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This paper studies many-server limits for multi-server queues that have
a phase-type service time distribution and allow for customer abandon-
ment. The first set of limit theorems is for critically loaded G/Ph/n + GI
queues, where the patience times are independent and identically distributed
following a general distribution. The next limit theorem is for overloaded
G/Ph/n + M queues, where the patience time distribution is restricted to
be exponential. We prove that a pair of diffusion-scaled total-customer-count
and server-allocation processes, properly centered, converges in distribution
to a continuous Markov process as the number of servers n goes to infinity. In
the overloaded case, the limit is a multi-dimensional diffusion process, and in
the critically loaded case, the limit is a simple transformation of a diffusion
process. When the queues are critically loaded, our diffusion limit general-
izes the result by Puhalskii and Reiman (2000) for GI/Ph/n queues without
customer abandonment. When the queues are overloaded, the diffusion limit
provides a refinement to a fluid limit and it generalizes a result by Whitt
(2004) for M/M/n/ + M queues with an exponential service time distrib-
ution. The proof techniques employed in this paper are innovative. First, a
perturbed system is shown to be equivalent to the original system. Next, two
maps are employed in both fluid and diffusion scalings. These maps allow
one to prove the limit theorems by applying the standard continuous-mapping
theorem and the standard random-time-change theorem.

1. Introduction. This paper studies many-server limits for multi-server
queues that allow for customer abandonment. These queues are assumed to have a
phase-type service time distribution. We consider two separate parameter regimes:
one for critically loaded many-server queues and the other for overloaded many-
server queues.

As argued in the seminal paper of Halfin and Whitt (1981), for a critically loaded
many-server queue, the system provides high-quality service and at the same time
achieves high server utilization. Thus, the critically loaded parameter regime is
also known as the Quality and Efficiency-Driven (QED) limiting regime or the
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Halfin–Whitt limiting regime. For the overloaded M/M/n + M model, Whitt
(2004) demonstrates that a certain fluid approximation can be useful in predicting
the steady-state performance of the multi-server system. He further demonstrates
that a diffusion limit provides a refined approximation.

Our first set of results is for critically loaded G/Ph/n + GI queues, whose pa-
tience times are independent and identically distributed (i.i.d.) following a gen-
eral distribution. In Theorem 1, we prove that a pair of diffusion-scaled total-
customer-count and server-allocation processes converges in distribution to a con-
tinuous Markov process (X̃, Z̃). In Theorem 2, we prove that the diffusion-scaled
customer-count-vector process converges to a diffusion process Ỹ . In Theorem 3,
the diffusion-scaled virtual waiting time process converges in distribution to a
constant multiple of (X̃)+, which serves as the limit of the diffusion-scaled
queue-length process. Our second result is for overloaded G/Ph/n + M queues,
whose patience time distribution is restricted to be exponential. In Theorem 4, we
prove that the pair of diffusion-scaled total-customer-count and server-allocation
processes converges in distribution to a diffusion process. Although the limit
(X̃, Z̃) in Theorem 1 is not a diffusion process in a strict sense (see discussions
below the statement of Theorem 2), we still call it a diffusion limit because it is a
simple transformation of the diffusion process Ỹ in Theorem 2. This terminology
is consistent with the usage in conventional heavy traffic, where the limit process
is often a constrained diffusion process [see, e.g., Reiman (1984)].

In the critically-loaded regime, Halfin and Whitt (1981) is the first paper to
establish a diffusion limit for the GI/M/n model. Puhalskii and Reiman (2000)
establish a diffusion limit for the GI/Ph/n model, where the service time distri-
bution is phase-type. Garnett, Mandelbaum and Reiman (2002) prove a diffusion
limit for the M/M/n+M model, which allows for customer abandonment. Whitt
(2005) generalizes the result to the G/M/n + M model. In the same paper, Whitt
proves a stochastic-process limit for the G/H ∗

2 /n model; this limit is not a diffu-
sion process although a simple transformation of it is a diffusion process. Our first
set of results, Theorems 1 and 2, extends the result of Puhalskii and Reiman (2000)
to the G/Ph/n + GI model, which allows for customer abandonment with a gen-
eral patience time distribution. It also extends the work of Garnett, Mandelbaum
and Reiman (2002) and Whitt (2005) to allow for phase-type service time distri-
butions. For the overloaded G/Ph/n + M model, Theorem 4 generalizes Whitt
(2005) to the G/Ph/n + M model. The diffusion limit in the theorem provides a
refinement to a fluid limit.

In addition to these limit theorems, the techniques used in the proofs are in-
novative. When the patience time distribution is exponential, we first establish a
sample-path representation for our G/Ph/n + M model. This representation al-
lows us to obtain the total-customer-count and the server-allocation processes as a
map of primitive processes with a random time change. These primitive processes
are either assumed or known to satisfy functional central limit theorems (FCLTs).
Therefore, our limits follow from the standard continuous-mapping theorem and
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the standard random-time-change theorem [see, e.g., Ethier and Kurtz (1986) and
Billingsley (1999)]. When the queues are critically loaded, a result of Dai and He
(2010) proves that the performance of these queues is not sensitive to the distribu-
tion of patience times, thus allowing us to prove Theorems 1–3 for general patience
time distributions with a mild regularity condition.

Halfin and Whitt (1981), Garnett, Mandelbaum and Reiman (2002) and Whitt
(2004) all use Stone’s theorem to prove diffusion limit theorems in the critically-
loaded regime. Stone (1963) is set up for convergence of Markov chains to a diffu-
sion process. This setting makes the generalization to nonrenewal arrival processes
difficult. Puhalskii and Reiman (2000) also use the continuous-mapping approach
for the GI/Ph/n model. They employ a different sample-path representation for
the total-customer-count process. Their representation requires them to use ex-
tensively martingale FCLTs in their proofs, whereas our approach uses standard
FCLTs for random walks and Poisson processes. Pang, Talreja and Whitt (2007)
review a number of sample-path representations and martingale proofs for many-
server heavy traffic limits, and Whitt (2007) surveys the proof techniques for es-
tablishing martingale FCLTs. Our proofs show that for multi-server queues with a
phase-type service time distribution and an exponential patience time distribution,
there is a general approach to proving limit theorems, without employing martin-
gale FCLTs. Note that when the patience time distribution is general, our proofs
for the diffusion limits in the critically-loaded regime rely on a result of Dai and
He (2010), which is proved by using a martingale FCLT.

Our sample-path representation is based on the equivalence of our multi-server
system to a perturbed system as illustrated in Tezcan (2006). This representa-
tion has been used in Dai and Tezcan (2005), Tezcan and Dai (2010) and Dai
and Tezcan (2008) for multi-server-pool systems when service and patience times
have exponential distributions. The sample-path argument has been explored previ-
ously in the setting of Markovian networks in Mandelbaum, Massey and Reiman
(1998) for strong approximations and Mandelbaum and Pats (1998) for general
state-dependent networks.

In our continuous-mapping approach, we have heavily exploited some maps
from DK+1 to D

K+1, where K is the number of phases in the service time dis-
tribution. Variants of these maps have been employed in the literature [see, e.g.,
Mandelbaum, Massey and Reiman (1998), Reed (2009), Tezcan and Dai (2010),
Dai and Tezcan (2008) and Pang, Talreja and Whitt (2007)]. We use these maps not
just in diffusion scaling but also in fluid scaling. Using a map twice, one for each
scaling, allows us to obtain diffusion limits as a simple consequence of the stan-
dard continuous-mapping theorem and the random-time-change theorem. In the
seminal paper, Reiman (1984) proves a conventional heavy traffic limit theorem
for generalized Jackson networks. Our approach resembles the work of Johnson
(1983), which also uses a multi-dimensional Skorohod map twice and provides a
significant simplification of Reiman’s original proof.
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For the G/GI/n model, Reed (2009) proves a many-server limit for the total-
customer-count process in the critically-loaded regime; his assumption on the ser-
vice time distribution is completely general, and his limit is not a Markov process.
This work is generalized in Mandelbaum and Momčilović (2009) to allow for
customer abandonment. For the overloaded G/GI/n model, Puhalskii and Reed
(2010) prove a finite-dimensional-distribution limit for the total-customer-count
process. Jelenković, Mandelbaum and Momčilović (2004) prove a limit theorem
for the GI/D/n model. Gamarnik and Momčilović (2008) study a many-server
limit of the steady-state distribution of the GI/GI/n model, where the service
times are lattice-valued with a finite support. When the service time distribution
is general, measure-valued processes have been used to give a Markovian descrip-
tion of the system. Kaspi and Ramanan (2010) obtain a measure-valued fluid limit
for the G/GI/n model. Kang and Ramanan (2010) obtain a measure-valued fluid
limit for the G/GI/n + G model with customer abandonment, and Zhang (2009)
obtains a similar measure-valued fluid limit independently. Their work partially
justifies the fluid model in Whitt (2006).

The remainder of the paper is organized as follows. In Section 2, we introduce
the G/GI/n + GI model, in an asymptotic framework, and phase-type distribu-
tions. The main results, Theorems 1–4, are stated in Section 3; a roadmap for the
proofs is introduced in Section 3.3. In Section 4 we introduce a perturbed sys-
tem that is equivalent to a G/Ph/n + M queue and derive the dynamical equa-
tions that the perturbed system must obey. The proofs for the diffusion limits of
G/Ph/n + M queues, in both the critically-loaded and the overloaded regimes,
are given in Section 5. Section 6 is dedicated to the proof for the diffusion limit of
G/Ph/n+GI queues in the critically-loaded regime. In Appendix A, we introduce
a continuous map and establish various properties for the map. The state-space-
collapse lemma is proved in Appendix B, in which Theorem 3 and Lemma 3 are
also proved.

Notation. All random variables and processes are defined on a common prob-
ability space (�, F ,P) unless otherwise specified. The symbols Z, Z+, N, R and
R+ are used to denote the sets of integers, nonnegative integers, positive inte-
gers, real numbers and nonnegative real numbers, respectively. For d ∈ N, R

d de-
notes the d-dimensional Euclidean space; thus, R = R

1. The space of functions
f : R+ → R

d that are right-continuous on [0,∞) and have left limits in (0,∞) is
denoted by D(R+,R

d) or simply D
d ; similarly, with T > 0, the space of functions

f : [0, T ] → R
d that are right-continuous on [0, T ) and have left limits in (0, T ]

is denoted by D([0, T ],R
d). For f ∈ D

d , f (t−) denotes its left limit at t > 0.
For a sequence of random elements {Xn,n ∈ N} taking values in a metric space,
we write Xn ⇒ X to denote the convergence of Xn to X in distribution. Each
stochastic process whose sample paths are in D

d is considered to be a D
d -valued

random element. The space D
d is assumed to be endowed with the Skorohod J1-

topology [see Ethier and Kurtz (1986) or Billingsley (1999)]. Given x ∈ R, we set
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x+ = max{x,0}, x− = max{−x,0} and �x� = max{j ∈ Z : j ≤ x}. All vectors are
envisioned as column vectors. For a K-dimensional vector u ∈ R

K , we use uk to
denote its kth entry and diag(u) for the K × K diagonal matrix with kth diagonal
entry uk ; we put |u| = max1≤k≤K |uk|. For a matrix M , M ′ denotes its transpose
and Mjk denotes its (j, k)th entry. We reserve I for the K × K identity matrix,
e for the K-dimensional vector of ones and ek for the K-dimensional vector with
kth entry one and all other entries zero.

