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ASYMPTOTIC BEHAVIOR OF THE RATE OF ADAPTATION

BY FENG YU1, ALISON ETHERIDGE AND CHARLES CUTHBERTSON2

University of Bristol, University of Oxford and Morgan Stanley

We consider the accumulation of beneficial and deleterious mutations in
large asexual populations. The rate of adaptation is affected by the total muta-
tion rate, proportion of beneficial mutations and population size N . We show
that regardless of mutation rates, as long as the proportion of beneficial mu-
tations is strictly positive, the adaptation rate is at least O(log1−δ N) where δ

can be any small positive number, if the population size is sufficiently large.
This shows that if the genome is modeled as continuous, there is no limit to
natural selection, that is, the rate of adaptation grows in N without bound.

1. Background and introduction. We consider the accumulation of muta-
tions in large asexual populations. The mutations that biological organisms accu-
mulate over time can be classified into three categories: beneficial, neutral and
deleterious. Beneficial mutations increase the fitness of the individual carrying the
mutation, while deleterious mutations decrease fitness; neutral mutations have no
effect on fitness. Adaptation is driven by accumulation of beneficial mutations, but
it is limited by clonal interference (clones that carry different beneficial mutations
compete with each other and interfere with the other’s growth in the population).
Fisher and Muller argued for the importance of this effect as early as the 1930s
[Fisher (1930), Muller (1964)]. Here, we are concerned with the rate of adapta-
tion, that is the rate of increase of mean fitness in the population.

The simplest scenario one can consider is one in which a single beneficial muta-
tion arises in an otherwise neutral population and no further mutations occur until
the fate of that mutant is known. This situation is well understood. The most ba-
sic question one can ask is what is pfix, the fixation probability of the mutation.
This was settled by Haldane (1927), who showed that under a discrete generation
haploid model, if the selection coefficient associated with the mutation is s, then
under these circumstances pfix ≈ 2s. In this case, pfix is almost independent of the
population size, N .

When the mutation does fix, the process whereby it increases in frequency from
1/N to 1 is known as a selective sweep. The duration of a selective sweep is
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O(log(sN)/s) generations. If one assumes that the mutation rate per individual per
generation is μ, then the overall mutation rate will be proportional to population
size and we see that for large populations the assumption that no new mutation will
arise during the timecourse of the sweep breaks down. Instead one expects multiple
overlapping sweeps. In an asexual population, mutations can only be combined if
they occur sequentially within the same lineage. This means that, on the one hand,
alleles occurring on the same lineage can boost one another’s chance of fixation,
but on the other hand alleles occurring on distinct lineages competitively exclude
one another. The net effect is to slow down the progress of natural selection. This
is an extreme form of the Hill–Robertson effect. Hill and Robertson (1966) were
the first to quantify the way in which linkage between two sites under selection in
a finite population (whether sexually or asexually reproducing) limits the efficacy
of natural selection. In a sexually reproducing population, recombination breaks
down associations between loci and so ameliorates the Hill–Robertson effect, sug-
gesting an indirect selective force in favor of recombination. Further quantitative
analysis of the interference between selected loci is provided by Barton (1995)
who considers the probability of fixation of two favorable alleles in a sexually re-
producing population. His method is only valid if the selection coefficient of the
first beneficial mutation to arise is larger than that of the second. Cuthbertson,
Etheridge and Yu (2009) consider the same question in the general setting. The
conclusion from both works is that fixation probabilities are reduced, sometimes
drastically, because of interference between the two mutations. Furthermore, if
the second mutation is stronger than the first, then Cuthbertson, Etheridge and Yu
(2009) show that the strength of interference can be strongly dependent on popu-
lation size. In this work, we do not consider the effects of recombination, since we
only work with asexual populations.

Since all beneficial mutations eventually become either extinct or ubiquitous in
the population, the rate of adaptation, defined to be the rate of increase of the mean
fitness of the population, is proportional to μspfixN , where μN is the total number
of beneficial mutations that occur to all individuals in the population in a single
generation and we assume pfix to be the same for all beneficial mutations, which is
the case for the system in stationarity. If pfix is independent of population size, then
we expect an adaptation rate of O(N). However, a explained above, the occurrence
of simultaneous selective sweeps reduces pfix and so pfix may not be O(1). This
leads to the following question: if one does not limit the number of simultaneous
selective sweeps, what is pfix, or equivalently, what is the rate of adaptation? As
N → ∞, is the rate of adaptation finite or does it increase without bound? There
has been some controversy surrounding this question. Some work [e.g., Barton
and Coe (2009)] suggests that there is an asymptotic limit to the rate of adaptation.
Other authors [e.g., Rouzine, Wakeley and Coffin (2003), Wilke (2004) and Desai
and Fisher (2007)] argue that no such limit exists. Here, we study this problem in
a mathematically rigorous framework.
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Previous work on this question has adopted two general approaches: (i) calcu-
late the fixation probability pfix directly, and (ii) study the distribution of fitness of
all individuals in the population and asks how this distribution evolves with time.
The first approach was used in Gerrish and Lenski (1998), Wilke (2004) and Barton
and Coe (2009). Gerrish and Lenski (1998) were the first to present a quantitative
analysis of the rate of adaptation in the presence of clonal interference. They ob-
tained approximate integral expressions for the fixation probability of a beneficial
mutation and thus the expected rate of adaptation. Orr (2000) generalized the re-
sults of Gerrish and Lenski (1998) to include the effects of deleterious mutations.
Wilke (2004) combined the works of Gerrish and Lenski (1998) and Orr (2000) to
obtain approximate expressions for the adaptation rate that grow logarithmically or
doubly logarithmically for large N . In all three works, the authors used a sequence
of approximations before arriving at an expression for the fixation probability or
the adaptation rate. It seems to be highly nontrivial to turn any of these approxi-
mation steps into a rigorous mathematical argument and so we do not follow their
approaches here.

The second approach, to consider the distribution of fitness in the population,
was used in Rouzine, Wakeley and Coffin (2003), Brunet et al. (2006) and Rouzine,
Brunet and Wilke (2008). As in the work described in the last paragraph, Rouzine,
Wakeley and Coffin (2003) take fitness effects to be additive, but whereas before
the selection coefficient of each new mutation was chosen from a probability dis-
tribution, now all selection coefficients are taken to be equal. In this setting, a bene-
ficial and a deleterious mutation carried by the same individual cancel one another
out and an individual’s fitness can be characterized by the net number of beneficial
mutations which it carries (which may be negative). Writing Pk for the proportion
of individuals with fitness equivalent to k beneficial mutations, {Pk}k∈Z forms a
type of traveling wave whose shape remains basically unchanged over time. The
position of the wave moves to the left or the right on the fitness axis, depending
on whether the adaptation rate is positive or negative. This is similar to traveling
waves arising from reaction–diffusion equations in the PDE literature [see, e.g.,
Chapter 15 of Taylor (1996)]. In the current setting, however, the shape of the
wave actually fluctuates stochastically even after a long time. So the wave can be
regarded as a stochastic traveling wave, and its speed is proportional to the rate
of adaptation. Rouzine, Wakeley and Coffin (2003) studied a multilocus model
that does not include recombination but does include beneficial, deleterious and
compensating mutations. They found that the rate of adaptation (i.e., the speed of
the traveling wave) asymptotically depends logarithmically on population size N ,
which is consistent with results of in vitro studies of a type of RNA virus in Novella
et al. (1995, 1999). Rouzine, Brunet and Wilke (2008) presents the same approach
but with more detailed derivations and improved treatments of the stochastic edge.

