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ON COLLISIONS OF BROWNIAN PARTICLES1

BY TOMOYUKI ICHIBA AND IOANNIS KARATZAS

University of California, Santa Barbara and INTECH

We examine the behavior of n Brownian particles diffusing on the real
line with bounded, measurable drift and bounded, piecewise continuous dif-
fusion coefficients that depend on the current configuration of particles. Suf-
ficient conditions are established for the absence and for the presence of triple
collisions among the particles. As an application to the Atlas model for eq-
uity markets, we study a special construction of such systems of diffusing
particles using Brownian motions with reflection on polyhedral domains.

1. Introduction. It is well known that, with probability one, the n-dimension-
al Brownian motion started away from the origin will hit the origin infinitely often
for n = 1 while it will never hit the origin for n ≥ 2. This is also true for the
n-dimensional Brownian motion with constant drift and diffusion coefficients, by
Girsanov’s theorem and re-orientation of coordinates. The next step of generaliza-
tion is the case of bounded drift and diffusion coefficients. The existence of weak
solutions for the stochastic equations that describe such processes was discussed
by Krylov [16] and Stroock and Varadhan [24] through the study of appropriate
martingale problems.

Now let us suppose that Rn is partitioned as a finite union of disjoint polyhedra.
Bass and Pardoux [3] established the existence and uniqueness of a weak solution
to the stochastic integral equation,

X(t) = x0 +
∫ t

0
μ(X(s)) ds +

∫ t

0
σ(X(s)) dW(s), 0 ≤ t < ∞,(1.1)

with initial condition x0 ∈ Rn where the measurable functions μ : Rn → Rn and
σ : Rn → Rn×n are bounded, and, moreover, σ is everywhere nonsingular and
piecewise constant (i.e., constant on each polyhedron). The continuous process
{W(t),0 ≤ t < ∞} is an n-dimensional Brownian motion on some filtered prob-
ability space (�, F , {Ft},P). Here uniqueness is understood in the sense of the
probability distribution.
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Bass and Pardoux also discovered an interesting phenomenon, namely, that the
weak solution to (1.1) may satisfy

Px0

(
X(t) = 0, i.o.

)= 1; x0 ∈ Rn,(1.2)

for a diffusion matrix σ(·) with special structure and without drift μ(·) ≡ 0. Here
Px0 is the solution to the martingale problem corresponding to (1.1). In the Bass
and Pardoux [3] example, the whole space Rn is partitioned into a finite number
of polyhedral domains with common vertex at the origin, carefully chosen small
apertures and σ(·) constant in each domain. We review this example in Remark 2.4.

In the present paper we find conditions sufficient for ruling (1.2) out. More
specifically, we are interested in the case of a bounded, measurable drift vector
μ(·) and of a bounded, piecewise continuous diffusion matrix,

σ(x) =
m∑

ν=1

σν(x)1Rν (x) ≡ σp(x)(x); x ∈ Rn,(1.3)

under the assumption of well-posedness (existence and uniqueness of solution)
when n ≥ 3. Here 1{·} is the indicator function; the sets {Rν}mν=1 form a partition
of Rn for some m ∈ N, namely, Rν ∩ Rκ = ∅ for ν 	= κ and

⋃m
ν=1 Rν = Rn and

the mapping p : Rn → {1, . . . ,m} satisfies x ∈ Rp(x) for every x ∈ Rn. Throughout
this paper we shall assume that Rν is an n-dimensional polyhedron for each ν =
1, . . . ,m, and that the (n×n) matrix-valued functions {σν(·)σ ′

ν(·)}mν=1 are positive-
definite everywhere.

We shall also assume throughout that there exists a unique weak solution for
equation (1.1). Existence is guaranteed by the measurability and boundedness of
the functions μ(·) and σ(·)σ ′(·) as well as the uniform strong nondegeneracy of
σ(·)σ ′(·) (e.g., Krylov [17], Remark 2.1) where the superscript ′ represents the
transposition. Uniqueness holds when n = 1 or n = 2; for n ≥ 3, the argument of
Chapter 7 of Stroock and Varadhan [24] implies uniqueness if the function σ(·)
in (1.3) is continuous on Rn (Theorem 7.2.1 of [24]) or close to constant (Theo-
rem 7.1.6 of [24]), namely, if there exists a constant (n × n) matrix α and a suffi-
ciently small δ > 0, depending on the dimension n and the bounds of eigenvalues
of σ(·) such that supx∈Rn ‖σ(x)σ ′(x) − α‖ ≤ δ. Bass and Pardoux [3] showed
uniqueness for piecewise-constant coefficients, that is, σν(·) ≡ σν , ν = 1, . . . ,m.
For further discussion on uniqueness and non-uniqueness, we refer to the paper
by Krylov [17] and the references therein. The structural assumption (1.3) may be
weakened to more general bounded cases, under modified conditions.

