models by a sequence
of game options prices in discrete time models which can be calculated by dy-
namical programming algorithms. In comparison to previous papers we work
under more general convergence of underlying processes, as well as weaker
conditions on the payoffs.

1. Introduction. Consider a càdlàg stochastic process {St }Tt=0 (T < ∞)
which takes on values in R

d+. For two given functions f ≤ g let Xt = g(t, S) and
Yt = f (t, S). Define �(S) = infσ supτ E(Xσ Iσ<τ + Yτ Iτ≤σ ) which is the Dynkin
game value for the above processes where IA = 1 if an event A occurs and =0 if
not. The inf and the sup are taken over the set of stopping times no bigger than T ,
with respect to the usual filtration generated by the process S. Our goal is to prove
(under some additional assumptions) that if a sequence of stochastic processes
{S(n)

t }Tt=0, n ≥ 1 converges in law to S then �(S) = limn→∞ �(S(n)).
Although several papers dealt with stability of optimal stopping values under

weak convergence of the underlying processes (see [2, 3, 5, 6, 14, 16, 17] and
[19]) stability of Dynkin’s games values under weak convergence of the underlying
processes was not studied before. In his unpublished paper [2] Aldous represented
the notion of extended weak convergence and proved the stability of optimal stop-
ping values under extended weak convergence of the underlying processes. In this
paper we extend these results for Dynkin’s games. The main tools that we use for
proving the result is the Skorohod representation theorem (see [7]) and the theory
of extended weak convergence that Aldous developed in [2].

In [5] and [14] the authors studied binomial approximations of American put
options in the Black–Scholes (BS) model. In both of these papers it was proved
by using different methods, that the option price in the BS model is a limit of op-
tion prices for an appropriate sequence of Cox–Ross–Rubinstein (CRR) models.
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Furthermore they proved stability of the critical prices and the optimal stopping
times. In [6] the authors studied stability of optimal stopping values and opti-
mal stopping times under convergence in probability of the underlying processes
(though, it seems that the part related to convergence of optimal stopping values
contains some gaps). The most general result was obtained in [19] where the au-
thors considered a general framework and proved Snell envelopes stability under
weak convergence of the underlying processes. The authors used the fact that the
Snell envelope of a positive process is a positive supermartingale, and so it is a
quasi martingale and the corresponding tightness theorems (see [20]) can be em-
ployed. For Dynkin’s games the value process should not, in general, be a quasi
martingale and so the above method is not applicable here, and so Dynkin’s games
value process stability under weak convergence remains an open question, but we
are able to prove in this paper the stability of Dynkin’s game values under the weak
convergence of the underlying processes.

One of the motivations to study Dynkin’s games values stability under weak
convergence of the underlying processes is applications to game options approxi-
mations. Recall, that a game contingent claim (GCC) or a game option was defined
in [10] as a contract between the seller and the buyer of the option such that both
have the right to exercise it any time up to a maturity date (horizon) T . If the buyer
exercises the contract at time t then he gets the payment Yt , but if the seller cancels
before the buyer then the latter gets the payment Xt . The difference δt = Xt − Yt

is the penalty which the seller pays to the buyer for the contract cancellation. Thus
the process S can be considered as a discounted risky asset, and the processes
X ≥ Y are considered as the discounted payoff processes. In [10] it was proved
that pricing a GCC in a complete market leads to the value of a Dynkin game with
the payoffs X,Y under the unique martingale measure, namely if the process S is
a martingale then �(S) is the option price of the above game option. In [13] it was
proved that for a general incomplete market, if the process S is a martingale then
�(S) is an arbitrage-free price.

Convergence results for Dynkin’s games will allow us to approximate options
prices in continuous time markets by a sequence of game options prices in dis-
crete time markets which are defined on a discrete probability space. In addition
to the theoretical interest such results have a practical value for calculations of op-
tions prices, since it is well known (see [21]) that for a discrete probability space
Dynkin’s games values can be calculated by dynamical programming algorithm.
In this paper we give an example for approximations of game options with Russian
(path dependent) type of payoffs in the Merton model.

Several papers (see [8, 11, 12]) dealt with approximations of option prices for
game options. These papers used strong approximation theorems in order to obtain
error estimates for discrete time approximations of game options in the BS model
with Lipschitz conditions on the payoffs. The weak convergence approach does not
allow one to obtain estimates of the error, but it works under weaker assumptions
on the payoffs and can be applied for jump diffusion models.
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The main results of this paper are formulated in the next section where we also
introduce the notation that will be used. In Section 3 we derive auxiliary lemmas
that we use. In Section 4 we complete the proof of the main results of the paper.
In Section 5 we provide an application for approximations of game options in
Merton’s model with path dependent payoffs.

2. Preliminaries and main results. First we introduce some definitions and
notation that will be used in this paper. Let d ∈ N. Given a probability space
(�, F ,P ) consider a càdlàg stochastic process S = {St :� → R

d}Tt=0. Denote
by F S = {F S

t }Tt=0 the usual filtration of S, that is, the smallest right continuous
filtration with respect to which S is adapted, and such that the σ algebras con-
tain the null sets. Let T S[0,T ] be the set of all stopping times with respect to F S

which take values in [0, T ]. Denote by P
S the distribution of S on the canon-

ical space D([0, T ];R
d) equipped with the Skorohod topology, that is, for any

Borel set A ⊂ D([0, T ];R
d), P

S(A) = P {S ∈ A}. For a sequence of stochastic
processes S(n) :�n → D([0, T ];R

d) we will use the notation S(n) ⇒ S to indicate
that the probability measures P

S(n)
, n ≥ 1 converge weakly to P

S (where the space
D([0, T ];R

d) is equipped with the Skorohod topology).
Next, let f,g : [0, T ] × D([0, T ];R

d) → R+ be two measurable functions such
that f ≤ g. We will assume the following.

