
The Annals of Applied Probability
2010, Vol. 20, No. 5, 1831–1853
DOI: 10.1214/09-AAP661
© Institute of Mathematical Statistics, 2010

TIME INHOMOGENEOUS MARKOV CHAINS
WITH WAVE-LIKE BEHAVIOR

BY L. SALOFF-COSTE1 AND J. ZÚÑIGA2

Cornell University and Stanford University

Starting from a given Markov kernel on a finite set V and a bijection g

of V , we construct and study a time inhomogeneous Markov chain whose
kernel at time n is obtained from K by transport of gn−1. We show that this
construction leads to interesting examples, and we obtain quantitative results
for some of these examples.

1. Introduction. In [15, 17, 18], we considered the problem of obtaining
quantitative results describing the ergodic behavior of time inhomogeneous finite
Markov chains. In general, a time inhomogeneous Markov chain, say on a finite
set V , is described by a sequence of Markov kernels (Ki)

∞
1 . At time n, the distrib-

ution of the chain started at x is denoted by K0,n(x, ·). More generally, for n ≤ m,
we define Kn,m inductively by Kn,n = I (the identity matrix) and

Kn,m(x, y) = ∑
z

Kn,m−1(x, z)Km(z, y), x, y ∈ V.

If each Ki is irreducible and aperiodic, one expects that, in many cases, the
Markov chain driven by this sequence will have the property that

∀x, y ‖K0,n(x, ·) − K0,n(y, ·)‖TV → 0 as n → ∞.

We call this property total variation merging and say that the chain driven by the
sequence (Ki)

∞
1 is merging. Note that, in general, K0,n(x, ·) does not tend to a

limiting distribution. However, when merging occurs, the chain does forget where
it started: asymptotically, the distribution sequence evolves in time following a
well-defined pattern which is independent of the starting distribution.

In this paper, we will mostly discuss a stronger notion which we call relative-sup
merging. By definition, the sequence (Ki)

∞
1 is merging in relative-sup if

max
x,y,z∈V

{∣∣∣∣K0,n(x, z)

K0,n(y, z)
− 1

∣∣∣∣
}

→ 0 as n → ∞.
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In general, the relative-sup distance between two measures μ and ν (on a finite
or countable state space) is defined by (note the asymmetry)

max
x∈V

{∣∣∣∣μ(x)

ν(x)
− 1

∣∣∣∣
}
.

In particular, for a time inhomogeneous chain driven by a sequence (Ki)
∞
1 of

Markov kernels, we will consider quantities such as

max
x,z∈V

{∣∣∣∣K0,n(x, z)

μn(z)
− 1

∣∣∣∣
}
,

where μn = μ0K0,n for some starting measure μ0. For ε > 0, we also define the ε

relative-sup merging time T∞(ε) by

T∞(ε) = min
{
n : max

x,y,z∈V

{∣∣∣∣K0,n(x, z)

K0,n(y, z)
− 1

∣∣∣∣
}

< ε

}
.

See [17] for more details.
Background and general results concerning time inhomogeneous Markov

chains are described in [10, 14, 19] where further references can be found. It turns
out that the study of merging is difficult, both at the qualitative and the quantitative
level, except in the special but interesting case when all the kernels in the sequence
(Ki)

∞
1 share the same stationary probability measure. See, for example, [3, 8, 13,

15]. Only a small set of examples have been treated in the literature mostly because
proving anything about concrete time inhomogeneous Markov chains is difficult.

This paper describes a special class of examples whose structure is, in itself,
quite interesting and for which some results can be obtained. The set up is as
follows. On a finite or countable set V , we are given a Markov kernel K and a
bijection g :V → V . We then consider the time inhomogeneous Markov chain
driven by the sequence of the kernels

Ki(x, y) = K(gi−1x,gi−1y), x, y ∈ V, i = 1,2, . . . .

The problem is to study this time inhomogeneous chain and its merging properties.
As we shall see, this covers some interesting examples and leads to interesting
results as well as difficult open problems.

The examples discussed in this paper can serve to illustrate the techniques de-
veloped in [17, 18]. In particular, we will make use of the following basic singular
value technique. See [1] and Theorem 3.2 of [17].

THEOREM 1.1. Given a sequence of Markov kernels Ki , i = 1,2, . . . , on a
set V and a positive probability measure μ0, set μn = μ0K0,n and let σ1(i) be the
second largest singular value of the operator Ki :�2(μi) → �2(μi−1). Then∣∣∣∣K0,n(x, z)

μn(z)
− 1

∣∣∣∣ ≤
(

1

μ0(x)
− 1

)1/2(
1

μn(z)
− 1

)1/2 n∏
1

σ1(i).
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This good-looking result is deceptive because, unless one can get some control
on the sequence of measures μn, it is essentially useless. Note in particular that
σ1(n) depends very much on μn−1 and μn.

2. Stability. It is well established that the stationary distribution of an irre-
ducible aperiodic time homogeneous Markov chain plays a crucial part in the
analysis of the ergodic properties of the chain. Not much can be said unless one
can get some control on the stationary distribution. Moreover, unless the chain
is reversible or some algebraic miracle occurs, the computation of the stationary
measure is a difficult problem.

The situation for time inhomogeneous Markov chains is much worse. In order to
understand how the chain behaves when started from an arbitrary distribution, it is
crucial to find (at least) one initial distribution μ0 such that sequence of probabil-
ity measures μn = μ0K0,n is somewhat well behaved. The ideal situation is when
there is a π such πK0,n = π . This occurs if an only if all Ki admit the same invari-
ant measure π , a rather fortunate but rare circumstance. The next definition, taken
from [17], introduces a property that is an obvious weakening of the existence of
a common invariant measure.

DEFINITION 2.1. Fix c ≥ 1. A sequence of Markov kernels (Kn)
∞
1 on a finite

set V is c-stable if there exists a measure μ0 such that

∀n ≥ 0, x ∈ V c−1 ≤ μn(x)

μ0(x)
≤ c,(2.1)

where μn = μ0K0,n. If this holds, we say that (Kn)
∞
1 is c-stable with respect to

the measure μ0.

We refer the reader to [17, 18], for examples, and results involving c-stability.
The idea behind this definition is that, if a sequence is c-stable with respect to a
probability measure μ0, then one can study the merging of this sequence more or
less as one would study the ergodicity of a time homogeneous chain with invariant
measure μ0. Why this is true is not obvious and the required technical details
are quite intricate. Precise results in this direction are described in [17, 18]. We
think that c-stability is an interesting property in itself and that it deserves some
attention. Note also that, even for a fixed sequence (Ki)

∞
1 on a fixed finite state

space, c-stability is a nontrivial property. The case of the two point space is treated
in [17].