Our main concern is to obtain sufficient conditions on μ(·) and on σ(·) of the
form (1.3) so that with n ≥ 3 we have

Px0

(
Xi(t) = Xj(t) = Xk(t), for some t ≥ 0

)= 0 or
(1.4)

Px0

(
Xi(t) = Xj(t) = Xk(t), for some t ≥ 0

)= 1; x0 ∈ Rn,
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for some 1 ≤ i < j < k ≤ n. Put differently, we study conditions on their drift and
diffusion coefficients, under which three Brownian particles moving on the real
line can collide at the same time, and conditions under which such “triple colli-
sions” can never occur. Propositions 1 and 2 provide answers to these questions in
Section 2.

In Section 3 we study a class of the weak solutions to the stochastic differential
equation (1.1), clarifying the relationship between the rank of process coordinates
and the reflected Brownian motion on (n − 1)-dimensional polyhedral domain.
Proposition 3 shows that the process has no triple collisions under some parametric
conditions.

The results have consequences in the computations of local times for the differ-
ences {Xi(t)−Xj(t),Xj (t)−Xk(t)}. We discuss such local times with application
to the analysis of a so-called “Atlas model” for equity markets in Section 4. Proofs
of selected results are presented in Appendix.

Recent work related to this problem was done by Cépa and Lépingle [5]. These
authors consider a system of mutually repelling Brownian particles and show the
absence of triple collisions. The electrostatic repulsion they consider comes from
unbounded drift coefficients; in our setting, all drifts are bounded.

2. A first approach.

2.1. The setting. Consider the stochastic integral equation (1.1) with coeffi-
cients μ(·) and σ(·) as in (1.3), and assume that the matrix-valued functions σν(·),
ν = 1, . . . ,m, are uniformly positive-definite. Then the inverse σ−1(·) of the dif-
fusion coefficient σ(·) exists in the sense σ−1(·) =∑m

ν=1 σ−1
ν (·)1Rν (·). As usual,

a weak solution of this equation consists of a probability space (�, F ,P); a filtra-
tion {Ft ,0 ≤ t < ∞} of sub-σ -fields of F which satisfies the “usual conditions” of
right-continuity and augmentation by the P-negligible sets in F ; and two adapted,
n-dimensional processes on this space X(·),W(·) on this space, such that W(·) is
Brownian motion and (1.1) is satisfied P-almost surely. The concept of uniqueness
associated with this notion of solvability, is uniqueness in distribution for X(·).

2.2. Removal of drift. We start by observing that the bounded drift has no
effect on the probability of absence of triple collisions. Indeed, if we define an
n-dimensional process ξ(t) := σ−1(X(t))μ(X(t)),0 ≤ t < ∞, then the nature
of the functions μ(·) and σ(·) in (1.3) guarantees that the mapping t �→ ξ(t) is
right-continuous or left-continuous on each boundary ∂Rp(X(t)) at each time t ,
deterministically, according to the position Rp(X(t−)) of X(t−). Thus, although
the sample path of n-dimensional process ξ(·) is not entirely right-continuous or
left-continuous, it is progressively measurable. Moreover, ξ(·) is bounded, so the
exponential process

η(t) = exp
[
−
∫ t

0
〈ξ(u), dW(u)〉 − 1

2

∫ t

0
‖ξ(u)‖2 du

]
; 0 ≤ t < ∞,(2.1)
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is a continuous martingale where ‖x‖2 := ∑n
j=1 x2

j , x ∈ Rn, stands for n-
dimensional Euclidean norm, and the bracket 〈x, y〉 := ∑n

j=1 xjyj is the inner
product of two vectors x, y ∈ Rn. By Girsanov’s theorem,

W̃ (t) := W(t) +
∫ t

0
σ−1(X(u))μ(X(u)) du, Ft ;0 ≤ t < ∞,(2.2)

is an n-dimensional standard Brownian motion under the new probability measure
Q, locally equivalent to P, that satisfies