ASSUMPTION 2.1. For any t ∈ [0, T ] and x, y ∈ D([0, T ];R
d) f (t, x) =

f (t, y) and g(t, x) = g(t, y) if x(s) = y(s) for any s ≤ t . The functions
f (·, x), g(·, x) are right-continuous functions with left-hand limits. Furthermore,
let {xn}∞n=1 ⊂ D([0, T ];R

d) and {tn}∞n=1 ⊂ [0, T ] such that limn→∞ xn = x,
limn→∞ tn = t and limn→∞ xn(tn) = x(t) for some x ∈ D([0, T ];R

d) and t ∈
[0, T ]. Then

lim
n→∞f (tn, xn) = f (t, x) and lim

n→∞g(tn, xn) = g(t, x).(2.1)

For any càdlàg stochastic process S = {St }Tt=0 set the càdlàg adapted processes

XS
t = g(t, S), Y S

t = f (t, S)(2.2)

and consider the payoff function

HS(t, s) = XS
t It<s + YS

s Is≤t , t, s ≤ T .(2.3)

Assume that supτ∈T S[0,T ]
EXS

τ < ∞ where E denotes the expectation with respect

to the probability measure of the space on which the process S is defined. Let �(S)

be the Dynkin’s game value of the payoff given by (2.3). Namely,

�(S) = inf
σ∈T S[0,T ]

sup
τ∈T S[0,T ]

EHS(σ, τ ) = sup
τ∈T S[0,T ]

inf
σ∈T S[0,T ]

EHS(σ, τ ).(2.4)
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The second equality follows from Corollary 12 in [15]. Furthermore from Lem-
ma 5 in [15] it follows that

�(S) = inf
σ∈T S[0,T ]

sup
τ∈T S[0,T ]

EJS(σ, τ )

= sup
τ∈T S[0,T ]

inf
σ∈T S[0,T ]

EJS(σ, τ )(2.5)

where J S(t, s) = It∧s=T Y S
T + It∧s<T It≤sX

S
t + YS

s Is<t ,

t, s ≤ T .

First we show that �(S) depends only on the distribution of S. Consider the prob-
ability space (D([0, T ];R

d),P S). Let {Ut }Tt=0 be the canonical process of coordi-
nate projection, namely Ut : D([0, T ];R

d) → R
d is given by Ut(x) = x(t) and let

{Gt }Tt=0 be the usual filtration which is generated by the above process. Introduce
the set � of all functions φ : D([0, T ];R

d) → [0, T ] which satisfy {φ ≤ t} ∈ Gt for
any t ≤ T . Observe that σ ∈ T S[0,T ] if and only if there exists a function φ ∈ � such
that σ = φ(S) a.s. Thus from (2.4) we obtain

�(S) = inf
φ∈�

sup
ψ∈�

EHS(φ(S),ψ(S)) = inf
φ∈�

sup
ψ∈�

E
SHU(φ(U),ψ(U)),(2.6)

where E
S is the expectation with respect to the probability measure P

S . From (2.6)
it follows that �(S) depends only on the distribution of S.

In [2] Aldous introduced the notion of “extended weak convergence” via pre-
diction processes. For the case where the stochastic processes are considered with
respect to their natural filtration (with the usual assumptions) he proved that ex-
tended weak convergence is equivalent to a more elementary condition which does
not require the use of prediction processes (see [2], Proposition 16.15). Following
[6] we will use the above condition as the definition of extended weak convergence.

DEFINITION 2.2. A sequence S(n) :�n → D([0, T ];R
d), n ≥ 1 extended

weak converges to a stochastic process S :� → D([0, T ];R
d) if for any k and

continuous bounded functions ψ1, . . . ,ψk ∈ C(D([0, T ];R
d))(

S(n),Z(n,1), . . . ,Z(n,k)) ⇒ (
S,Z(1), . . . ,Z(k)) in D([0, T ];R

d+k),(2.7)

where for any t ≤ T , 1 ≤ i ≤ k, and n ∈ N

Z
(n,i)
t = En

(
ψi

(
S(n))|F S(n)

t

)
, n ∈ N and Z(i) = E(ψi(S)|F S

t ),(2.8)

En denotes the expectation with respect to the probability measure on �n and E

denotes the expectation with respect to the probability measure on �. We will
denote extended weak convergence by S(n) � S.
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Next, we introduce two additional assumptions that we will work with. Let
S(n) :�n → D([0, T ];R

d), n ≥ 1 be a sequence of stochastic processes which sat-
isfies the following assumptions.

ASSUMPTION 2.3. The random variables g(τ, S(n)), for n ≥ 1 and τ ∈ T S(n)

[0,T ]
are uniformly integrable.

ASSUMPTION 2.4. For any ε > 0

lim
δ↓0

lim
n→∞ sup

0<u<δ

sup
τ∈F S(n)

[0,T ]

P
(∣∣S(n)

(τ+u)∧T − S(n)
τ

∣∣ > ε
) = 0.