A special case of interest to us here is when the time inhomogeneous Markov
chain is driven by a sequence (Ki)

∞
1 that is periodic in the sense that there is an

integer k such that

∀i Ki+k = Ki.
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In such case, there is an obvious candidate for a “good” starting distribution μ0,
namely, the invariant measure π of K1 · · ·Kk = K0,k . Indeed, if we pick μ0 = π

then the sequence μn = μ0K0,n is also periodic of period k. If we can compute π ,
this might allow us to investigate the property of the sequence μn including c-
stability. Note however that in many examples of interest, the period k will grow
with the size of the state space V so that, even in that case, investigating c-stability
in a meaningful way is difficult.

An example of this type is cyclic to random transpositions. On V = Sn, the
symmetric group, let Qi be the Markov kernel Qi(x, y) = 1/n if y = x or if
y = x(i, j) for some j 	= i and Qi(x, y) = 0 otherwise. Here (i, j) stands for
the corresponding transposition. This kernel corresponds to “transpose the card
in position i with the card in a uniformly chosen position.” The cyclic-to-random
transposition chain is driven by the sequence of kernels (Ki)

∞
1 with Ki = Qi modn

(by definition, Q0 = Qn). See [8, 13, 15]. Of course, in this example, the uniform
measure is invariant for all Qi . Other examples of periodic time inhomogeneous
chains are discussed in [3].

3. Periodic waves. We now describe in detail the construction outlined in the
introduction. This construction is of a rather general nature and produces periodic
time inhomogeneous Markov chains that reduce, in a sense, to time homogeneous
chains.

Let K be a Markov kernel on a finite state space V , and let g :V → V , x 
→
g(x) = gx be a bijection. The order of the map g is

k = min{n ∈ N :∀x ∈ Vgnx = x}, gn = g ◦ g ◦ · · · ◦ g.

For all x, y ∈ V , set

Ki(x, y) = K(gi−1x,gi−1y)(3.1)

so that K = K1. Consider the inhomogeneous Markov chain driven by the se-
quence (Ki)

∞
1 defined above. It is easy to see that all Ki are irreducible aperiodic

kernels if and only if K is. Moreover, if K has stationary distribution π then Ki

has stationary distribution πi where πi(x) = π(gi−1x). Obviously, the sequence
(Ki)

∞
1 is periodic of period k. Examples are discussed below after we discuss

some general properties of these chains. Given this definition, the obvious ques-
tion we face is the following: How are the (quantitative) merging properties of the
chain driven by (Ki)

∞
1 related to the (quantitative) ergodic properties of the chain

driven by K?

PROPOSITION 3.1. Set

K̃(x, y) = K(x,g−1y),(3.2)

where g−1 :V → V is the inverse of the map g. Then K0,n is given by

K0,n(x, y) = K̃n(x, gny).
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PROOF. We proceed by induction. For n = 1 the result holds by definition.
Assume that K̃n(x, y) = K0,n(x, g−ny). Then we have

K̃n+1(x, y) = ∑
z∈V

K̃n(x, z)K̃(z, y)

= ∑
z∈V

K0,n(x, g−nz)Kn+1(g
−nz, g−n−1y)

= K0,n+1
(
x,g−(n+1)y

)
.

This gives the desired result. �

COROLLARY 3.2. The kernel K̃ is irreducible aperiodic if and only if there
exists an integer n0 > 0 such that for all x, y ∈ V , K0,n0(x, y) > 0.

The following examples illustrate some of the subtleties of this construction.

EXAMPLE 3.1. Let K be irreducible, periodic of period k, with periodicity
classes C0, . . . ,Ck−1 so that K(x,y) > 0 if and only if x ∈ Ci and y ∈ Ci+1 mod k .
Assume that |C0| = · · · = |Ck−1|, that is, all the periodicity classes have the
same cardinality. Let g :V → V be a bijection such that g(Ci) = Ci−1 modk . Let
Ki(x, y) = K(gi−1x,gi−1y), K̃(x, y) = K(x,g−1y) as above. It is clear that
K̃(x, y) > 0 if and only if x, y are in the same class Ci for some i. That is, K̃ is
not irreducible. One the other hand, for any x, y there exists n = n(x, y) such that
K0,n(x, y) > 0.

EXAMPLE 3.2. On V = {1,2,3,4}, consider the irreducible aperiodic re-
versible kernel K given by K(1,1) = K(1,2) = K(2,1) = K(2,3) = K(3,2) =
K(3,4) = 1/2, K(4,3) = 1 and K(x,y) = 0, otherwise. Let g be the map that
transposes 3 and 4. Then K2(1,1) = K2(1,2) = K(2,1) = K2(2,4) = K2(4,2) =
K2(4,3) = 1/2, K2(3,4) = 1 and K2(x, y) = 0, otherwise. The graph structure
for kernels K and K2 is illustrated in Figure 1. It follows that

K0,2n(4,4) = 1, K0,2n+1(4,3) = 1.

FIG. 1. Graph structure for kernels K and K2.
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FIG. 2. Graph structure for K̃ .

This shows that the property that K is irreducible aperiodic does not imply that
for each x, y there is an n = n(x, y) such that K0,n(x, y) > 0. Further, K̃(1,1) =
K̃(1,2) = K̃(2,1) = K̃(2,4) = K̃(3,2) = K̃(3,3) = 1/2, K̃(4,4) = 1. Hence,
K̃ is not irreducible and has a unique absorbing state, namely, the point 4 as illus-
trated by Figure 2.

This implies that the sequence K1,K2,K1,K2, . . . is merging in total variation,
that is, K0,n(x, z) − K0,n(y, z) → 0 for any x, y, z. Note that for z 	= 4, we have
K0,2n(x, z) → 0 for any x. However, this same sequence is not merging in relative-
sup distance. Indeed,

T∞(ε) = min
{
n : max

x,y,z

{∣∣∣∣K0,n(x, z)

K0,n(y, z)
− 1

∣∣∣∣
}

< ε

}
= ∞

since K0,2n(4,1) = 0 and K0,2n(1,1) > 0.
This gives an example of a pair K1,K2 of reversible, irreducible and aperiodic

Markov kernels such the sequence K1,K2,K1,K2, . . . is not merging in relative-
sup distance.

