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Multifractal analysis of multiplicative random cascades is revisited
within the framework of mixed asymptotics. In this new framework, the ob-
served process can be modeled by a concatenation of independent binary
cascades and statistics are estimated over a sample whose size increases as
the resolution scale (or the sampling period) becomes finer. This allows one
to continuously interpolate between the situation where one studies a single
cascade sample at arbitrary fine scales and where, at fixed scale, the sam-
ple length (number of cascades realizations) becomes infinite. We show that
scaling exponents of “mixed” partitions functions, that is, the estimator of the
cumulant generating function of the cascade generator distribution depends
on some “mixed asymptotic” exponent χ , respectively, above and below two
critical value p−

χ and p+
χ . We study the convergence properties of partition

functions in mixed asymtotics regime and establish a central limit theorem.
Moreover, within the mixed asymptotic framework, we establish a “box-
counting” multifractal formalism that can be seen as a rigorous formulation
of Mandelbrot’s negative dimension theory. Numerical illustrations of our re-
sults on specific examples are also provided. A possible application of these
results is to distinguish data generated by log-Normal or log-Poisson models.

1. Introduction. Multifractal processes have been used successfully in many
applications which involve series with invariance scaling properties. Well-known
examples are fully developed turbulence where such processes are used to model
the velocity or the dissipation energy fields [14] or finance, where they have been
shown to reproduce the major “stylized facts” of return time-series [5, 7, 31]. Since
pioneering works of Mandelbrot [23, 24], Kahane and Peyrière [20], a lot of math-
ematical studies have been devoted to multiplicative cascades, denoted in sequel
as M-cascades (see, e.g., [1, 3, 6, 9, 10, 12, 13, 16, 17, 22, 28, 32, 36, 37]). One
of the central issues of these studies was to understand how the partition function
scaling exponents [hereafter denoted as τ0(q)], are related, on one hand, to the cu-
mulant generating function of cascade weight distribution and, on the other hand,
to the regularity properties of cascade samples. Actually, the goal of the multifrac-
tal formalism is to directly relate the function τ0(q) to the so-called singularity
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spectrum, that is, the Hausdorff dimension of the set of all the points correspond-
ing to a given Hölder exponent. Let us mention that recently continuous versions
of multiplicative cascades have been introduced [2, 4, 8]; they share most of prop-
erties with discrete cascades but do not involve any preferential scale ratio and
remain invariant under time translation. In these constructions, the analog of the
integral scale T , that is, the coarsest scale where the cascade iteration begins, is a
correlation time.

In all the above cited references, the main results concern one single cascade
over one integral scale T in the limit of arbitrary small sampling scale. However,
in many applications (e.g., the above turbulence experiments) there is no reason a
priori that the length of the experimental series corresponds to one (or few) integral
scale(s). From a general point of view, as long as modeling a discrete (time or
space) series with a cascade process is concerned, three scales are involved: (i) the
resolution scale l which corresponds to the sampling period of the series, (ii) the
integral (or correlation) scale T and (iii) the size L of the whole series. Using
these notation, the total number of samples of the series is

N = L

l
.

Therefore, when modeling a discrete series with a multifractal process, various
types of asymptotics for N → +∞ can be defined. The “high resolution asymp-
totics” considered in the literature, corresponds to l → 0 whereas L is fixed. On
the other side, one could also consider the “infinite historic asymptotics” that cor-
responds to L → +∞ whereas l is fixed. If we define NT to be the number of
integral scales involved in the series

NT = L

T

and Nl the number of samples per integral scale

Nl = T

l
,(1)

then we have

N = NT Nl.

Thus, the high-resolution asymptotics corresponds to NT fixed and Nl → +∞
whereas the infinite historic asymptotics corresponds to Nl fixed and NT → +∞.
But in many applications, it is clear that since the relative values of NT and Nl

can be arbitrary, it is not obvious that one of the two mentioned asymptotics can
account suitably for situation. This leads us to consider an asymptotics according
to which NT and Nl go to infinity (and therefore N goes to infinity) and at the
same time preserve their relative “velocities,” that is, the ratio of their logarithm.
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Some authors have already suggested the following “mixed asymptotics” [21, 29,
30]:

NT = N
χ
l ,

where χ ∈ R
+ is a fixed number that quantifies the relative velocities of NT and

Nl . Thus:

• χ = 0 corresponds to the high resolution asymptotics,
• χ → +∞ corresponds to the infinite historic asymptotics

and all other values are truly “mixed” asymptotics. Successful applications of the
mixed asymptotics have already been performed [29, 30]. In this paper we revisit
the standard problems of (i) the estimation of cascade generator cumulant gen-
erating function in the mixed asymptotic framework and of (ii) the multifractal
formalism or of how to relate this function to a dimension-like quantity.

The paper is organized as follows: in Section 2 we recall basic definitions and
properties of M-cascades. Section 3 contains the main results of this paper. If
we define a multifractal measure μ̃ as the concatenation of NT independent M-
cascades of length T , with common generator law W , then we show in Theorem 2

1

log (1/l)
log

(
N−1

N−1∑
k=0

μ̃
([kl, (k + 1)l])p) → p − log2 E[Wp] := τ(p) + 1

for p in some range (p−
χ ,p+

χ ). These critical exponents p−
χ , p+

χ are related to the
two solutions, h−

χ , h+
χ of the equation D(h) = −χ where

D(h) = inf
p

{ph − τ(p)}
is the Legendre transform of τ . The convergence rate is studied in Section 3.5. Let
us stress that the range of validity on p of this convergence is wider in the mixed
asymptotic framework (χ > 0) than in the high resolution asymptotic (χ = 0).
As a consequence we can relate D(h) to a “box-counting dimension” (sometimes
referred to as a box dimension [19] or a coarse-grain spectrum [34]), and derive,
as stated in Theorem 3, a “box-counting multifractal formalism” for μ̃

1

NT

#
{
k ∈ {0, . . . ,N} | μ̃([kl, (k + 1)l]) ∈ [lh−ε, lh+ε]} � l−D(h)

in the range of [h+
χ ,h−

χ ]. Since for χ > 0, D(h) can take negative values in previ-
ous equation, this can be seen as a rigorous formulation of Mandelbrot’s negative
dimension theory [25–27]. In Section 4, we extend previous results to partition
functions relying on some arbitrary wavelet decomposition of the process. In Sec-
tion 5 we give an interpretation of the results connected with the Besov frontier
associated with our multifractal measure. Finally, in Section 6 we discuss some
specific examples where the law of the cascade generator is, respectively, log-
Normal, log-Poisson and log-Gamma. For illustration purpose, we also report, in
each case, estimations performed from numerical simulations. Auxiliary lemmas
are moved to Appendices.
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2. M-cascades: Definitions and properties.

2.1. Definition of the M-cascades. Let us first introduce some notation. Given
a j -uplet r = (r1, . . . , rj ), for all strictly positive integers i ≤ j , we note r|i the
restriction of the j -uplet to its first i components, that is,

r|i = (r1, . . . , ri) ∀i ∈ {1, . . . , j}.
By convention, if j = 0, we consider that r = ∅ and in the sequel, we denote by
rr ′ the (j + j ′)-uplet obtained by concatenation of r ∈ {0,1}j and r ′ ∈ {0,1}j ′

.
Moreover, we note

r =
⎧⎪⎨⎪⎩2j

j∑
i=1

ri2
−i , if r 	= ∅,

0, if r = ∅.
Let fix T ∈ (0,∞) and k ∈ N. We define Ij,k as the interval

Ij,k = [k2−j T , (k + 1)2−j T ].(2)

Thus, for any integer j ≥ 1, the interval [0, T ] can be decomposed as 2j dyadic
intervals:

[0, T ] = ⋃
r∈{0,1}j

Ij,r .

Let us now build the so-called M-cascade measures introduced by Mandelbrot
in 1974 [24]. Let {Wr}r∈{0,1}j ,j≥1 be a set of i.i.d. nonnegative random variables
of mean E[Wr ] = 1. Given j ≥ 1, we define the random measure μj on [0, T ]
such that, for all r ∈ {0,1}j , the Radon–Nikodym derivative with respect to the
Lebesgue measure dμj

dx
is constant on Ij,r with

dμj

dx
=

j∏
i=1

Wr|i on Ij,r for r ∈ {0,1}j .(3)

As it is well known [20], the measures μj have a nontrivial limit measure μ∞,
when j goes to ∞, as soon as E[W log2 W ] < 1. Moreover, the total mass

μ∞([0, T ]) = lim
j→∞T 2−j

∑
r∈{0,1}j

j∏
i=1

Wr|i

satisfies E[μ∞([0, T ])] = T . Let us remark that if r ∈ {0,1}j then by construction
we have

μ∞(Ij,r ) = lim
n→∞T 2−j

j∏
i=1

Wr|i
( ∑

r ′∈{0,1}n
2−n

n∏
i=1

Wrr ′|(j+i)

)
(4)

= 2−j

( j∏
i=1

Wr|i
)
μ(r)∞ ([0, T ]),
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where μ
(r)∞ is a M-cascade measure on [0, T ] based on the random variables Wrr ′

for r ′ ∈ ⋃
j≥1{0,1}j . This equality is usually referred to as “Mandelbrot star equa-

tion.”
In the sequel we need the following set of assumptions:

E[W log2 W ] < 1, P(W = 1) < 1,(5)

P(W > 0) = 1, E[Wp] < ∞ for all p ∈ R.(6)

Let τ(p) be the smooth and concave function defined on R by

τ(p) = p − log2 E[Wp] − 1.(7)

Let us notice that log2 E[Wp] is nothing but the cumulant generating function
(log-Laplace transform) of the logarithm of cascade generator distribution. It is
shown in [20] that for p > 1, the condition τ(p) > 0 implies the finiteness of
E[μ∞([0, T ])p]. By Theorem 4 in [28], the conditions (6) imply the existence of
finite negative moments E[μ∞([0, T ])p], for all p < 0.