Desai and Fisher (2007) also adopts the traveling wave approach. Their method
of studying the adaptation rate, however, differs from that of Rouzine, Wakeley
and Coffin (2003) and Rouzine, Brunet and Wilke (2008) in that they consider the
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fitness variation of the population to be in mutation–selection balance, and ask how
much variance in fitness can the population maintain while this variation is being
selected on. The conclusion they reach is that this variation (hence the adaptation
rate) increases logarithmically with both population size and mutation rate.

Brunet et al. (2006) study a model in which each of the N individuals in the
population gives birth to k offspring, each of which has a fitness that differs from
the fitness of its parent by a random amount and finally the N fittest individuals
are used to form the next generation. This model resembles artificial selection,
rather than natural selection, but it may be easier to study because the density of
individuals of a certain fitness in the next generation has a kind of local dependence
on that density in the current generation. This is quite different from the behavior
considered in Rouzine, Wakeley and Coffin (2003) and our work in this article,
where the density of individuals of a given fitness depends on the whole fitness
distribution of the parental population.

This work originally arose from discussions with Nick Barton and Jonathan
Coe which focused on limits to the rate of adaptation when all mutations are ben-
eficial. In reality, most mutations are either neutral or deleterious. In particular,
if all mutations in an asexual population were deleterious, then the population
would irreversibly accumulate deleterious mutations, a process known as Muller’s
ratchet. The first mathematically rigorous analysis of Muller’s ratchet is due to
Haigh (1978). There, a Wright–Fisher model is formulated that incorporates the
effects of selection and mutation. Again all mutations carry equal weight so that
individuals can be classified according to how many mutations they carry. Haigh
(1978) showed that if the population size is infinite (so that the dynamics of the
model become deterministic) then there is a stationary distribution. In the finite
population case, however, this is not the case. At any given time, there is a fittest
class, corresponding to those individuals carrying the smallest number of muta-
tions, but this class will eventually be lost due to genetic drift (the randomness
in the reproduction mechanism). This loss is permanent since there is no benefi-
cial or back mutation to create a class fitter than the current fittest class. The next
fittest class then becomes the fittest class, but that will be lost eventually as well
and the entire population grows inexorably less fit. Higgs and Woodcock (1995)
derived a set of moment equations for Haigh’s model but these are not closed and
so are hard to analyse. Instead, their results rely mainly on simulations. Stephan,
Chao and Smale (1993) and Gordo and Charlesworth (2000) use (slightly different)
one-dimensional diffusions to approximate the size of the fittest class. Etheridge,
Pfaffelhuber and Wakolbinger (2009) go much further along this line (and provide
a more thorough review of the literature than that included here). They conjec-
ture and provide justification for a phase transition and power law behavior in the
rate of the ratchet. But in spite of the very considerable body of work on Muller’s
ratchet, even a rigorous expression for the rate of decline in mean fitness of the
population remains elusive.
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Muller’s ratchet caricatures the evolution of a population in which there is no
recombination and no beneficial mutation. Such a population is doomed to be-
come progressively less and less fit. So how can a species overcome the ratchet?
If it reproduces sexually, then recombination of parental chromosomes can cre-
ate offspring that are fitter than either parent and so Muller’s ratchet has been
proposed as an explanation for the evolution of sexual reproduction [e.g., Muller
(1964), Felsenstein (1974)]. But not all populations reproduce sexually. Another
mechanism which has the potential to overcome Muller’s ratchet is the presence
of beneficial mutations, and it is this mechanism that we shall consider here. More
specifically, we pose the following question: with both beneficial and deleterious
mutations, does a sufficiently large population overcome Muller’s ratchet?

The conclusion we reach, through both nonrigorous (Section 3) and rigorous
(Theorem 4.6) approaches, is the following: as long as the proportion of benefi-
cial mutations is strictly positive, the rate of adaptation is roughly O(logN) for
large N , where N is the population size and time is measured in generations. This
shows that even with a tiny proportion of beneficial mutations, a large enough
population size will yield a positive adaptation rate, in which case the entire popu-
lation grows fitter at a high rate and Muller’s ratchet is overcome. It also shows, in
particular, that the rate of adaptation grows without bound as N → ∞ in the all-
mutations-beneficial case. This is consistent with the findings of Rouzine, Wakeley
and Coffin (2003) and Wilke (2004).

Figure 1 plots the adaptation rate against log population size from simulation
results of the model we consider in this article. We observe that for each set of
parameters q , μ and s, the rate of adaptation is roughly proportional to logN and
small population sizes may result in negative adaptation rates. Furthermore, larger
q results in a higher adaptation rate for fixed μ and s. The upshot is that with μ

and s held constant, a smaller proportion of beneficial mutations needs a larger
population size for Muller’s ratchet to be overcome.

In the model, we study here the selection coefficient s is held fixed as N → ∞.
This is known as a “strong selection” model. Our interest is in the behavior of the
model for very large N . It is not clear in this setting how to pass to an infinite pop-
ulation limit and so we must work with a model based on discrete individuals. An
alternative model, the so-called weak selection model, is used to address behavior
of very large populations when Ns is not too large. By fixing Ns (as opposed to s),
one can pass to an infinite population limit. The limiting model comprises a count-
ably infinite system of coupled stochastic differential equations for the frequencies
of individuals of different fitnesses within the population. Preliminary calculations
for this model are presented in Yu and Etheridge (2008).

This work is organized as follows. In Section 2, we formulate our model. In
the biological literature, one would expect to see a Wright–Fisher model but since
we are interested in large populations, we expect the same results for the much
more mathematically tractable Moran particle model which we describe. We also
perform some preliminary calculations. In Section 3, we present a nonrigorous
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FIG. 1. Adaptation rate against population size, from top to bottom, for q = 4%,2%,1% and 0.2%,
μ = 0.01 and s = 0.01. Circles represent data points obtained from simulation, q is the probability
that a mutation is advantageous and vertical bars represent one standard deviation.

argument that leads to an asymptotic adaptation rate of roughly O(logN). In Sec-
tion 4, we present and prove our main rigorous result that establishes a lower bound
of log1−δ N for any δ > 0 on the adaptation rate. And finally, in Section 5, we prove
the supporting lemmas required for the proof of our main theorem.

2. The finite population Moran model. We assume constant population
size N . For each N ∈ N, let Xi(t) ∈ Z, i = 1, . . . ,N , denote the fitness type of the
ith individual, defined to be the number of beneficial mutations minus the number
of deleterious mutations carried by the individual. For k ∈ Z, let Pk(t) denote the
proportion of individuals that have fitness type k at time t , that is,

Pk = 1

N

N∑
i=1

1{Xi=k}.

We use P(N)(Z) to denote the space of probability measures p on Z formed by
N point masses each with weight 1/N , and define

S(N) = P(N)(Z)
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to be the state space for Pk(t). For p ∈ S(N), we define pk = p({k}) and

p[k,l] =
l∑

i=k

pi,

m(p) = 〈k,p〉 = ∑
k∈Z

kpk,(1)

cn(p) = ∑
k∈Z

(
k − m(p)

)n
pk.

In particular, m(p) is the mean fitness of the population, and c2(p) = 〈k2,p〉 −
〈k,p〉2 is the 2nd central moment of the population fitness, that is, its variance.
We sometimes abuse notation and use P to denote the probability mass function
of different fitness types associated with the probability measure P .

The model of interest is one where each individual accumulates beneficial mu-
tations at a Poisson rate qμ and deleterious mutations at rate (1−q)μ. We assume
a so-called infinitely-many-loci model where each mutation is assumed to be new
and occur at a different locus on the genome. All individuals experience selection
effects via a selection mechanism (which introduces a drift reflecting the differ-
ential reproductive success based on fitness) and the effect of genetic drift via a
resampling mechanism. The mechanisms of this model are described below:

1. Mutation: for each individual i, a mutation event occurs at rate μ. With proba-
bility 1−q , Xi changes to Xi −1 and with probability q , Xi changes to Xi +1.