EXAMPLE 3.3. On the symmetric group Sn, set σ and σ ′ to be the cycles
σ = (n,n − 1, . . . ,1) and σ ′ = (n − 1, n − 2, . . . ,1) and a to be the permutation
defined by a(i) = n − i + 1. In terms of a deck of n cards, σ takes the top card to
the bottom, σ ′ takes the top card to the second to last position whereas a reverses
the order of the deck. Consider the kernel K(x,y) = 1/2 if x−1y ∈ {σ,σ ′} and 0
otherwise, and the bijection g(x) = axa−1, which is of order 2. Observe that K is
irreducible and aperiodic. Note that g(σ) = σ−1 (take the bottom card and put it on
top) and g(σ ′) = (2,3, . . . , n) (take the bottom card and put it in second position).
From this it follows that

K0,2(x, y) = ∑
z

K(x, z)K(g(z), g(y))

=
{

1/4, if x−1y ∈ {e, (1,2), (1, n), (1, n,2)},
0, otherwise.

This shows that, for all n, K0,2n(e, x) = 0 unless x ∈ B = {e, (1,2), (1, n), (1, n,

2)}, and K0,2n+1(e, x) = 0 unless x ∈ σB ∪ σ ′B . We note that describing K̃ is
difficult.
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PROPOSITION 3.3. Let π̃ be an invariant measure for K̃ . Set

∀x ∈ V, i = 1,2, . . . μi(x) = π̃(gix).

Then μi−1Ki = μi .

PROOF. Indeed, we have

μi−1Ki(x) = ∑
z∈V

μi−1(z)Ki(z, x) = ∑
z∈V

π̃(gi−1z)K1(g
i−1z, gi−1x)

= ∑
z∈V

π̃(gi−1z)K̃(gi−1z, gix) = π̃ (gix) = μi(x).
�

The “wave” appearing in the title of this paper corresponds to the distribu-
tion π̃ . The time inhomogeneous chain driven by the sequence (Ki)

∞
1 produces

the wave π̃ , moving around in a periodic fashion under the action of the bijection g

on the set V . Despite the similarity in names, we do not claim any connection of
this paper with the subject of traveling waves.

COROLLARY 3.4. Assume that K̃ admits a positive invariant measure π̃ . Then
the sequence (Kn)

∞
1 is c-stable with respect to the measure μ0 = π̃ with

c = max
x,i

{π̃(gix)/π̃(x)}.

The next proposition discusses the singular value decompositions of various
operators appearing in this construction. The proof is by inspection. We use the
following notation. We assume that π̃ is an invariant measure for K̃ and that
π̃(x) > 0 for all x ∈ V . Let σ̃j , j = 0, . . . , |V | − 1, be the singular values of

K̃ :�2(π̃) → �2(π̃) in nonincreasing order, and let (φ̃j )
|V |−1
0 , (ψ̃j )

|V |−1
0 , be ortho-

normal bases of �2(π̃) such that K̃φ̃j = σ̃j ψ̃j (with σ̃0 = 1, φ̃0 = ψ̃0 ≡ 1). We

refer the reader to [17] for a detailed discussion. The orthonormal bases (φ̃j )
|V |−1
0 ,

(ψ̃j )
|V |−1
0 are, respectively, eigenbases for K∗K and KK∗.

PROPOSITION 3.5. For any i = 1 ∈ {1, . . .}, φi
j (x) = φ̃j (g

ix), j = 0, . . . ,

|V | − 1, and ψi
j (x) = ψ̃j (g

i−1x), j = 0, . . . , |V | − 1, are orthonormal bases

of �2(μi) and �2(μi−1), respectively, which provide a singular value decom-
position of Ki :�2(μi) → �2(μi−1) in the sense that Kiφ

i
j = σ̃jψ

i
j . In partic-

ular, the singular values σj (Ki,μi−1) of Ki :�2(μi) → �2(μi−1) are given by
σj (Ki,μi−1) = σ̃j , j = 0, . . . , |V | − 1.

If α̃ is an eigenvalue of K̃ with eigenfunction ω̃ and k is the order of g then α̃k

is an eigenvalue of K1 · · ·Kk with the same eigenfunction.
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This proposition illustrates clearly the difficulties that appear in relating the
ergodic properties of the kernel K (that serves as the basic ingredient of this con-
struction) to the merging properties of the sequence (Ki)

∞
1 . Indeed, it is rather

unclear how the ergodic properties of K and the properties of its stationary mea-
sure π relate to (K̃, π̃).

In the following two examples, π = π̃ is the uniform measure on V . Even in
these cases, the above construction is quite interesting and nontrivial. Examples
with π 	= π̃ will be discussed in the next two sections.

EXAMPLE 3.4 (Cycling for binary vectors). In this example, the kernel K is
not irreducible. Take V = {0,1}N with π being the uniform distribution on V .
Let ei be the binary vector with a unique 1 in position i. Let K(x,y) = 0 except if
y = x or y = x + e1 in which case K(x,y) = 1/2 (K randomizes the first binary
entry of x). Let gx = (x2, . . . , xN, x1) if x = (x1, . . . , xN) (shift to the left). Using
the definition, one checks that Ki is the Markov kernel that randomizes the ith
coordinate. Hence, K1 · · ·KN = π (after N steps, we have a binary vector picked
uniformly at random).

The kernel K̃ corresponds to randomizing the first entry and shifting left. Its
invariant measure π̃ is uniform. One recovers immediately the fact that the uniform
distribution is reached after exactly N steps. The singular values (=eigenvalues)
of K (which is reversible) are 1 (multiplicity 2N − 1) and 0 (multiplicity 1). The
kernel K̃ has the property that K̃∗K̃ = K = K2 so that it has the same singular
values. The operator K̃ has two eigenvalues, 0 and 1, and is not diagonalizable,
but K̃ − π is nilpotent since (K̃ − π)N = 0.

EXAMPLE 3.5 (Cyclic-to-random transposition). See, for example, [13, 15].
On the symmetric group Sn, let K(x,y) = 1/n if y = x(1, j), j = 1,2, . . . , n,
and K(x,y) = 0 otherwise (this is called “transpose top with random”). Let σ

be the cycle (1,2, . . . , n) and g :Sn → Sn, x 
→ g(x) = σxσ−1. Observe that
gi((1, j)) = (i, j + i modn) so that Ki is “transpose i with random.” Hence, we
recover the cyclic-to-random transposition chain.