The above assumption is called the “Aldous tightness criterion” and was intro-
duced in [1]. The following theorem is the main result of the paper.

THEOREM 2.5. If S(n) � S, then �(S) = limn→∞ �(S(n)).

3. Auxiliary lemmas. Let I ⊂ [0, T ]. For any stochastic process S :� →
D([0, T ];R

d) denote by �S
I the set of all stopping times τ which take on a fi-

nite number of values in I and such that for any t ∈ I , {τ = t} ∈ σ {Su|u ≤ t}.
LEMMA 3.1. Let I ⊂ [0, T ] be a dense set which contains the point T . Then

sup
τ∈�S

I

inf
σ∈F S[0,T ]

EHS(σ, τ ) = �(S) = inf
σ∈�S

I

sup
τ∈F S[0,T ]

EJS(σ, τ ).(3.1)

PROOF. We start with the proof of the first equality. Choose ε > 0 and τ ∈
T S[0,T ] which satisfies

inf
σ∈F S[0,T ]

EHS(σ, τ ) > �(S) − ε.(3.2)

For any n let En ⊂ I be a finite set which contains T and satisfies
⋃

e∈En
(e −

1
n
, e] ⊇ [0, T ]. Define

τn = min
{
e ∈ En

∣∣∣e ≥ T ∧
(

1

n
+ τ

)}
, n ∈ N.(3.3)

Fix n and t ∈ I \ {T }. Clearly,

{τn = t} =
{

min
{
e ∈ En

∣∣∣e − 1

n
≥ τ

}
= t

}
∈ F S

t−1/n ⊂ σ {Su|u ≤ t},

which means that for any n, τn ∈ �S
I . Since τ ≤ τn ≤ τ + 2

n
, we have τn ↓ τ . Set,

�n = supσ∈F S[0,T ]
(HS(σ, τ ) − HS(σ, τn))

+, n ∈ N. Observe that

lim sup
n→∞

�n ≤ lim sup
n→∞

sup
τ≤t≤τn

(Y S
τ − YS

t )+ = 0 a.s.
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Since the sequence �n, n ∈ N is uniformly integrable then limn→∞ E�n = 0.
From (3.2) we obtain

� − sup
τ∈�S

I

inf
σ∈F S[0,T ]

EHS(σ, τ )

≤ ε + lim sup
n→∞

sup
σ∈F S[0,T ]

E
(
HS(σ, τ ) − HS(σ, τn)

)+

≤ lim sup
n→∞

E
[

sup
σ∈F S[0,T ]

(
HS(σ, τ ) − HS(σ, τn)

)+]

≤ ε + lim
n→∞E�n = ε,

and the first equality in (3.1) follows. The proof of the second equality is similar.
�

Let S(n) ⇒ S and assume that the sequence S(n), n ∈ N, satisfies the assump-
tions from Section 2. The following two lemmas are a small modification of similar
results that were obtained in [2]. For the reader’s convenience we provide a self-
contained proof for Lemmas 3.2 and 3.3 which follows the ideas that were used
in [2].

LEMMA 3.2. Let E ⊂ [0, T ] be a finite set such that any t ∈ E \ {T } is a
continuity point of the process S a.s. Then for any τ ∈ �S

E there exists a sequence

of stopping times τn ∈ T S(n)

[0,T ] with values in E such that (S(n), τn) ⇒ (S, τ ) on the

space D([0, T ];R
d) × [0, T ].

PROOF. By using the Skorohod representation theorem (see [7]) it follows
that without loss of generality we can assume that there exists a probability space
(�, F ,P ) on which the process S and the sequence S(n) are defined and S(n) → S

a.s. on D([0, T ];R
d). In order to prove the lemma it is sufficient to show that for

any ε > 0 there exists N ∈ N and a sequence of stopping times τn ∈ T S(n)

[0,T ] with
values in E such that

P

( ∞⋃
n=N

{τn �= τ }
)

< ε.(3.4)

Choose ε > 0. Let E \ {T } = {t1 < t2 < · · · < tk}. Denote Ai = {τ = ti} ∈
σ {Su|u ≤ ti}, i ≤ k. Since ti is a continuity point of the process S there exist
continuous functions φi : D([0, T ];R

d) → [0,1], i ≤ k, such that

E|IAi
− φi(S)| < ε

2(i+1)
,(3.5)
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and the function φi(x) depends only on the restriction of x to the interval [0, ti].
For any n ∈ N define the stopping time τn ∈ T Sn[0,T ] by

τn = T ∧ min
{
ti |φi

(
S(n)) > 1

2

}
,(3.6)

where min{ti |φi(S
(n)) > 1

2} = ∞ if for any i, φi(S
(n)) ≤ 1

2 . Observe that φ
(n)
i (S(n))

is a F Sn
ti

measurable random variable, thus τn is indeed a stopping time with respect

to the filtration F S(n)
. Set

Ci = (
Ai ∩ {φi(S) > 1/2}) ∪ (

Ac
i ∩ {φi(S) < 1/2}), i ≤ k,

and

C =
k⋂

i=1

Ci.

Since for any i, φi is a continuous function we obtain that for any ω ∈ C there
exists N(ω) such that for any n ≥ N(ω), τ(ω) = τn(ω). From (3.5) and the Markov
inequality we obtain

P(C) = 1 − P(� \ C) ≥ 1 −
k∑

i=1

P

(
|φi(S) − IAi

| ≥ 1

2

)
(3.7)

≥ 1 −
k∑

i=1

ε

2i
> 1 − ε.