2. Selection: for each pair of individuals (i, j), at rate s
N

(Xi − Xj)
+, individual i

replaces individual j .
3. Resampling: for each pair of individuals (i, j), at rate 1

N
, individual i replaces

individual j .

This model has a time scale such that one unit of time corresponds roughly to one
generation. A more sophisticated model should consider mutations that have a dis-
tribution of fitness effects, for example, an independent exponentially distributed
selective advantage associated with each new beneficial mutation as proposed by
Gillespie (1991). Recent work by Hegreness et al. (2006), however, suggests that in
models where beneficial mutations have a distribution of fitness advantages, evo-
lutionary dynamics, for example, the distribution of successful mutations which
ultimately determines the rate of adaptation, can be reasonably described by an
equivalent model where all beneficial mutations confer the same fitness advantage.
One can also describe the mechanisms in the above model in terms of the Pk’s,

1. Mutation: for any k ∈ Z, at rate (1 − q)μNPk , Pk decreases by 1
N

and Pk−1

increases by 1
N

; at rate qμNPk , Pk decreases by 1
N

and Pk+1 increases by 1
N

.
2. Selection: for any pair of k, l ∈ Z such that k > l, at rate s(k − l)NPkPl , Pk

increases by 1
N

and Pl decreases by 1
N

.
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3. Resampling: for any pair of k, l ∈ Z, at rate NPkPl , Pk increases by 1
N

and Pl

decreases by 1
N

.

We use (P,X) to denote the process evolving under the above mechanism, where
X describes the fitness types of the N exchangeable individuals and P describes
the empirical measure formed by the fitness types of these individuals. If there is no
confusion, we drop X and denote the process simply by P . The main result of this
work, Theorem 4.6, states that under the above model, the mean fitness increases
at a rate of at least O(log1−δ N) for any δ > 0 after a sufficiently long time.

REMARK 2.1. Notice that the resampling acts on ordered pairs, so that the
overall rate at which an individual is affected by a resampling event is 2N and at
such an event it has equal chance of reproducing or dying. It would be more usual
to have resampling at half this rate, but this choice of timescale does not change
the results and will save us many factors of two later.

Often one combines the resampling and selection into a single term. Each pair of
individuals is involved in a reproduction event at some constant rate and the effect
of selection is then that it is more likely to be the fitter individual that reproduces.
Since s is typically rather small, our simpler formulation is a very small perturba-
tion of this model and again the statement of our results would not be changed in
that framework.

REMARK 2.2. We take the selection mechanism to be additive instead of mul-
tiplicative, that is, the fitness type of an individual with k beneficial mutations is
1 + sk instead of (1 + s)k . Even though (1 + s)k ≈ 1 + sk is only valid for small s

and k, (1 + s)k ≥ 1 + sk holds for all s ∈ [−1,∞), thus our main result of a lower
bound on the rate of adaptation also holds for multiplicative selection effects.

One can construct the process X(t) using Poisson random measures and Poisson
processes. More specifically, let l denote the Lebesgue measure on R. For each
i ∈ Z, let �

(N)
1i,b and �

(N)
1i,d be independent Poisson processes with intensities qμ and

(1 − q)μ, respectively. For each i, j ∈ Z, let �
(N)
2ij be a Poisson random measure

on R
+ × R

+ with intensity measure 1
N

l × l. And, for each i, j ∈ Z, let �
(N)
3ij be a

Poisson process with intensity 1
N

. Then Xi satisfies the following jump equation:

Xi(t) = Xi(0) +
∫ t

0
�

(N)
1i,b(du) −

∫ t

0
�

(N)
1i,d (du)

+ ∑
j

∫
[0,t]×[0,∞)

(
Xj(u−) − Xi(u−)

)

(2)
× 1{ξ≤s(Xj (u−)−Xi(u−))}�(N)

2ij (du, dξ)

+ ∑
j

∫ t

0

(
Xj(u−) − Xi(u−)

)
�

(N)
3ij (du).
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In the above, jumps of �
(N)
3ij give possible times when the type of individual i is

replaced by that of individual j due to the resampling mechanism; jumps of �
(N)
2ij

give possible times when the type of individual i is replaced that of individual j

due to the selection mechanism; and jumps of �
(N)
1i,b and �

(N)
1i,d give possible times

when the type of individual i increases and decreases by 1 due to the beneficial
and deleterious mutation mechanisms, respectively.

In terms of Pk , we have

Pk(t) = Pk(0) + μ

∫ t

0
qPk−1(u) − Pk(u)

+ (1 − q)Pk+1(u) du
(3)

+ s

∫ t

0

∑
l∈Z

(k − l)Pk(u)Pl(u) du

+ M
P,1
k (t) + M

P,2
k (t),

where M
P,1
k and M

P,2
k are orthogonal martingales, the first arising from the (com-

pensated) mutation mechanism and the second from the resampling and selection
mechanisms.

We define the conditional quadratic variation of an L2-martingale (Mt)t≥0 to
be the unique previsible process 〈M〉(t) that makes M(t)2 − M(0)2 − 〈M〉(t) a
martingale. See, for example, Chapters II.6 and III.5 of Protter (2003). With this
notation, following the method of, for example, Ikeda and Watanabe (1981), Sec-
tion II.3.9, we obtain

〈MP,1
k 〉(t) = μ

N

∫ t

0
qPk−1(u) + Pk(u) + (1 − q)Pk+1(u) du,

〈MP,1
k ,M

P,1
k−1〉(t) = − μ

N

∫ t

0
qPk−1(u) + (1 − q)Pk(u) du,

〈MP,1
k ,M

P,1
l 〉(t) = 0 if |k − l| ≥ 2,(4)

〈MP,2
k 〉(t) = 1

N

∫ t

0

∑
l∈Z

(2 + s|k − l|)Pk(u)Pl(u) du,

〈MP,2
k ,M

P,2
l 〉(t) = − 1

N

∫ t

0
(2 + s|k − l|)Pk(u)Pl(u) du if k 
= l.

With the expressions in (3) and (4), we can write the martingale decomposition
of the mean m(P (t)) = ∑

k kPk(t) in the notation of (1) as follows

m(P (t)) = m(P (0)) + μ

∫ t

0

∑
k

k[qPk−1(u) − Pk(u)

+ (1 − q)Pk+1(u)]du
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+ s

∫ t

0

∑
k,l∈Z

k(k − l)Pk(u)Pl(u) du + MP,m(t)

= m(P (0)) + μ(2q − 1)t

+ s

∫ t

0
c2(P (u)) du + MP,m(t),

where MP,m is a martingale, or in differential notation,

dm(P ) = (
μ(2q − 1) + sc2(P )

)
dt + dMP,m.(5)

3. A nonrigorous argument. In this section, we give a nonrigorous argu-
ment that leads to an asymptotic adaptation rate of roughly O(logN), as long as q

is strictly positive and regardless of the selection and mutation parameters. A rig-
orous argument in Section 4 will establish a lower bound of O(log1−δ N) on the
adaptation rate.