Qx0(C) = EPx0 (η(T )1C); C ∈ FT ,0 ≤ T < ∞.(2.3)

Let us define an increasing family of events CT := {Xi(t) = Xj(t) = Xk(t), for
some t ∈ [0, T ]}, T ≥ 0. If we know a priori that

Qx0

(
Xi(t) = Xj(t) = Xk(t), for some t ≥ 0

)= 0,(2.4)

then we obtain 0 = Qx0(C�) = Px0(C�) for � ≥ 1, and so

Px0

(
Xi(t) = Xj(t) = Xk(t), for some t ≥ 0

)= Px0

( ∞⋃
�=1

C�

)
(2.5)

= lim
�→∞Px0(C�) = 0.

Thus, in order to evaluate the probability of absence of triple collisions in (1.4),
it is enough to consider the case of μ(·) ≡ 0 in (1.1), namely

X(t) = x0 +
∫ t

0
σ(X(s)) dW̃ (s), 0 ≤ t < ∞,(2.6)

under the new probability measure Qx0 . The infinitesimal generator A of this
process, defined on the space C2(Rn;R) of twice continuously differentiable func-
tions ϕ : Rn → R, is given as

Aϕ(x) := 1

2

n∑
i,k=1

aik(x)
∂2

∂xi ∂xk

[ϕ(x)]; ϕ ∈ C2(Rn;R),(2.7)

where σij (·) is the (i, j)th element of the matrix-valued function σ(·), and

aik(x) :=
n∑

j=1

σij (x)σkj (x), A(x) := {aij (x)}1≤i,j≤n; x ∈ Rn.(2.8)

The uniform positive-definiteness of the matrices {σνσ
′
ν}(·), ν = 1, . . . ,m, in (1.3)

implies that the operator A is uniformly elliptic. As is well known from [24],
existence (respectively, uniqueness) of a weak solution to the stochastic integral
equation (2.6), is equivalent to the solvability (respectively, well-posedness) of the
martingale problem associated with the operator A.
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2.3. Comparison with Bessel processes. Without loss of generality we start
from the case i = 1, j = 2, k = 3 in (1.4). Let us define (n × 1) vectors d1, d2, d3
to extract the information of the diffusion matrix σ(·) on (X1,X2,X3), namely

d1 := (1,−1,0, . . . ,0)′, d2 := (0,1,−1,0, . . . ,0)′,
d3 := (−1,0,1,0, . . . ,0)′,

where the superscript ′ stands for transposition. Define the (n × 3)-matrix D =
(d1, d2, d3) for notational simplicity. The cases we consider in (1.4) for i = 1,

j = 2, k = 3 are equivalent to

Px0

(
s2(X(t)) = 0, for some t ≥ 0

)= 0 and

Px0

(
s2(X(t)) = 0, for some t ≥ 0

)= 1; x0 ∈ Rn

where the continuous function

s2(x) := (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x1)
2

(2.9)
= d ′

1xx′d1 + d ′
2xx′d2 + d ′

3xx′d3 = x′DD′x; x ∈ Rn

measures the sum of squared distances for the three particles of interest. Thus, it
suffices to study the behavior of the continuous, nonnegative process {s2(X(t));
0 ≤ t < ∞} around its zero set

Z := {x ∈ Rn : s(x) = 0}.(2.10)

Let us define the following positive, piecewise continuous functions Q(·), R̃(·)
computed from the variance–covariance matrix A(·) = σ(·)σ ′(·):

R̃(x) := trace(D′A(x)D) · x′DD′x
x′DD′A(x)DD′x

= trace(D′A(x)D)

Q(x)
, where

(2.11)

Q(x) := x′DD′A(x)DD′x
x′DD′x

; x ∈ Rn \ Z.