Set En = ⋂∞
m=n {τm = τ }, n ∈ N. Observe that the sequence En, n ≥ 1 is an in-

creasing sequence of events and
⋃∞

n=1 En ⊃ C. From (3.7) it follows that there
exists N ∈ N such that P(EN) > 1 − ε and (3.4) follows. �

LEMMA 3.3. Assume that τn ∈ T S(n)

[0,T ], n ≥ 1 is a sequence of stopping times

which satisfies (S(n), τn) ⇒ (S, ν) on the space D([0, T ];R
d) × [0, T ] for some

random variable ν. Then (
S(n), S(n)

τn
, τn

) ⇒ (S, Sν, ν)(3.8)

on the space D([0, T ];R
d) × R

d × [0, T ]. In addition, if S(n) � S, then for any t ,
{ν ≤ t} and F S

T are conditionally independent given F S
t , and so for any uniformly

integrable càdlàg stochastic process {Vt }Tt=0 adapted to the filtration F S[0,T ]
inf

τ∈T S[0,T ]
EVτ ≤ EVν ≤ sup

τ∈T S[0,T ]
EVτ .(3.9)

PROOF. By using the Skorohod representation theorem it follows that without
loss of generality we can assume that there exists a probability space (�, F ,P )



1898 Y. DOLINSKY

on which the process S, ν and the sequence S(n), τn are defined and (S(n), τn) →
(S, ν) a.s. on D([0, T ];R

d) × [0, T ]. Thus in order to prove (3.8) it is sufficient
to show that S

(n)
τn → Sν in probability. Choose ε > 0. The process Zt := S(ν+t)∧T ,

t ≥ 0 is a càdlàg process. It is well known (see, e.g., [4], Chapter 3) that for a
càdlàg process the set of points for which the process is not continuous (with
positive probability) is at most countable, thus there exists a sequence un ↓ 0 such
that for any n the process Z is continuous at un, which means that for any ω ∈ �,
ν(ω) + un is a continuity point of the function S(ω) provided that ν(ω) + un < T .
Since the map (f, t) → f (t) from D([0, T ];R

d) × [0, T ] to R
d is continuous at

(f0, t0) if t0 is a continuity point of f0 (see [4], Chapter 3) we obtain that for any
ω ∈ E1 := {ν < T }, limn→∞ S

(n)
(τn+un)∧T = Sν . This together with Assumption 2.4

gives

lim
n→∞P

(
E1 ∩ {∣∣Sν − S(n)

τn

∣∣ > 2ε
})

≤ lim
n→∞P

(
E1 ∩ {∣∣Sν − S

(n)
(τn+un)∧T

∣∣ > ε
})

(3.10)

+ lim
n→∞P

{∣∣S(n)
τn

− S
(n)
(τn+un)∧T

∣∣ > ε
} = 0.

Next, we deal with the event E2 := {ν = T }. For any δ > 0 and n ∈ N set
τ

(δ)
n = Iτn<T −δτn + Iτn≥T −δT ∈ T S(n)

[0,T ]. Observe that for any ω ∈ E2 there ex-

ists N(ω) ∈ N such that for any n > N(ω), τ
(δ)
n = T . Since the map f → f (T )

from D([0, T ];R
d) to R

d is continuous we obtain that for any δ > 0 and ω ∈ E2,
limn→∞ S

(n)

τ
(δ)
n

= ST = Sν . Thus from Assumption 2.4 we obtain

lim
n→∞P

(
B ∩ {∣∣Sν − S(n)

τn

∣∣ > 2ε
})

≤ lim sup
δ↓0

lim sup
n→∞

P
(
B ∩ {∣∣Sν − S

(n)

τ
(δ)
n

∣∣ > ε
})

(3.11)

+ lim sup
δ↓0

lim sup
n→∞

P
{∣∣S(n)

τn
− S

(n)

τ
(δ)
n

∣∣ > ε
} = 0.

From (3.10) and (3.11) it follows that limn→∞ P {|Sν − S
(n)
τn | > 2ε} = 0 and (3.8)

follows. Next, let S(n) � S and assume without loss of generality that (�, F ,P )

is large enough such that there exists a random variable H distributed uniformly
on the interval [0,1] and independent of F S

T . First we show that for any t < T ,
{ν ≤ t} and F S

T are conditionally independent given F S
t , that is,

E(Iν≤t |F S
t ) = E(Iν≤t |F S

T ).(3.12)

Fix t < T , a ψ ∈ C(D([0, T ];R
d)) and φ ∈ C[0, T ]. Define the (càdlàg) stochas-

tic processes Zu = E(ψ(S)|F S
u ) and Z

(n)
u = E(ψ(S(n))|F S(n)

u ). Let un ↓ t be a
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sequence such that for any n the process Z is continuous at un. Clearly,

E
[
φ(τm ∧ un)

(
ψ

(
S(m)) − Z(m)

un

)] = 0 ∀n,m ∈ N.(3.13)

Since S(m) � S we obtain that for any n, Z
(m)
un ⇒ Zun . Fix n. The sequence

(S(m),Z
(m)
un , τm), m ≥ 1 is tight and so from Prohorov’s theorem (see [4]) it fol-

lows that there exists a subsequence (S(mk),Z
(mk)
un , τmk

) which converges in law
to (S,Zun, ν). This together with (3.13) gives E[φ(ν ∧ un)(ψ(S) − Z(un))] = 0.
The function ψ ∈ C(D([0, T ];R

d)) is arbitrary, and so from density arguments it
follows that for any B ∈ F S[0,T ] and n ∈ N, E[φ(ν ∧ un)(IB − E(IB |F S

un
))] = 0.