Our nonrigorous approach is similar to that of Rouzine, Wakeley and Coffin
(2003). We assume the “bulk” of the wave, that is, at k’s not too far away from
the mean fitness, behaves like a deterministic traveling wave and obtain an ap-
proximate expression for the shape of this wave. More specifically, we obtain a
set of equations satisfied by all central moments of the distribution P , which will
dictate that the wave is approximately Gaussian. There is, however, an infinite
family of solutions to these equations, parameterized by the variance of P , which
ultimately determines the wave speed. To determine the correct wave speed for a
given parameter set (i.e., population size, mutation and selection coefficients, and
the proportion of beneficial mutations), we use the essentially stochastic behavior
at the front of the wave to calculate the wave speed. The answer we obtain from
both calculations, that is, using the “bulk” and the front of the wave, must be the
same. This constraint will yield an approximate expression for the adaptation rate.

With all martingale terms in (3) of order P/N , the effect of noise on Pk can be
considered to be quite small if Pk is much larger than 1/N . For k’s where Pk is in
this range, we have from (3),

dPk ≈
[
μ

(
qPk−1 − Pk + (1 − q)Pk+1

) + s
∑
l∈Z

(k − l)PkPl

]
dt

(6)
= [

μ
(
qPk−1 − Pk + (1 − q)Pk+1

) + s
(
k − m(P )

)
Pk

]
dt.

This is similar to (2) in Rouzine, Wakeley and Coffin (2003).
If we assume that {Pk}k∈Z evolves according to this deterministic system,

then we can calculate the central moments via the Laplace transform ψ(θ;p) =∑
k eθ(k−m(p))pk :

dψ(θ) = ∑
k

eθ(k−m(P )) dPk − ∑
k

θeθ(k−m(P ))Pk dm(P ).
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Furthermore, we can obtain from (5)

dm(P ) ≈ (
μ(2q − 1) + sc2(P )

)
dt.(7)

Therefore,

dψ(θ) ≈
[
μ

∑
k

eθ(k−m(P ))(qPk−1 − Pk + (1 − q)Pk+1
)

+ s
∑
k

eθ(k−m(P ))(k − m(P )
)
Pk

− ∑
k

θeθ(k−m(P ))Pk

(
μ(2q − 1) + sc2(P )

)]
dt

= [
ψ(θ)

(
μ

(
qeθ − 1 + (1 − q)e−θ )

− θ
(
μ(2q − 1) + sc2(P )

)) + sψ ′(θ)
]
dt

= [
ψ(θ)

(
μ

(
qeθ − 1 + (1 − q)e−θ − θ(2q − 1)

) − θsc2(P )
) + sψ ′(θ)

]
dt.

We observe that the term with coefficient μ is O(θ2), thus for small θ , the effect of
the mutation mechanism on the centred wave is relatively small compared to the
selection mechanism. We drop the terms arising from the mutation mechanism to
obtain

dψ(θ) ≈ s[−ψ(θ)θc2(P ) + ψ ′(θ)]dt.

Differentiating this repeatedly and using the fact that cn(P ) = ψ(n)(0;P) for
n ≥ 2, we obtain the following approximate system for the central moments cn:

dcn(P ) ≈ s
(
cn+1(P ) − ncn−1(P )c2(P )

)
dt.

If we assume the shape of the wave to be roughly deterministic and stationary,
then setting the expressions on the right-hand side to zero we see that the central
moments of P satisfies

cn(P ) =
⎧⎨
⎩

0, if n ≥ 3 is odd,
(2n)!
2nn! c2(P )n/2, if n ≥ 2 is even,

which are the central moments of normal distribution with variance c2(P ). Hence,
P is approximately Gaussian, but the variance is not determined.

We can use this information to guess at the asymptotic variance of the wave,
which will also, through (7) yield an expression for the asymptotic rate of adap-
tation. We follow Section 3 of Yu and Etheridge (2008) and assume that P is
approximately Gaussian with mean m(P ) and variance b2, and the “front” of the
wave is approximately where the level of P falls to 1/N . If the front of the wave
is at K + m(P ), then

1

2πb2 e−K2/2b2 = 1

N
,
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hence,

K ≈ b
√

2 logN.(8)

To estimate how long it takes the wave to advance by one, we suppose that a single
individual is born at K + m(P ) at time zero and estimate the time it takes for an
individual to be born at K + m(P ) + 1. Let Z(t) be the number of individuals at
site K +m(P ) at time t . Note that these are the fittest individuals in the population.
According to (6), until a beneficial mutation falls on site K +m(P ), Z(t) increases
exponentially at rate sK −μ. Ignoring beneficial mutations occurring to type K −
1 + m(P ), that is,

Z(t) ≈ e(sK−μ)t .(9)

As the population at site K + m(P ) grows, each individual accumulates bene-
ficial and deleterious mutations at rates qμ and (1 − q)μ, respectively. The occur-
rence of the first beneficial mutation will result in the advance of the wavefront.
Using (9), we deduce that the probability that no beneficial mutation occurs to any
individuals with fitness type K + m(P ) by time t is

exp
{
−qμ

∫ t

0
Z(u)du

}
= exp

{
− qμ

sK − μ

(
e(sK−μ)t − 1

)}
,

which gives a wave speed of (sK − μ)/ log(sK − μ).
Now we equate the results of our two calculations for the wave speed. By (7),

the wave speed is μ(2q − 1) + sc2(P ) = μ(2q − 1) + sb2 ≈ μ(2q − 1) +
sK2/(2 logN), using the equality involving K and b in (8). This leads to the fol-
lowing consistency condition:

sK − μ

log(sK − μ)
= μ(2q − 1) + sK2

2 logN
.

For large K , this approximately reduces to

K log(sK) = 2 logN.(10)

It is easy to see that K must be smaller than logN but larger than any fractional
power of logN . In fact, (10) is a transcendental equation whose solution can be
written as K = 1

σ
W(N2σ ), where W(z) : [0,∞) → [0,∞) is the inverse function

of z �→ zez. Corless et al. (1996) calls the function W the Lambert W function,
and gives useful asymptotic expansion results of this function near 0 and ∞, for
example, (4.20) of Corless et al. (1996). In particular, the two leading terms of this
expansion are

W(z) = log z − log log z + · · · ,
which shows that K = 2 logN − log(2 logN) + · · · and the leading term of the
wave speed is 2σ logN/(log logN). Our rigorous results in Section 4 will show
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that the rate of adaptation is asymptotically greater than any fractional power of
logN as N → ∞.

There are two critical components in the nonrigorous argument that we pre-
sented in this section: (i) the Gaussian shape of the wave when N is very large,
and (ii) the relation between the speed of the mean and that of the front of the
wave. The second component above has a rigorous counterpart in Proposition 4.2,
but we have found it difficult to give a rigorous statement of the shape of the wave
that we can prove and use, therefore our rigorous arguments in Section 4 does not
rely on the first component of the nonrigorous argument. What takes its place is
a comparison argument between the selected process and the neutral process with
only the mutation and resampling mechanisms.

4. Stationary measure of the centred process. If 2q − 1 > 0, then the dis-
tribution P tends to move to the right by mutation and the selection mechanism
also works to increase the mean fitness, therefore no stationary measure for P can
exist. If 2q − 1 < 0, the mutation mechanism works to decrease the mean fitness
but it is not at all clear the selection mechanism can keep the effects of deleteri-
ous mutations in check and maintain a “mutation–selection balance.” However, the
process centred about its mean does have a stationary measure and our first task in
this section is to establish this. Define

p̂k = pk+m(p)

for p ∈ S(N) and k ∈ Z/N , so that m(p̂) = 0 for all p. Define

Ŝ(N) = {
p̂ : there is some p ∈ S(N) such that

p̂k = pk+m(p) for all k ∈ Z/N
}
.