2.2. Multifractal properties of M-cascades. A M-cascade is a multifractal
measure and the study of its multifractal properties reduces to the study of the
partition function

Sμ(j,p) =
2j−1∑
k=0

μ∞(Ij,k)
p.(8)

Basically, one can show [28, 32] that, for fixed p, this partition function behaves,
when j goes to ∞, as a power law function of the scale |Ij,k| = T 2−j . More
precisely, let us introduce the two following critical exponents:

p+
0 = inf{p ≥ 1 | pτ ′(p) − τ(p) ≤ 0} ∈ (1,∞],

p−
0 = sup{p ≤ 0 | pτ ′(p) − τ(p) ≤ 0} ∈ [−∞,0).

If p+
0 (resp., p−

0 ) is finite we set h+
0 = τ ′(p+

0 ) [resp., h−
0 = τ ′(p−

0 )].

THEOREM 1 (Scaling of the partition function [32]). Let p ∈ R, the power law
scaling exponent of Sμ(j,p) is given by

lim
j→∞

log2 Sμ(j,p)

−j
−→
a.s.

τ0(p),(9)

where τ0(p) is defined by

τ0(p) =
⎧⎪⎨⎪⎩

τ(p), ∀p ∈ (p−
0 ,p+

0 ),
h+

0 p, ∀p ≥ p+
0 ,

h−
0 p, ∀p ≤ p−

0 .
(10)
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The proof can be found in [32] (see also related results in [9, 28]). This theorem
basically states that Sμ(j,p) behaves like

Sμ(j,p) � 2−jτ0(p).

Let us note that the partition function (8) can be rewritten in the following way:

Sμ(j,p) = ∑
r∈{0,1}j

μ∞(Ij,r )
p,(11)

and using (4), one gets

Sμ(j,p) = 2−jp
∑

r∈{0,1}j

j∏
i=1

W
p
r|i
(
μ(r)∞ ([0, T ]))p,(12)

where the {μ(r)∞ ([0, T ])}r∈{0,1}j are i.i.d. random variables with the same law as
μ∞([0, T ]). Thus, a simple computation shows that

E[Sμ(j,p)] = 2−jp2j
E[Wp]jE[μ∞([0, T ])p] = 2−jτ(p)

E[μ∞([0, T ])p].
One sees that the last theorem states that, in the case p ∈ [p−

0 ,p+
0 ], Sμ(j,p) scales

as its mean value.
On the other hand, the fact that for p /∈ [p−

0 ,p+
0 ] the partition function scales as

given in (10) instead of scaling as its mean value, is referred to as the “lineariza-
tion effect.” A possible explanation of this effect is that for p larger than the critical
exponents p+

0 (resp., smaller than p−
0 ), the sum involved in the partition function

(11) is dominated by its supremum (resp., infimum) term. Thus one should not ex-
pect a law of large numbers to hold for the behavior of this sum. Another possible
interpretation of this theorem in the case p > p+

0 is given in Section 5.

3. Mixed asymptotics for M-cascades.

3.1. Mixed asymptotics: Definitions and notation. A convenient way to con-
struct a multifractal measure on R+, with an integral scale equal to T , is to
patch independent realizations of M-cascades measures. More precisely, consider
{μ(m)∞ }m∈N a sequence of i.i.d. M-cascades on [0, T ] as defined in Section 2.1, and
define the stochastic measure on [0,∞) by

μ̃([t1, t2]) =
+∞∑
m=0

μ(m)∞ ([t1 − mT, t2 − mT ]) for all 0 ≤ t1 ≤ t2.(13)

This model is entirely defined as soon as both T and the law of W are fixed. The
discretized time model for the N samples of the series is {μ̃[kl, (k+1)l]}0≤k<N−1.
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3.2. Scaling properties. In this section, we study the partition function for the
measure μ̃ as defined in (13) in the mixed asymptotic limit. T is fixed, we choose
the sampling step

l = T 2−j , Nl = 2j ,

and the number of integral scales is related with the sampling step as

NT = �Nχ
l � ∼ 2jχ

with χ > 0 fixed. According to (1), one gets for the total number of data

N = NT 2j ∼ 2j (1+χ).

The mixed asymptotics corresponds to the limit j → +∞. The partition function
of μ̃ can be written as [recall (2)]

Sμ̃(j,p) =
N−1∑
k=0

μ̃(Ij,k)
p(14)

=
NT −1∑
m=0

S (m)
μ (j,p),(15)

where S (m)
μ (j,p) is the partition function of μ

(m)∞ , that is,

S (m)
μ (j,p) =

2j−1∑
k=0

μ(m)∞ (Ij,k)
p.(16)

Let us state the results of this section. We introduce the two critical exponents in
the mixed asymptotic framework

p+
χ = inf{p ≥ 1 | pτ ′(p) − τ(p) ≤ −χ} ∈ (1,∞],(17)

p−
χ = sup{p ≤ 0 | pτ ′(p) − τ(p) ≤ −χ} ∈ [−∞,0),(18)

and when these critical exponents are finite we set h+
χ = τ ′(p+

χ ), h−
χ = τ ′(p−

χ ).

THEOREM 2 (Scaling of the partition function in a mixed asymptotics). Let μ̃

be the random measure defined by (13) where the law of W satisfies (5) and (6).
We assume that, either p+

χ < ∞ with τ(p+
χ ) > 0, or p+

χ = ∞ with τ(p) > 0 for
all p > 1.

(1) For all p ∈ R, the power law scaling of Sμ̃(j,p) is given by

lim
j→∞

log2 Sμ̃(j,p)

−j
−→
a.s.

τχ (p),(19)
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where τχ(p) is defined by

τχ(p) =
⎧⎪⎨⎪⎩

τ(p) − χ, ∀p ∈ (p−
χ ,p+

χ ),

h+
χ p, ∀p ≥ p+

χ ,
h−

χ p, ∀p ≤ p−
χ .

Moreover the convergence (19) is uniform with respect to values of p restricted to
any compact subset of R.

(2) If p+
χ < ∞, one has

lim
j→+∞

log2 supk∈[0,N−1] μ̃(Ij,k)

−j
= h+

χ almost surely,(20)

and if p−
χ > −∞, one has

lim
j→+∞

log2 infk∈[0,N−1] μ̃(Ij,k)

−j
= h−

χ almost surely.(21)

REMARK 1. In the case p+
χ < ∞, the assumption τ(p+

χ ) > 0 is stated in The-
orem 2 to insure E[μ∞([0, T ])p] < ∞ for p ∈ [0,p+

χ ). If p+
χ = ∞ then we ask

τ(p) > 0 for all p > 1, and hence the cascade measure has finite moments of
any positive orders. Actually, this can only happens if W is bounded by 2. Such
assumption was not needed in Theorem 1, since one can check that necessarily
τ(p+

0 ) > 0.

REMARK 2. Let us stress that the behavior of the partition function is largely
affected by the choice of a mixed asymptotic: the “linearization effect” now occurs
for p in the set (−∞,p−

χ ) ∪ (p+
χ ,∞), which is smaller when χ increases.

Equations (20) and (21) show that when the “linearization effect” occurs, the
scaling of the partition function (14) is governed by its supremum and infimum
terms for, respectively, large positive and negative p values.

This theorem will be proved in three parts. In Section 3.3.2, we will prove equa-
tion (19) of Theorem 2 only for p ∈ (p−

χ ,p+
χ ). In Section 3.3.3, we will prove

the case p /∈ (p−
χ ,p+

χ ) and (20) and (21) is shown in Section 3.3.4 to be a simple
corollary of this last case.

3.3. Proof of Theorem 2. Although Theorem 2 generalizes the results of [32]
to the case χ 	= 0, our method differs with the one used in this paper. First we need
an auxiliary result which is helpful in the sequel.



MULTIFRACTAL ANALYSIS IN A MIXED ASYMPTOTIC FRAMEWORK 1737

3.3.1. Limit theorem for a rescaled cascade. For each m we denote as
(W

(m)
r )r∈⋃j {0,1}j the set of i.i.d. random variables used for the construction of

the measure μ
(m)∞ . Moreover we assume that for each m ≥ 0, j ≥ 0, r ∈ {0,1}j

we are given a random variable Z(m,r), measurable with respect to the sigma-field
σ(W

(m)
rr ′ | r ′ ∈ ⋃

j {0,1}j ). We make the assumption that the law of Z(m,r) does not
depend on (m, r), and denote by Z a variable with this law.

Let us consider the quantities, for p ∈ R

M(m)
j (p) = 2−jp

∑
r∈{0,1}j

j∏
i=1

(
W

(m)
r|i

)p
Z(m,r)(22)

and

Nj (p) =
NT −1∑
m=0

M(m)
j (p).(23)

PROPOSITION 1. Assume that for some ε > 0, E[|Z|1+ε] < ∞ and −p ×
τ ′(p) + τ(p) < χ , then

2j (τ (p)−χ)Nj (p)
j→∞−−−→ E[Z] almost surely.

PROOF. From (22) and (23) and definition (7) we get

E[Nj (p)] = NT 2j 2−jp
E[Wp]jE[Z]

j→∞∼ 2jχ2−jτ(p)
E[Z].

Hence the proposition will be proved if we show

2j (τ (p)−χ)(Nj (p) − E[Nj (p)]) j→∞−−−→ 0 almost surely.(24)

For an arbitrary small ε > 0, we study the L1+ε(P) norm of the difference. Set

L1+ε
N = E

[|Nj (p) − E[Nj (p)]|1+ε].(25)

Applying successively Lemmas 1 and 2 of Appendix A, we get

L1+ε
N ≤ C2jχ

E
[∣∣M(0)

j (p)
∣∣1+ε]

≤ C2−j [(1+ε)τ (p)−χ]
j∑

k=0

2−kτ(p(1+ε))2k(1+ε)τ (p).

We deduce that 2j (τ (p)−χ)(1+ε)L1+ε
N is bounded by the quantity

C2−jχε
j∑

k=0

2−kτ(p(1+ε))2k(1+ε)τ (p).
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Clearly, as soon as 2−χε2−τ(p(1+ε))2(1+ε)τ (p) < 1, this quantity is, in turn,
bounded by C2−jχε′

for some ε′ > 0. Taking the log, a sufficient condition is

τ(p)(1 + ε) − τ(p(1 + ε))

ε
< χ,

which is implied for ε small enough by

−pτ ′(p) + τ(p) < χ.