Since {ν ≤ t} = {ν ∧ un ≤ t} and φ is arbitrary then by using density arguments it
follows that E[Iν≤t (IB − E(IB |F S

un
))] = 0, and by letting n → ∞ we obtain that

for any B ∈ F S[0,T ], E[Iν≤t (IB − E(IB |F S
t ))] = 0. Thus for any B ∈ F S[0,T ],

E[(Iν≤t |F S
T )IB] = E(Iν≤tIB) = E[Iν≤tE(IB |F S

t )]
= E[E(Iν≤t |F S

t )E(IB |F S
t )]

= E[E(Iν≤t |F S
t )IB]

and (3.12) follows. Next, define the stochastic process Qt = E(Iν≤t |F S
T ), t ≤ T .

Clearly Q is a positive increasing (adapted to F S ) càdlàg process and QT = 1 a.s.
Set σ = inf{t |Qt ≥ H }. From the definition of H we obtain

E(Iσ≤t |F S
T ) = E(IQt≥H |F S

t
) = Qt = (Iν≤t |F S

T ),

and since V is F S
T measurable, then EVσ = EVν . Finally, for any 0 ≤ u ≤ 1 define

σu = inf{t |Qt ≥ u} ∈ T S[0,T ]. Since H is independent of V and Q, then EVν =
EVσ = ∫ 1

0 (EVσu) du and (3.9) follows. �

4. Proof of main results. In this section we complete the proof of Theo-
rem 2.5. Denote � = �(S) and �n = �(S(n)), n ≥ 1. First we prove that � ≤
limn→∞ �n. Here and in the sequel, for the sake of simplicity we will assume that
indices have been renamed so that the whole sequence converges. Choose ε > 0.
Denote by I ⊂ [0, T ] the union of the point {T } together with all continuity points
of the process S. From Lemma 3.1 it follows that there exists τ ∈ �S

I such that

�(S) < ε + inf
σ∈F S[0,T ]

EHS(σ, τ ).(4.1)

From Lemma 3.2 we can choose a sequence of stopping times τn ∈ T S(n)

[0,T ], n ≥ 1,

such that (S(n), τn) ⇒ (S, τ ) on the space D([0, T ];R
d)×[0, T ]. From Lemma 3.3

we obtain (
S(n), S(n)

τn
, τn

) ⇒ (S, Sτ , τ )(4.2)



1900 Y. DOLINSKY

on the space D([0, T ];R
d) × R

d × [0, T ]. From (2.4) it follows that for any n ∈ N

there exists a stopping time σn ∈ T S(n)

[0,T ] such that

�n > EnH
S(n)

(σn, τn) − ε.(4.3)

The sequence (S(n), σn) is tight in D([0, T ];R
d) × [0, T ] and so (S(n), σn) ⇒

(S, ν) for some random variable ν ≤ T . From Lemma 3.3(
S(n), S(n)

σn
, σn

) ⇒ (S, Sν, ν)(4.4)

on the space D([0, T ];R
d) × R

d × [0, T ]. From (4.2) and (4.4) it follows that
the sequence (S(n), S

(n)
τn , S

(n)
σn , τn, σn), n ≥ 1, is tight on the space D([0, T ];R

d) ×
R

2d × [0, T ]2. Thus (S(n), S
(n)
τn , S

(n)
σn , τn, σn) ⇒ (S, Sτ , Sν, τ, ν). By using the

Skorohod representation theorem it follows that without loss of generality we
can assume that there exists a probability space (�, F ,P ) on which (S(n), S

(n)
τn ,

S
(n)
σn , τn, σn) → (S, Sτ , Sν, τ, ν) a.s. on the space D([0, T ];R

d) × R
2d × [0, T ]2.

This together with Assumption 2.1 gives

HS(ν, τ ) ≤ lim inf
n→∞ HS(n)

(σn, τn).(4.5)

From (4.3) and (4.5)

EHS(ν, τ ) ≤ lim inf
n→∞ EHS(n)

(σn, τn) ≤ lim
n→∞�n + ε.(4.6)

By applying Lemma 3.3 for the process Qt := HS(t, τ ) it follows

inf
σ∈F S[0,T ]

EHS(σ, τ ) ≤ EHS(ν, τ ) ≤ lim
n→∞�n + ε.(4.7)

From (4.1) and (4.7) we obtain � ≤ limn→∞ �n. In order to complete the proof
we prove that � ≥ limn→∞ �n. Choose ε ≥ 0. From Lemma 3.1 there exists a
stopping time σ ∈ �S

I which takes values on a finite set E and satisfies

�(S) > sup
τ∈F S[0,T ]

EJS(σ, τ ) − ε.(4.8)

From Lemma 3.2 and 3.3 it follows that we can choose a sequence of stopping
times σn ∈ T S(n)

[0,T ], n ≥ 1, with values in E such that
(
S(n), S(n)

σn
, σn

) ⇒ (S, Sσ , σ )(4.9)

in law on the space D([0, T ];R
d)× R

d ×[0, T ]. From (2.5) it follows that for any
n ∈ N there exists a stopping time τn ∈ T S(n)