We observe that every p̂ ∈ Ŝ(N) has all its mass on points spaced 1 apart and
furthermore, the centred process P̂ is irreducible, that is, all states in Ŝ(N) commu-
nicate. To get from state any p̂1 to any p̂2, it suffices to first get to a state where all
individuals have the same fitness type. For example, the following event ensures
that at time t +h, all individuals will have the same number of mutations as carried
by individual 1 at time t :

max
i,j

�
(N)
1i,b(t, t + h] + �

(N)
1i,d(t, t + h] + �

(N)
2ij (t, t + h] = 0

min
i

�
(N)
3i1 (t, t + h] ≥ 1,(11)

max
i

∑
j>1

�
(N)
3ij (t, t + h] = 0.

Then one can get to any configuration in Ŝ(N) by the mutation mechanism alone.
The fact that the event in (11) has positive probability also ensures that the centred
process is positive recurrent. By standard results, for example, Theorem 3.5.3 of
Norris (1998), the centred process P̂ is ergodic.
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PROPOSITION 4.1. The centred process (P̂ ,X − m(P )) is ergodic, that is,
there is a unique stationary measure π and regardless of initial condition, the
chain converges to the stationary measure as t → ∞.

From now on, we take

S̄(N) = {
p̄ : there is some p ∈ S(N) and l ∈ Z/N such that

p̄k = pk+l for all k ∈ Z/N
}

to be as our state space for the process P because we may wish to start the process
with an initial configuration that has all its mass spaced 1 apart but not neces-
sarily falling onto Z. Let E

π denote the expectation started from the stationary
measure π . Let T (t) be the semigroup associated with the process (P,X), then
since ∫

E
p[c2(P (u))]dπ(p) =

∫
T (u)c2(p)dπ(p) =

∫
c2(p)dπ(p),

we have

E
π [m(P (t))] =

∫ t

0

∫
Ep[μ(2q − 1) + sc2(P (u))]dπ(p)du

= μ(2q − 1)t + s

∫ t

0

∫
Ep[c2(P̂ (u))]dπ(p)du(12)

= (
μ(2q − 1) + sEπ [c2])t.

Thus, it suffices to estimate E
π [c2] in order to get a handle on the asymptotic speed

at which m(P ) increases. Such an approach resembles the one taken by Desai and
Fisher (2007). However, we have found it difficult to estimate E

π [c2]. Instead, we
use the relation between the speed of the mean and that of the front of the wave.
For that, we define

kc(p) = max
{
k :Np[k,∞) > log2 N

}
,(13)

which we view as the location of the front of the wave. Since kc(p) − m(p) =
kc(p̂), we arrive at the following.

PROPOSITION 4.2. For all t ≥ 0, with the stationary measure π of the centred
process as the initial condition for the noncentred process P , we have

E
π [kc(P (t)) − kc(P (0))] = E

π [m(P (t))].

Roughly speaking, the above proposition states that the speed of front of the
wave is exactly the same as that of its mean, which seems to be obvious if the
wave is of fixed shape. In the present setting, however, the shape of the wave
is stochastic and this equality holds under the stationary measure of the centred
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wave. The idea of relating behavior of the mean and the front of the wave has been
used in our nonrigorous argument in Section 3, as well as in Rouzine, Wakeley
and Coffin (2003). The idea of our main theorem, Theorem 4.6 below, is to start
the process P(t) from the stationary measure of the centred process and obtain an
O(log1−δ N) lower bound for the mean fitness of the population by time 1, as long
as the proportion of beneficial mutations q is strictly positive. In this case, for large
enough population sizes, the mean fitness of the population will increase at a rate
roughly proportional to logN . All results in what follows are valid for sufficiently
large N , which we may not explicitly state all the time.

We first state three results that are needed for the proof of Theorem 4.6 below.
Lemma 4.3 gives estimates on how far kc(P ) can retreat on sets of very small prob-
abilities, while Lemma 4.4 compares the selected process with a neutral process to
establish that if the population starts at time 0 with at least M (whose value range
is specified in Lemma 4.4) individuals with fitness types ≥ K0, then the population
is expected to have at least log2 N individuals with fitness types

≥ K0 + 1.8 log1−ε M,

where we observe that Cμ(

√
c2(p)N3 + N2)e−Me−2(1+μ)/4 in the statement of

Lemma 4.4 is a very small correction factor. Hence, kc(P (1)) is expected to be
at least K0 + log1−ε M . Finally, Proposition 4.5 states that for any initial condition
p ∈ S̄(N), the front is expected to advance at least 1.7 log1−5β N minus a small
correction factor.

LEMMA 4.3. Let A(N) ⊂ S̄(N). Let B(N) ∈ F1 be an event that satisfies
P

p(B(N)) ≤ ε(N) for all p ∈ A(N) where ε(N) → 0 as N → ∞. If N is suffi-
ciently large, then for any p ∈ A(N),

E
p
[

inf
t∈[0,1] min

i=1,...,N

(
Xi(t) − Xi(0)

)
1B(N)

]
≥ −Cμ

(√
c2(p)N3 + N2)

ε(N)1/2,

where Cμ is a constant depending only on μ. In particular, if N is sufficiently
large, then for any p ∈ A(N),

E
p
[

inf
t∈[0,1]

(
kc(P (t)) − kc(p)

)
1B(N)

]
≥ −Cμ

(√
c2(p)N3 + N2)

ε(N)1/2.

The result still holds if we replace the process (P,X) by the neutral process
(P (Y ), Y ) defined in (17).

LEMMA 4.4. Let t1 ∈ [1/2,1], K0 ∈ Z/N , and ε ∈ (0,1) be fixed. Let M =
M(N) be a constant that depends on N such that

M

elog1−0.9ε M log2 N
→ ∞
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as N → ∞. If N is sufficiently large, then for any p ∈ S̄(N) with p[K0,∞) ≥ M/N ,
we have

E
p
[

inf
t∈[t1,1] kc(P (t))

]
≥ K0 − Cμ

(√
c2(p)N3 + N2)

e−Me−2(1+μ)/4 + 1.8 log1−ε M.

PROPOSITION 4.5. Let μ > 0, q > 0 and s > 0 be fixed. If N is sufficiently
large, then for any β > 0 and p ∈ Ŝ(N)

E
p[kc(P (1)) − kc(p)]

≥ 1.7 log1−5β N − Cμ

(√
c2(p)N3 + E

p[√
c2(P (t0))N3

] + N2)
e−1/2 log2 N,

where t0 = 2
s

log−β N .

THEOREM 4.6. Let μ > 0, q > 0 and s > 0 be fixed. Then for any β > 0,

E
π [m(P (1))] ≥ log1−6β N,

if N is sufficiently large.

PROOF. We combine Propositions 4.2 and 4.5 to obtain

E
π [m(P (1))] = E

π [kc(P (1)) − kc(p)]
≥ 1.7 log1−5β N

− Cμ

(
N3/2

E
π [√

c2 + √
c2(P (t0))

] + N2)
e−1/2 log2 N

= 1.7 log1−5β N − Cμ

(
2N3/2

E
π [√

c2
] + N2)

e−1/2 log2 N.

But from (12), we have

E
π [m(P (1))] = μ(2q − 1) + sEπ [c2].