2. A G/Ph/n + GI queue. We first introduce a G/GI/n + GI queue in Sec-
tion 2.1. We then define a G/Ph/n + GI queue by restricting the service time
distribution to be phase-type. Phase-type distributions are defined in Section 2.2.

2.1. A G/GI/n+ GI queue. A G/GI/n queue is a classical stochastic system
that has been extensively studied in the literature [see, e.g., Kiefer and Wolfowitz
(1955), Borovkov (1967) and Iglehart and Whitt (1970), among others]. In such a
system, there are n identical servers. The service times {vi, i ∈ N} are a sequence
of i.i.d. random variables, where vi is the service time of the ith customer entering
service after time 0. The service time distribution is general (the GI in the G/GI/n

notation), although for the rest of this paper we restrict it to be a phase-type dis-
tribution. The arrival process E = {E(t), t ≥ 0} is assumed to be general (the first
G), where E(t) denotes the number of customer arrivals to the system by time t .
Upon his arrival to the system, a customer gets into service immediately if there is
an idle server; otherwise, he waits in a waiting buffer that holds a first-in-first-out
(FIFO) queue. The buffer size is assumed to be infinite. When a server finishes
a service, the server removes the leading customer from the waiting buffer and
starts to serve the customer; when the queue is empty, the server begins to idle. In
our model, each customer has a patience time: when a customer’s waiting time in
queue exceeds his patience time, the customer abandons the system without any
service. Retrial is not modeled in this paper. We assume that the patience times
of customers who arrive after time 0, form a sequence of i.i.d. random variables
that have a general distribution. Thus our model is a G/GI/n + GI queue, where
+GI signifies the general patience time distribution. When the patience times are
i.i.d. following an exponential distribution, the resulting system is a G/GI/n + M

queue.
We focus on systems when the arrival rate is high. Specifically, we consider a

sequence of G/GI/n+GI systems indexed by n, with En being the arrival process
of the nth system. We assume that for the nth system, the arrival rate λn → ∞
as the number of servers n → ∞, while the service time and the patience time
distributions do not change with n. We further assume that

lim
n→∞

λn

n
= λ > 0, lim

n→∞
√

n

(
λ − λn

n

)
= βμ for some β ∈ R(2.1)
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and

Ẽn ⇒ Ẽ as n → ∞,(2.2)

where Ẽ is a Brownian motion and

Ẽn(t) = 1√
n
Ên(t), Ên(t) = En(t) − λnt for t ≥ 0.(2.3)

We use m to denote the mean service time; thus μ = 1/m is the mean service rate.
For future purposes, let

ρn = λn

nμ
and ρ = λ

μ
.(2.4)

Because customer abandonment is allowed, it is not necessary to assume ρn < 1
or ρ ≤ 1. Condition (2.1) implies that

lim
n→∞

√
n(ρ − ρn) = β.

When ρ = 1, the sequence of systems is critically loaded in the limit, and is said
to be in the Quality and Efficiency-Driven (QED) regime or the Halfin–Whitt
regime. When ρ > 1, the sequence of systems is overloaded, and is said to be in the
Efficiency-Driven (ED) regime. Our focus is both the QED and the ED regimes.

2.2. Phase-type distributions. In this section, we introduce phase-type distri-
butions. Such a distribution is assumed to have K ≥ 1 phases. The set of phases is
assumed to be K = {1, . . . ,K}. Each phase-type distribution has a set of parame-
ters p, ν and P , where p is a K-dimensional vector of nonnegative entries whose
sum is equal to one, ν is a K-dimensional vector of positive entries and P is a
K ×K sub-stochastic matrix. We assume that the diagonals of P are zero, namely,

Pii = 0 for i = 1, . . . ,K,(2.5)

and P is transient, namely,

I − P is invertible.(2.6)

A (continuous) phase-type random variable v is defined as the time until absorption
in an absorbing state of a continuous-time Markov chain. With p, ν and P , the
continuous-time Markov chain can be described as follows. It has K + 1 states,
1, . . . ,K,K + 1, with state K + 1 being absorbing. The rate matrix (or generator)
of the Markov chain is

G =
(

F h

0 0

)
,

where F = diag(ν)(P − I ) is a K × K matrix and h = −Fe is a K-dimensional
vector.
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DEFINITION 1. A continuous phase-type random variable v with parameters
p, ν and P , denoted as v ∼ Ph(p, ν,P ), is defined to be the first time until the
continuous-time Markov chain with initial distribution p and rate matrix G reaches
state K + 1.

Given condition (2.5), the rate matrix G and (ν,P ) are uniquely determined
from each other. It is well known [see, e.g., Latouche and Ramaswami (1999)]
that

P[v ≤ x] = 1 − p′ exp(Fx)e for x ≥ 0.

Because parameters p, ν and P uniquely determine a phase-type distribution, we
free symbols F and G so that they can be reused in the rest of the paper.

For our purposes, we provide an alternative way to sample a Ph(p, ν,P ) random
variable. We first sample a sequence of phases k1, . . . , kL in K = {1, . . . ,K} as
follows. We sample phase k1 following distribution p on K. Assume k1, . . . , ki ∈
K have been sampled. Setting j = ki , sample a phase from {1, . . . ,K,K + 1}
following a distribution that is determined by the j th row of P ; the probability of
getting phase K + 1 is 1 − ∑K

�=1 Pj� ≥ 0. The resulting phase is denoted by ki+1.
When ki+1 = K + 1, terminate the process and set L = i; otherwise, continue
the sampling process. Because the matrix P is assumed to be transient, one has
L < ∞ almost surely. Let ξ1, . . . , ξL be independently sampled from exponential
distributions with respective rates νk1, . . . , νkL

. Then

v =
L∑

i=1

ξi .(2.7)

3. Main results. In this section, we present two sets of results. The first set,
presented in Section 3.1, is for critically loaded G/Ph/n+ GI queues. The second
set, presented in Section 3.2, is for overloaded G/Ph/n + M queues. A roadmap
for proving these results is given in Section 3.3.

We consider a sequence of G/Ph/n + GI queues, indexed by the number of
servers n, which satisfies condition (2.1). We assume that the service times fol-
low a phase-type distribution Ph(p, ν,P ). Each customer’s service time can be
decomposed into a number of phases as in (2.7). When a customer is in service, it
must be in one of the K phases of service. Let Zn

k (t) denote the number of cus-
tomers in phase k service in the nth system at time t ; service times in phase k are
exponentially distributed with rate νk . We use Zn(t) to denote the corresponding
K-dimensional vector. We call Zn = {Zn(t), t ≥ 0} the server-allocation process.
Let Nn(t) denote the number of customers in the nth system at time t , either in
queue or in service. Setting

Xn(t) = Nn(t) − n for t ≥ 0,(3.1)
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we call Xn = {Xn(t), t ≥ 0} the total-customer-count process in the nth system.
One can check that (Xn(t))+ is the number of customers waiting in queue at time t ,
and (Xn(t))− is the number of idle servers at time t . Clearly,

e′Zn(t) = n − (Xn(t))− for t ≥ 0.(3.2)

The processes Xn and Zn describe the “state” of the system as time evolves. Here-
after, they are called the state processes for the nth system.

The customers in service are distributed among the K phases following a distri-
bution γ , given by

γ = μR−1p,(3.3)

R = (I − P ′)diag(ν).(3.4)

One can check that
∑K

k=1 γk = 1, and one interprets γk to be the fraction of phase
k load on the n servers.

The preceding paragraph suggests the following centering for the server-
allocation process:

Ẑn(t) = Zn(t) − nγ for t ≥ 0.

Define the corresponding diffusion-scaled process

Z̃n(t) = 1√
n
Ẑn(t) for t ≥ 0.

3.1. Diffusion limits for critically loaded G/Ph/n + GI queues. Throughout
Section 3.1, we assume that ρ = 1 and that the patience times of customers who
arrive after time 0 are i.i.d. having distribution function F , which satisfies

F(0) = 0 and α = lim
x↓0

x−1F(x) < ∞.(3.5)

Note that for exponentially distributed patience times, α turns out to be the rate of
the exponential distribution.

Since ρ is assumed to be 1, we define the diffusion-scaled total-customer-count
process X̃n by

X̃n(t) = 1√
n
Xn(t) for t ≥ 0.(3.6)

[When ρ > 1, the definition of X̃n(t) will be modified, which is given in (3.27).]
We assume that

(X̃n(0), Z̃n(0)) ⇒ (X̃(0), Z̃(0)) as n → ∞(3.7)

for a pair of random variables (X̃(0), Z̃(0)).
The random variables X̃(0) and Z̃(0) are assumed to be defined on some

probability space (�̃, F̃ , P̃), which is rich enough so that stochastic processes



1862 J. G. DAI, S. HE AND T. TEZCAN

Ẽ, �̃0, . . . , �̃K and S̃ defined on this space are independent of (X̃(0), Z̃(0)). Here,
Ẽ is a one-dimensional driftless Brownian motion, and �̃0, . . . , �̃K and S̃ are K-
dimensional driftless Brownian motions. These Brownian motions, possibly de-
generate, are mutually independent and start from 0; the variance of Ẽ is λc2

a

for some constant c2
a ≥ 0, and the covariance matrices of �̃0, . . . , �̃K and S̃ are

H 0, . . . ,HK and diag(ν), respectively, where for k = 0, . . . ,K , the K ×K matrix
Hk is given by

Hk
ij =

{
pk

i (1 − pk
j ), if i = j ,

−pk
i p

k
j , otherwise,

(3.8)

with p0 = p and pk being the kth column of P ′.
To state the main theorems of this paper, let

Ũ (t) = X̃(0) + Ẽ(t) − μβt + e′M̃(t),(3.9)

Ṽ (t) = (I − pe′)Z̃(0) + �̃0(μt) + (I − pe′)M̃(t),(3.10)

where

M̃(t) =
K∑

k=1

�̃k(νkγkt) − (I − P ′)S̃(γ t)(3.11)

for t ≥ 0. The process (Ũ , Ṽ ) is a (K + 1)-dimensional Brownian motion; it is
degenerate because e′Ṽ (t) = 0 for t ≥ 0. [When ρ > 1, the definition of Ũ will be
modified in (3.28).] Before we state the first theorem of this paper, we present the
following lemma, which is a corollary of Lemma 9 in Appendix A.