[0,T ] such that

�n < inf
σn∈T S(n)

[0,T ]
EnJ

S(n)

(σn, τn) + ε.(4.10)
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The sequence (S(n), τn) is tight, and thus from Lemma 3.3,(
S(n), S(n)

τn
, τn

) ⇒ (S, Sν, ν)(4.11)

on the space D([0, T ];R
d) × R

d × [0, T ], for some ν ≤ T . As before, by us-
ing the Skorohod representation theorem it follows that without loss of gener-
ality we can assume that there exists a probability space (�, F ,P ) on which
(S(n), S

(n)
τn , S

(n)
σn , τn, σn) → (S, Sν, Sσ , ν, σ ) a.s. on the space D([0, T ];R

d) ×
R

2d × [0, T ]2. Observe that if σ = T , then σn = T for sufficiently large n. Thus
from Assumption 2.1

J S(σ, ν) ≥ lim sup
n→∞

J S(n)

(σn, τn).

This together with (4.10) and Assumption 2.3 gives

EJS(σ, ν) ≥ lim sup
n→∞

EJS(n)

(σn, τn) ≥ lim
n→∞�n − ε.(4.12)

By applying Lemma 3.3 for the process Qt := J S(σ, t) we obtain

sup
τ∈T S[0,T ]

EJS(σ, τ ) ≥ EJS(σ, ν).(4.13)

From (4.8), (4.12) and (4.13), � ≥ limn→∞ �n.

5. Applications to game options. In this section we give an example for an
application of Theorem 2.5. We will consider discrete time approximations of
game options prices in the Merton (one-dimensional) model. Approximation of
American options in the Merton model were considered in [18]. Let (�, F ,P ) be
a probability space together with a standard Brownian motion {Wt }Tt=0, a Poisson
process {Nt }Tt=0 with intensity λ and independent of W and a sequence of i.i.d.
random variables {Ui}∞i=1 with values in (−1,∞), independent of N and W . We
assume that EU1 < ∞. A Merton model with horizon T < ∞ consists of a savings
account with an interest rate r > 0, and of a risky asset (stock). Assume that the
discounted stock price {St }Tt=0 [i.e., a ratio of the original stock price and exp(rt)]
is given by

St = S0 exp

((
μ − σ 2

2

)
t + σWt +

Nt∑
j=1

ln(1 + Uj)

)
,

(5.1)
S0, σ > 0,μ = −λEU1.

The equality μ = −λEU1 guarantees that S is a martingale with respect to P

and the usual filtration F S . Introduce a game option with Russian payoff func-
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tions. Namely the discounted payoffs are YS
t = f (t, S) and XS

t = g(t, S) where
f,g : [0, T ] × D([0, T ];R) → R+ are given by

f (t, x) = e−rt max
(
M, sup

0≤u≤t

eruxu

)
and

(5.2)
g(t, x) = f (t, x) + δxt , δ, r,M > 0.

From [13] it follows that

V := �(S) = inf
σ∈T S[0,T ]

sup
τ∈T S[0,T ]

EHS(σ, τ )(5.3)

is an arbitrage-free price (recall that the Merton model is incomplete). Following
[18] we construct a sequence of discrete time approximations. For any n ∈ N let
(�n, Fn,Pn) be a probability space together with three independent sequences
of i.i.d. random variables {ξ (n)

k }nk=1, {ρ(n)
k }nk=1 and {u(n)

k }nk=1. The first one is a

sequence of Bernoulli random variables such that Pn{ξ (n)
k = 1} = λT

n
, the second

sequence satisfies Pn{ρ(n)
k = 1} = 1 − Pn{ρ(n)

k = −1} = n/(n+μλT )−exp(−σ
√

T/n)

exp(σ
√

T/n)−exp(−σ
√

T/n)

(we assume that n is sufficiently large such that above term is positive) and the
third sequence given by u

(n)
k ∼ ln(1 + U1). For any 0 ≤ k ≤ n and kT /n ≤ t <

(k + 1)T /n set

W
(n)
t =

√
T

n

k∑
i=1

ρ
(n)
i , N

(n)
t =

k∑
i=1

ξ
(n)
i and

(5.4)

S
(n)
t = S0 exp

(
σW

(n)
t +

N
(n)
t∑

i=1

u
(n)
i

)
.

The n-step discrete time market is active at times {0, T
n
, 2T

n
, . . . , T } and consists of

a savings account with an interest rate r > 0, and of a risky asset whose discounted
stock price S(n) is given by (5.4). Consider a game option with the discounted
payoffs YS(n)

t = f (t, S(n)) and XS(n)

t = g(t, S(n)). Let �n be the set of all stopping

times with respect to the filtration F S(n)
with values in the set {0, T

n
, 2T

n
, . . . , T }.