Thus we have shown that 2j (τ (p)−χ)(1+ε)L1+ε
N is asymptotically smaller than 2−jε′

with some ε′ > 0. Using the Bienaymé–Chebyshev inequality leads to

P
{
2j (τ (p)−χ)|Nj (p) − E[Nj (p)]| ≥ η

} ≤ 2j (τ (p)−χ)(1+ε)L1+ε
N

η1+ε
≤ C2−jε′

η1+ε

for any η > 0. A simple use of the Borel–Cantelli lemma shows (24). �

3.3.2. Proof of Theorem 2 for p ∈ (p−
χ ,p+

χ ). From (15) and (16) and the
representation (12) for the partition function of a single cascade, we see that
that Sμ̃(j,p) exactly has the same structure as the quantity Nj (p) of Sec-

tion 3.3.1 where Z(m,r) = μ
(m,r)∞ ([0, T ])p are random variables distributed as

Z = μ∞([0, T ])p .
By definition [recall (17) and (18)], the condition −pτ ′(p) + τ(p) < χ holds

for any p ∈ (p−
χ ,p+

χ ), and by Remark 1, E[|Z|1+ε] < ∞ for ε small enough.
Thus, an application of Proposition 1 yields the almost sure convergence

2jτχ (p)Sμ̃(j,p) = 2j (τ (p)−χ)Sμ̃(j,p)
j→∞−−−→ E[μ∞([0, T ])p].(26)

This proves Theorem 2 for the case p ∈ (p−
χ ,p+

χ ).

3.3.3. Proof of Theorem 2 for p /∈ (p−
χ ,p+

χ ). The following proof is an adap-
tation of the corresponding proof in [33]. We need the following notation:

S ∗
μ̃(j) = sup

k∈[0,N−1]
μ̃∞

([k2−j T , (k + 1)2−j T ]),
msup(p) = lim sup

j→∞
log2 Sμ̃(j,p)

−j
, minf(p) = lim inf

j→∞
log2 Sμ̃(j,p)

−j
,

m∗
sup = lim sup

j→∞
log2 Sμ̃(j)∗

−j
, m∗

inf = lim inf
j→∞

log2 Sμ̃(j)∗

−j
.

In Section 3.3.2 we proved that for all p ∈ (p−
χ ,p+

χ ) the following holds almost
surely:

msup(p) = minf(p) = τχ(p).
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We may assume that in an event which has probability one, this equality holds for
all p in a countable and dense subset of (p−

χ ,p+
χ ).

From the sub-additivity of x �→ xρ ,

∀ρ ∈ ]0,1[,∀p ∈ R Sμ̃(p, j)ρ ≤ Sμ̃(ρp, j),

and thus

minf(p) ≥ minf(ρp)

ρ
.

But we have seen that minf(ρp) = τχ(ρp), for a dense subset of ρp ∈ (p−
χ ,p+

χ ).
Assume now for simplicity that p ≥ p+

χ and let ρ → (p+
χ /p), we get

∀p ≥ p+
χ

minf(p)

p
≥ τχ(p+

χ )

p+
χ

= τ(p+
χ ) − χ

p+
χ

= h+
χ ,(27)

where we have used (17).
On the other hand, let p > 0, q ∈ [0,p+

χ ), and q ′ ∈ [0, q), we have

Sμ̃(j, q) =
N−1∑
k=0

μ̃∞
([k2−j T , (k + 1)2−j T ])q

≤ S ∗
μ̃(j)q−q ′ Sμ̃(j, q ′)

≤ Sμ̃(j,p)(q−q ′)/p Sμ̃(j, q ′).
Thus

msup(q) ≥ (q − q ′)
msup(p)

p
+ minf(q

′),

then
msup(p)

p
≤ msup(q) − minf(q

′)
q − q ′ = τχ(q) − τχ(q ′)

q − q ′ .

Taking the limit q ′ → q−

msup(p)

p
≤ inf

q∈[0,p+
χ )

τ ′
χ(q) ≤ τ ′

χ(pχ) = h+
χ .

Merging this last relation with (27) leads to

∀p ≥ p+
χ h+

χ ≤ minf(p)

p
≤ msup(p)

p
≤ h+

χ ,(28)

which proves Theorem 2 for p ∈ [p+
χ ,+∞[. The proof for p ≤ p−

χ is similar.
Finally, it remains to show that the convergence is uniform for p in a compact set.
This is obtained by remarking that if a sequence of concave functions converges
pointwise (on a dense set) to a continuous concave function, then the convergence
is necessarily uniform on compact sets.
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3.3.4. Proof of (20) and (21). The following proof is an adaptation of the cor-
responding proof in [33]. We have for p > 0,

S ∗
μ̃(j)p ≤ Sμ̃(j,p) ≤ N S ∗

μ̃(j)p = �2jχ�2j S ∗
μ̃(j)p,

thus

pm∗
inf,sup ≥ minf,sup(p) ≥ 1 + χ + pm∗

inf,sup,

which means that
minf,sup(p)

p
− 1 + χ

p
≥ m∗

inf,sup ≥ minf,sup(p)

p

and taking the limit p → +∞ and using (28) proves that

m∗
sup = m∗

inf = h+
χ ,

which proves (20). The proof of (21) is obtained analogously by considering p < 0.

3.4. Multifractal formalism and “negative dimensions.” Let D(h) be the
Legendre transform of τ(p)

D(h) = min
p

(
ph − τ(p)

)
.

The multifractal formalism [15] gives an interesting interpretation of D(h), as soon
as D(h) > 0, in terms of dimension of set of points with the same regularity. For

M-cascades, this formalism holds [28], that is, D(h) corresponds to the Hausdorff
dimension of the points t ∈ [0, T ] around which μ∞ scales with the exponent h

D(h) = dimH

{
t, lim sup

ε→0

log2 μ∞([t − ε, t + ε])
log2(ε)

= h

}
.(29)

The right-hand side of (29) is usually referred to as the singularity spectrum and
therefore the multifractal formalism simply states that D(h) can be identified
with the singularity spectrum of the cascade. A consequence of the multifractal
formalism is that the statistical distribution of the singularities can be predicted
from D(h). In a mixed asymptotic framework, our next result shows that this kind
of multifractal formalism still holds for D(h) < 0 in the sense that D(h) governs
the behavior of the population histogram in proportion to the number of cascade
samples. In other words, D(h) coincides with a “latent” box-counting dimension
(sometimes referred to as a box dimension [19] or a coarse-grain spectrum [34]).
Hence the Legendre transform of τ(p) can be interpreted as a “population” di-
mension even for singularity values above and below h+

0 and h−
0 . Since for these

values, one has D(h) < 0, they have been called “negative dimensions” by Man-
delbrot [26]. This simply means that they cannot be observed on a single cascade
sample; rather one needs at least 2jχ realizations to observe them with a “cardi-
nality” like 2j (χ+D(h)). In that respect, they have also been referred to as “latent”
singularities [27].
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THEOREM 3. Assume p+
χ < ∞, p−

χ > −∞ and τ(p+
χ ) > 0. Let h ∈ (h+

χ ,h−
χ ),

then

lim
ε→0

lim
j

1

j
log2 #

{
k ∈ {0, . . . ,N − 1} | 2−j (h+ε) ≤ μ̃(Ij,k) ≤ 2−j (h−ε)}

(30)
= χ + D(h),

lim
ε→0

lim
j

1

j
log2 #

{
k ∈ {0, . . . ,N − 1} | 2−j (h+ε) ≤ μ̃(Ij,k) ≤ 2−j (h−ε)}

(31)
= χ + D(h).

PROOF. The proof of the theorem relies on an application of the Gärtner–
Ellis theorem to a well chosen empirical measure. Denote νj the probability on R

defined as the sum of Dirac masses

νj (dx) = 1

NT 2j

NT −1∑
m=0

2j−1∑
k=0

δ{log(μ
(m)∞ (Ij,k))} = 1

N

N−1∑
k=0

δ{log(μ̃(Ij,k))}.

Clearly, the log Laplace transform of the measure νj is related to the partition
function of μ̃ in the following way:

log2

∫
R

epxνj (dx) = log2 Sμ̃(j,p) − log2(NT ) − j.

Then, Theorem 2 implies that on a set of probability one, the following conver-
gence holds for all p ∈ R:

1

j
log2

∫
R

epxνj (dx)
j→∞−−−→ −τχ(p) − χ − 1 := �χ(p).

Now, on the set where this convergence holds, we apply the Gärtner–Ellis theorem
[11] to the sequence of probability measures (νj )j . This yields that, almost surely,
the following large deviation inequalities hold for any set A ⊂ R:

lim
j

1

j
log2

∫
R

1{x/j∈A}νj (dx) ≥ − inf
a∈ ◦

A

�∗
χ(a),(32)

lim
j

1

j
log2

∫
R

1{x/j∈A}νj (dx) ≤ − inf
a∈A

�∗
χ(a).(33)

Let h ∈ (h+
χ ,h−

χ ) and specify A = [−h − ε,−h + ε], then the quantity

N

∫
R

1{x/j∈A}νj (dx)

is the cardinality of the set{
k ∈ {0, . . . ,N − 1} | 2−j (h+ε) ≤ μ̃(Ij,k) ≤ 2−j (h−ε)}.
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Meanwhile, if a ∈ (−h−
χ ,−h+

χ ) simple considerations on the Legendre transform
show that �∗

χ(a) = −D(−a) + 1. Hence if A = [−h − ε,−h + ε] ⊂ (−h−
χ ,−h+

χ )

the right-hand side in the Gärtner–Ellis theorem reads

− inf
a∈[−h−ε,−h+ε]

(−D(−a) + 1
)
,

which converges to D(h) − 1 as ε → 0. Now, we deduce (30) and (31) from (32)
and (33). �

3.5. Central limit theorems. In this section, we briefly study the rate of the
convergence of Sμ̃(j,p) as j → ∞ of (19) in Theorem 2. Using the same notation
as in the proof of Theorem 2, we write

Sμ̃(j,p) = �2jχ�2−jτ(p)
E[μ∞([0, T ])p] + Aj + Bj ,(34)

where

Aj =
NT −1∑
m=0

2−jp
∑

r∈{0,1}j

( j∏
i=1

W
(m)p
r|i

)(
μ(m,r)∞ ([0, T ])p − E[μ∞([0, T ])p])

and

Bj =
NT −1∑
m=0

(
2−jp

∑
r∈{0,1}j

j∏
i=1

W
(m)p
r|i − 2−jτ(p)

)
E[μ∞([0, T ])p].