LEMMA 1. Let p be a K-dimensional vector that is the distribution of initial
phases of the phase-type service times, R be the K ×K matrix defined by (3.4) and
α ≥ 0 be defined by (3.5). (a) For each (u, v) ∈ D

K+1 with u(t) ∈ R and v(t) ∈ R
K

for t ≥ 0, there exists a unique (x, z) ∈ D
K+1 with x(t) ∈ R and z(t) ∈ R

K for
t ≥ 0, such that

x(t) = u(t) − α

∫ t

0
(x(s))+ ds − e′R

∫ t

0
z(s) ds,(3.12)

z(t) = v(t) − p(x(t))− − (I − pe′)R
∫ t

0
z(s) ds(3.13)

for t ≥ 0. (b) For each (u, v) ∈ D
K+1, define �(u,v) = (x, z) ∈ D

K+1, where
(x, z) satisfies (3.12) and (3.13). The map � is well defined and is continuous
when both the domain and the range D

K+1 are endowed with the Skorohod J1-
topology. (c) The map � is Lipschitz continuous in the sense that for any T > 0,
there exists a constant C1

T > 0 such that

sup
0≤t≤T

|�(y)(t) − �(ỹ)(t)| ≤ C1
T sup

0≤t≤T

|y(t) − ỹ(t)|
(3.14)

for any y, ỹ ∈ D
K+1.
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(d) The map � is positively homogeneous in the sense that

�(ay) = a�(y) for each a > 0 and each y ∈ D
K+1.(3.15)

Let An
0 be the number of customers who are waiting in queue at time 0 but will

eventually abandon the system, and

Ãn
0 = 1√

n
An

0.

To state Theorem 1, we assume that

Ãn
0 ⇒ 0 as n → ∞.(3.16)

Clearly, condition (3.16) is satisfied if no customers are waiting in queue at time 0.
The validity of this initial condition will be further discussed at the end of Sec-
tion 3.1.

THEOREM 1. Consider a sequence of G/Ph/n + GI queues satisfying (2.1)
and (2.2). Assume that ρ = 1 and that (3.5), (3.7) and (3.16) hold. Then

(X̃n, Z̃n) ⇒ (X̃, Z̃) as n → ∞,

where

(X̃, Z̃) = �(Ũ, Ṽ ).(3.17)

Suppose that each customer, including those initial customers who are waiting
in queue at time 0, samples his first service phase that he is yet to enter following
distribution p at his arrival time to the system. One can stratify the customers in
the waiting buffer according to their first service phases. For k = 1, . . . ,K , we use
Qn

k(t) to denote the number of waiting customers at time t whose initial service
phase will be phase k [Qn

k(t) = 0 for t ≥ 0 if phase k is not a first service phase
for any customer], and we use Yn

k (t) to denote the number of phase k customers in
the system at time t , either waiting or in service. Let Qn(t) and Yn(t) denote the
corresponding K-dimensional vectors. Set

Q̃n
k(t) = 1√

n
Qn

k(t), Ỹ n
k (t) = 1√

n
Ŷ n

k (t),

(3.18)
Ŷ n

k (t) = Yn
k (t) − nγk for t ≥ 0.

Clearly,

Ỹ n
k (t) = Q̃n

k(t) + Z̃n
k (t) and X̃n(t) = e′Ỹ n(t) for t ≥ 0.(3.19)

The following lemma says that for critically loaded systems, the waiting cus-
tomers are distributed among the K phases following distribution p. It is known
as the state-space-collapse (SSC) result.
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LEMMA 2. Under the conditions of Theorem 1, for any T > 0,

1√
n

sup
0≤t≤T

|Qn(t) − p(Xn(t))+| ⇒ 0 as n → ∞.(3.20)

The following theorem is a corollary to Theorem 1 and Lemma 2. When there
is no customer abandonment and the arrival process is renewal, it is identical to
Theorem 2.3 of Puhalskii and Reiman (2000).

THEOREM 2. Under the conditions of Theorem 1,

(X̃n, Ỹ n, Z̃n) ⇒ (X̃, Ỹ , Z̃) as n → ∞,

where (X̃, Z̃) is defined in (3.17) and

Ỹ (t) = p(X̃(t))+ + Z̃(t).(3.21)

The process Ỹ satisfies

Ỹ (t) = Ỹ (0) − βμpt + �̃0(μt) + pẼ(t) + M̃(t)

− R

∫ t

0
Ỹ (s) ds + (R − αI)p

∫ t

0
(e′Ỹ (s))+ ds for t ≥ 0.

The process Ỹ in Theorem 2 is a diffusion process (see Rogers and Williams
[(2000), page 110] or Karlin and Taylor [(1981), page 159] for a definition of
diffusion processes). Therefore, Ỹ is a continuous Markov process. The map �

in (3.17) defines (X̃, Z̃) as a (K + 1)-dimensional continuous process, which is
degenerate because it lives on a K-dimensional manifold. From the K-dimensional
process Ỹ , one can recover the (K + 1)-dimensional process (X̃, Z̃) via

X̃(t) = e′Ỹ (t) and Z̃(t) = Ỹ (t) − p(X̃(t))+ for t ≥ 0.(3.22)

Therefore, (X̃, Z̃) is also a continuous Markov process. However, the process
(X̃, Z̃) is not a diffusion process by the common definition because the function
x+ in (3.22) is not twice differentiable in x at 0. Whitt [(2005), Remark 2.2] makes
a similar observation that his limit process is not a diffusion process, but a simple
transformation of his limit process is a diffusion process.

Our next theorem is concerned with the virtual waiting time process Wn =
{Wn(t), t ≥ 0}. Here, Wn(t) is the potential waiting time of a hypothetical, infi-
nitely patient customer who arrives at the queue at time t . When there is no cus-
tomer abandonment and the arrival process is renewal, the theorem is implied by
Corollary 2.3 and Remark 2.6 of Puhalskii and Reiman (2000).

THEOREM 3. Under the conditions of Theorem 1,

√
nWn ⇒ (X̃)+

μ
as n → ∞.(3.23)
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We end this section by the following lemma, which gives a justification for
imposing initial condition (3.16) in Theorems 1–3. Let An

Q(t) be the number of
customers in the nth system who are waiting in queue at time t , but will eventually
abandon the system. Clearly,

An
0 = An

Q(0).

Its diffusion-scaled version is given by

Ãn
Q(t) = 1√

n
An

Q(t) for t ≥ 0.(3.24)

Regarding the process Ãn
Q = {Ãn

Q(t), t ≥ 0}, we have the following result.

LEMMA 3. Under the conditions of Theorem 1,

Ãn
Q ⇒ 0 as n → ∞.(3.25)

The proof of Lemma 3 is presented in Appendix B. Assume that the queue is
initially empty. Then condition (3.16) is satisfied at time t = 0. Under an additional
assumption (3.7), Theorem 1 and Lemma 3 imply that for any t > 0,

Ãn
Q(t) ⇒ 0 and (X̃n(t), Z̃n(t)) ⇒ (X̃(t), Z̃(t)) as n → ∞.

Thus, if we start to observe the system at any fixed time t > 0, initial conditions
(3.7) and (3.16) are indeed satisfied at time t . Condition (3.16) is used to prove
asymptotic relationship (6.4) in the critically-loaded regime; this relationship be-
tween the abandonment-count process and the queue-length process is the key to
extending the diffusion limits for G/Ph/n+M queues to the G/Ph/n+GI model
with a general patience time distribution. Condition (3.16) is necessary for the as-
ymptotic relationship to hold. In Mandelbaum and Momčilović (2009), an initial
assumption similar to (3.16) is made for the G/GI/n + GI model in the critically-
loaded regime.

3.2. A diffusion limit for overloaded G/Ph/n + M queues. Our next result is
for overloaded G/Ph/n + M systems, where the patience times of all customers,
including those waiting in queue at time 0, are assumed to be i.i.d. following an
exponential distribution. We use α to denote the rate of the exponential patience
time distribution. Note that this definition of α is consistent with the definition
in (3.5). Assume that ρ > 1. Intuitively, when n is large, all n servers are 100%
busy, and there should be nq customers on average waiting in the buffer, where

q = λ − μ

α
.(3.26)

An intuitive explanation is as follows: λ−μ is the number of customers per unit of
time that the system must “delete” in order for the system to reach an equilibrium.
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While in equilibrium, each waiting customer abandons the system at rate α, and
collectively all q waiting customers abandon the system at rate qα customers per
unit of time. Thus, one should have qα = λ − μ, which leads to (3.26). Readers
are referred to Whitt (2004) for further discussion on the derivation of (3.26).

Now we modify the definition of X̃n in (3.6) and Ũ in (3.9). Let

X̃n(t) = 1√
n
X̂n(t), X̂n(t) = Xn(t) − nq,(3.27)

Ũ (t) = X̃(0) + Ẽ(t) − μβt + e′M̃(t) − G̃(qt)(3.28)

for t ≥ 0. In (3.28), the process G̃ = {G̃(t), t ≥ 0} is a one-dimensional driftless
Brownian motion starting from 0, which has variance α and is independent of
Ẽ, �̃0, . . . , �̃K and S̃ [recall that Ẽ, �̃0, . . . , �̃K and S̃ are Brownian motions
defined in Section 3.1, and M̃ is given by (3.11)]. When ρ = 1, one has q = 0.
Thus, definitions in (3.27) and (3.28) are consistent with (3.6) and (3.9). Assume
that

(X̃n(0), Z̃n(0)) ⇒ (X̃(0), Z̃(0)) as n → ∞(3.29)

for a pair of random variables (X̃(0), Z̃(0)).
Before presenting Theorem 4, we introduce the next lemma, which is also a

corollary of Lemma 9.

LEMMA 4. Let p be a K-dimensional vector that is the distribution of initial
phases of the phase-type service times, R be the K ×K matrix defined by (3.4) and
α ≥ 0 be defined by (3.5). (a) For each (u, v) ∈ D

K+1 with u(t) ∈ R and v(t) ∈ R
K

for t ≥ 0, there exists a unique (x, z) ∈ D
K+1 with x(t) ∈ R and z(t) ∈ R

K for
t ≥ 0, such that

x(t) = u(t) − α

∫ t

0
x(s) ds − e′R

∫ t

0
z(s) ds,(3.30)

z(t) = v(t) − (I − pe′)R
∫ t

0
z(s) ds(3.31)

for t ≥ 0. (b) For each (u, v) ∈ D
K+1, define �(u, v) = (x, z) ∈ D

K+1, where
(x, z) satisfies (3.30) and (3.31). The map � is well defined and is continuous
when both the domain and the range D

K+1 are endowed with the Skorohod J1-
topology. (c) The map � is Lipschitz continuous in the sense that for any T > 0,
there exists a constant C2

T > 0 such that

sup
0≤t≤T

|�(y)(t) − �(ỹ)(t)| ≤ C2
T sup

0≤t≤T

|y(s) − ỹ(s)|
(3.32)

for any y, ỹ ∈ D
K+1.

(d) The map � is positively homogeneous in the sense that

�(ay) = a�(y) for each a > 0 and each y ∈ D
K+1.(3.33)
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THEOREM 4. Consider a sequence of G/Ph/n + M queues satisfying (2.1)
and (2.2). Assume that ρ > 1 and that (3.29) holds. Then

(X̃n, Z̃n) ⇒ (X̃, Z̃) as n → ∞,

where

(X̃, Z̃) = �(Ũ, Ṽ ).(3.34)

Equation (3.34) defines (X̃, Z̃) as a (K + 1)-dimensional diffusion process,
which is also degenerate and lives on a K-dimensional manifold.