Hence,

(s + 2CμN3/2e−1/2 log2 N)Eπ [c2]
≥ 1.7 log1−5β N − μ(2q − 1) − CμN2e−1/2 log2 N,

which implies that

E
π [c2] ≥ 1.6

s
log1−5β N

for sufficiently large N . The desired result follows. �

The rest of this work is devoted to the proof of Proposition 4.5, which makes
use of Lemmas 4.3 and 4.4. We define

L = log1−3β N,

kd(p) = max
{
k :Np[k,∞) > elog1−β N}

.
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The number of individuals beyond kd , elog1−β N , is much larger than the number
beyond kc (which is log2 N ) but nevertheless is only a tiny proportion of the entire
population. The basic idea for the proof of Proposition 4.5 is to use Lemma 4.4,
which states that if there are M individuals with fitness types larger than K0 at
time 0, then kc(P ) is expected to be beyond K0 + 1.8 log1−ε M at time 1, where
the value of ε does not depend on M as long as M is sufficiently large. We can
then divide into 2 cases: (i) if kd(P ) ≥ kc(p)−L before some small time t0 (event
B1 ∪ B2 below), and (ii) if kd(P ) < kc(p) − L throughout the time interval [0, t0]
(event B3 ∪ B4 below). Under case (i), a simple application of Lemma 4.4 implies
that the elog1−β N individuals with fitness types larger than kc(p) − L are expected
to push kc(P ) to beyond kc(p) − L + 2L at time 1, hence advancing kc(P ) by
at least L. Under case (ii), the log2 N individuals with fitness types larger than
kc(p) will pick off individuals with fitness types smaller than kc(p) − L (of which
there are at least N − elog1−β N ) via the selection mechanism at a very fast rate so
that with very high probability by time t0, P[kc(p),∞)(t0) will be at least elog1−4β N .

Lemma 4.4 implies that these elog1−4β N individuals will then push kc(P ) forward
by at least elog1−6β N by time 1. In either case, the front of the wave moves forward
at a high speed.

PROOF OF PROPOSITION 4.5. We take t0 = 2
s

log−β N and define

T0 = inf{t ≥ 0 :kd(P (t)) ≥ kc(p) − L},
B1 = {

P[kc(p)−L,∞)(t0) > elog1−2β N , T0 ≤ t0
}
,

B2 = {
P[kc(p)−L,∞)(t0) ≤ elog1−2β N , T0 ≤ t0

}
,

B3 = {
P[kc(p),∞)(t0) > elog1−4β N , T0 > t0

}
,

B4 = {
P[kc(p),∞)(t0) ≤ elog1−4β N , T0 > t0

}
.

We will estimate E
p[(kc(P (1))−kc(p))1B ] for B = B1 ∪B3 and B = B2 ∪B4. For

p ∈ Ŝ(N) with kd(p) ≥ kc(p)−L, T0 = 0. But for those p with kd(p) < kc(p)−L,
we need to establish that the number of individuals lying in [kc(p),∞) grows
quickly, that is, B4 has small probability. For that, we construct a set valued
process I to be dominated by the set of individuals lying in [kc(p),∞), that is,
such that I (t) ⊂ {i :Xi(t) ∈ [kc(p),∞)} for all t ≤ T0. Without any loss of gen-
erality, we assume that at time 0 individuals {1, . . . , log2 N} lie in [kc(p),∞) and
define I (0) = {1, . . . , log2 N}. The mechanisms that drive the population P have
the following effect on I :

1. Mutation: if any individual i ∈ I is hit by a deleterious mutation event, we
delete i from I .
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2. Selection: at a selection event when individual i ∈ I replaces individual j lying
in (−∞, kd(P )] at time t , we add j to I ; at a selection event when individual
i ∈ I is replaced by individual j /∈ I at time t (in which case Xj > Xi), we
replace i ∈ I with j .

3. Resampling: at a resampling event when individual i replaces individual j at
time t (which happens at rate 1

N
), if i /∈ I and j ∈ I then we delete j from I ; if

i ∈ I and j /∈ I then we add j to I .

Then for i ∈ I (t), we have Xi(t) ∈ [kc(p),∞), and |I | has the following transi-
tions:

1. Mutation: |I | decreases by 1 at rate μ(1 − q)|I |.
2. Selection: |I | increases by 1 at rate s

N

∑
i∈I,j : Xj≤kd(P )(Xi − Xj)

+.

3. Resampling: |I | increases by 1 and decreases by 1 both at rate |I |N−|I |
N

.

Prior to T0, we have
s

N

∑
i∈I,j : Xj≤kd(P )

(Xi − Xj)
+ ≥ s

N

∑
i∈I,j : Xj≤kd(P )

L ≥ s

N
|I |(N − elog1−β N)L

≥ 0.9s|I |L
for sufficiently large N .

Let Z be an integer valued jump process with initial condition Z(0) = log2 N

and the following transitions:

1. Z increases by 1 at rate 0.9sLZ,
2. Z decreases by 1 at rate (μ + 1)Z,

then Z is dominated by |I | before T0. By Lemma 5.2(b), if we take t0 = 2
s

log−β N ,
which is ≥ 1

0.9sL−μ−1 (log 0.9sL
μ+1 + log1−4β N) for sufficiently large N , then

P
p(

Z(t0) ≤ elog1−4β N ) ≤ 1

(1 − e− log1−4β N)e
log1−4β N

(
4(μ + 1)

0.9sL

)log2 N

≤ Ce(log2 N)(logC−logL)

≤ Ce− log2 N.

Since |I | dominates Z [i.e., |I (t)| ≥ Z(t)] and I is dominated by the set of indi-
viduals lying in [kc(p),∞) before T0, we have

P
p(B4) ≤ Ce− log2 N(14)

for all p ∈ Ŝ(N).
Now we turn to the event B2. Without any loss of generality, we assume at

time T0, individuals in A0 = {1,2, . . . , �elog1−β N�} have fitness ≥ kc(p)−L. Dur-
ing the time period [T0, t0], the number of resampling events where individual
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i ∈ A0 gets replaced by another individual is Poisson(N−1
N

(t0 − T0)), so Yi re-
mains untouched by a resampling event during [0,1] with probability ≥ e−1. Fur-
thermore, no deleterious mutation event falls on Yi during [T0, t0] with probability
e−(1−q)μ(t0−T0) ≥ e−μ. Let

A1 = {i ∈ A0 :Xi remains untouched by a resampling event

or a deleterious mutation event during [T0, t0]},
then |A1| dominates Binomial(�elog1−β N�, e−(1+μ)). By Lemma 5.1(a), if
p[K0,∞) ≥ M/N , then

P
p(B2) ≤ e−elog1−β Ne−2(1+μ)/2.(15)

Combining this and (14), implies

P
p(B2 ∪ B4) ≤ Ce− log2 N.(16)

Hence, by Lemma 4.3, we have for any p ∈ Ŝ(N),

E
p[(

kc(P (1)) − kc(p)
)
1B2∪B4

] ≥ −Cμ

(√
c2(p)N3 + N2)

e−1/2 log2 N.

Finally, we turn to events B1 and B3. Both these two events, unlike B2 and B4,
will turn out to make large and positive contribution to the rate of adaptation,
and even though we have no estimates on their probabilities, we expect neither
to tend to 0 as N → ∞. On B1, there are more than Nelog1−2β N individuals in
[kc(p) − L,∞) at time t0. And on B3, at time t0, there are more than Nelog1−4β N

individuals in [kc(p),∞), therefore for any p ∈ Ŝ(N),

E
p[(

kc(P (1)) − kc(p)
)
1B1∪B3

]
= E

p[{Ep[kc(P (1))|Ft0] − kc(p)}1B1∪B3

]
= E

p[{
E

P(t0)
[
kc

(
P(1 − t0)

)] − kc(p)
}
1B1∪B3

]

≥ E
p

[(
−L − Cμ

(√
c2(P (t0))N3 + N2)

e−Ne−2(1+μ)/8 + 1.8 log1−β N

2

)
1B1

]

+ E
p

[(
−Cμ

(√
c2(P (t0))N3 + N2)

e−elog1−4β Ne−2(1+μ)/4

+ 1.8 log1−β(elog1−4β N)

)
1B3

]