PROPOSITION 2. Assume (5) and (6) and that, either p+
χ < ∞ with τ(p+

χ ) >

0, or p+
χ = ∞ with τ(p) > 0 for all p > 1. If p−

χ /2 < p < p+
χ /2, then

2j (τ (2p)−χ)/2Aj
j→∞−−−→ N (0,Var(μ∞([0, T ])p)).

PROOF. Consistently with the notation of Section 3.3.1, we define, for
every r ∈ {0,1}j and m = 0, . . . ,NT − 1, the random variables Z̃(m,r) =
μ

(m,r)∞ ([0, T ])p − E[μ∞([0, T ])p] and denote by Z̃ = μ∞([0, T ])p − E[μ∞([0,

T ])p] their common law. Furthermore, we will need the quantity

ηm,r,j (p) = 2j (τ (2p)−χ)/22−jp

( j∏
i=1

W
(m)p
r|i

)
Z̃(m,r),(35)

and the following family of σ -fields: for j ≥ 0

F−1,j := σ
(
W(m)

r , |r| ≤ j,m = 0, . . . ,NT − 1
)

and for every k = 0, . . . , n(j) = 2j (NT − 1)

Fk,j = F−1,j ∨ σ
(
Z̃(m,r), r + 2jm ≤ k

)
.
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For fixed j , we have a one-to-one correspondence between (m, r) and k = r+2jm,
so abusing notation slightly, we write ηk,j (p) instead of ηm,r,j (p) in (35) when no
confusion is possible. With the notation

2(τ (2p)−χ)/2Aj =
n(j)∑
k=0

ηk,j (p),

where ηk,j (p) is Fk,j -measurable and

E[ηk,j (p) | Fk−1,j ] = 0 ∀k = 0, . . . , n(j).

Thus, we are dealing with a triangular array of martingale increments. Let us con-
sider the sum of the conditional variances,

Vj =
n(j)∑
k=0

E[ηk,j (p)2 | Fk−1,j ].(36)

We have

Vj = Var(Z̃)2j (τ (2p)−χ)2−2jp
NT −1∑
m=0

∑
r∈{0,1}j

j∏
i=1

(
W

(m)
r|i

)2p;

thus by application of Proposition 1 (with the choice of Z(m,r) equal to 1) we get

Vj
j→∞−−−→ Var(Z̃).

Hence the proposition will be proved if we can show that the triangular array sat-
isfies a Lindeberg condition, for some ε > 0,

V
(ε)
j =

n(j)∑
k=0

E[|ηk,j (p)|2+ε | Fk−1,j ] j→∞−−−→ 0.

But, we have

V
(ε)
j = E[|W |2+ε]2j (τ (2p)−χ)(1+ε/2)2−j (2+ε)p

∑
r∈{0,1}j

j∏
i=1

(
W

(m)
r|i

)2+ε

and by application of the Proposition 1, the order of magnitude of V
(ε)
j is

2j ((τ (2p)−χ)(1+ε/2)−(τ ((2+p)ε)−χ)). Thus, it can be seen that V
(ε)
j converges to zero,

for ε small enough, by the condition 2pτ ′(2p)− τ(2p) > −χ . This completes the
proof of the proposition. �

PROPOSITION 3. Assume (5) and (6) and that, either p+
χ < ∞ with τ(p+

χ ) >

0, or p+
χ = ∞ with τ(p) > 0 for all p > 1. Then:
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1. If τ(2p) − 2τ(p) > 0 we have

2j (τ (p)−χ/2)Bj → N (0, c(p)),(37)

where c(p) = E[μ∞([0, T ])p]2 22τ(p)−τ(2p)+1−1
2−22τ(p)−τ(2p)+1 .

2. If τ(2p) − 2τ(p) = 0, we have Var(Bj ) = O(j2−j (τ (2p)−χ)).
3. If τ(2p) − 2τ(p) < 0, we have Var(Bj ) = O(2−j (τ (2p)−χ)).

PROOF. Denote ν
(m)
j the measures defined at the step j of the construction of

the M-cascade on [0,1] based on Wp/E[Wp]

ν
(m)
j ([0,1]) = 2−j

∑
r∈{0,1}j

j∏
i=1

(
W

(m,r)
r|i

)p
E[Wp]−j for m ∈ {0, . . . ,NT − 1}.

With this notation we have

Bj = E[μ∞([0, T ])p]2−jτ(p)
NT −1∑
m=0

(
ν

(m)
j ([0,1]) − 1

)
(38)

and using Kahane and Peyrière’s results [20], we know that for each m the se-
quence (ν

(m)
j ([0,1]))j is bounded in Lq as soon as τ(pq) − qτ(p) > 0.

We first focus on the case τ(2p) − 2τ(p) > 0. Hence the sequence (ν
(m)
j ([0,

1]))j is bounded in L2+ε-norm for some ε > 0. Using that (ν
(m)
j ([0,1]) − 1)m

is a centered i.i.d. sequence and classical considerations for triangular array of
martingale increments, one can show that a central limit theorem holds:

N
−1/2
T

NT −1∑
m=0

(
ν

(m)
j ([0,1]) − 1

) j→∞−−−→ N
(
0,Var

(
ν(0)∞ ([0,1]))),

where ν
(0)∞ ([0,1]) = limj→∞ ν

(0)
j ([0,1]). From this and (38) we deduce (37) with

c(p) = E[μ∞([0, T ])p]2 Var(ν(0)∞ ([0,1])). Computing the variance of a cascade
measure as a function of its generator yields to the expression of c(p) given in the
statement of the proposition.

In the cases τ(2p) − 2τ(p) ≤ 0, by (38) again we have

Var(Bj ) = �2jχ�2−j2τ(p)
E[μ∞([0, T ])p]2 Var

(
ν

(0)
j ([0,1])).

Now Var(ν(0)
j ([0,1])) = E[ν(0)

j ([0,1])2]−1 is unbounded as j → ∞, but a careful
look at the computations in Lemma 2 with ε = 1 yields to

E
[
ν

(0)
j ([0,1])2] j→∞∼

j∑
l=0

2−l2l(2τ(p)−τ(2p)).

We deduce that Var(Bj ) = O(2−j (2τ(p)−χ)∑j
l=0 2−l2l(2τ(p)−τ(2p))). Then, the

theorem follows in the cases τ(2p) − 2τ(p) = 0 and τ(2p) − 2τ(p) < 0. �
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REMARK 3. By (34) the difference between 2(τ (p)−χ)j Sμ̃(j,p) and its limit
is decomposed into two dissimilar error terms: particularly the fact that the con-
tribution of Bj converges to zero is due to the observation of a large number of
integral scales, whereas the contribution of Aj vanishes as the sampling step tends
to zero. For those reasons, in the case χ = 0, only a central limit theorem for a
term similar to Aj was studied in [32] while the contribution of Bj was considered
as a bias term (see also [33]).

In the case τ(2p) − 2τ(p) > 0, the contribution of Bj strictly dominates and

2j (τ (p)−χ)Sμ̃(j,p) − E[μ∞([0, T ])p] is of magnitude 2−jχ/2 ∼ N
−1/2
T .

If τ(2p) − 2τ(p) < 0, the magnitude of Aj and Bj are the same and
2j (τ (p)−χ)Sμ̃(j,p)−E[μ∞([0, T ])p] is asymptotically bounded by terms of mag-

nitude 2j (−χ+2τ(p)−τ(2p))/2. This rate of convergence is slower than N
−1/2
T .

The variance terms appearing in Propositions 2 and 3 can be estimated from
the data. For instance, the quantity Var(μ∞([0, T ])p) is simply estimated by the
corresponding empirical variance of the sequence (μ̃([mT, (m + 1)T ])p)m.

If the purpose is to estimate τ(p) rather than study the partition function itself,
then it appears that 1

j
log(Sμ̃(j,p)) suffers from a bias of magnitude 1/j and is not

a satisfactory estimator. The same problem occurs in the case of a single cascade
and this bias term is removed by considering the ratio between partition functions
at different scales [32, 33]. In our situation the partition function at finer scale are
constructed from series with longer size. Hence a similar approach necessitates the
introduction of a partition function at scale T 2−(j+1) based on the part of the series

available at the coarser scale. We let Ŝμ̃(j + 1,p) = ∑�2jχ �−1
m=0 S (m)

μ (j + 1,p), and
then it can be seen that Ŝμ̃(j + 1,p)/Sμ̃(j,p) provides us with an estimator of
2−τ(p). Applying the same algebraic manipulation as in the beginning of the proof
of Proposition 8.2 of [33] it can be seen that Ŝμ̃(j + 1,p) − 2−τ(p)Sμ̃(j,p) has
the same structure as the above term Aj , and thus a central limit theorem can be

shown 2j (τ (2p)−χ)(Ŝμ(j + 1,p) − 2−τ(p)Sμ(j,p))
j→∞−−−→ N (0, ĉ(p)) for some

constant ĉ(p). In turn, this implies that 2j (χ−2τ(p)+τ(2p))/2(
Ŝμ̃(j+1,p)

Sμ̃(j,p)
− 2−τ(p))

is asymptotically Gaussian. Based on this result, a confidence interval could be
constructed for the estimation of 2−τ(q), but we do not pursue here for the sake of
shortness.