3.3. A roadmap for proofs. Theorems 1 and 4 are the main results of this pa-
per. Theorem 4 and a restricted version of Theorem 1 are proved in Section 5; the
restriction is to assume that the patience times are exponentially distributed. These
proofs use standard FCLTs and then apply the continuous-mapping theorem and
the random-time-change theorem. To construct appropriate continuous maps, we
introduce a perturbed system in Section 4.1, which is equal in distribution to the
original system when the patience time distribution is exponential. Using the per-
turbed system, we are able to construct a set of system equations in Section 4.2,
which is critical to define the continuous maps.

Section 6 is devoted to proving the general version of Theorem 1. When the
patience time distribution is general and the systems are critically loaded, we first
modify the preceding system equations slightly by replacing the cumulative num-
ber of customer abandonments by an integral of the queue-length process. We then
apply an asymptotic relationship in Dai and He (2010) to establish a result that the
error from the replacement is negligible under a stochastic boundedness assump-
tion of the diffusion-scaled queue-length process; the latter assumption holds by a
comparison result in Dai and He (2010) and the restricted version of Theorem 1
proved in Section 5.

Theorem 2 is a corollary to Theorem 1 and Lemma 2; the latter is proved in
Appendix B. Theorem 3 is also proved in Appendix B.

4. System representation for a G/Ph/n + M queue. In this section, we
first describe a perturbed system of the G/Ph/n + M model, and show that this
perturbed system is equivalent to the G/Ph/n + M queue. We then develop the
dynamical equations that the perturbed system must satisfy.

4.1. A perturbed system. Now we describe a perturbation of the G/Ph/n+M

model. In the perturbed system, each phase has a service queue for the customers
“in service.” Only the leading customer in the service queue is actually in service;
all others are waiting in the service queue, ordered according to the FIFO disci-
pline. We use Z∗

k (t) to denote the number of customers in phase k service queue
at time t . (Star-version quantities are associated with the perturbed system; the
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corresponding quantities in the original system are denoted by the same symbols
without the star.) Each customer in the service queue is attached to exactly one
server. Thus, there are exactly Z∗

k (t) servers in phase k at time t . All these Z∗
k (t)

servers simultaneously work on the leading customer in the service queue. The ser-
vice effort received by the leading customer is additive, proportional to the number
of servers working on the customer. Each customer has a service requirement for
each phase that he visits, with phase k service requirement being exponentially
distributed with mean 1/νk .

When the total service effort spent on a customer reaches his service require-
ment in a phase, the service in the phase is completed. When a customer completes
a phase k service, he immediately moves to the next phase following a sampling
procedure to be specified below, taking with him the associated server. If the ser-
vice queue in the new phase is not empty at their arrival, the server joins the service
immediately, collaborating with other servers who are already in service to work
on the leading customer in the service queue. The newly arrived customer joins the
end of the service queue. If the new service queue is empty, the server works on
her customer who is the only one in the new phase of service.

When a customer finishes a phase k service, it uses the kth row of P to sample
the next phase of service to join among phases {1, . . . ,K,K + 1}; the probability
of selecting phase K + 1 is 1 − ∑K

�=1 Pk�. If � ∈ {1, . . . ,K} is selected, both the
server and the customer move next to phase �. If K + 1 is selected, the customer
exits the system and the associated server is released. The released server checks
the FIFO real queue to select the next customer to work on if the real queue is not
empty. The selected customer is attached to the server until the customer exits the
system. If the real queue is empty, the server becomes idle.

At a customer’s arrival time to the system, if there is an idle server, the customer
grabs a free server and is attached to the server until the customer exits the system.
Together, they move into the customer’s first phase of service, which is selected
according to distribution p. The service and waiting mechanism is identical to the
one described in the previous paragraph. If all servers are busy at the customer’s
arrival time, the customer joins the end of the FIFO real queue. Only the leading
customer in the FIFO real queue can abandon the system; other waiting customers
are infinitely patient until they become a leading customer. The patience time of the
leading customer is exponentially distributed with mean 1/α. The customer aban-
dons the system without service if his patience clock exceeds the patience time.
The patience clock starts from 0 when the customer becomes a leading customer
and increases at rate k when the queue length is k.

For each n fixed, now we show that when the arrival process En is a renewal
process, the perturbed system and the original system are equivalent in a precise
mathematical sense. For that, recall that the waiting buffer in the perturbed system
maintains a FIFO queue for waiting customers. Let

Q∗(t) = (
i1, . . . , iL∗(t)

)
,
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where L∗(t) is the total number of customers waiting in queue at time t , and i� is
the first service phase that the �th customer is yet to enter.

Let ξ(t) be the remaining interarrival time at time t . (ξ has no star because the
arrival processes in the perturbed system and in the original system are identical.)
It follows that, {(ξ(t), Q∗(t),Z∗(t)), t ≥ 0} is a continuous-time Markov process
living in state space R+ × K∞ × Z

K+ , where K∞ is the space of finite sequences
taking values in K = {1, . . . ,K}.

Let {(ξ(t), Q(t),Z(t)), t ≥ 0} be the corresponding process of the original sys-
tem. The process is also a continuous-time Markov process. At any time t , the
phase k service rate is Z∗

k (t)νk in the perturbed system and Zk(t)νk in the original
system, while the abandonment rate is L∗(t)α in the perturbed system and L(t)α

in the original system. One can check that the two Markov processes

{(ξ(t), Q(t),Z(t)), t ≥ 0} and {(ξ(t), Q∗(t),Z∗(t)), t ≥ 0}
have the same generator. Thus, when they have the same initial distribution, they
have the same distribution for the entire processes. In the following, we always
choose the initial condition of the perturbed system to be identical to that of the
original system.

Even if the arrival process is not a renewal process, the perturbed system can still
have the same distribution as the original system. The rest of the paper does not re-
quire the arrival process to be renewal. Rather, we assume that each arrival process
satisfies the requirement that the perturbed system has the same distribution as the
original one. See Tezcan (2006) for a more general treatment of perturbed systems.

4.2. System equations. From now on, we focus on the perturbed system of
the G/Ph/n + M queue and drop the stars attached to its quantities. We assume
that the patience times of all customers, including those who are waiting in queue
at time 0, are exponentially distributed with rate α. In this section, we describe
the dynamical equations that the system must obey. For k = 1, . . . ,K , let φk =
{φk(j), j ∈ N} be a sequence of i.i.d. “Bernoulli random vectors.” For each j ,
the K-dimensional random vector φk(j) takes vector e� with probability Pk� and
takes the K-dimensional zero vector with probability 1 − ∑K

�=1 Pk�. Similarly, let
φ0 = {φ0(j), j ∈ N} be a sequence of i.i.d. K-dimensional random vectors; the
probability that φ0(j) = e� is p�. For k = 0, . . . ,K , define the routing process

�k(N) =
N∑

j=1

φk(j) for N ∈ N.

For each k = 1, . . . ,K , let Sk be a Poisson process with rate νk , and let G be a
Poisson process with rate α. We assume that

Xn(0),En,S1, . . . , SK,�0, . . . ,�K and G are mutually independent.(4.1)

Let T n
k (t) be the cumulative amount of service effort received by customers in

phase k service in (0, t], Bn(t) be the cumulative number of customers who have
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entered service in (0, t] and Dn(t) be the cumulative number of customers who
have completed service in (0, t]. Clearly,

T n
k (t) =

∫ t

0
Zn

k (s) ds for t ≥ 0.(4.2)

Then Sk(T
n
k (t)) is the cumulative number of phase k service completions by time t .

Also G(
∫ t

0 (Xn(s))+ ds) is the cumulative number of customers who have aban-
doned the system by time t . One can check that for t ≥ 0, the processes Xn and
Zn satisfy the following dynamical equations:

Zn(t) = Zn(0) + �0(Bn(t)) +
K∑

k=1

�k(Sk(T
n
k (t))) − S(T n(t)),(4.3)

Xn(t) = Xn(0) + En(t) − Dn(t) − G

(∫ t

0
(Xn(s))+ ds

)
,(4.4)

Dn(t) =
K∑

k=1

(
Sk(T

n
k (t)) − e′�k(Sk(T

n
k (t)))

)
(4.5)

= −e′
(

K∑
k=1

�k(Sk(T
n
k (t))) − S(T n(t))

)
,

where

S(T n(t)) = (S1(T
n

1 (t)), . . . , SK(T n
K(t)))′.

4.3. State-process representation. Define the centered processes

Ŝ(t) = S(t) − νt, Ĝ(t) = G(t) − αt, �̂�(N) =
N∑

j=1

(
φ�(j) − p�)

for t ≥ 0, � = 0, . . . ,K and N ∈ N, where p0 = p and pk is the kth column of P ′
for k = 1, . . . ,K . Setting

Mn(t) =
K∑

k=1

�̂k(Sk(T
n
k (t))) − (I − P ′)Ŝ(T n(t)),(4.6)

one then has
K∑

k=1

�k(Sk(T
n
k (t))) − S(T n(t)) = Mn(t) − R

∫ t

0
Zn(s) ds,

where R is defined in (3.4). By (4.3) and (4.5),

e′Zn(t) = e′Zn(0) + Bn(t) − Dn(t),(4.7)

Dn(t) = −e′Mn(t) + e′R
∫ t

0
Zn(s) ds.(4.8)
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It follows from (3.2) and (4.3)–(4.8) that

Zn(t) = Zn(0) + p(Xn(0))− + �̂0(Bn(t)) − p(Xn(t))−

+ (I − pe′)Mn(t) − (I − pe′)R
∫ t

0
Zn(s) ds,

Xn(t) = Xn(0) + Ên(t) + λnt + e′Mn(t) − e′R
∫ t

0
Zn(s) ds

− Ĝ

(∫ t

0
(Xn(s))+ ds

)
− α

∫ t

0
(Xn(s))+ ds.