Since the process {S(n)
kT /n}nk=0 is a martingale under Pn it follows that Vn which is

given by

Vn = inf
σ∈�n

sup
τ∈�n

EnH
S(n)

(σ, τ )(5.5)

is an arbitrage-free price. Next, we describe a dynamical programming algo-
rithm which allows us to calculate Vn. For 0 ≤ k ≤ n define the functions
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ψ
(n)
k , φ

(n)
k : Rk × {−1,1}k × {0,1}k → R+ by

ψ
(n)
k (x1, . . . , xk, y1, . . . , yk, z1, . . . , zk)

= exp
(
−rkT

n

)

× max

(
M,S0 max

0≤i≤k
exp

(
r((i + 1) ∧ k)T

n

+ σ

√
T

n

i∑
j=1

yj +
mi∑

j=1

xj

))
and(5.6)

φ
(n)
k (x1, . . . , xk, y1, . . . , yk, z1, . . . , zk)

= ψ
(n)
k (x1, . . . , xk, y1, . . . , yk, z1, . . . , zk)

+ δS0 exp

(
σ

√
T

n

k∑
i=1

yi +
mk∑
i=1

xi

)
,

where mi = mi(z1, . . . , zk) = ∑i
q=1 zq . Since the process S(n) is constant on inter-

vals of the form [iT /n, (i + 1)T /n), for any 0 ≤ k ≤ n

ψ
(n)
k

(
u

(n)
1 , . . . , u

(n)
k , ρ

(n)
1 , . . . , ρ

(n)
k , ξ

(n)
1 , . . . , ξ

(n)
k

) = YS(n)

kT /n and
(5.7)

φ
(n)
k

(
u

(n)
1 , . . . , u

(n)
k , ρ

(n)
1 , . . . , ρ

(n)
k , ξ

(n)
1 , . . . , ξ

(n)
k

) = XS(n)

kT /n.

Finally, define a sequence {J (n)
k }nk=0 of functions J

(n)
k : Rk × {−1,1}k × {0,1}k →

R+ by the following backward recursion:

J (n)
n = ψ(n)

n and

J
(n)
k (x1, . . . , xk, y1, . . . , yk, z1, . . . , zk)

= min
(
φ

(n)
k (x1, . . . , xk, y1, . . . , yk, z1, . . . , zk),

max
(
ψ

(n)
k (x1, . . . , xk, y1, . . . , yk, z1, . . . , zk),(5.8)

En

[
J

(n)
k+1

(
x1, . . . , xk, u

(n)
1 ,

y1, . . . , yk, ρ
(n)
1 , z1, . . . , zk, ξ

(n)
1

)]))
for k = n − 1, n − 2, . . . ,0.

From (5.7) and by using the dynamical programming algorithm that was obtained
in [21] for general Dynkin’s games in discrete time, it follows that

Vn = J
(n)
0 .(5.9)
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The following result says that the option price in the continuous time Merton model
can be approximated by the sequence {Vn}∞n=1 (which can be calculated explicitly
as shown above).

THEOREM 5.1. V = limn→∞ Vn.

PROOF. First we prove that V = limn→∞ �(S(n)). Let us check that the con-
ditions of Theorem 2.5 are satisfied. It can be easily checked that the functions
f,g satisfy Assumption 2.1 and that for any k > 1, supn≥1 En(S

(n)
T )k < ∞. Thus

from Doob’s inequality we obtain that supn≥1 En[(sup0≤t≤T S
(n)
t )k] < ∞ and As-

sumption 2.3 follows. It is well known that (W(n),N(n)) ⇒ (W,N) on the space
D([0, T ];R

2), and so by using the Skorohod representation theorem we can build
a probability space on which (W(n),N(n)) → (W,N) a.s. and on which there ex-
ists a sequence of i.i.d. random variables U1, . . . ,Un, . . . which is independent of

{W(n),N(n)}∞n=1,W,N . Thus σW(n) + ∑N(n)

i=1 Ui → σW + ∑N
i=1 Ui a.s. on the

space D([0, T ];R) thus lnS(n) ⇒ lnS. For any n the process lnS(n) has indepen-
dent increments and the process lnS is continuous in probability with indepen-
dent increments. From Corollaries 1 and 2 in [9] we obtain that lnS(n) � lnS and
that lnS(n), n ≥ 1, satisfies Assumption 2.4, which means that S(n) � S and S(n),
n ≥ 1, satisfies Assumption 2.4. We conclude that the conditions of Theorem 2.5
are satisfied, and the equality V = limn→∞ �(S(n)) follows. In order to complete
the proof it remains to show that

lim
n→∞

∣∣Vn − �
(
S(n))∣∣ = 0.(5.10)

For any n define the maps �n,�n : T S(n)

[0,T ] → �n

�n(σ) = T

n
max{k|kT /n ≤ σ } and �n(σ) = T

n
min{k|kT /n ≥ σ }.(5.11)

From (5.5)

inf
σ∈�n

sup
τ∈T S(n)

[0,T ]

EnH
S(n)

(σ,�n(τ)) = Vn = inf
σ∈T S(n)

[0,T ]
sup
τ∈�n

EnH
S(n)

(�n(σ ), τ ).

Thus

�
(
S(n)) − Vn ≤ inf

σ∈�n

sup
τ∈T S(n)

[0,T ]

EnH
S(n)

(σ, τ )

− inf
σ∈�n

sup
τ∈T S(n)

[0,T ]

EnH
S(n)

(σ,�n(τ))

≤ sup
τ∈T S(n)

[0,T ]

En

∣∣YS(n)

τ − YS(n)

�n(τ)

∣∣ and(5.12)
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Vn − �
(
S(n)) ≤ inf

σ∈T S(n)

[0,T ]
sup
τ∈�n

EnH
S(n)

(�n(σ ), τ )

− inf
σ∈T S(n)

[0,T ]
sup
τ∈�n

EnH
S(n)

(σ, τ )

≤ sup
σ∈T S(n)

[0,T ]

En

∣∣XS(n)

�n(σ ) − XS(n)

σ

∣∣.