4. Extension to wavelet based partition functions. In most applications,
one must use wavelets to analyze a signal in order to suppress eventual super-
imposed regular behavior (such as a trend). In this section, we assess the regularity
of the path t �→ μ̃([0, t]) via the behavior of its wavelet coefficients. Moreover, this
choice suppresses the unnatural fact that the partition function was constructed on
exactly the same grid as the dyadic cascade measure.
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4.1. Notation. In this section we assume, for notational convenience, that
T = 1. Consider now g a “generalized box” function. It is a real valued function
that satisfies the following assumptions:

(H1) g has compact support included in [0,2J ], for some J ≥ 0.
(H2) g is piecewise continuous.
(H3) g is at least nonzero on an interval.

Following the common wavelet notation, we define

gj,k(t) = g(2j t − k).

The support of gj,k(t) is

Suppgj,k = [2−j k,2−j k + 2J−j ].(39)

In the sequel, if μ is a random measure, for any Borel function f we will use the
notation

〈μ,f 〉 =
∫

f (t) dμ(t).

4.2. The generalized partition function: Scaling properties. We define the
generalized partition function of an M-cascade μ∞ on [0,1] at scale 2−j as

Sμ,g(j,p) =
2j−2J −1∑

k=0

|〈μ∞, gj,k〉|p.(40)

Remark that for simplicity we removed a finite number of border terms, and that, in
the case where g(t) is the “box” function g(t) = 1[0,1](t) we recover the partition
function of Section 2.1.

Let us study the scaling of E[Sμ,g(j,p)].

PROPOSITION 4. Assume (5) and (6) and let p > 0. Then, we have K1 ×
2−jτ(p) ≤ E[Sμ,g(j,p)] ≤ K22−jτ(p) for K1, K2, two positive constants depend-
ing on p, W and g.

PROOF. Since |g(t)| is clearly a bounded function, we have

E[|〈μ∞, gj,k〉|p] ≤ CE
[
μ∞([2−j k,2−j k + 2J−j ])p],

where C is a constant. We write μ∞([2−j k,2−j k + 2J−j ]) = ∑2J −1
l=0 μ∞(Ij,k+l),

and deduce

E[|〈μ∞, gj,k〉|p] ≤ CE[|μ∞[0,2−j ]|p] = K2−j (τ (p)+1),(41)

where K only depends on g and the law of W . By (40) we get the upper bound for
E[Sμ,g(j,p)].
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For the lower bound, let us write that Sμ,g(j,p) is greater than

2j−J −1∑
k′=0

|〈μ∞, gj,2J k′ 〉|p.

But gj,2J k′ is supported on [k′2J−j , (k′ + 1)2J−j ], and thus applying Lemma 3 in
the Appendix B with a = j − J , we deduce

〈μ∞, gj,2J k′ 〉 = 2J−j

(j−J∏
i=1

Wr|i
)
Z,

where, in law, Z is equal to 〈μ∞, gJ,0〉. Thus E[|〈μ∞, gj,k〉|p] is greater than

2p(J−j)
E[Wp]j−J

E[|〈μ∞, gJ,0〉|p] = K2−j (τ (p)+1)
E[|〈μ∞, gJ,0〉|p].

Applying Lemma 4 with f = gJ,0 shows that E[|〈μ∞, gJ,0〉|p] is some positive
constant. Then the lower bound for E[Sμ,g(j,p)] easily follows. �

4.3. The partition function in the mixed asymptotic framework. Follow-
ing (15), we define the partition function in the mixed asymptotic framework as

Sμ̃,g(j,p) =
NT −1∑
m=0

S (m)
μ,g(j,p),

where S (m)
μ,g(j,p) is the partition function of μ

(m)∞ , that is,

S (m)
μ,g(j,p) =

2j−2J −1∑
k=0

∣∣〈μ(m)∞ , gj,k

〉∣∣p.

We have the following result.

THEOREM 4 (Scaling of the generalized partition function in a mixed asymp-
totic). Let p > 0, then under the same assumptions as Theorem 2 the power law
scaling of Sμ̃,g(j,p) is given by

lim
j→∞

log2 Sμ̃,g(j,p)

−j
−→
a.s.

τχ (p).

PROOF. Using Proposition 4 we have, limj→∞ 1
−j

log2 E[Sμ̃,g(j,p)] =
τχ(p), and we just need to prove that, almost surely,

Sμ̃,g(j,p) − E[Sμ̃,g(j,p)] = o
(
2−jτχ (p)).

Using Lemmas 5 and 6 of Appendix B, this is done in the exact same way as the
proof of (24) in Proposition 1. �



1748 BACRY, GLOTER, HOFFMANN AND MUZY

5. Link with Besov spaces. Following [18], one may define for a measure μ

on [0, T ], the boundary of its Besov domain as the function sμ : (0,∞) → R∪{∞}
given by

sμ(1/p) = sup

{
σ ∈ R

∣∣∣∣ sup
j≥0

2jσ

(
2−j

2j−1∑
k=0

|μ(Ij,k)|p
)1/p

< ∞
}
.

The following proposition can be shown (see [18]).

PROPOSITION 5. The function sμ is an increasing, concave function, with a
derivative bounded by 1.

Let us stress that the condition s′
μ(1/p) ≤ 1 is a simple consequence of the

Sobolev embedding for Besov spaces. Theorem 4 characterizes the Besov domain
for μ∞ a M-cascade on [0, T ]

∀p > 0 sμ∞(1/p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ(p) + 1

p
, if

1

p
>

1

p0
,

h+
0 + 1

p
, if

1

p
≤ 1

p0
.

If we denote s( 1
p
) = τ(p)+1

p
, then it is simply checked that the condition 1/p >

1/p+
0 is equivalent to s′(1/p) < 1. Hence Proposition 5 explains why for 1/p ≤

1/p+
0 the boundary of the Besov domain must be linear with a slope equal to one.

In mixed asymptotic the support of the measure grows with j but we can still
define, using the notation of Section 3, the index

s
χ

μ̃
(1/p) = sup

{
σ ∈ R

∣∣∣∣ sup
j≥0

2jσ

(
N−1

T 2−j
NT 2j−1∑

k=0

|μ̃(Ij,k)|p
)1/p

< ∞
}
.

Then, it is simply checked that Theorem 2 implies s
χ

μ̃
(1/p) = s(1/p) when

s ′(1/p) < 1 + χ , and s
χ

μ̃
(1/p) = h+

χ + 1+χ
p

otherwise. This shows how the linear

part in s
χ

μ̃
is shifted to larger values of p under the mixed asymptotic framework.

6. Numerical examples and applications. Our goal in this section is not to
focus on statistical issues or on precise estimates of multifractal exponents from
empirical data. We rather aim at illustrating the results of Theorem 2 on precise
examples, namely random cascades with, respectively, log-Normal, log-Poisson
and log-Gamma statistics. For the sake of simplicity we will consider exclusively
scaling of partition function for p ≥ 0.1 In order to facilitate the comparison of the
three models, λ2 will represent the so-called intermittency coefficient, that is,

λ2 = −τ ′′(0),

1Numerical methods for estimating τ (p) for p < 0 are trickier to handle [38].
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where τ(p) is defined in (7). This value will be fixed for the three considered
models. Let {Wr} be the cascade random generators as defined in (3), and let ωr =
lnWr .

In the simplest, log-Normal case the {ωr}r are normally distributed random vari-
ables of variance λ2 ln(2). Thanks to the condition E[Wr ] = E[eωr ] = 1, their mean
is necessarily −λ2 ln(2)/2. In that case, the cumulant generating function τ(p) de-
fined in (7) is simply a parabola

τ (LN)(p) = p

(
1 + λ2

2

)
− λ2

2
p2 − 1.

In the log-Poisson case, the variables ωr are written as ωr = m0 ln(2) + δnr

where the nr are integers distributed according to a Poisson law of mean γ ln(2).
It results that τ(p) = p(1 − m0) + γ (1 − epδ) − 1. If one sets τ(1) = 0 and
τ ′′(0) = −λ2, one finally gets the expression of τ(p) of a log-Poisson cascade
with intermittency coefficient λ2

τ (LP)(p) = p

(
1 + λ2

δ2 (eδ − 1)

)
+ λ2

δ2 (1 − epδ).(42)

In third case the variables ωr are drawn from a Gamma distribution. If x is a
random variable of p.d.f. βα ln(2)xα ln(2)−1e−βx/�(α ln(2)), then one chooses ωr =
x + m0 ln(2) and it is easy to show that τ(p) is defined only for p < β , and in this
case τ(p) = p(1 − m0) + α(1 − p/β). By fixing τ(1) = 1 and τ ′′(0) = λ2, one
obtains

τ (LG)(p) = p

(
1 − λ2β2 ln

β − 1

β

)
+ λ2β2 ln

β − p

β
.(43)

Notice that one recovers the log-Normal case from both log-Poisson and log-
Gamma statistics in the limits δ → 0 and β → +∞, respectively.