Because π̃ = π in this case, it follows that the singular values of K̃ are equal
to the singular values of K which can be computed by using the representation
theory of Sn. Note that, as K is reversible, the singular values of K are the square
roots of the square of its eigenvalues, that is, the absolute value of the eigenvalues.
In particular, σ̃1 = 1 − 1/n and thus σ1(Ki,π) = σ̃1 = 1 − 1/n for all i (see [2,
7, 15, 16]). The eigenvalues of K̃ are rather mysterious, and it is not clear that K̃

is diagonalizable. See [13] where the eigenvalues of K1 · · ·Kn (hence, indirectly,
the eigenvalues of K̃) are investigated and used to obtain a very interesting lower
bound on the mixing time of cyclic to random transposition.

Propositions 3.1 and 3.5 reduce the study of the merging of the sequence (Ki)
∞
1

to the study of the ergodicity of the time homogeneous Markov chain driven by K̃ .
More precisely, we have the following result.
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THEOREM 3.6. Fix V,K,g, K̃ and (Ki)
∞
1 as above.

(1) The sequence (Ki)
∞
1 is merging in relative-sup if and only if the kernel K̃

is irreducible and aperiodic.
(2) If K̃ is irreducible and aperiodic, let π̃ be its unique invariant probability

measure and set μi(x) = π̃(gix), x ∈ V . Then∣∣∣∣K0,n(x, z)

μn(z)
− 1

∣∣∣∣ ≤
(

1

π̃(x)
− 1

)1/2(
1

π̃(gnz)
− 1

)1/2

σ̃ n
1 ,

where σ̃1 is the second largest singular value of K̃ acting on �2(π̃).

PROOF. Use Propositions 3.1 and 3.5. To obtain the last inequality, use The-
orem 1.1. Theorem 3.2 of [17] also yields additional inequality for the chi-square
distance between K0,n(x, ·) and μn. �

REMARK 3.7. Example 3.2 gives an example where total variation merging
occurs, but K̃ is not irreducible.

PROPOSITION 3.8. Assume that K is irreducible and

min
x∈V

{K(x,x)} > 0.

Then, for any bijection g of V , K̃ is irreducible and aperiodic, and (Ki)
∞
1 is

merging in relative-sup.

PROOF. By Example 3.6 of [17] we have K0,|V |(x, y) > 0 for all x, y ∈ V . By
Corollary 3.2, this implies that K̃ is irreducible aperiodic. By Theorem 3.6(1), we
conclude that (Ki)

∞
1 is merging. �

The proof of the proposition above illustrates the surprising fact that it is not
always advantageous to study K̃ instead of the sequence (Ki)

∞
1 . In Proposition 3.8,

we use the sequence (Ki) to study K̃! Indeed, the chain K̃ seems often difficult
to study. For one thing, K̃ is not necessarily reversible even if K is. In general,
this means that computing π̃ may be difficult. Even when we can compute π̃ , it
might be difficult to study the ergodicity of K̃ from its definition. Consider, for
instance, the case of cyclic-to-random transposition. In this case, π̃ is the uniform
distribution, but K̃ is not invariant under the action of Sn. In other words, the chain
driven by K̃ is not a random walk on Sn. This makes studying K̃ and its powers
directly rather difficult (and, indeed, mysterious). The results obtained in [8, 13,
15] concerning the cyclic-to-random transposition chain are essentially obtained
by considering the sequence (Ki)

∞
1 , not K̃ (which, for one thing, does not appear

in those papers).
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4. Perturbations of symmetric kernels. Let Q be a symmetric Markov ker-
nel on a finite set V , that is, Q(x,y) = Q(y,x) for all x, y ∈ V . This kernel has
the uniform distribution u ≡ 1/|V | as its reversible measure. Fix an ε ∈ (0,1) and
a set A ⊂ V , and consider the kernel

K = Q + �A,(4.1)

where �A is some perturbation kernel such that for all x, y ∈ V :

(a)
∑

z �A(x, z) = 0,
(b) �A(x, y) ≥ −εQ(x, y) and
(c) x /∈ A �⇒ �A(x, y) = 0.

Let g be a permutation of the vertex set V and consider the sequence (Ki)
∞
1

defined by Ki(x, y) = K(gi−1x,gi−1y). Set K̃(x, y) = K(x,g−1y), as before.
Let π̃ be an invariant probability measure for K̃ and set

μi(x) = π̃ (gix), x ∈ V, i = 0,1,2, . . . .

Define also the symmetric kernel

Qg(x, y) = Q(g−1x,g−1y).

Consider the following two assumptions on the kernel K̃ :

(A1) (Irreducibility of K̃) For all x, y ∈ V there exists an n = n(x, y) such that
K̃n(x, y) > 0.

(A2) (Aperiodicity of K̃) There exists a number N such that, for all m ≥ N and
all x ∈ V , K̃m(x, x) > 0.

Recall (see Theorem 3.6) that these properties are necessary for the relative-sup
merging of the sequence (Ki)

∞
1 . In general, it is not obvious at all how they can be

checked. However, if the permutation g is an automorphism of the graph structure
on V with edge set E = {(x, y) :K(x,y) > 0}, then these properties reduce to the
similar properties for K (see Proposition 3.1).

The most useful technical result concerning such time inhomogeneous perturba-
tions of Q is the following comparison lemma. For more on comparison techniques
see [4].

LEMMA 4.1. Referring to the above setting, assume that

∃c > 0 max
x∈V

{π̃ (x)} ≤ c min
x∈V

{π̃ (x)}.(4.2)

Consider the operators Qg, K̃ acting respectively on �2(u), �2(π̃). Then the
Dirichlet forms EQ∗

gQg,u of Q∗
gQg on �2(u) and EK̃∗K̃,π̃ of K̃∗K̃ on �2(π̃) sat-

isfy

EQ∗
gQg,u(f, f ) ≤ c

(1 − ε)2 EK̃∗K̃,π̃ (f, f )(4.3)

for any function f defined on V .
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PROOF. Working on �2(π̃) and �2(u), respectively, we compare the kernel
K̃∗K̃ to the kernel Q∗

gQg , that is, Q∗Q moved by g−1. Write

π̃(x)K̃∗K̃(x, y) ≥ 1

c

∑
z

u(z)K(z, g−1x)K(z, g−1y)

≥ (1 − ε)2

c

∑
z

u(z)Q(z, g−1x)Q(z, g−1y)

= (1 − ε)2

c
u(x)Q∗

gQg(x, y).

The third line uses the fact that for any z, u(g−1z) = u(z) = 1/|V |. �

The importance of this lemma comes from the fact that Qg is simply Q trans-
ported by g−1 and thus has the same properties as Q. For instance, Qg has the
same eigenvalues and singular values as Q (the eigenvectors of Qg are the eigen-
vectors of Q transported by g−1, etc.). Similarly, Qg satisfies the same Nash and
logarithmic Sobolev inequalities on �2(u) as Q itself. By Lemma 4.1, these prop-
erties will be transferred to (K̃, π̃). The following two propositions and assorted
remarks are based on this observation.