Recall that Ẑn(t) = Zn(t) − nγ . We then have

Ẑn(t) = (I − pe′)Ẑn(0) + �̂0(Bn(t)) − p(Xn(t))−

+ (I − pe′)Mn(t) − (I − pe′)R
∫ t

0
Ẑn(s) ds,

Xn(t) = Xn(0) + Ên(t) + (λn − nμ)t + e′Mn(t) − e′R
∫ t

0
Ẑn(s) ds

− Ĝ

(∫ t

0
(Xn(s))+ ds

)
− α

∫ t

0
(Xn(s))+ ds,

where we have used (3.3) and (3.4) in the derivations. Setting

Un(t) = Xn(0) + Ên(t) + (λn − nμ)t
(4.9)

+ e′Mn(t) − Ĝ

(∫ t

0
(Xn(s))+ ds

)
,

V n(t) = (I − pe′)Ẑn(0) + �̂0(Bn(t)) + (I − pe′)Mn(t)(4.10)

for t ≥ 0, we finally have

Xn(t) = Un(t) − α

∫ t

0
(Xn(s))+ ds − e′R

∫ t

0
Ẑn(s) ds,(4.11)

Ẑn(t) = V n(t) − p(Xn(t))− − (I − pe′)R
∫ t

0
Ẑn(s) ds.(4.12)

By Lemma 1, we have obtained the following representation for the state
processes:

(Xn, Ẑn) = �(Un,V n).(4.13)

5. Proofs for G/Ph/n + M queues. This section provides proofs for Theo-
rem 4 and a special version of Theorem 1 when the patience time distribution is
exponential. Section 5.1 first establishes a fluid limit, which is needed in applying
the random-time-change theorem to prove the theorems in Section 5.2.
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5.1. Fluid limits. For t ≥ 0, define the fluid-scaled processes B̄n, D̄n, Ēn, T̄ n,
X̄n and Z̄n via

B̄n(t) = 1

n
Bn(t), D̄n(t) = 1

n
Dn(t), Ēn(t) = 1

n
En(t),

T̄ n(t) = 1

n
T n(t), X̄n(t) = 1

n
Xn(t), Z̄n(t) = 1

n
Zn(t).

THEOREM 5. Consider a sequence of G/Ph/n + M queues satisfying (2.1)
and (2.2). Assume (3.29) holds. Then

(B̄n, D̄n, Ēn, T̄ n, X̄n, Z̄n) ⇒ (B̄, D̄, Ē, T̄ , X̄, Z̄) as n → ∞,(5.1)

where B̄(t) = μt , D̄(t) = μt , Ē(t) = λt , T̄ (t) = γ t , X̄(t) = q and Z̄(t) = γ for
t ≥ 0.

PROOF. For t ≥ 0, let

M̄n(t) = 1

n
Mn(t), Ūn(t) = 1

n
Un(t),

(5.2)

V̄ n(t) = 1

n
V n(t), L̄n(t) = 1

n
Ẑn(t).

By (4.13) and the positively homogeneous property of �, we have

(X̄n, L̄n) = �(Ūn, V̄ n).

Setting

Ū (t) = q + (λ − μ)t and V̄ (t) = 0 for t ≥ 0,(5.3)

one can check that �(Ū, V̄ ) = (X̄,0). We are going to show that

(M̄n, Ūn, V̄ n) ⇒ (0, Ū ,0) as n → ∞.(5.4)

Assuming (5.4), we now complete the proof of the theorem. The continuity of
the map � implies that

(X̄n, L̄n) = �(Ūn, V̄ n) ⇒ �(Ū, V̄ ) = (X̄,0) as n → ∞.

Since Z̄n(t) = L̄n(t) + γ for t ≥ 0, then Z̄n ⇒ Z̄ as n → ∞, from which one has
T̄ n ⇒ T̄ as n → ∞. By (4.8),

D̄n(t) = −e′M̄n(t) + e′R
∫ t

0
Z̄n(s) ds.

Since e′R
∫ t

0 Z̄(s) ds = μt for t ≥ 0, by the continuous-mapping theorem D̄n ⇒ D̄

as n → ∞. The convergence of D̄n and (4.7) imply that B̄n ⇒ B̄ as n → ∞, and
B̄ satisfies

e′Z̄(t) = e′Z̄(0) + B̄(t) − D̄(t) for t ≥ 0.
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Since Z̄(t) = Z̄(0) = γ , we conclude that B̄(t) = μt for t ≥ 0. By assumptions
(2.1) and (2.2), for each T > 0,

1

n
sup

0≤t≤T

|Ên(t)| ⇒ 0 as n → ∞,(5.5)

which implies that Ēn ⇒ Ē. This proves the theorem when (5.4) holds.
It remains to prove (5.4). By the functional strong law of large numbers

(FSLLN),

1

n
sup

0≤t≤T

|Ĝ(nt)| ⇒ 0,
1

n
sup

0≤t≤T

|Ŝ(nt)| ⇒ 0,

(5.6)
1

n
sup

0≤t≤T

|�̂k(�nt�)| ⇒ 0

as n → ∞, for k = 0, . . . ,K . Let S̄n(t) = Sn(nt)/n for t ≥ 0. The FSLLN also
leads to S̄n ⇒ S̄ as n → ∞ where S̄(t) = νt for t ≥ 0. This, together with (4.6),
(5.6) and the fact T̄ n

k (t) ≤ t for t ≥ 0, implies that

sup
0≤t≤T

|M̄n(t)| ⇒ 0 as n → ∞.(5.7)

Note that B̄n(t) ≤ (X̄n(0))+ + Ēn(t). By (3.7) and the convergence of Ēn, the se-
quence of processes {B̄n, n ∈ N} is stochastically bounded, that is, for each T > 0,

lim
a→∞ lim sup

n→∞
P

[
sup

0≤t≤T

B̄n(t) > a
]
= 0.

Using this and (5.6), we deduce that

sup
0≤t≤T

1

n
�̂0(Bn(t)) ⇒ 0 as n → ∞.(5.8)

Condition (3.7) implies that Ẑn(0)/n ⇒ 0 as n → ∞, which, together with (5.7)
and (5.8), leads to V̄ n ⇒ 0 as n → ∞. Since sup0≤t≤T (X̄n(t))+ ≤ (X̄n(0))+ +
Ēn(T ), one can argue similarly that Ūn ⇒ Ū as n → ∞. Hence, we have shown
(5.4) holds and thus proved the theorem. �

5.2. Diffusion limits. In this section, we prove Theorems 1 and 4, under the
assumption that the patience times are exponentially distributed.

Define the diffusion-scaled processes G̃n, S̃n and �̃0, . . . , �̃K via

G̃n(t) = 1√
n
Ĝ(nt), S̃n(t) = 1√

n
Ŝ(nt), �̃k,n(t) = 1√

n
�̂k(�nt�)

for t ≥ 0 and k = 0, . . . ,K . By the FCLT, one has

(G̃n, S̃n, �̃0,n, . . . , �̃K,n) ⇒ (G̃, S̃, �̃0, . . . , �̃K) as n → ∞,



1874 J. G. DAI, S. HE AND T. TEZCAN

where G̃ is a one-dimensional driftless Brownian motion, and S̃ and �̃0, . . . , �̃K

are K-dimensional driftless Brownian motions. As mentioned previously, the vari-
ance of G̃ is α, the covariance matrix for S̃ is diag(ν), and for k = 0, . . . ,K , the
covariance matrix for �̃k is Hk given by (3.8). By the FCLT assumption (2.2) for
the arrival process En, the initial condition (3.29), and the independence assump-
tion (4.1), one has

(X̃n(0), Z̃n(0), Ẽn, G̃n, S̃n, �̃0,n, . . . , �̃K,n)
(5.9)

⇒ (X̃(0), Z̃(0), Ẽ, G̃, S̃, �̃0, . . . , �̃K)

as n → ∞. The components of (Ẽ, G̃, S̃, �̃0, . . . , �̃K) are mutually independent,
and they are independent of (X̃(0), Z̃(0)).

Let Ûn(t) = Un(t) − nŪ(t), and define the diffusion-scaled processes

Ũn(t) = 1√
n
Ûn(t) and Ṽ n(t) = 1√

n
V n(t) for t ≥ 0,

where Ū is defined in (5.3). We now have the following lemma.

LEMMA 5. Consider a sequence of G/Ph/n + M queues satisfying (2.1) and
(2.2). Assume that (3.29) holds. Then

(Ũn, Ṽ n) ⇒ (Ũ , Ṽ ) as n → ∞,

where (Ũ , Ṽ ) is a (K + 1)-dimensional Brownian motion defined by (3.28) and
(3.10).

PROOF. By (4.9) and (4.10),

Ũn(t) = X̃n(0) + Ẽn(t) + √
n

(
1

n
λn − λ

)
(5.10)

+ e′M̃n(t) − G̃n

(∫ t

0
(X̄n(s))+ ds

)
,

Ṽ n(t) = (I − pe′)Z̃n(0) + �̃0,n(B̄n(t)) + (I − pe′)M̃n(t),(5.11)

where

M̃n(t) = 1√
n
Mn(t) =

K∑
k=1

�̃k,n(S̄n
k (T̄ n

k (t))) − (I − P ′)S̃n(T̄ n(t))

and S̄n(t) = S(nt)/n for t ≥ 0. By the FSLLN, S̄n ⇒ S̄ as n → ∞, where S̄(t) =
νt for t ≥ 0. The lemma now follows from (5.9), Theorem 5, the continuous-
mapping theorem and the random-time-change theorem. �

PROOF OF THEOREM 1 (Assuming an exponential patience time distribution).
Since ρ = 1, it follows that q = 0 and λ = μ. Then Ū (t) = 0 for t ≥ 0. It fol-
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lows from the state-process representation (4.13) and the positively homogeneous
property of the map � that

(X̃n, Z̃n) = �(Ũn, Ṽ n).

The theorem now follows from Lemma 5 and the continuous-mapping theorem.
�

Although condition (3.16) is not explicitly required in the above proof, it can
be deduced by using initial condition (3.7) and the assumption that the patience
times of all customers, including those in queue initially, are i.i.d. following an
exponential distribution.

Before proving Theorem 4, we first establish a lemma. It says that when ρ > 1,
the number of idle servers goes to zero under diffusion scaling.

LEMMA 6. Let In(t) = (Xn(t))− and Ĩ n(t) = In(t)/
√

n for t ≥ 0. Then un-
der the conditions of Theorem 4,

Ĩ n ⇒ 0 as n → ∞.

PROOF. It follows from (4.11) and (4.12) that

1√
n
Xn(t) = √

nŪ(t) + Ũn(t) − α√
n

∫ t

0
(Xn(s))+ ds − e′R

∫ t

0
Z̃n(s) ds,

Z̃n(t) = Ṽ n(t) − p√
n
(Xn(t))− − (I − pe′)R

∫ t

0
Z̃n(s) ds.

Therefore, by Lemma 1(
1√
n
Xn, Z̃n

)
= �

(
Ũn + √

nŪ, Ṽ n)
.

By the Lipschitz continuity property (3.14) of the map �, for any T > 0, there
exists a constant C1

T > 0 such that

sup
0≤t≤T

∣∣�(
Ũn + √

nŪ, Ṽ n)
(t) − �

(√
nŪ,0

)
(t)

∣∣ ≤ C1
T sup

0≤t≤T

{|Ũn(t)| + |Ṽ n(t)|}

for all n and all sample paths. One can check that �(
√

nŪ,0) = (
√

nq,0). There-
fore,

inf
0≤t≤T

1√
n
Xn(t) ≥ √

nq − C1
T sup

0≤t≤T

{|Ũn(t)| + |Ṽ n(t)|}.(5.12)

By Lemma 5,

lim
a→∞ lim sup

n→∞
P

[
sup

0≤t≤T

{|Ũn(t)| + |Ṽ n(t)|} > a
]
= 0,
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which, together with (5.12), implies that sup0≤t≤T Ĩ n(t) ⇒ 0 as n → ∞. The
lemma is proved. �

PROOF OF THEOREM 4. It follows from (4.11) and (4.12) that

X̃n(t) = Ũn(t) − α√
n

∫ t

0
(Xn(s))− ds − α

∫ t

0
X̃n(s) ds − e′R

∫ t

0
Z̃n(s) ds,

Z̃n(t) = Ṽ n(t) − p√
n
(Xn(t))− − (I − pe′)R

∫ t

0
Z̃n(s) ds.

Let

δn(t) = α√
n

∫ t

0
(Xn(s))− ds and εn(t) = p√

n
(Xn(t))− for t ≥ 0.