Under the new probability measure Qx0 of (2.3) the process s(X(·)) is a semi-
martingale with decomposition ds(X(t)) = h̃(X(t)) dt + d
̃(t) where

h̃(x) := 1

2s3(x)

(
s2(x)

3∑
i=1

d ′
iσ (x)σ (x)′di −

∥∥∥∥∥
3∑

i=1

σ(x)′did
′
ix

∥∥∥∥∥
2)

= x′DD′x · trace(D′A(x)D) − x′DD′A(x)DD′x
2(x′DD′x)3/2(2.12)

= (R̃(x) − 1)Q(x)

2s(x)
; x ∈ Rn \ Z,
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and


̃(t) :=
∫ t

0

( 3∑
i=1

σ ′(X(τ))did
′
iX(τ)

s(X(τ))

)
dW̃ (τ ),

〈
̃〉(t) =
∫ t

0

x′DD′A(x)DD′x
x′DD′x

∣∣∣∣
x=X(τ)

dτ =
∫ t

0
Q(X(τ)) dτ ; 0 ≤ t < ∞,

respectively. Here, as we shall see (2.27) in Remark 2.1, we have

Q(·) ≥ c0 := 3 min
1≤i≤n,x∈Rn\Z

λi(x) > 0 in Rn \ Z(2.13)

for the eigenvalues {λi(·),1 ≤ i ≤ n} of A(·), and so 〈
̃〉(·) is strictly increasing,
when X(·) ∈ Rn \ Z . Now we define the increasing family of stopping times �u :=
inf{t ≥ 0 : 〈
̃〉(t) ≥ u}, 0 ≤ u < ∞, and note that we have

s(u) := s(X(�u)) = s(x0) +
∫ �u

0
h̃(X(t)) dt + B̃(u); 0 ≤ u < ∞,

where B̃(u) := 
̃(�u),0 ≤ u < ∞, is a standard Brownian motion, by the
Dambis–Dubins–Schwarz theorem on time-change for martingales. Thus, with
d(u) := R̃(X(�u)) we can write

ds(u) = d(u) − 1

2s(u)
du + dB̃(u); 0 ≤ u < ∞,(2.14)

because

h̃(X(�u))�
′
u = [R̃(X(�u)) − 1]Q(X(�u))

2s(X(�u))
· 1

Q(X(�u))
= d(u) − 1

2s(u)
.

The dynamics of the process s(·) are therefore comparable to those of the δ-
dimensional Bessel process, namely

dr(u) = δ − 1

2r(u)
du + dB̃(u); 0 ≤ u < ∞.

By a comparison argument similar to Ikeda and Watanabe [14] and Exercise 5.2.19
in [15], we prove in Section A.1 the following result.

LEMMA 2.1. Suppose x0 ∈ Rn \ Z . If d := essinf inf0≤t<∞ d(t) ≥ 2,

Qx0

(
s(t) > 0, for some t ≥ 0

)= 0.(2.15)

If, on the other hand, d := essup sup0≤t<∞ d(t) < 2, then

Qx0

(
s(t) = 0, for infinitely many t ≥ 0

)= 1;(2.16)

and we have the following estimate:

Qx0

(
s(t) = 0, for some t ∈ [0, T ])≥ 1 − κ(T ; s(x0),d),(2.17)
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where κ(·;y, δ) is the tail distribution of the first hitting-time at the origin for
Bessel process in dimension δ ∈ (0,2), starting at y > 0,

κ(T ;y, δ) :=
∫ ∞
T

1

t�(δ)

(
y2

2t

)δ

e−y2/2t dt; 0 ≤ T < ∞, y > 0.(2.18)

This function decreases as T −δ with T ↑ ∞. Combining Lemma 2.1 with the
reasoning in Section 2.2 and the definition d(·) = R̃(X(�·)), we obtain the follow-
ing result on the absence of triple collisions:

PROPOSITION 1. Suppose that the matrices σν(·), ν = 1, . . . ,m, in (1.3) are
uniformly bounded and positive-definite and satisfy the following condition:

inf
x∈Rn\Z

R̃(x) ≥ 2(2.19)

for R̃(·) in (2.11). Then for the weak solution X(·) to (2.6) we have

Qx0

(
X1(t) = X2(t) = X3(t), for some t ≥ 0

)= 0 ∀x0 ∈ Rn \ Z.

Reasoning as in (2.4)–(2.5) for the weak solution X(·) to (1.1), we get

Px0

(
X1(t) = X2(t) = X3(t), for some t ≥ 0

)= 0 ∀x0 ∈ Rn \ Z.(2.20)

A class of examples satisfying (2.19) is given in Remarks 2.2–2.3 and Sec-
tion A.3 below. On the other hand, regarding the presence of triple collisions, we
have the following result; its proof is in Section A.2.