PROPOSITION 4.2. Referring to the above setting, assume that (4.2) holds,
that is,

max
x∈V

{π̃(x)} ≤ c min
x∈V

{π̃(x)}.

Let σ1 be the second largest singular value of Q on �2(u). Then the second largest
singular value σ̃1 of K̃ on �2(π̃) is bounded by

σ̃1 ≤ 1 − (1 − ε)2

c2 (1 − σ1).

Furthermore by Theorem 3.6 we obtain

max
x,z∈V

{∣∣∣∣K0,n(x, z)

μn(z)
− 1

∣∣∣∣
}

≤ c|V |
(

1 − (1 − ε)2

c2 (1 − σ1)

)n

.

REMARK 4.3. If instead of using σ1 we use the logarithmic Sobolev constant
l(Q∗Q) of Q∗Q (see [6, 18] for the definition; we follow the notation of [18]);
then we get

l(K̃∗K̃) ≥ (1 − ε)2

c2 l(Q∗Q).

In cases where a good estimate on l(Q∗Q) is known, this can, potentially, im-
proved upon the merging bound stated in the corollary above. See [6, 18].
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In the next corollary, we make use of one of the main results of [5, 18] which
concerns the use of the Nash inequalities. In applications, the constants c, c1, C1,
D appearing in the statement below are indeed taking fixed values whereas the
parameter T grows with the size of the underlying state space. It is, in general,
equal to the square of the diameter of the state space V equipped with the graph
structure induced by the symmetric kernel Q. For an introduction to the use of
Nash inequality in the study of ergodic Markov chains, see [5].

PROPOSITION 4.4. Referring to the above setting, assume that there are con-
stants c, c1,C1,D ∈ (0,∞) and a parameter T > 1 such that:

• Condition (4.2) holds, that is,

max
x∈V

{π̃(x)} ≤ c min
x∈V

{π̃(x)}.
• The second largest singular value σ1(Q) of Q on �2(u) satisfies

σ1(Q) ≤ 1 − c1

T
.

• The kernel Q satisfies the Nash inequality (all norms are w.r.t. u)

∀f :V → V ‖f ‖2+1/D
2 ≤ C1T

(
EQ∗Q(f,f ) + 1

T
‖f ‖2

2

)
‖f ‖1/D

1 .

Then, for any n > 2T and x, z ∈ V , we have∣∣∣∣K0,n(x, z)

μn(z)
− 1

∣∣∣∣ ≤
(

16(1 + 4D)C1c
2+3/(2D)

(1 − ε)2

)2D

e−2c1(1−ε)2(n−2T )/c2T .

PROOF. Let u ≡ 1/|V |. For any function f :V → V we have EQ∗Q,u(f, f ) =
EQ∗

gQg,u(f ◦g−1, f ◦g−1) and ‖f ‖p = ‖f ◦g−1‖p for p = 1,2. Thus (EQ∗
gQg , u)

satisfies the same Nash inequality as (EQ∗Q,u). By Lemma 4.1 and (4.2), this
yields the Nash inequality,

‖f ‖2+1/D

�2(π̃)
≤ C1T c2+3/(2D)

(1 − ε)2

(
EK̃∗K̃,π̃ (f, f ) + 1

T
‖f ‖2

�2(π̃)

)
‖f ‖1/D

�1(π̃)

for (EK̃∗K̃ , π̃). The desired result now follows by applying Propositions 3.1, 4.2
and the results of [5]. (See also Theorem 2.5 of [18].) �

Observe that the conclusion can be rephrased by saying that, under the hypothe-
ses made, the time inhomogeneous chain driven by (Ki)

∞
1 has a relative-sup merg-

ing time at most of order T . This will be illustrated below in concrete examples.
Assuming (as is natural) that we understand well the finite Markov chain driven

by the symmetric kernel Q, the main difficulty that remains in studying the time
inhomogeneous chain (Ki)

∞
1 considered in this section is to verify the condi-

tion (4.2) for some (explicit) constant c. The following lemma is useful in this
regard.
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LEMMA 4.5. Assume that π̃ 	= u and that K̃ satisfies the irreducibility condi-
tion (A1) above. Let M = maxx{π̃ (x)} and m = minx{π̃ (x)}. Let

A∗+ =
{
x ∈ V :

∑
y

K̃(y, x) > 1
}
, A∗− =

{
x ∈ V :

∑
y

K̃(y, x) < 1
}
.

Then there are points x+ ∈ A∗+, x− ∈ A∗− such that π̃(x+) = M , π̃(x−) = m.

PROOF. Let B = {z :
∑

y K̃(y, z) = 1}. Let x ∈ V be a point such that π̃(x) =
M . Then we must have

∑
y K̃(y, x) ≥ 1. If

∑
y K̃(y, x) > 1, we are done. Oth-

erwise, x ∈ B and we must have π̃ (y) = M for all y such that K̃(y, x) > 0. Ei-
ther one of these points y satisfies

∑
z K̃(z, y) > 1 and we are done, or we repeat

the argument. Since K̃ satisfies (A1) and π̃ 	= u, this process necessarily yields a
point x+ such that π̃ (x) = M and x+ /∈ B . Of course, we must then have x+ ∈ A∗+.
The same line of reasoning proves the existence of the desired point x− ∈ A∗−. �

REMARK 4.6. Note that A∗+,A∗− are contained in the “K̃-boundary” of A,
that is in the set A∗ = {z : ∃y ∈ A, K̃(y, z) > 0}. Indeed, if x /∈ A∗ then∑

y

K̃(y, x) = ∑
y

Q(y, g−1x) = ∑
y

Q(g−1x, y) = 1.

(a) If we can find n0 such that inf{K̃n0(x, y) :x, y ∈ A∗} > δ > 0, then since
π̃ = π̃K̃n0 , one obtains π̃(x+) = max{π̃} ≤ δ−1 min{π̃} = δ−1π̃(x−). Unfortu-
nately, the nature of the kernel K̃ makes it difficult to find a suitable n0.

(b) A variation on this idea is as follows. Assume that, for any (x, y) ∈ A∗+ ×
A∗−, we can find an element b = b(x, y) such that

K̃(b, x)

1 − ∑
z 	=b K̃(z, x)

∈ (0,∞) and
1 − ∑

z 	=b K̃(z, y)

K̃(b, y)
∈ (0,∞).