By Lemma 4,

(X̃n, Z̃n) = �(Ũn − δn, Ṽ n − εn).

By Lemma 6,

(δn, εn) ⇒ (0,0) as n → ∞.(5.13)

The theorem follows from Lemma 5, (5.13) and the continuity of the map � . �

6. Proofs for critically loaded G/Ph/n + GI queues. In this section, we
prove Theorem 1 for a general patience time distribution. Consider a sequence of
G/Ph/n + GI queues indexed by n. Our starting point is the perturbed system
described in Section 4.1 with the following modification: each customer in queue
can abandon the system, not just the leading customer; when a customer’s waiting
time in the real FIFO queue exceeds his patience time, the customer abandons
the system. By the same argument as in Section 4.1, for each n, the modified
perturbed system is equivalent in distribution to the original G/Ph/n + GI queue.
In particular, the system equations (4.3)–(4.5) derived in Section 4.2 hold, except
that (4.4) is modified as follows:

Xn(t) = Xn(0) + En(t) − Dn(t) − An(t),(6.1)

where An(t) denotes the cumulative number of customers that have abandoned the
system by time t . We call An = {An(t), t ≥ 0} the abandonment-count process in
the nth system.

With systems equations (4.3), (6.1) and (4.5), one can derive representation
(4.13)

(Xn, Ẑn) = �(Un,V n)

with Un modified as

Un(t) = Xn(0) + Ên(t) + (λn − nμ)t + e′Mn(t)
(6.2)

− An(t) + α

∫ t

0
(Xn(s))+ ds.

The derivation is identical to the one in Section 4.3 and is not repeated here.
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Before we prove Theorem 1, we state two lemmas, which will be proved at
the end of this section. The first lemma follows from a main result in Dai and
He (2010). In the lemma, the diffusion-scaled abandonment-count process Ãn =
{Ãn(t), t ≥ 0} is defined by

Ãn(t) = 1√
n
An(t) for t ≥ 0.(6.3)

LEMMA 7. Under the conditions of Theorem 1, for any T > 0,

sup
0≤t≤T

∣∣∣∣Ãn(t) − α

∫ t

0
(X̃n(s))+ ds

∣∣∣∣ ⇒ 0 as n → ∞.(6.4)

The next lemma is a generalization of the fluid limit theorem (Theorem 5) to
general patience time distributions, but with the restriction that ρ = 1.

LEMMA 8. Under the conditions of Theorem 1,

(B̄n, D̄n, Ēn, T̄ n, X̄n, Z̄n) ⇒ (B̄, D̄, Ē, T̄ , X̄, Z̄) as n → ∞,(6.5)

where B̄n, D̄n, Ēn, T̄ n, X̄n and Z̄n are fluid-scaled processes defined at the begin-
ning of Section 5.1, and B̄(t) = μt , D̄(t) = μt , Ē(t) = λt , T̄ (t) = γ t , X̄(t) = 0
and Z̄(t) = γ for t ≥ 0.

PROOF OF THEOREM 1. Using the representation (4.13) with Un given by
(6.2), one has

(X̃n, Z̃n) = �(Ũn, Ṽ n),

where

Ũn(t) = X̃n(0) + Ẽn(t) + √
n

(
1

n
λn − λ

)
+ e′M̃n(t)

(6.6)

−
(
Ãn(t) − α

∫ t

0
(X̃n(s))+ ds

)

and Ṽ n is given by (5.11). By Lemma 1, the map � is continuous. Thus, to prove
the theorem, it suffices to prove that

(Ũn, Ṽ n) ⇒ (Ũ , Ṽ ),(6.7)

where (Ũ , Ṽ ) is the (K + 1)-dimensional Brownian motion defined by (3.9) and
(3.10). The convergence (6.7) follows from the proof of Lemma 5 with the follow-
ing two modifications. First, the last term of Ũn in (6.6) is(

Ãn(t) − α

∫ t

0
(X̃n(s))+ ds

)
instead of

G̃n

(∫ t

0
(X̄n(s))+ ds

)
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in (5.10). We apply Lemma 7 to conclude that the last term in (6.6) converges to
zero in distribution. Second, we use (6.5) instead of (5.1) in order to apply the
random-time-change theorem to finish the proof of (6.7). �

REMARK. It follows immediately from Theorem 1 and Lemma 7 that under
the conditions of Theorem 1,

Ãn ⇒ Ã as n → ∞,(6.8)

where

Ã(t) = α

∫ t

0
(X̃(s))+ ds for t ≥ 0.

PROOF OF LEMMA 7. We use Theorem 2.1 of Dai and He (2010) to prove the
lemma. In order to apply the theorem, we need only verify that the sequence of
diffusion-scaled queue-length processes is stochastically bounded, that is, for any
T > 0,

lim
a→∞ lim sup

n→∞
P

[
sup

0≤t≤T

1√
n
(Xn(t))+ > a

]
= 0.(6.9)

Theorem 2.2 of Dai and He (2010) states a comparison result: the queue length at
any time in a G/G/n + G queue is dominated by the queue length in the corre-
sponding G/G/n queue without abandonment. Thus, (6.9) is implied by the sto-
chastic boundedness of the sequence of diffusion-scaled queue-length processes
in the corresponding G/Ph/n queues. Examining the proof of Theorem 1 in
Section 5.2 for an exponential patience time distribution with rate α > 0, one con-
cludes that Theorem 1 holds for the corresponding G/Ph/n queues without aban-
donment by setting α = 0. As a consequence, the sequence of diffusion-scaled
queue-length processes in the G/Ph/n queues is stochastically bounded. �

PROOF OF LEMMA 8. The proof of the lemma follows the proof of Theorem 5
with the following two modifications. First, Ū in (5.3) becomes zero in the current
case because ρ = 1. Second, Un has the representation (6.6) instead of (4.9). In
Theorem 5, to prove Ūn ⇒ 0 as n → ∞ we used the fact

1

n
sup

0≤t≤T

|Ĝ(nt)| ⇒ 0 as n → ∞,

which is proved in (5.6). Here, we need

1

n
sup

0≤t≤T

∣∣∣∣An(t) − α

∫ t

0
(Xn(s))+ ds

∣∣∣∣ ⇒ 0 as n → ∞,

which holds because of Lemma 7. �
APPENDIX A: A CONTINUOUS MAP

Let K ∈ N be a fixed positive integer. Given functions h1 : RK+1 → R,
h2 : RK+1 → R

K and g : R → R
K , we wish to define a map ϒ : DK+1 → D

K+1.
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For each y = (y1, y2) ∈ D
K+1 with y1(t) ∈ R and y2(t) ∈ R

K for t ≥ 0, ϒ(y) is
defined to be any x = (x1, x2) ∈ D

K+1 with x1(t) ∈ R and x2(t) ∈ R
K for t ≥ 0

that satisfies

x1(t) = y1(t) +
∫ t

0
h1(x(s)) ds,(A.1)

x2(t) = y2(t) +
∫ t

0
h2(x(s)) ds + g(x1(t))(A.2)

for t ≥ 0. We assume that h1, h2 and g are Lipschitz continuous. For a function
f : Rd → R

m with d,m ∈ N, it is said to be Lipschitz continuous with Lipschitz
constant c > 0 if

|f (u) − f (v)| ≤ c|u − v| for u, v ∈ R
d

(recall that |u| = max1≤k≤d |uk| denotes the maximum norm of u). The function f

is said to be positively homogeneous if

f (au) = af (u) for any a > 0 and u ∈ R
d .

Given d ∈ N, x ∈ D
d and T > 0, set ‖x‖T = sup0≤t≤T |x(t)|.

The following lemma establishes the existence and the continuity of the map ϒ .

LEMMA 9. Assume that h1, h2 and g are Lipschitz continuous. (a) For each
y = (y1, y2) ∈ D

K+1 with y1(t) ∈ R and y2(t) ∈ R
K for t ≥ 0, there exists a unique

x = (x1, x2) ∈ D
K+1 with x1(t) ∈ R and x2(t) ∈ R

K for t ≥ 0 that satisfies (A.1)
and (A.2). (b) The map ϒ : DK+1 → D

K+1 is Lipschitz continuous in the sense
that for each T > 0, there exists a constant CT > 0 such that

‖ϒ(y) − ϒ(ỹ)‖T ≤ CT ‖y − ỹ‖T for any y, ỹ ∈ D
K+1.

(c) The map ϒ is continuous when the domain D
K+1 and the range D

K+1 are
both endowed with the Skorohod J1-topology. (d) If, in addition, h1, h2 and g are
assumed to be positively homogeneous, then the map ϒ is positively homogeneous
in the sense that

ϒ(ay) = aϒ(y) for each a > 0 and each y ∈ D
K+1.

PROOF. Assume that h1, h2 and g are Lipschitz continuous with Lipschitz
constant c > 0. Let y = (y1, y2) ∈ D

K+1 be given. Let T > 0 be fixed for the
moment. Define x0 = y and for each n ∈ Z+, let xn+1 = (xn+1

1 , xn+1
2 ) be defined

via

xn+1
1 (t) = y1(t) +

∫ t

0
h1(x

n(s)) ds,

xn+1
2 (t) = y2(t) +

∫ t

0
h2(x

n(s)) ds + g(xn+1
1 (t))

for t ∈ [0, T ]. Setting

X(n)(t) = ‖xn+1 − xn‖t ,
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because

xn+1
2 (t) − xn

2 (t) =
∫ t

0

(
h2(x

n(s)) − h2(x
n−1(s))

)
ds

+ g

(
y1(t) +

∫ t

0
h1(x

n(s)) ds

)

− g

(
y1(t) +

∫ t

0
h1(x

n−1(s)) ds

)

for t ∈ [0, T ], one has

X(n+1)(t) ≤ (c + c2)

∫ t

0
X(n)(s) ds for t ∈ [0, T ].

Then, by Lemma 11.3 in Mandelbaum, Massey and Reiman (1998),

Xn+1(t) ≤ (c + c2)
T n

n! sup
0≤s≤t

X(0)(s) for t ∈ [0, T ].

Therefore, similarly to (11.22) in Mandelbaum, Massey and Reiman (1998),
{xn,n ∈ N} is a Cauchy sequence under the uniform norm ‖ · ‖T . Since (D([0, T ],
R

K+1), ‖ · ‖T ) is a complete metric space (being a closed subset of the Banach
space of bounded functions defined from [0, T ] into R

K+1 and endowed with the
uniform norm), {xn,n ∈ N} has a limit x that is in D([0, T ],R

K+1). One can check
that x satisfies (A.1) and (A.2) for t ∈ [0, T ]. This proves the existence of the map
ϒ from D([0, T ],R

K+1) to D([0, T ],R
K+1).