For any 0 ≤ t1, t2 ≤ T , and u1, u2 ≥ 0, we have the following inequalities:
|e−rt1u1 − e−rt2u2| ≤ |u2 − u1| + r|t1 − t2|max(u1, u2) and |ert1u1 − ert2u2| ≤
erT (|u2 − u1| + r|t1 − t2|max(u1, u2)). This together with (5.12) gives

∣∣Vn − �
(
S(n))∣∣

≤ sup
τ∈T S(n)

[0,T ]

En

(∣∣YS(n)

τ − YS(n)

�n(τ)

∣∣ + ∣∣XS(n)

�n(τ) − XS(n)

τ

∣∣)
(5.13)

≤ 2
rT

n

(
M + En sup

0≤t≤T

ertS
(n)
t

)
+ 2erT rT

n
En sup

0≤t≤T

S
(n)
t

+ (δ + 2erT ) sup
τ∈T S(n)

[0,T ]

En

∣∣S(n)
T ∧(�n(τ)+T/n) − S

(n)
�n(τ)

∣∣.

The sequence S(n), n ≥ 1, satisfies Assumption 2.4, and so from (5.13)

lim
n→∞

∣∣Vn − �
(
S(n))∣∣

≤ (δ + 2erT ) lim
n→∞ sup

τ∈T S(n)

[0,T ]

En

∣∣S(n)
T ∧(�n(τ)+T/n) − S

(n)
�n(τ)

∣∣(5.14)

= 0. �

REMARK 5.2. Similar results can be obtained for game options in the Merton
model with integral payoffs (Asian options). It can be checked that integral payoffs
satisfy Assumption 2.1 and by estimates in the spirit of this section we can get
convergence results for this case also. Of course, put and call options can be treated
even in a more simple way since their payoffs depend only on the present stock
price.
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[9] JAKUBOWSKI, A. and SŁOMIŃSKI, L. (1986). Extended convergence to continuous in prob-
ability processes with independent increments. Probab. Theory Relat. Fields 72 55–82.
MR835159

[10] KIFER, Y. (2000). Game options. Finance Stoch. 4 443–463. MR1779588
[11] KIFER, Y. (2006). Error estimates for binomial approximations of game options. Ann. Appl.

Probab. 16 984–1033. MR2244439
[12] KIFER, Y. (2007). Optimal stopping and strong approximation theorems. Stochastics 79 253–

273. MR2308075
[13] KALLSEN, J. and KÜHN, C. (2005). Convertible bonds: Financial derivatives of game type.

In Exotic Option Pricing and Advanced Lévy Models 277–291. Wiley, Chichester.
MR2343218

[14] LAMBERTON, D. (1993). Convergence of the critical price in the approximation of American
options. Math. Finance 3 179–190.

[15] LEPELTIER, J. P. and MAINGUENEAU, M. A. (1984). Le jeu de Dynkin en théorie générale
sans l’hypothèse de Mokobodski. Stochastics 13 25–44. MR752475

[16] LAMBERTON, D. and PAGÈS, G. (1990). Convergence des re Duites Dune Suite de Processus
càdlàg. Les Cahiers du C.E.R.M.A. 11 115–130.

[17] LAMBERTON, D. and PAGÈS, G. (1990). Sur l’approximation des réduites. Ann. Inst. H.
Poincaré Probab. Statist. 26 331–355. MR1063754

[18] MULINACCI, S. (2003). American path-dependent options: Analysis and approximations.
Rend. Studi Econ. Quant. 93–120. MR2031668

[19] MULINACCI, S. and PRATELLI, M. (1998). Functional convergence of Snell envelopes: Ap-
plications to American options approximations. Finance Stoch. 2 311–327. MR1809524

[20] MEYER, P. A. and ZHENG, W. A. (1984). Tightness criteria for laws of semimartingales. Ann.
Inst. H. Poincaré Probab. Statist. 20 353–372. MR771895

[21] OHTSUBO, Y. (1986). Optimal stopping in sequential games with or without a constraint of
always terminating. Math. Oper. Res. 11 591–607. MR865554

INSTITUTE OF MATHEMATICS

HEBREW UNIVERSITY OF JERUSALEM

JERUSALEM, 91904
ISRAEL

E-MAIL: yann1@math.huji.ac.il

http://www.ams.org/mathscinet-getitem?mr=0474446
http://www.ams.org/mathscinet-getitem?mr=1299240
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=2299917
http://www.ams.org/mathscinet-getitem?mr=1720712
http://www.ams.org/mathscinet-getitem?mr=835159
http://www.ams.org/mathscinet-getitem?mr=1779588
http://www.ams.org/mathscinet-getitem?mr=2244439
http://www.ams.org/mathscinet-getitem?mr=2308075
http://www.ams.org/mathscinet-getitem?mr=2343218
http://www.ams.org/mathscinet-getitem?mr=752475
http://www.ams.org/mathscinet-getitem?mr=1063754
http://www.ams.org/mathscinet-getitem?mr=2031668
http://www.ams.org/mathscinet-getitem?mr=1809524
http://www.ams.org/mathscinet-getitem?mr=771895
http://www.ams.org/mathscinet-getitem?mr=865554
mailto:yann1@math.huji.ac.il

	Introduction
	Preliminaries and main results
	Auxiliary lemmas
	Proof of main results
	Applications to game options
	Acknowledgments
	References
	Author's Addresses