Then for x, y ∈ A∗+ × A∗− such that π̃ (x) = M and π̃ (y) = m as defined in
Lemma 4.5 we have

π̃(x) ≤
(

K̃(b, x)(1 − ∑
z 	=b K̃(z, y))

K̃(b, y)(1 − ∑
z 	=b K̃(z, x))

)
π̃(y).

This gives max{π̃} ≤ C min{π̃} with

C = max
(x,y)∈A∗+×A∗−

{
K̃(b, x)(1 − ∑

z 	=b K̃(z, y))

K̃(b, y)(1 − ∑
z 	=b K̃(z, x))

}
.

Note that C depends on the choice of the b(x, y) for each (x, y) ∈ A∗+ × A∗−.
Different choices of allowed bs may yield a different constant C. If the location of
max π̃ and min π̃ can be determined, then there is no need to calculate C over all
A∗+ × A∗−. Examples using this remark are in the next two sections.
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5. Cyclic edge perturbation on the circle. This section examines some ex-
amples of a moving wave on the circle graph. On the circle graph on N = 2l + 1
vertices and for ε > 0 fixed, let K be the reversible Markov kernel corresponding
to putting weight 1 on all edges except the (0,1) edge which has weight 1 + ε.
Hence

K(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

0, if |x − y| 	= 1,
1/2, if |x − y| = 1 and x /∈ {0,1},
(1 + ε)/(2 + ε), if (x, y) ∈ {(0,1), (1,0)},
1/(2 + ε), if (x, y) ∈ {(0,−1), (1,2)}.

(5.1)

This has reversible measure

π(x) =
{

1/(N + ε), if x 	= 0,1,
(1 + ε/2)/(N + ε), if x = 0,1.

Note that this can be written as a perturbation (see Section 4) of the symmetric
kernel Q of simple random walk, Q(x,y) = 1/2 if |x − y| = 1 and Q(x,y) = 0
otherwise. The perturbation set A is A = {0,1} and �A = 0 except for the follow-
ing values:

�A(0,1) = �A(1,0) = ε/(4 + 2ε), �A(0,−1) = �A(1,2) = −ε/(4 + 2ε).

Because N = 2l + 1 is odd, the chain driven by Q is ergodic with relative-sup
mixing time of order N2. Its singular values (i.e., eigenvalues) on �2(u) are

cos
(

2πj

N

)
, j = 0,1, . . . ,N − 1.

In particular, the second largest is attained at j = (N − 1)/2 and equals

β1 = cos
π

N
.(5.2)

Moreover, Q satisfies the Nash inequality

∀f :V → V ‖f ‖6
2 ≤ 27N2

(
EQ∗Q(f,f ) + 1

4(N + 1)2 ‖f ‖2
2

)
‖f ‖4

1.(5.3)

See, for example, Theorem 5.2 and Lemma 5.3 in [5].
We will investigate the general construction described earlier based on the ker-

nel K above and various bijections including x 
→ x − 1 and x 
→ x + 2. In these
two cases, we prove a merging time estimate of the type

T∞(η) ≤ C(ε)N2(1 + log+ 1/η) ∀η > 0

for the associated periodic time inhomogeneous chain, but there are interesting
differences in the analysis of the two chains.

First, consider g(x) = x − 1. Then Ki is the reversible kernel corresponding to
putting weight 1 + ε on the edge (i − 1, i)modN . The graphs for Q and K2 are
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FIG. 3. The cycling edge perturbation of Q.

given in Figure 3. The kernel K̃(x, y) = K(x,g−1y) is given by

K̃(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0, if y /∈ {x, x − 2},
1/2, if y ∈ {x, x − 2} and x /∈ {0,1},
(1 + ε)/(2 + ε), if (x, y) ∈ {(0,0), (1,−1)},
1/(2 + ε), if (x, y) ∈ {(0,−2), (1,1)}.

A simple calculation shows that π̃ is constant away from 0,1 and that

π̃(x) =
⎧⎨
⎩

2(1 + ε)/(ε2 + 2Nε + 2N), if x 	= 0,1,
(ε + 1)(ε + 2)/(ε2 + 2Nε + 2N), if x = 0,
(ε + 2)/(ε2 + 2Nε + 2N), if x = 1.

This proves c-stability of the sequence (Ki)
∞
1 with respect to μ0 = π̃ with

c = 1 + ε. This distribution yields the wave μi(x) = π̃(gix) created by the time
inhomogeneous Markov chain driven by (Ki)

∞
1 .

Using Proposition 4.2 and (5.2), this proves that the relative-sup merging time
for the sequence (Ki)

∞
1 is bounded by T∞(η) ≤ C(ε)N2(logN + log+ 1/η). An

improved result showing relative-sup merging in time of order N2 is obtained us-
ing Proposition 4.4 and the Nash inequality (5.3) of the circle graph.

Let us now consider what happens if we choose g(x) = x + 2. In terms of the
sequence Ki , this means that Ki now has the same perturbation as K but at the
edge (−2i,−2i + 1)modN . The kernel K̃ is given by

K̃(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0, if y − x /∈ {1,3},
1/2, if y − x ∈ {1,3} and x /∈ {0,1},
(1 + ε)/(2 + ε), if (x, y) ∈ {(0,3), (1,2)},
1/(2 + ε), if (x, y) ∈ {(0,1), (1,4)}.

Contrary to what happens with g : x 
→ x − 1, in the present case, there is no
simple formula for π̃ (in particular, π̃ is not constant away from the perturbation).
Figure 4 presents a simulation of the stationary measure π̃ for N = 41 and ε = 1.
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FIG. 4. π̃ for N = 41 and ε = 1.

However, it is easy to see from the linear equations defining π̃ (i.e., from
Lemma 4.5) that max{π̃} must be attained at either 2 or 3, and min{π̃} must be
attained at either 1 or 4. Suppose they are attained at 2 and 1. As

π̃ (2) =
(

1 + ε

2 + ε

)
π̃(1) + 1

2
π̃(4)

we must have

π̃(2) ≤
(

1 + ε

1 + ε/2

)
π̃ (1).

Suppose instead the max and min are attained at 2 and 4. Then, the same equation
gives (

1 − 1 + ε

2 + ε

)
π̃(2) ≤ 1

2
π̃(4),

that is,

π̃(4) ≥
(

1

1 + ε/2

)
π̃ (2).