For the 3 cases, one can explicitly compute all the mixed asymptotic exponents
as functions of χ : in particular the values of p±

χ read

p±
χ,n = ±

√
2(1 + χ)

λ2 ,

p±
χ,p = W(±, (δ2(1 + χ) − λ2)/(eλ2)) + 1

δ
= p±

χ,n + 2(1 + χ)

3λ2 δ + O(δ2),

p±
χ,g = β

[
1 + 1 + χ

λ2β2 − e1+W(±,−e−1−(1+χ)/(λ2β2))

]
= p±

χ,n − 4(1 + χ)

3λ2β
+ O(β−2),

where suffixes n,p,g stand for, respectively, log-Normal, log-Poisson and log-
Gamma cascades, and W(±, z) represent the two branches of the Lambert W(z)

function, namely the solution of W(z)eW(z) = z that take (resp., positive and neg-
ative) real values for the considered arguments. For log-Poisson and log-Gamma
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FIG. 1. Three synthetic samples of M-cascades with T = 213 and intermittency coefficient
λ2 = 0.2: (a) log-Normal sample, (b) log-Poisson sample with δ = −0.1 and (c) log-Gamma sam-
ple with β = 10. In fact we used μjmax+5[n,n + 1]

n=0,...,L
as a proxy of μ∞[n,n + 1] with

jmax = log2(T ) = 13 [see (3) for the definition of μj ].

cases, we have also indicated the asymptotic behavior in the limits δ → 0 and
β → ∞. The values h±

χ can be easily deduced form their definition: h±
χ = τ ′(p±

χ ).
In Figure 1 is plotted a sample of each of the three examples of M-cascades. We

chose T = 213 and λ2 = 0.2 for all models while, in the log-Poisson case we have
set δ = −0.1 and β = 10 in the log-Gamma model. In each case, an approximation
of the M-cascade sample is generated. We chose to generate μ18 [as defined by
(3)] so that the smallest scale involved is lmin = 2−18T = 2−5 (we have checked
that the results reported below do not depend on lmin). An approximation of μ̃ is
generated by concatenating i.i.d. realizations of μ18. Then, for each model and for
each chosen value of χ , τχ(p) (p = 0, . . . ,6) was obtained from a least square
fit of the curve log2 Sμ̃(j,p) versus j over the range j = 0, . . . ,6. Let us recall
that, for each value of j , the mixed asymptotic regime corresponds to sampling μ̃

at scale l = 2−jT and over an interval of size L = 2jχT . The exponents reported
in Figures 2 and 3 represent the mean values of exponents estimated in that way
using N = 130 experiments.
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FIG. 2. Estimates of the function τχ (p) of log-Normal cascades with λ2 = 0.2 for χ = 0 (•),
χ = 0.5 (◦) and χ = 1 (�). Dashed lines represent the corresponding analytical expression from
Theorem 2, and the solid line represents the function τ (q) as defined in (7). τχ is estimated from
the average over 130 trials of 2jχ cascades samples. Error bars are reported on the χ = 0 curve as
vertical solid bar. These errors are of order of symbol size.

The log-Normal mixed asymptotic scaling exponents for χ = 0,0.5,1 are repre-
sented in Figure 2. For illustration purpose we have plotted τχ(p)+χ as a function
of p: one clearly observes that, as the value of χ increases, the value of p+

χ be-
low which the function is linear, also increases while the value of the slope h+

χ

decreases. As expected, when χ increases τχ(p) + χ matches τ(p) over an in-
creasing range of p values. Notice that the estimated exponents are very close the

FIG. 3. Estimates of the function τχ (p) of log-Poisson and log-Gamma for χ = 0 (•) and
χ = 1 (◦). In both models we chose T = 213 and λ2 = 0.2. (a) Log-Poisson case with δ = −0.1.
(b) Log-Gamma case with β = 10. Solid lines represent the curves τ (p).
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analytical predictions as represented by the dashed lines. Error bars on the mean
value estimates are simply computed from the estimated r.m.s. over the 130 trials
and are reported only for the χ = 0 curve. We can see that these errors are smaller
or close to the symbol thickness.

In Figure 3 are reported estimates of τχ(p), χ = 0,1 for log-Poisson [Fig-
ure 3(a)] and log-Gamma [Figure 3(b)] samples. The solid lines represent the the-
oretical τ(p) functions for both models as provided by (42) and (43). We used
the same estimation procedure as for the log-Normal case. One sees that, in both
cases, since the intermittency coefficient is the same for the three models, the clas-
sical τ0(p) curves are very similar to the log-Normal curve (Figure 2). However,
these models behave very differently in mixed regime: for χ = 1, log-Poisson and
log-Gamma both estimated scaling exponents become closer to the respective val-
ues of τ(p) and are very easy to distinguish. Let us mention that such a analysis
has been recently performed by two of us in order to distinguish two popular log-
Normal and log-Poisson models for spatial fluctuations of energy dissipation in
fully developed turbulence [29].

APPENDIX A: LEMMA USED FOR THE PROOF OF THEOREM 2

LEMMA 1. We have

L1+ε
N ≤ C2jχ

E
[∣∣M(0)

j (p)
∣∣1+ε]

,

where L1+ε
N is defined by (25) and C is a constant that depends only on ε.

PROOF. According to [35], if ε ∈ [0,1] and if {Xi}1≤i≤P are centered inde-
pendent random variables one has

E

[∣∣∣∣∣
P∑

i=1

Xi

∣∣∣∣∣
1+ε]

≤ C

P∑
i=1

E[|Xi |1+ε],

where C is a constant that depends only on ε (and neither on the law of X nor
on P ). Applying it with P = NT = �2jχ� to the expression (23) of Nj (p), and

using the fact that the random variables {M(m)
j (p)}m defined by (22) are i.i.d., one

gets

L1+ε
N ≤ C2jχ

E
[∣∣M(0)

j (p) − E
[

M(0)
j (p)

]∣∣1+ε]
≤ C2jχ (

E
[∣∣M(0)

j (p)
∣∣1+ε]+ E

[∣∣M(0)
j (p)

∣∣]1+ε)
.

Using the Jensen’s inequality we get the result. �

LEMMA 2. Assume that E[|Z|1+ε] < ∞. Then we have for all m,

E
[∣∣M(m)

j (p)
∣∣1+ε] ≤ C2−j (1+ε)τ (p)

j∑
k=0

2−kτ(p(1+ε))2k(1+ε)τ (p),

where C is a constant that depends only on p and ε.
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PROOF. The proof of this result is very much inspired from [33]. Since the
law of M(m)

j (p) is independent of m, we forget the supscript m throughout the
proof. Using definition (22), one gets

E[|Mj (p)|1+ε] = 2−jp(1+ε)
E

[∣∣∣∣∣ ∑
r∈{0,1}j

j∏
i=1

W
p
r|iZ

(r)

∣∣∣∣∣
1+ε]

.(44)

Let

X = 2−jp
∑

r∈{0,1}j

j∏
i=1

W
p
r|iZ

(r),(45)

then

X2 = 2−2jp
∑

r1∈{0,1}j

∑
r2∈{0,1}j

j∏
i=1

W
p
r1|iW

p
r2|iZ

(r1)Z(r2).

It can be rewritten as

X2 = Y + D,(46)

where Y corresponds to the nondiagonal terms

Y = 2−2jp
∑

r1∈{0,1}j

∑
r2∈{0,1}j

r2 	=r1

j∏
i=1

W
p
r1|iW

p
r2|iZ

(r1)Z(r2)(47)

and D to the diagonal terms

D = 2−2jp
∑

r∈{0,1}j

j∏
i=1

W
2p
r|i

(
Z(r))2

.(48)

The left-hand side of (44) is nothing but E[|X|1+ε]. By writing that E[|X|1+ε] =
E[(X2)(1+ε)/2], using the sub-additivity of x �→ x(1+ε)/2, we get

E[|X|1+ε] ≤ E
[|Y |(1+ε)/2]+ E

[
D(1+ε)/2].(49)

Let us first work with the Y term. We factorize the common beginning of the words
r1 and r2 in the expression (47) of Y

Y = 2−2jp
j−1∑
k=0

∑
r∈{0,1}k

k∏
i=1

W
2p
r|i

∑
r1,r2∈{0,1}j−k

r1|0	=r2|0

j∏
i=k+1

W
p
rr1|iW

p
rr2|iZ

(r1)Z(r2).
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Again by the sub-additivity of x �→ x(1+ε)/2 and using the fact that the Wr|i are
i.i.d., one gets

E
[|Y |(1+ε)/2]

≤ 2−jp(1+ε)
j−1∑
k=0

E
[
Wp(1+ε)]k

× ∑
r∈{0,1}k

E

[( ∑
r1,r2∈{0,1}j−k

r1|0	=r2|0

j∏
i=k+1

W
p
rr1|iW

p
rr2|i

× ∣∣Z(r1)Z(r2)
∣∣)(1+ε)/2]

,

and by using Jensen’s inequality

E
[|Y |(1+ε)/2]

≤ 2−jp(1+ε)
j−1∑
k=0

E
[
Wp(1+ε)]k

(50)

× ∑
r∈{0,1}k

( ∑
r1,r2∈{0,1}j−k

r1|0	=r2|0

j∏
i=k+1

E[Wp
rr1|iW

p
rr2|i]

× E
[∣∣Z(r1)Z(r2)

∣∣])(1+ε)/2

.

The variables Z(r1) and Z(r2) are independent with finite expectation; thus the
term E[|Z(r1)Z(r2)|] is bounded by a constant C. Using

∏j
i=k+1 E[Wp

rr1|iW
p
rr2|i] =

E[Wp]2(j−k), we deduce

E
[|Y |(1+ε)/2] ≤ C2−jp(1+ε)

j−1∑
k=0

E
[
Wp(1+ε)]k

E[Wp](j−k)(1+ε)

× ∑
r∈{0,1}k

∣∣∣∣ ∑
r1,r2∈{0,1}j−k

r1|0	=r2|0

1
∣∣∣∣(1+ε)/2

.

There are 2k possible values for r and less than 22(j−k) values for the couple
(r1, r2), thus

E
[|Y |(1+ε)/2] ≤ 2−jp(1+ε)K

j−1∑
k=0

E
[
Wp(1+ε)]k

E[Wp](j−k)(1+ε)2k2(j−k)(1+ε).
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Since 2−jτ(p) = 2−jp2j
E[Wp]j

E
[|Y |(1+ε)/2] ≤ K2−j (1+ε)τ (p)

j−1∑
k=0

2−kτ(p(1+ε))2k(1+ε)τ (p).(51)

Let us now take care of the diagonal terms of X (48). First, we write

D(1+ε)/2 ≤ 2−jp(1+ε)
∑

r∈{0,1}j

j∏
i=1

W
p(1+ε)
r|i

∣∣Z(r)
∣∣1+ε

,

and using the E[|Z|1+ε] < ∞ we deduce that

E
[
D(1+ε)/2] ≤ C2−jp(1+ε)2j

E
[
Wp(1+ε)]j = C2−jτ(p(1+ε)).(52)

Merging (51) and (52) into (49) leads to

E[|X|1+ε] ≤ K2−j (1+ε)τ (p)
j∑

k=0

2−kτ(p(1+ε))2k(1+ε)τ (p)

and since E[|Mj (p)|1+ε] = E[|X|1+ε], it completes the proof. �

APPENDIX B: LEMMA USED FOR THE PROOF OF THEOREM 4

LEMMA 3. Let f : [0,1] → R be some Borel function whose support is in-
cluded in Ia,r = [ r

2a , (r+1)
2a ] for r ∈ {0,1}a , a ≥ 0. Then

〈μ∞, f 〉 = 2−a

(
a∏

i=1

Wr|i
)〈

μ(r)∞ , f̃
〉
,(53)

where f̃ (x) = f (2−a(x + r)) and μ
(r)∞ is a cascade measure on [0,1] measurable

with respect to the sigma field σ {Wrr ′, r ′ ∈ {0,1}a′
, a′ ≥ 1}.