Now we prove that the map from D([0, T ],R
K+1) to D([0, T ],R

K+1) is
Lipschitz continuous with respect to the uniform norm. Assume that y, ỹ ∈
D([0, T ],R

K+1). Let ϒ(y) be any solution x such that x and y satisfy (A.1) and
(A.2) on [0, T ]. Similarly, let ϒ(ỹ) be any solution associated with ỹ. Setting
x = (x1, x2) = ϒ(y) and x̃ = (x̃1, x̃2) = ϒ(ỹ), then for any t ∈ [0, T ],

|x1(t) − x̃1(t)| ≤ |y(t) − ỹ(t)| + c

∫ t

0
|ϒ(y)(s) − ϒ(ỹ)(s)|ds,

|x2(t) − x̃2(t)| ≤ (1 + c)|y(t) − ỹ(t)|
+ (c + c2)

∫ t

0
|ϒ(y)(s) − ϒ(ỹ)(s)|ds.

Hence,

|ϒ(y)(t) − ϒ(ỹ)(t)|
≤ (1 + c)|y(t) − ỹ(t)| + (c + c2)

∫ t

0
|ϒ(y)(s) − ϒ(ỹ)(s)|ds

for t ∈ [0, T ].
By Corollary 11.2 in Mandelbaum, Massey and Reiman (1998)

‖ϒ(y) − ϒ(ỹ)‖T ≤ (1 + c)‖y − ỹ‖T exp
(
(c + c2)T

)
.
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Hence, ϒ is Lipschitz continuous, which implies part (b) of the lemma. The Lip-
schitz continuity of ϒ as a map from D([0, T ],R

K+1) to D([0, T ],R
K+1) shows

that it is well defined on [0, T ]. Since T > 0 is arbitrary, ϒ as a map from D
K+1

to D
K+1 is well defined. This proves part (a) of the lemma.

Next we prove the continuity of ϒ provided that D
K+1 is endowed with the

Skorohod J1-topology [see, e.g., Section 3 of Whitt (2002)]. Consider a sequence
{yn,n ∈ N} and y in D

K+1 such that yn → y as n → ∞. Let xn = (xn
1 , xn

2 ) =
ϒ(yn) and x = (x1, x2) = ϒ(y). Note that since x ∈ D

K+1 there exists M > 0
such that

‖ϒ(y)‖T < M.(A.3)

Let � be the set of strictly increasing functions λ : R+ → R+ with λ(0) = 0,
limt→∞ λ(t) = ∞, and

γ (λ) = sup
0≤s<t

∣∣∣∣log
λ(t) − λ(s)

t − s

∣∣∣∣ < ∞.

Since yn → y as n → ∞ in the J1-topology on D
K+1, it follows from Proposi-

tion 3.5.3 of Ethier and Kurtz (1986) that there exists a sequence {λn,n ∈ N} ⊂ �

such that

lim
n→∞γ (λn) = 0,(A.4)

and for each T > 0

lim
n→∞‖yn(·) − y(λn(·))‖T = 0.(A.5)

For each λn ∈ �, λn(t) is Lipschitz continuous in t . Hence, it is differentiable
almost everywhere in t with respect to the Lebesgue measure. Furthermore, it fol-
lows from (3.5.5) of Ethier and Kurtz (1986) that when λn is differential at time t ,
its derivative λ̇n(t) satisfies

|λ̇n(t) − 1| ≤ γ (λn).(A.6)

Note that, for i = 1,2∫ λn(t)

0
hi(x(s)) ds =

∫ t

0
hi(x(λn(s)))λ̇n(s) ds.(A.7)

By (A.1) and (A.7)

x1(λ
n(t)) = y1(λ

n(t)) +
∫ λn(t)

0
h1(x(s)) ds

= y1(λ
n(t)) +

∫ t

0
h1(x(λn(s)))λ̇n(s) ds

(A.8)

= y1(λ
n(t)) +

∫ t

0
h1(x(λn(s))) ds

−
∫ t

0
h1(x(λn(s)))

(
1 − λ̇n(s)

)
ds.
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Similarly, by (A.2) and (A.7)

x2(λ
n(t)) = y2(λ

n(t)) +
∫ t

0
h2(x(λn(s))) ds

−
∫ t

0
h2(x(λn(s)))

(
1 − λ̇n(s)

)
ds(A.9)

+ g(x1(λ
n(t))).

By (A.1) and (A.8)

|xn
1 (t) − x1(λ

n(t))|
≤ |yn

1 (t) − y1(λ
n(t))| +

∫ t

0
|h1(x

n(s)) − h1(x(λn(s)))|ds

+
∫ t

0
|h1(x(λn(s))) − h1(0)||1 − λ̇n(s)|ds

(A.10)

+
∫ t

0
|h1(0)||1 − λ̇n(s)|ds

≤ |yn(t) − y(λn(t))| + c

∫ t

0
|xn(s) − x(λn(s))|ds

+ c

∫ t

0
|x(λn(s))||1 − λ̇n(s)|ds + |h1(0)|

∫ t

0
|1 − λ̇n(s)|ds.

By (A.2), (A.9) and (A.10)

|xn
2 (t) − x2(λ

n(t))|
≤ |yn

2 (t) − y2(λ
n(t))|

+
∫ t

0
|h2(x

n(s)) − h2(x(λn(s)))|ds

+ |g(xn
1 (t)) − g(x1(λ

n(t)))|
+

∫ t

0
|h2(x(λn(s))) − h2(0)||1 − λ̇n(s)|ds

+
∫ t

0
|h2(0)||1 − λ̇n(s)|ds

≤ |yn(t) − y(λn(t))| + c

∫ t

0
|xn(s) − x(λn(s))|ds

+ c|xn
1 (t) − x1(λ

n(t))| + c

∫ t

0
|x(λn(s))||1 − λ̇n(s)|ds

+ |h2(0)|
∫ t

0
|1 − λ̇n(s)|ds(A.11)
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≤ (1 + c)|yn(t) − y(λn(t))| + (c + c2)

∫ t

0
|xn(s) − x(λn(s))|ds

+ (c + c2)

∫ t

0
|x(λn(s))||1 − λ̇n(s)|ds

+ (|h2(0)| + c|h1(0)|) ∫ t

0
|1 − λ̇n(s)|ds.

Then (A.10) and (A.11) yield

|ϒ(yn)(t) − ϒ(y)(λn(t))|
≤ (1 + c)|yn(t) − y(λn(t))|

+ (c + c2)

∫ t

0
|ϒ(yn)(s) ds − ϒ(y)(λn(s))|ds(A.12)

+ (c + c2)

∫ t

0
|1 − λ̇n(s)||ϒ(y)(λn(s))|ds

+ (|h2(0)| + c|h1(0)|) ∫ t

0
|1 − λ̇n(s)|ds.

It follows from (A.3), (A.4), (A.6) and the dominated convergence theorem that∫ t

0
|1 − λ̇n(s)||ϒ(y)(λn(s))|ds → 0 as n → ∞.(A.13)

Given δ > 0, by (A.4), (A.6) and (A.13), for n large enough

(c + c2)

∫ T

0
|1 − λ̇n(s)||ϒ(y)(λn(s))|ds

+ (|h2(0)| + c|h1(0)|) ∫ T

0
|1 − λ̇n(s)|ds <

δ

2
and by (A.5)

(1 + c)‖yn(·) − y(λn(·))‖T <
δ

2
.

By Corollary 11.2 in Mandelbaum, Massey and Reiman (1998) and (A.12)

‖ϒ(yn)(·) − ϒ(y)(λn(·))‖T ≤ δ exp
(
(c + c2)T

)
for large enough n. Thus, for each T > 0,

lim
n→∞‖ϒ(yn)(·) − ϒ(y)(λn(·))‖T = 0.

Hence, ϒ(yn) → ϒ(y) as n → ∞ in D
K+1 in the J1-topology. This implies part

(c) of the lemma.
To prove part (d) of the lemma, for y ∈ D

K+1, assume that x and y satisfy (A.1)
and (A.2). Then, for a > 0, one can check that ax and ay also satisfy (A.1) and
(A.2) because of the positive homogeneity of h1, h2 and g. Therefore, ϒ(ay) =
aϒ(y). �
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APPENDIX B: PROOFS OF LEMMAS 2, 3 AND THEOREM 3

This section is devoted to proving Lemmas 2, 3 and Theorem 3. We first present
two lemmas.

The first lemma is an immediate result by Proposition 4.4 of Dai and He (2010).
It proves that the virtual waiting time processes (see the paragraph prior to Theo-
rem 3 for the definition) converge to zero in distribution as n → ∞.

LEMMA 10. Under the conditions of Theorem 1,

Wn ⇒ 0 as n → ∞.

For t ≥ 0, let

ζ n(t) = inf{s ≥ 0 : s + Wn(s) > t}.(B.1)

Since s + Wn(s) ≤ t for all s < ζn(t), each customer arriving before time ζ n(t)

cannot be waiting in queue at time t [see Lemmas 3.2 and 3.3 of Dai and He
(2010) for a detailed explanation]; similarly, since s +Wn(s) > t for all s > ζn(t),
a customer who arrives after time ζ n(t) cannot be in service at t . So ζ n(t) is a
crucial epoch with respect to the queue length at time t . The next lemma concerns
the process ζ n = {ζ n(t), t ≥ 0}.

LEMMA 11. Under the conditions of Theorem 1, ζ n ∈ D is nondecreasing for
each n ∈ N, and

ζ n ⇒ ζ as n → ∞,

where ζ(t) = t for t ≥ 0 is the identity function on R+.

PROOF. First note that

ζ n(t) + Wn(ζn(t)) ≥ t for t ≥ 0,(B.2)

because Wn is right-continuous.
Next, we prove that ζ n is nondecreasing in t . Suppose, on the contrary, that

for some 0 ≤ s < t , we have ζ n(t) < ζn(s). This implies by (B.1) that for any
ζ n(t) < u < ζn(s),

t < u + Wn(u) ≤ s,

leading to a contradiction.
Now we prove that ζ n ∈ D, that is, ζ n is right-continuous on [0,∞) and has left

limits on (0,∞). Since ζ n(t) ≤ t by (B.1) and ζ n is nondecreasing, ζ n(t−) exists
for each t > 0; therefore, ζ n has left limits on (0,∞). To prove right-continuity,
fix ε > 0 and t ≥ 0. We have

ζ n(t) + ε + Wn(
ζ n(t) + ε

)
> t + δ for some δ > 0,
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so that ζ n(t + δ′) ≤ ζ n(t + δ) ≤ ζ n(t) + ε for 0 < δ′ ≤ δ. Hence, ζ n is right-
continuous at t , proving ζ n ∈ D.