The case where the max and min are attained at 3 and 2 is treated similarly. The
remaining case where the max and min are attained at 3 and 1 is slightly different
because there is no direct relation between π̃(3) and π̃(1). However, the same line
of reasoning yields

π̃(3) ≤
(

1 + ε

1 + ε/2

)
π̃(0) and π̃(0) ≤ (1 + ε/2)π̃(1).
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This shows that

max{π̃} ≤ (1 + ε)min{π̃}.(5.4)

Because of this and Corollary 3.4, the sequence (Ki)
∞
1 is (1 + ε)-stable with re-

spect to π̃ . Applying Proposition 4.4 and (5.3) yield again a relative merging time
of order N2 for the sequence (Ki)

∞
1 . The following theorem records this result in

more general form.

THEOREM 5.1. Let VN = {0, . . . ,N}. Fix ε > 0 and let K be as in (5.1). Fix
a permutation g = gN of VN and let Ki , K̃, π̃,μi be associated to K,g as in
Section 3. Assume that there exists c ≥ 1 such that

max
x∈VN

{π̃ (x)} ≤ c min
x∈VN

{π̃ (x)}.(5.5)

Then there is a constant C(ε, c) such that the relative-sup merging time for (Ki)
∞
1

is bounded by

T∞(η) ≤ C(ε, c)N2(1 + log+ 1/η).

REMARK 5.2. For which permutations g of the set VN = {0, . . . ,N} does
the conclusion of the theorem above hold? According to the theorem, it suffices to
check that condition (5.5) is satisfied. For instance, (5.5) is satisfied if g(x) = x −1
or g(x) = x + 2 [in fact, by symmetry, for g(x) = x ± 1, g(x) = x ± 2]. It is very
plausible that (5.5) is always satisfied, whatever the permutation g is. However, this
does not follow directly from an argument similar to the one used for g(x) = x −1
and g(x) = x + 2. In fact, the argument already fails miserably for g(x) = x + 3.
The reader may want to convince herself of that. In general, we want to compare
the min and max of π̃ . It is easy to see that the max is attained at either g(0) or g(1)

and the min at either g(−1) or g(2). The case where the max and min are attained
at either (g(0), g(2)) or (g(1), g(−1)) can be treated as above because the values
of π̃ at g(0), g(2) [resp., at g(−1), g(1)] are both related to the value at 1 (resp.,
0). But, in the other cases, it becomes much more tricky to compare the max and
min without further hypotheses.

Let P be the lazy version of the kernel defined in (5.1) with

P(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/2, if x = y,
1/4, if |x − y| = 1 and x 	= {0,1},
(1 + ε)/2(2 + ε), if (x, y) ∈ {(0,1), (1,0)},
1/2(2 + ε), if (x, y) ∈ {(0,−1), (1,2)},
0, otherwise.

(5.6)

Let g be any permutation of the set VN = {0, . . . ,N}, and define Pi(x, y) =
P(gi−1x,gi−1y) for all i = 1,2, . . . and P̃ (x, y) = P(x,g−1y). In this case, we
can show that condition (4.2) holds which implies a relative-sup merging time of
order N2 for any permutation g.
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THEOREM 5.3. Let VN = {0, . . . ,N}. Fix ε > 0 and let P be as in (5.6). Fix
a permutation g = gN of VN and let Pi , P̃ , π̃ ,μi be associated to P,g as in
Section 3 (replacing K by P ). Then

max
x∈VN

{π̃ (x)} ≤ (1 + ε) min
x∈VN

{π̃(x)}.(5.7)

Furthermore, there is a constant C(ε) such that the relative-sup merging time for
(Pi)

∞
1 is bounded by

T∞(η) ≤ C(ε)N2(1 + log+ 1/η).

PROOF. By Proposition 4.4 and (5.2)–(5.3), it suffices to prove (5.7). Fix a
permutation g = gN of VN = {0, . . . ,N}. The kernel P̃ is given by

P̃ (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/2, if x = g−1y,
1/4, if |x − g−1y| = 1 and x 	= {0,1},
(1 + ε)/2(2 + ε), if (x, g−1y) ∈ {(0,1), (1,0)},
1/2(2 + ε), if (x, g−1y) ∈ {(0,−1), (1,2)},
0, otherwise.

By Lemma 4.5, the maximum value of π̃ is attained at either g(0) or g(1) and the
minimum at g(−1) or g(2). Moreover,

π̃(g(−1)) = π̃(−1)

2
+ π̃(−2)

4
+ π̃(0)

2(2 + ε)
,

π̃(g(2)) = π̃(2)

2
+ π̃(3)

4
+ π̃(1)

2(2 + ε)
,

π̃(g(0)) = π̃(0)

2
+ π̃(−1)

4
+ (1 + ε)π̃(1)

2(2 + ε)
,

π̃(g(1)) = π̃(1)

2
+ π̃(2)

4
+ (1 + ε)π̃(0)

2(2 + ε)
.

Note that for any of the four possible max/min pairs, the max and min values can be
both compared via the equations above to either π̃ (0) or π̃(1). See Remark 4.6(b).
For instance, suppose the max/min pair is (g(0), g(−1)). Then

π̃(g(0)) ≤ 4 + 2ε

4 + ε
π̃(0) and π̃(0) ≤ 2 + ε

2
π̃(g(−1)).

Hence,

π̃(g(0)) ≤ (2 + ε)2

4 + ε
π̃(g(−1)).

The other cases are similar, and it follows that max{π̃} ≤ (1 + ε)min{π̃}. �
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6. Further examples: Single point perturbations. In the next two examples,
we consider perturbations of a symmetric kernel as described in Section 4 but
with A = {o} for some o ∈ V , that is, the perturbation occurs at a single point.
In the second example, we make an additional assumption on the structure of the
perturbation. In these cases, we are able to obtain easily applicable bounds.

EXAMPLE 6.1. Let Q be be a symmetric kernel as in Section 4. Fix ε ∈ (0,1),
and let K = Q + �o where �o = �{o} satisfies

−εQ(o, y) ≤ �o(o, y),
∑
y

�o(o, y) = 0 and �o(x, y) = 0 if x 	= o.

Note that K(x,y) ≥ (1 − ε)Q(x, y), and K satisfies the properties (a)–(c) listed
at the beginning of Section 4. Fix a permutation g of V and assume that K̃ is irre-
ducible. Then Lemma 4.5 says that the min and max of π̃ are attained respectively
on A∗+,A∗− and Remark 4.6(b) gives

max
x∈V

{π̃} ≤ C min
x∈V

{π̃},(6.1)

where

C = max
(x,y)∈A∗+×A∗−

{
K̃(o, x)(1 − ∑

z 	=o K̃(z, y))

K̃(o, y)(1 − ∑
z 	=o K̃(z, x))

}

≤ max
x∈A∗+

{
K(o,g−1x)

(1 − ε)Q(o,g−1x)

}

= 1

(1 − ε)θ
, θ = max

x∈A∗+

{
K(o,g−1x)

Q(o,g−1x)

}
.