PROOF. The scaling relation (53) is easily obtained, by the definition of the
measure μ∞, if f is the characteristic function of some interval Ia+a′,rr ′ where

r ′ ∈ {0,1}a′
, a′ ≥ 0. This relation extends to any Borel function f by standard

arguments of measure theory. �

LEMMA 4. Let h : [0,1] → R be a piecewise continuous, nonzero, function.
Then E[|〈μ∞, h〉|p] > 0 for all p > 0.

PROOF. By contradiction, assume that for some p > 0, E[|〈μ∞, h〉|p] = 0.
Hence 〈μ∞, h〉 = 0, P-almost surely. But using Lemma 3,

0 = 〈μ∞, h〉 = 〈
μ∞, h1[0,1/2]

〉+ 〈
μ∞, h1(1/2,1]

〉
= 1

2W0
〈
μ(0)∞ , h(0)〉+ 1

2W1
〈
μ(1)∞ , h(1)〉,
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where h(0)(·) = h(2−1·), h(1)(·) = h(2−1(· + 1)) and μ
(0)∞ , μ

(1)∞ are independent
cascade measures on [0,1]. Thus we deduce W0〈μ(0)∞ , h(0)〉 = −W1〈μ(1)∞ , h(1)〉 al-
most surely, and since W > 0 this shows that with probability one the two inde-
pendent variables 〈μ(0)∞ , h(0)〉 and 〈μ(1)∞ , h(1)〉 vanish simultaneously. This is only
possible either, if they both vanish on a set of full probability, or if they both van-
ish on a negligible set. Assume the latter, then the following identity holds almost
surely:

〈μ(0)∞ , h(0)〉
〈μ(1)∞ , h(1)〉 = −W1

W0
,

where the variables on right- and left-hand side are independent. These variables
must be constant, which is excluded by the assumption P(W = 1) < 1 [recall (5)].

Thus we deduce that the variables 〈μ(i)∞ , h(i)〉 are almost surely equal to zero.
Hence

E
[∣∣〈μ∞, h(i)〉∣∣p] = 0 for i = 0,1.

Iterating the argument we deduce the following property: for any j ≥ 0 and k ≤
2j − 1, if we define a function on [0,1] by h(j,k)(x) = h(2−j (x + k)) we have

E
[∣∣〈μ∞, h(j,k)〉∣∣p] = 0.

This is clearly impossible if we choose j, k such that h remains positive (or nega-
tive) on [k2−j , (k +1)2−j ]. By the assumptions on h one can find such an interval,
yielding to a contradiction. �

LEMMA 5. We have

E
[|Sμ̃,g − E[Sμ̃,g]|1+ε] ≤ C2jχ

E[|Sμ,g(j,p)|1+ε],
where C is a constant that depends only on ε.

PROOF. The proof is the same as for Lemma 1. �

LEMMA 6. For any ε > 0 small enough we have

E[|Sμ,g(j,p)|1+ε] ≤ K2−j (1+ε)τ (p)
j∑

k=0

2−kτ(p(1+ε))2k(1+ε)τ (p),

where K is a constant that depends only on p and ε.

PROOF. The proof basically follows the same lines as the proof of Lemma 2.
The only difficulty, compared to this latter proof, comes from the fact that the
quantity 〈μ∞, gj,k〉 a priori involves several nodes of level j of the M-cascade.
We have to reorganize the sum (40).
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Since we are interested in the limit j → +∞, we can suppose, with no loss of
generality that j > J . In the following, we note 1(n) the n-uplet

1(n) = 11, . . . ,1 where the 1 is repeated n times.

The partition function (40) can be written Sμ,g(j,p) = ∑
k |〈μ∞, gj,k〉|p, where

the sum is over k ∈ {0,1}j such that kl = 0 for some l ≤ j − J . The sum can be
regrouped in the following way, where a + 1 denotes the position of the last 0 in
the j − J first components of k:

Sμ,g(j,p) =
j−J−1∑

a=0

∑
r∈{0,1}a

q=r0

∑
s∈{0,1}J

∣∣〈μ∞, g
j,q1(j−J−1−a)s

〉∣∣p.

We set

Xa,s = ∑
r∈{0,1}a

q=r0

∣∣〈μ∞, g
j,q1(j−J−1−a)s

〉∣∣p(54)

and consequently

Sμ,g(j,p) =
j−J−1∑

a=0

∑
s∈{0,1}J

Xa,s .

Actually, a exactly corresponds to the level of the “highest” node that is common
for dyadic intervals in the support of g

j,q1(j−J−1−a)s
. Indeed, let us prove that

a ≥ 0,∀s ∈ {0,1}J Suppg
j,q1(j−J−1−a)s

⊂ Ia,r ,(55)

where q = r0. Indeed, according to (39), the support of g
j,q1(j−J−1−a)s

is included

in [2−j q1(j−J−1−a)s,2−j q1(j−J−1−a)s + 2−(j−J )]. Then,

2−j q1(j−J−1−a)s = 2−ar +
j−J∑

i=a+2

2−i + 2−j s

= 2−ar + 2−a−1 − 2−(j−J ) + 2−j s.

Since s varies in [0,2J − 1], and a ≤ j − J − 1, it is easy to show that

0 ≤ 2−a−1 − 2−(j−J ) + 2−j s

and

2−a−1 + 2−j s ≤ 2−a,

which proves (55).
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We are now ready to compute the upper bound for ‖Sμ,g(j,p)‖L1+ε(P) ≤∑j−J−1
a=0

∑
s∈{0,1}J ‖Xs,a‖L1+ε(P). Using (54), (55) and Lemma 3, we get

Xa,s = 2−ap
∑

r∈{0,1}a

(
a∏

i=1

W
p
r|i

)∣∣〈μ(r)∞ , g
j,01(j−J−1−a)s

〉∣∣p,

where the μ
(r)∞ are independent cascade measures on [0, T ].

Let us identify Xa,s with X as defined in Lemma 2 by (45) in which j plays

the role of a and Z(r) of 〈μ(r)∞ , g
j−a,01(j−J−1−a)s

〉p . As in (46), we can decompose

X2
a,s as the sum of the nondiagonal terms Ya,s and the diagonal terms Da,s

X2
a,s = Ya,s + Da,s.(56)

Using the exact same development as the one we used for E[X1+ε] starting at
equation (44), we get the bound of the nondiagonal terms corresponding to (50) in
which the term E[Z(rr1)Z(rr2)] has to be replaced by

E
[∣∣〈μ(rr1,s)∞ , g

j−a,01(j−J−1−a)s

〉∣∣p∣∣〈μ(rr2,s)∞ , g
j−a,01(j−J−1−a)s

〉∣∣p],
which can be bounded [using (41)] by K2−2(j−a)(τ (p)+1). Going on with the same
arguments as in Lemma 2, we finally get the bound for the nondiagonal terms
corresponding to (51)

E
[|Ya,s |(1+ε)/2] ≤ K2−j (1+ε)τ (p)2(a−j)(1+ε)

a−1∑
k=0

2−kτ(p(1+ε))2k(1+ε)τ (p)

≤ K2−j (1+ε)τ (p)2(a−j)(1+ε)
j−1∑
k=0

2−kτ(p(1+ε))2k(1+ε)τ (p).

Following the arguments in Lemma 2 for the diagonal terms, we get

E
[
D(1+ε)/2

a,s

] ≤ 2−jτ(p(1+ε))2a−j .(57)

By (56) and (57), we finally get

E[|Xa,s |1+ε] ≤ K2(a−j)2−j (1+ε)τ (p)
j∑

k=0

2−kτ(p(1+ε))2k(1+ε)τ (p).

Then we write

E[|Sμ,g(j,p)|1+ε] ≤ ‖Sμ,g(j,p)‖1+ε

L1+ε(P)
≤
(j−J−1∑

a=0

∑
s∈{0,1}J

‖Xa,s‖L1+ε(P)

)1+ε

,

and the lemma follows. �

Acknowledgments We are grateful to the referees for careful reading of the
first version of the manuscript and for their suggestions of improvements. In par-



MULTIFRACTAL ANALYSIS IN A MIXED ASYMPTOTIC FRAMEWORK 1759

ticular the idea to use the Gärtner–Ellis theorem in the proof of Theorem 3 is due
to a referee’s suggestion.

REFERENCES

[1] ARBEITER, M. and PATZSCHKE, N. (1996). Random self-similar multifractals. Math. Nachr.
181 5–42. MR1409071

[2] BACRY, E. and MUZY, J. F. (2003). Log-infinitely divisible multifractal processes. Comm.
Math. Phys. 236 449–475. MR2021198

[3] BARRAL, J. (2000). Continuity of the multifractal spectrum of a random statistically self-
similar measure. J. Theoret. Probab. 13 1027–1060. MR1820501

[4] BARRAL, J. and MANDELBROT, B. B. (2002). Multifractal products of cylindrical pulses.
Probab. Theory Related Fields 124 409–430. MR1939653

[5] BOUCHAUD, J. P. and POTTERS, M. (2003). Theory of Financial Risk and Derivative Pricing.
Cambridge Univ. Press, Cambridge.

[6] BROWN, G., MICHON, G. and PEYRIÈRE, J. (1992). On the multifractal analysis of measures.
J. Stat. Phys. 66 775–790. MR1151978

[7] CALVET, L., FISHER, A. and MANDELBROT, B. B. (1997). Large deviation theory and the
distribution of price changes. Cowles Foundation Paper 1165.