≥ 1.8(log1−5β N)Pp(B1 ∪ B3) − Cμe− log2 N
E

p[√
c2(P (t0))N3 + N2]

,

where in the first ≥, we use Lemma 4.4 twice, with K0 = kc(p) − L, M = N/2,
and ε = β for event B1, and with K0 = kc(p), M = elog1−4β N , and ε = β for
event B3.
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We combine the two estimates above to obtain that if N is sufficiently large,
then for any p ∈ Ŝ(N),

E
p[kc(P (1)) − kc(p)]

= E
p[(

kc(P (1)) − kc(p)
)
1B1∪B3

] + E
p[(

kc(P (1)) − kc(p)
)
1B2∪B4

]

≥ 1.8(log1−5β N)Pp(
(B2 ∪ B4)

c) − Cμe− log2 N
E

p[√
c2(P (t0))N3 + N2]

− Cμ

(√
c2(p)N3 + N2)

e−1/2 log2 N

≥ 1.7(log1−5β N)

− Cμ

(√
c2(p)N3 + E

p[√
c2(P (t0))N3

] + N2)
e−1/2 log2 N,

where we use (16) in the last inequality. Hence, we have the desired result. �

5. Proof of supporting lemmas. The lemmas in this section are needed for
the proof of Proposition 4.5. Lemma 5.1 gives large deviation estimates for the
binomial and Poisson random variables. Lemma 5.2 establishes a few results on a
birth–death process, which we will use to show that fit individuals pick off unfit
individuals very quickly via the selection mechanism. We then prove Lemmas 4.3
and 4.4.

LEMMA 5.1. (a) Suppose Z ∼ Binomial(n, γ ), then P(Z ≤ nγ/2) ≤ e−nγ 2/2.
(b) Suppose λ > 0 is fixed and Z ∼ Poisson(λ), then P(Z ≥ n) ≥ e−λ−1/(2n)√

2π
( λ
n2 )

n.

In particular, if ε > 0 is fixed and P(Z ≥ 2 log1−ε M) ≥ c(1) exp(− log1−0.9ε M)

for some constant c(1) and sufficiently large M .
(c) Suppose Z ∼ Poisson(Nμ), then P(Z ≥ N2) ≤ Ce−N logN .

PROOF. (a) We use Hoeffding’s inequality [Hoeffding (1963)] to prove this:

Let X1, . . . ,Xn be i.i.d. random variables taking values in [a, b]. Let

U = X1 + · · · + Xn and t > 0, then P(U − E[U ] ≥ nt) ≤ e−2nt2/(b−a)2
.

We regard the binomial random variable n − Z as a sum of n independent
Bernoulli(1 − γ ) random variables, then

P(Z ≤ nγ/2) = P
(
n − Z ≥ n(1 − γ /2)

)
= P

(
(n − Z) − n(1 − γ ) ≥ n(1 − γ /2) − n(1 − γ )

)
= P

(
(n − Z) − n(1 − γ ) ≥ nγ/2

)

≤ e−nγ 2/2

by Hoeffding’s inequality.
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(b) By Stirling’s formula [see, e.g., page 257 of Abramowitz and Stegun
(1965)], k! < √

2πkk+1/2e−k+1/(2k) for any integer k. Therefore, for n ≥ 1,

P(Z ≥ n) =
∞∑

k=n

e−λλk

k! ≥ e−λ
∞∑

k=n

λk

√
2πkk+1/2e−k+1/(2k)

≥ e−λ+n−1/(2n) λn

√
2πnn+1/2

≥ e−λ−1/(2n)

√
2π

1√
n

(
λ

n

)n

≥ e−λ−1/(2n)

√
2π

(
λ

n2

)n

.

We take n = 2 log1−ε M , then for sufficiently large M ,

e−λ−1/(2n)

√
2π

(
λ

n2

)n

≥ c(1)

(4λ−1 log2−2ε M)2 log1−ε M

= c(1)

exp{(2 log1−ε M) log(4λ−1 log2−2ε M)}
= c(1) exp

{−(log1−0.9ε M)(2 log−0.1ε M)

× (
log(4λ−1) + (2 − 2ε) log logM

)}
≥ c(1) exp(− log1−0.9ε M).

(c) We take n = N2, then

P(Z = n) = e−Nμ (Nμ)n

n! ≤ e−Nμ C√
n

(
Nμe

n

)n

≤ C

(
1

N

)N

= Ce−N logN,

where we apply Stirling’s formula k! >
√

2πkk+1/2e−k > c
√

k(k/e)k . Conse-
quently,

P(Z ≥ n) = e−Nμ
∞∑

k=n

(Nμ)k

k! ≤ e−Nμ (Nμ)n

n!
∞∑

k=0

(
Nμ

n

)k

= P(Z = n)
n

n − Nμ
≤ Ce−N logN

as required. �

LEMMA 5.2. Let Z be an integer valued jump process with initial condition
Z(0) = Z0 > 0 and the following transitions:

1. Z increases by 1 at rate aZ,
2. Z decreases by 1 at rate bZ,
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where a, b ≥ 0 and a 
= b, then:
(a) For x ∈ [0,1),

G(x, t) = E(xZt ) =
(

b(x − 1) − (ax − b)e−(a−b)t

a(x − 1) − (ax − b)e−(a−b)t

)Z0

.

(b) If a ≥ b, M ≥ 1 and t ≥ (log 2 ∨ log(aM/b))/(a − b), then P(Z(t) ≤ k) ≤
1

(1−1/M)k
(4b

a
)Z0 .

PROOF. (a) It can be shown that G(x, t) satisfies

∂

∂t
G(x, t) = (ax − b)(x − 1)

∂

∂x
G(x, t)

and that the given G(x, t) satisfies this PDE with initial condition G(x,0) = xZ0 ;
see, for example, Theorem 6.11.10 in Grimmett and Stirzaker (1992).

(b) We take x = 1 − 1/M and apply Markov’s inequality to obtain

P
(
Z(t) ≤ k

) = P
(
xZ(t) ≥ xk) ≤ E((1 − 1/M)Z(t))

(1 − 1/M)k

= 1

(1 − 1/M)k

(
b + (a(M − 1) − bM)e−(a−b)t

a + (a(M − 1) − bM)e−(a−b)t

)Z0

≤ 1

(1 − 1/M)k

(
b + aMe−(a−b)t

a − ae−(a−b)t

)Z0

,

where in the last inequality, we use the assumptions M ≥ 1 and a ≥ b to deduce
that (aM − bM)e−(a−b)t ≥ 0. Since t ≥ (log 2 ∨ log(aM/b))/(a − b), we have
aMe−(a−b)t ≤ b and ae−(a−b)t ≤ a/2. Therefore,

P
(
Z(t) ≤ k

) ≤ 1

(1 − 1/M)k

(
4b

a

)Z0

as required. �

Before we prove Lemmas 4.3 and 4.4, we first construct a process Y consisting
of individuals that undergo the mutation and resampling mechanisms of Section 2
but not the selection mechanism. Let Yi(t) ∈ Z/N , i = 1, . . . ,N , denote the num-
ber of mutations present in the ith individual in the population, then

Yi(t) = Yi(0) +
∫ t

0
�

(N)
1i,b(du) −

∫ t

0
�

(N)
1i,d (du)

(17)

+ ∑
j

∫ t

0

(
Yj (u−) − Yi(u−)

)
�

(N)
3ij (du).

Let P (Y)(t) be the empirical measure formed by the N individuals of the
process Y . Since we use the same Poisson random measures and Poisson processes
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to construct X and Y , we have Yi(t) ≤ Xi(t) for all t ≥ 0 and i = 1, . . . ,N , pro-
vided Yi(0) ≤ Xi(0) for all i at time 0.