Equation (6.1) and Proposition 4.2 now imply that the relative-sup η merging
time of the sequence (Ki)

∞
1 is at most

D

1 − σ1
(log |V | + log+ 1/η),(6.2)

where σ1 is the second largest singular value of the kernel Q on �2(u), and D =
D(ε, θ) is a constant that depends only on ε ∈ (0,1) and θ (the constant D can
easily be made explicit).

EXAMPLE 6.2 (Perturbation of expander graphs). Fix an integer r and con-
sider a sequence GN = (VN,EN) of regular graphs with vertex set VN of size
|VN | tending to infinity and symmetric edge set EN ⊂ VN × VN with (x, x) ∈ EN

for all x ∈ VN . On each graph, consider the symmetric Markov kernel Q = QN

corresponding to the simple random walk on GN . Hence, QN(x, y) = 1/r if



1850 L. SALOFF-COSTE AND J. ZÚÑIGA

(x, y) ∈ EN and QN(x, y) = 0 otherwise. Let σ1(N) be the second largest sin-
gular value of QN on �2(uN) where uN is the uniform probability measure on VN .
Assume that there is a constant a ∈ (0,1) such that

∀N 1 − σ1(N) ≥ a.(6.3)

This property is a strong form of the property that defines the so-called expander
graphs (see, e.g., [11, 12] and the references therein).

Fix an origin o = oN in VN and consider a perturbation KN of QN as in Exam-
ple 6.1. Fix also a bijection gN :VN → VN . For each N , consider the time inhomo-
geneous chain on VN driven by (KN,i)

∞
1 where KN,i(x, y) = KN(gi−1

N x,gi−1
N y).

In this situation, (6.2) yields merging for the sequence (KN,i)
∞
1 in order log |VN |

steps, uniformly in N . Note that this result requires the degree r of the graph to be
fixed (or, at least, bounded from above, uniformly in N ).

EXAMPLE 6.3. Here we strengthened the hypotheses and the conclusion in
the previous example. Namely, we assume that there exists δ ∈ (0,1 − Q(o,o))

such that

0 < �o(o, o) ≤ δ, −δ

(
Q(o,y)

1 − Q(o,o)

)
≤ �o(o, y) < 0 if y 	= o,(6.4)

and

�(x,y) = 0 if x 	= o.

Set

ε = δ

1 − Q(o,o)
.(6.5)

A careful analysis of this example yields a much improved estimate for c-stability
and the relative sup merging time when compared to the previous example. The
difference lies in the fact that the perturbation is positive only at o.

LEMMA 6.1. Assume that K̃ is irreducible. Let m = minx{π̃ (x)} and M =
maxx{π̃(x)}. We have that π̃(o) = M and for ε as in (6.5)

m ≥ (1 − ε)π̃(o).

PROOF. Lemma 4.5 tells us that M = π̃ (o) and that there exists m = π̃(x−)

for some x− with K̃(o, x−) > 0. Further,

π̃(x−) = ∑
x

π̃(x)K̃(x, x−)

≥ π̃(o)K̃(o, x−) + π̃(x−)
∑
x 	=o

Q(x, g−1x−)

≥ (1 − ε)π̃(o)Q(o,g−1x−) + π̃(x−)
(
1 − Q(o,g−1x−)

)
.

So we get π̃(x−) ≥ (1 − ε)π̃(o) as desired. �
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EXAMPLE 6.4. Let GN = (VN,EN) be a sequence of regular expander graphs
as in Example 6.2 but with degree rN ≥ 3 that might depend on N . Fix δ ∈ (0,2/3)

and bijections gN :VN → VN . Consider a perturbation KN of the simple random
walk QN on GN as in Example 6.3. The constant ε at (6.5) is εN = δ(rN/(rN −
1)) < 3δ/2 and the measure π̃N satisfies

max
VN

{π̃N } ≤ (1 − 3δ/2)−1 min
VN

{π̃N }.

It follows from this and Proposition 4.2 that the associated sequence of perturbed
kernels (KN,i)

∞
1 merges in order log |VN | steps.

EXAMPLE 6.5 (Sticky permutation). The following is a particular case of Ex-
ample 6.3. It is treated in more detail in [18]. On V = Sn, the symmetric group,
let

Q(x,y) =
⎧⎨
⎩

1/2n, if y = x(1, j), j ∈ {2, . . . , n},
(n + 1)/(2n), if x = y.
0, otherwise.

This is the kernel of the lazy version of the random walk called “transpose top and
random.” Fix a permutation ρn ∈ Sn, δ ∈ (0, (n − 1)/(2n)) and let

K(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

Q(x,y), if x 	= ρn,
Q(x,y) + δ, if x = y = ρn,
Q(x,y) − δ/(n − 1), if x = ρn and y = x(1, j)

for j ∈ {2, . . . , n}.
In words, K is obtained from Q by adding extra holding probability at ρn, mak-
ing ρn “sticky.” Next, if σ is the cycle (1, . . . , n), let

Ki(x, y) = K(σ i−1xσ−i+1, σ i−1yσ−i+1).

Hence Ki is Qi with some added holding at ρi = σ−i+1ρσ i−1. This is obviously
a special case of Example 6.3, and we thus have

max{π̃} ≤ c min{π̃}, c = (
1 − 2nδ/(n − 1)

)−1
.(6.6)

Hence Proposition 4.2 applies. The second largest singular value of Q is known
to be σ1 = 1 − 1/(2n) (see, e.g., [2, 7, 16]). This yields an upper bound of order
n(n logn + log+ 1/η) for the relative-sup merging time T∞(η) of the sequence
(Ki)

∞
1 . This result can be improved by using the logarithmic Sobolev inequality

technique of [18], (6.6) and Lemma 4.3. The logarithmic Sobolev constant l(Q2)

of Q2 is of order 1/n logn (see [6]). This yields a relative-sup merging time upper
bound of order n((logn)2 + log+ 1/η). This result holds also if we replace the
lazy random walk Q above by its nonlazy version, the usual “transpose top with
random.”
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A total variation merging time estimate of order n(logn+ log+ 1/η) is obtained
in [18] by using Lemma 6.1 together with the modified logarithmic Sobolev in-
equality technique. The crucial point is that the modified logarithmic Sobolev con-
stant l′(Q2) of Q2 is of order 1/n (see [9, 18]). We do not know how to prove this
improved estimate for the nonlazy version of this example.
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