[8] CHAINAIS, P., RIEDI, R. and ABRY, P. (2005). On non-scale-invariant infinitely divisible cas-
cades. IEEE Trans. Inform. Theory 51 1063–1083. MR2237970

[9] COLLET, P. and KOUKIOU, F. (1992). Large deviations for multiplicative chaos. Comm. Math.
Phys. 147 329–342. MR1174416

[10] DURRETT, R. and LIGGETT, T. M. (1983). Fixed points of the smoothing transformation.
Z. Wahrsch. Verw. Gebiete 64 275–301. MR716487

[11] ELLIS, R. S. (1984). Large deviations for a general class of random vectors. Ann. Probab. 12
1–12. MR723726

[12] FALCONER, K. J. (1994). The multifractal spectrum of statistically self-similar measures.
J. Theoret. Probab. 7 681–702. MR1284660

[13] FAN, A. H. (2002). On Markov–Mandelbrot martingales. J. Math. Pures Appl. (9) 81 967–982.
MR1946911

[14] FRISCH, U. (1995). Turbulence. Cambridge Univ. Press, Cambridge. MR1428905
[15] FRISCH, U. and PARISI, G. (1985). Fully developped turbulence and intermittency. In Proc. of

Int. Summer school Phys. Enrico Fermi.
[16] GUIVARC’H, Y. (1990). Sur une extension de la notion de loi semi-stable. Ann. Inst. H.

Poincaré Probab. Statist. 26 261–285. MR1063751
[17] HOLLEY, R. and WAYMIRE, E. C. (1992). Multifractal dimensions and scaling exponents for

strongly bounded random cascades. Ann. Appl. Probab. 2 819–845. MR1189419
[18] JAFFARD, S. (2000). On the Frisch–Parisi conjecture. J. Math. Pures Appl. (9) 79 525–552.

MR1770660
[19] JAFFARD, S. (2004). Beyond Besov spaces. I. Distributions of wavelet coefficients. J. Fourier

Anal. Appl. 10 221–246. MR2066421
[20] KAHANE, J. P. and PEYRIÈRE, J. (1976). Sur certaines martingales de Benoit Mandelbrot.

Advances in Math. 22 131–145. MR0431355
[21] KOZHEMYAK, A. (2006). Modélisation de séries financières à l’aide de processus invariants

d’échelle. Application à la prédiction du risque. Ph.D. thesis, CMAP Ecole Polytechnique,
France.

[22] LIU, Q. (2002). An extension of a functional equation of Poincaré and Mandelbrot. Asian
J. Math. 6 145–168. MR1902651

[23] MANDELBROT, B. B. (1974). Intermittent turbulence in self-similar cascades: Divirgence of
high moments and dimension of the carrier. J. Fluid Mech. 62 331–358.

http://www.ams.org/mathscinet-getitem?mr=1409071
http://www.ams.org/mathscinet-getitem?mr=2021198
http://www.ams.org/mathscinet-getitem?mr=1820501
http://www.ams.org/mathscinet-getitem?mr=1939653
http://www.ams.org/mathscinet-getitem?mr=1151978
http://www.ams.org/mathscinet-getitem?mr=2237970
http://www.ams.org/mathscinet-getitem?mr=1174416
http://www.ams.org/mathscinet-getitem?mr=716487
http://www.ams.org/mathscinet-getitem?mr=723726
http://www.ams.org/mathscinet-getitem?mr=1284660
http://www.ams.org/mathscinet-getitem?mr=1946911
http://www.ams.org/mathscinet-getitem?mr=1428905
http://www.ams.org/mathscinet-getitem?mr=1063751
http://www.ams.org/mathscinet-getitem?mr=1189419
http://www.ams.org/mathscinet-getitem?mr=1770660
http://www.ams.org/mathscinet-getitem?mr=2066421
http://www.ams.org/mathscinet-getitem?mr=0431355
http://www.ams.org/mathscinet-getitem?mr=1902651


1760 BACRY, GLOTER, HOFFMANN AND MUZY

[24] MANDELBROT, B. (1974). Multiplications aléatoires itérées et distributions invariantes par
moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A 278 289–292. MR0431351

[25] MANDELBROT, B. B. (1989). A class of multinomial multifractal measures with negative
(latent) values for the “dimension” f (α). In Fractals’ Physical Origin and Properties
(Erice, 1988). Ettore Majorana Internat. Sci. Ser. Phys. Sci. 45 3–29. Plenum, New York.
MR1141390

[26] MANDELBROT, B. B. (1990). Negative fractal dimensions and multifractals. Phys. A 163 306–
315. MR1043651

[27] MANDELBROT, B. B. (2003). Multifractal power law distributions: Negative and critical di-
mensions and other “anomalies,” explained by a simple example. J. Stat. Phys. 110 739–
774. MR1964688

[28] MOLCHAN, G. M. (1996). Scaling exponents and multifractal dimensions for independent
random cascades. Comm. Math. Phys. 179 681–702. MR1400758

[29] MUZY, J. F., BACRY, E., BAILE, R. and POGGI, P. (2008). Uncovering latent singularities
from multifractal scaling laws in mixed asymptotic regime. Application to turbulence.
Europhys. Lett. 82 60007–60011.

[30] MUZY, J. F., BACRY, E. and KOZHEMYAK, A. (2006). Extreme values and fat tails of multi-
fractal fluctuations. Phys. Rev. E (3) 73 066114. MR2276291

[31] MUZY, J. F., DELOUR, J. and BACRY, E. (2000). Modelling fluctuations of financial time
series: From cascade process to stochastic volatility model. Eur. J. Phys. B 17 537–548.

[32] OSSIANDER, M. and WAYMIRE, E. C. (2000). Statistical estimation for multiplicative cas-
cades. Ann. Statist. 28 1533–1560. MR1835030

[33] RESNICK, S., SAMORODNITSKY, G., GILBERT, A. and WILLINGER, W. (2003). Wavelet
analysis of conservative cascades. Bernoulli 9 97–135. MR1963674

[34] RIEDI, R. H. (2002). Multifractal processes. In Long Range Dependence: Theory and Applica-
tions (P. Doukhan, G. Oppenheim and M. S. Taqqu, eds.) 625–716. Birkhäuser, Boston,
MA.

[35] VON BAHR, B. and ESSEEN, C.-G. (1965). Inequalities for the r th absolute moment of a sum
of random variables, 1 ≤ r ≤ 2. Ann. Math. Statist. 36 299–303. MR0170407

[36] WAYMIRE, E. C. and WILLIAMS, S. C. (1995). Multiplicative cascades: Dimension spectra
and dependence. In Proceedings of the Conference in Honor of Jean–Pierre Kahane (Or-
say, 1993) 589–609. CRC Press, Boca Raton, FL. MR1364911

[37] WAYMIRE, E. C. and WILLIAMS, S. C. (1996). A cascade decomposition theory with ap-
plications to Markov and exchangeable cascades. Trans. Amer. Math. Soc. 348 585–632.
MR1322959

[38] WENDT, H., ROUX, S., JAFFARD, S. and ABRY, P. (2009). Wavelet leaders and bootstrap for
multifractal analysis of images. Signal Process. 89 1100–1114.

E. BACRY

CENTRE DE MATHÉMATIQUES APPLIQUÉES

ECOLE POLYTECHNIQUE

91128 PALAISEAU

FRANCE

E-MAIL: emmanuel.bacry@polytechnique.fr

A. GLOTER

LABORATOIRE D’ANALYSE

ET DE MATHÉMATIQUES APPLIQUÉES

UNIVERSITÉ PARIS-EST

5, BD DESCARTES, CHAMPS-SUR-MARNE

FRANCE

E-MAIL: arnaud.gloter@univ-mlv.fr

M. HOFFMANN

ECOLE NATIONALE DE LA STATISTIQUE

ET DE L’ADMINISTRATION

3, AVENUE PIERRE LAROUSSE

92245 MALAKOFF CEDEX

FRANCE

E-MAIL: marc.hoffmann@ensae.fr

J. F. MUZY

CNRS UMR 6134
UNIVERSITÉ DE CORSE

QUARTIER GROSSETI, 20250, CORTE

FRANCE

E-MAIL: muzy@univ-corse.fr

http://www.ams.org/mathscinet-getitem?mr=0431351
http://www.ams.org/mathscinet-getitem?mr=1141390
http://www.ams.org/mathscinet-getitem?mr=1043651
http://www.ams.org/mathscinet-getitem?mr=1964688
http://www.ams.org/mathscinet-getitem?mr=1400758
http://www.ams.org/mathscinet-getitem?mr=2276291
http://www.ams.org/mathscinet-getitem?mr=1835030
http://www.ams.org/mathscinet-getitem?mr=1963674
http://www.ams.org/mathscinet-getitem?mr=0170407
http://www.ams.org/mathscinet-getitem?mr=1364911
http://www.ams.org/mathscinet-getitem?mr=1322959
mailto:emmanuel.bacry@polytechnique.fr
mailto:arnaud.gloter@univ-mlv.fr
mailto:marc.hoffmann@ensae.fr
mailto:muzy@univ-corse.fr

	Introduction
	M-cascades: Definitions and properties
	Definition of the M-cascades
	Multifractal properties of M-cascades

	Mixed asymptotics for M-cascades
	Mixed asymptotics: Definitions and notation
	Scaling properties
	Proof of Theorem 2
	Limit theorem for a rescaled cascade
	Proof of Theorem 2 for p(pchi-,pchi+)
	Proof of Theorem 2 for p/(pchi-,pchi+)
	Proof of (20) and (21)

	Multifractal formalism and "negative dimensions"
	Central limit theorems

	Extension to wavelet based partition functions
	Notation
	The generalized partition function: Scaling properties
	The partition function in the mixed asymptotic framework

	Link with Besov spaces
	Numerical examples and applications
	Appendix A: Lemma used for the proof of Theorem 2
	Appendix B: Lemma used for the proof of Theorem 4
	Acknowledgments
	References
	Author's Addresses