Finally, we prove the convergence. By (B.2) and the fact ζ n(t) ≤ t , for any
T > 0,

sup
0≤t≤T

|t − ζ n(t)| ≤ sup
0≤t≤T

Wn(ζ n(t)) ≤ sup
0≤t≤T

Wn(t).

Then ζ n ⇒ ζ as n → ∞ follows from Lemma 10. �

PROOF OF LEMMA 2. Fix T > 0, and restrict t ∈ [0, T ]. Since each customer
arriving before time ζ n(t) will either have entered service or abandoned the system
by time t , we have (Xn(t))+ ≤ En(t) − En(ζ n(t)) + �n(ζn(t)) where �n(t) =
En(t)−En(t−) is the number of customers who arrive (exactly) at time t . Because
ζ n(t) ≤ t by (B.1), we have

sup
0≤t≤T

�n(ζ n(t)) ≤ ‖�n‖T

for ‖�n‖T = sup0≤t≤T �n(t); thus,

(Xn(t))+ ≤ En(t) − En(ζ n(t)) + ‖�n‖T .(B.3)

Similarly, because a customer who arrives during (ζ n(t), t] will either be waiting
in queue at time t or has abandoned the system by t , one has

(Xn(t))+ ≥ En(t) − En(ζ n(t)) − (
An(t) − An(ζ n(t))

)
.(B.4)

Let {ψ0(i), i ∈ N} be a sequence of i.i.d. K-dimensional random vectors such
that for k = 1, . . . ,K , the probability that ψ0(i) = ek is pk ; it is used to indicate
the initial service phase of each customer (see the first paragraph in Section 4.2).
Write

�0(N) =
N∑

i=1

ψ0(i) and �̂0(N) = �0(N) − pN.

Because the customers who arrive before time ζ n(t) cannot be waiting in queue at
time t (they have either abandoned the system or started service), for k = 1, . . . ,K ,

Qn
k(t) ≤ �0

k

(
(Xn(0))+ + En(t)

) − �0
k

(
(Xn(0))+ + En(ζ n(t)) − ‖�n‖T

)
= �̂0

k

(
(Xn(0))+ + En(t)

) − �̂0
k

(
(Xn(0))+ + En(ζ n(t)) − ‖�n‖T

)
(B.5)

+ pk

(
En(t) − En(ζ n(t)) + ‖�n‖T

)
.

Similarly, the customers who arrive during (ζ n(t), t] cannot get into service by
time t . Then

Qn
k(t) + (

An(t) − An(ζ n(t))
)

≥ �0
k

(
(Xn(0))+ + En(t)

) − �0
k

(
(Xn(0))+ + En(ζ n(t))

)
(B.6)

= �̂0
k

(
(Xn(0))+ + En(t)

) − �̂0
k

(
(Xn(0))+ + En(ζ n(t))

)
+ pk

(
En(t) − En(ζ n(t))

)
.



1886 J. G. DAI, S. HE AND T. TEZCAN

Combining (B.3)–(B.6), we have

�n
k(t) ≤ Qn

k(t) − pk(X
n(t))+ ≤ �n

k(t),(B.7)

where

�n
k(t) = �̂0

k

(
(Xn(0))+ + En(t)

) − �̂0
k

(
(Xn(0))+ + En(ζ n(t))

)
− (

An(t) − An(ζ n(t))
) − pk‖�n‖T ,

�n
k(t) = �̂0

k

(
(Xn(0))+ + En(t)

) − �̂0
k

(
(Xn(0))+ + En(ζ n(t)) − ‖�n‖T

)
+ pk

(‖�n‖T + An(t) − An(ζ n(t))
)
.

Let �̃0,n(t) = �̂0(�nt�)/√n, ‖�̃n‖T = ‖�n‖T /
√

n, and ‖�̄n‖T = ‖�n‖T /n.
Rewriting (B.7) using diffusion scaling one has

�̃n
k(t) ≤ 1√

n

(
Qn

k(t) − pk(X
n(t))+

) ≤ �̃n
k(t),(B.8)

where

�̃n
k(t) = �̃

0,n
k

(
(X̄n(0))+ + Ēn(t)

) − �̃
0,n
k

(
(X̄n(0))+ + Ēn(ζ n(t))

)
− (

Ãn(t) − Ãn(ζ n(t))
) − pk‖�̃n‖T ,

�̃n
k(t) = �̃

0,n
k

(
(X̄n(0))+ + Ēn(t)

) − �̃
0,n
k

(
(X̄n(0))+ + Ēn(ζ n(t)) − ‖�̄n‖T

)
+ pk

(‖�̃n‖T + Ãn(t) − Ãn(ζ n(t))
)
.

Next, we show that �̃n
k ⇒ 0 and �̃n

k ⇒ 0 as n → ∞, which, together with (B.8),
will lead to (3.20). Using (2.2), we have

‖�̃n‖T ⇒ 0 as n → ∞.(B.9)

Lemma 11, (6.8), Theorem 3.9 in Billingsley (1999) and the random-time-change
theorem [see the lemma on page 151 of Billingsley (1999)] yield

sup
0≤t≤T

|Ãn(t) − Ãn(ζ n(t))| ⇒ 0 as n → ∞.(B.10)

By Theorem 5, Lemma 11 and the random-time-change theorem,

(X̄n(0))+ ⇒ 0 and Ēn(ζ n(·)) ⇒ Ē as n → ∞.(B.11)

Since �̃0,n ⇒ �̃0 where �̃0 is a K-dimensional Brownian motion, by Theorem 5,
(B.9), (B.11) and the random-time-change theorem

sup
0≤t≤T

∣∣�̃0,n
k

(
(X̄n(0))+ + Ēn(t)

)
(B.12)

− �̃
0,n
k

(
(X̄n(0))+ + Ēn(ζ n(t)) − ‖�̄n‖T

)∣∣ ⇒ 0,

sup
0≤t≤T

∣∣�̃0,n
k

(
(X̄n(0))+ + Ēn(t)

)
(B.13)

− �̃
0,n
k

(
(X̄n(0))+ + Ēn(ζ n(t))

)∣∣ ⇒ 0
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as n → ∞. We deduce from (B.9)–(B.13) that �̃n
k ⇒ 0 and �̃n

k ⇒ 0 as n → ∞.
�

PROOF OF THEOREM 3. Since all customers arriving prior to time t ≥ 0 will
have either got into service or abandoned the system by time t + Wn(t) [see Lem-
mas 3.2 and 3.3 of Dai and He (2010)], then(

Xn(
t + Wn(t)

))+ ≤ En(
t + Wn(t)

) − En(t).

For a customer who arrives during (t, t + Wn(t)], he can possibly be waiting in
queue at time t + Wn(t), or have abandoned the system by t + Wn(t), or starts his
service (exactly) at t + Wn(t). Therefore,

En(
t + Wn(t)

) − En(t) ≤ (
Xn(

t + Wn(t)
))+ + An(

t + Wn(t)
) − An(t)

+ �n
D

(
t + Wn(t)

)
,

where �n
D(t) = Dn(t)−Dn(t−) is the number of service completions (exactly) at

time t . Then by (2.3) and (6.3),

0 ≤ 1√
n
λnWn(t) − (

X̃n(
t + Wn(t)

))+ + Ẽn(
t + Wn(t)

) − Ẽn(t)

≤ Ãn(
t + Wn(t)

) − Ãn(t) + �̃n
D

(
t + Wn(t)

)
,

where �̃n
D(t) = �n

D(t)/
√

n. This leads to∣∣μ√
nWn(t) − (

X̃n(
t + Wn(t)

))+∣∣
≤

∣∣∣∣√n

(
1

n
λn − μ

)
Wn(t)

∣∣∣∣ + ∣∣Ẽn(
t + Wn(t)

) − Ẽn(t)
∣∣(B.14)

+ ∣∣Ãn(
t + Wn(t)

) − Ãn(t)
∣∣ + �̃n

D

(
t + Wn(t)

)
.

Next we show that all terms on the right-hand side of (B.14) converge weakly
to zero as n → ∞. Using (2.1) and Lemma 10, we get∣∣∣∣√n

(
1

n
λn − μ

)
Wn

∣∣∣∣ ⇒ 0 as n → ∞.(B.15)

For any T > 0, by (2.2) and Lemma 10,

sup
0≤t≤T

∣∣Ẽn(
t + Wn(t)

) − Ẽn(t)
∣∣ ⇒ 0 as n → ∞.(B.16)

By (6.8) and Lemma 10,

sup
0≤t≤T

∣∣Ãn(
t + Wn(t)

) − Ãn(t)
∣∣ ⇒ 0 as n → ∞.(B.17)

Set D̃n(t) = (Dn(t) − nμt)/
√

n. It follows from (4.8) that D̃n ⇒ D̃ as n → ∞,
where

D̃(t) = −e′M̃(t) + e′R
∫ t

0
Z̃(s) ds.
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Since D̃ is continuous almost surely, using Lemma 10 again, we have

sup
0≤t≤T

∣∣�̃n
D

(
t + Wn(t)

)∣∣ ⇒ 0 as n → ∞.(B.18)

Combining (B.14)–(B.18), we deduce that

sup
0≤t≤T

∣∣μ√
nWn(t) − (

X̃n(
t + Wn(t)

))+∣∣ ⇒ 0 as n → ∞.(B.19)

By (3.12), the process X̃ is continuous almost surely; then so is (X̃)+. Because
s + Wn(s) ≤ t + Wn(t) for 0 ≤ s ≤ t [see Lemma 3.3 of Dai and He (2010)] and
the process (X̃)+ is continuous almost surely, by Lemma 10 and the random-time-
change theorem, (

X̃n(· + Wn(·)))+ ⇒ (X̃)+ as n → ∞.(B.20)

By (B.19), (B.20) and the convergence-together theorem [see Theorem 3.1 of
Billingsley (1999)],

√
nWn ⇒ (X̃)+/μ as n → ∞. �

PROOF OF LEMMA 3. Recall that any customer who is waiting in queue at
time t ≥ 0 must arrive at the system during [ζ n(t), t] [see (B.1) and the discussion
therein], and must leave the queue (either goes into service or abandons the system)
by time t + Wn(t) [see Lemmas 3.2 and 3.3 of Dai and He (2010)]. This implies

An
Q(t) ≤ An(

t + Wn(t)
) − An(ζ n(t)−).

It follows that for any T > 0,

sup
0≤t≤T

Ãn
Q(t) ≤ sup

0≤t≤T

∣∣Ãn(
t + Wn(t)

) − Ãn(ζ n(t))
∣∣

+ sup
0≤t≤T

|Ãn(ζ n(t)) − Ãn(ζ n(t)−)|.

By (B.10) and (B.17)

sup
0≤t≤T

∣∣Ãn(
t + Wn(t)

) − Ãn(ζ n(t))
∣∣ ⇒ 0 as n → ∞.

By (6.8) and the fact ζ n(t) ≤ t

sup
0≤t≤T

|Ãn(ζ n(t)) − Ãn(ζ n(t)−)|

≤ sup
0≤t≤T

|Ãn(t) − Ãn(t−)| ⇒ 0 as n → ∞.

Hence, (3.25) holds. �
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