PROOF OF LEMMA 4.3. We prove the result for the neutral process (P (Y ), Y ),
then since X dominates Y , we have the desired result for (P,X) as well. Let

U = inf
t∈[0,1] min

i=1,...,N

(
Yi(t) − Yi(0)

)

and p ∈ A(N) be the initial configuration of the population. We only need a crude
estimate on E

p[U1B(N)]. Let V1 be the total number of mutation events (both dele-
terious and beneficial) and V2 be the total number of resampling events that fall on
all individuals during [0,1], then V1 ∼ Poisson(Nμ) and V2 ∼ Poisson(2N). Let

kw(p) = max{k − l :pk 
= 0,pl 
= 0}
be the width of the support of p. Since the resampling mechanism does not in-
crease the width of the support, kw(P (t)) ≤ kw(p)+V1 for all t ∈ [0,1]. The most
any individual’s fitness can decrease due to a resampling event at t is kw(P (t)),
hence

−U ≤ V2
(
kw(p) + V1

) + (V2 + 1)V1,

where the first term on the right accounts for the possible decrease in fitness due
to each of the V2 resampling events and the second term accounts for the possible
decrease due to mutation events between resampling events. Hence by Holder’s
inequality, for any p ∈ A(N),

E
p[|U |1B(N)] ≤ kw(p)(Ep[V 2

2 ])1/2(
P

p(
B(N)))1/2

+ (
E

p[(2V2 + 1)4])1/4
(Ep[V 4

1 ])1/4(
P

p(
B(N)))1/2

≤ Cμ

(
kw(p)N + N2)

ε(N)1/2.

Since c2(p) ≥ 1
N

(kw(p)/2)2 for any p ∈ S̄(N), we have the desired result. �

PROOF OF LEMMA 4.4. First, we observe that the requirement

M

elog1−0.9ε M log2 N
→ ∞ as N → ∞,(18)

implies

M

2
e−(1+μ) ≥ log2 N(19)

for sufficiently large N . Let Y be the neutral process defined in (17). If p ∈ S̄(N)

and p[K0,∞) ≥ M/N , then at least M individuals lie in [K0,∞). Without any loss
of generality, we assume individuals 1, . . . ,M lie in [K0,∞). We take the initial
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condition Yi(0) = Xi(0) for all i = 1, . . . ,N , then Yi(t) ≤ Xi(t) for all t ≥ 0 and
i = 1, . . . ,N . Let

A2 = {
i ∈ {1, . . . ,M} :Yi remains untouched by a resampling event

or a deleterious mutation event during [0,1]},
then A2 is measurable with respect to the filtration generated by �

(N)
1i,d and �

(N)
3ij

during the time period [0,1] and independent from the filtration generated by
�

(N)
1i,b. Furthermore, the same argument used for (15) implies that the distribution

of |A2| dominates Binomial(M, e−(1+μ)). For p ∈ S̄(N), we write

E
p
[

inf
t∈[t1,1] kc

(
P (Y)(t)

)]

= E
p

[
inf

t∈[t1,1] kc

(
P (Y)(t)

)∣∣∣|A2| ≥ M

2
e−(1+μ)

]
P

p

(
|A2| ≥ M

2
e−(1+μ)

)
(20)

+ E
p
[

inf
t∈[t1,1] kc

(
P (Y)(t)

)
1{|A2|<Me−(1+μ)/2}

]
.

By Lemma 5.1(a), if p[K0,∞) ≥ M/N , then

P
p

(
|A2| < M

2
e−(1+μ)

)
≤ e−Me−2(1+μ)/2.(21)

We first deal with the conditional expectation involving the event {|A2| ≥
M
2 e−(1+μ)} in (20). We observe that for the process Y and individuals in A2, any

change in their fitness is due to the beneficial mutation mechanism and therefore
can only increase in time during [0,1]. The number of beneficial mutations that fall
on any individual during [0, t1) is distributed Poisson(qμt1) and since t1 ≥ 1/2, it
dominates Poisson(qμ/2). Furthermore, it depends only on �

(N)
1i,b, therefore is in-

dependent of the set valued random variable A2. Let K1 be the number of individu-
als in A2 that have their fitness types increase by at least 2 log1−ε M during [0, t1].
If K1 > log2 N , then inft∈[t1,1] kc(P

(Y )(t)) ≥ K0 +2 log1−ε M . Lemma 5.1(b) with
λ = qμ/2 > 0 implies the following: conditioning on |A2|, the distribution of
K1 dominates Binomial(|A2|, c(1) exp(− log1−0.9ε M)) for some constant c(1), and
then Lemma 5.1(a) to obtain

P
p

(
inf

t∈[t1,1] kc

(
P (Y)(t)

) ≥ K0 + 2 log1−ε M
∣∣∣|A2| ≥ M

2
e−(1+μ)

)

≥ P
p

(
K1 > log2 N

∣∣∣|A2| ≥ M

2
e−(1+μ)

)

≥ P
p

(
K1 >

c(1)M

4
e−(1+μ)e− log1−0.9ε M

∣∣∣|A2| ≥ M

2
e−(1+μ)

)

≥ 1 − exp
(
−c2

(1)M

4
e−(1+μ)e−2 log1−0.9ε M

)
(22)
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≥ 1 − exp
(−c(2)e

logM−2 log1−0.9ε M)
≥ 1 − exp

(−c(2)e
0.9 logM)

,

where c(2) is a constant and we use (19) in the second inequality. By (18),
M
2 e−(1+μ) > log2 N for sufficiently large N , hence inft∈[t1,1] kc(P

(Y )(t)) ≥ K0 on
the event {|A2| ≥ M

2 e−(1+μ)}. Therefore, (22) implies

E
p

[
inf

t∈[t1,1] kc

(
P (Y)(t)

)∣∣∣|A2| ≥ M

2
e−(1+μ)

]
≥ K0 + 1.9 log1−ε M.

Now we deal with the expectation in (20) involving the event {|A2| <
M
2 e−(1+μ)}, which, by (21), has probability ≤ e−Me−2(1+μ)/2 if p ∈ S̄(N) and
p[K0,∞) ≥ M/N . We observe that for such p, there are more than log2 N individ-
uals with fitness types ≥ K0 at time 0, therefore kc(p) ≥ K0. Hence, Lemma 4.3
implies

E
p
[

inf
t∈[t1,1]

(
kc

(
P (Y)(t)

) − K0
)
1{|A2|<M/2e−(1+μ)}

]

≥ −Cμ

(√
c2(p)N3 + N2)

e−Me−2(1+μ)/4,

if p[K0,∞) ≥ M/N . Plugging the above two estimates along with (21) into (20)
yields for p with p[K0,∞) ≥ M/N ,

E
p
[

inf
t∈[t1,1] kc

(
P (Y)(t)

)]

≥ (K0 + 1.9 log1−ε M)Pp

(
|A2| ≥ M

2
e−(1+μ)

)

+ E
p[(

kc

(
P (Y)(t1)

) − K0
)
1{|A2|<Me−(1+μ)/2}

]

+ K0P
p

(
|A2| < M

2
e−(1+μ)

)

≥ K0 − Cμ

(√
c2(p)N3 + N2)

e−Me−2(1+μ)/4

+ (1.9 log1−ε M) inf
p∈S̄(N) : p[K0,∞)≥M/N

P
p

(
|A2| ≥ M

2
e−(1+μ)

)

≥ K0 − Cμ

(√
c2(p)N3 + N2)

e−Me−2(1+μ)/4 + 1.8 log1−ε M.

Since X dominates Y , we have the desired result. �
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