PROPOSITION 2. Suppose that the matrices σν(·), ν = 1, . . . ,m, in (1.3) are
uniformly bounded and positive-definite, and

δ0 := sup
x∈Rn\Z

R̃(x) < 2.(2.21)

Then the weak solution X(·) to (2.6) starting at any x0 ∈ Rn satisfies

Qx0

(
X1(t) = X2(t) = X3(t), for some t ≥ 0

)= 1,

and we have an estimate similar to (2.17),

Qx0

(
X1(t) = X2(t) = X3(t), for some t ∈ [0, T ])

(2.22)
≥ 1 − κ(c0T ; s(x0), δ0).

Here the distance function s(·) and the tail probability κ(·;y, δ0) are given by (2.9)
and (2.18), now with dimension δ0 ∈ (0,2) as in (2.21), and the positive constant
c0 is given by (2.13).
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Moreover, if δ∗ := supx∈Rn\Z R(x) < 2 holds for the modification

R(x) := [trace(D′A(x)D) + 2x′DD′μ(x)] · x′DD′x
x′DD′A(x)DD′x

(2.23)

= R̃(x) + 2x′DD′μ(x)

Q(x)
; x ∈ Rn \ Z,

of the function R̃(·) in (2.11), then

Px0

(
X1(t) = X2(t) = X3(t), for some t ≥ 0

)= 1,(2.24)

and we have an estimate similar to (2.17), (2.22),

Px0

(
X1(t) = X2(t) = X3(t), for some t ∈ [0, T ])

(2.25)
≥ 1 − κ(c0T ; s(x0), δ∗).

REMARK 2.1. Since A(·) is positive-definite and rank(D) = 2, the matrix
D′A(·)D is nonnegative-definite and the number of its nonzero eigenvalues is
equal to rank(D′A(·)D) = 2. This implies

R̃(x) ≥
∑3

i=1 λD
i (x)

max1≤i≤3 λD
i (x)

> 1; x ∈ Rn \ Z,

where {λD
i (·), i = 1,2,3} are the eigenvalues of the (3 × 3) matrix D′A(·)D. On

the other hand, an upper bound for R̃(·) is given by

R̃(x) ≤ trace(D′A(x)D)

3 min1≤i≤n λi(x)
; x ∈ Rn \ Z,(2.26)

where {λi(·),1 ≤ i ≤ n} are the eigenvalues of A(·). In fact, we can verify
DD′DD′ = 3DD′, {x ∈ Rn :DD′x = 0} = Z , and so if DD′x 	= 0 ∈ Rn, we ob-
tain the upper bound (2.26) for R̃(·) from

min
1≤i≤n

λi(x) ≤ x′DD′A(x)DD′x
x′DD′DD′x

= Q(x)

3
= trace(D′A(x)D)

3R̃(x)
.(2.27)

REMARK 2.2. For the standard, n-dimensional Brownian motion, that is,
σ(·) ≡ In, n ≥ 3, the quantity R̃(·) of (2.11) is computed easily; R̃(·) ≡ 2. More
generally, suppose that the variance covariance rate A(·) is

A(x) :=
m∑

ν=1

(
ανIn + βνDD′ + II′ diag(γν)

) · 1Rν (x); x ∈ Rn,

for some scalar constants αν , βν and (n × 1) constant vectors γν , ν = 1, . . . ,m.
Here diag(x) is the (n×n) diagonal matrix whose diagonal entries are the elements
of x ∈ Rn, and I is the (n × 1) vector with all entries equal to one. Then R̃(·) ≡ 2
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in Rn \ Z because I′D = (0,0,0) ∈ R1×3 and

DD′ = 1

3
DD′DD′ =

⎛⎜⎜⎝
2 −1 −1

−1 2 −1 0
−1 −1 2

0 0

⎞⎟⎟⎠ ∈ Rn×n.

Hence, if the coefficients αν,βν and γν , ν = 1, . . . ,m, are chosen above so that
A(·) is positive-definite, we have (2.20).

REMARK 2.3. The condition (2.19) in Proposition 1 holds under several
circumstances. For example, take n = 3 and fix the elements a11(·) = a22(·) =
a33(·) ≡ 1 of the symmetric matrix A(·) = σσ ′(·) in (2.8) and choose the other
parameters by

a12(x) = a21(x) := α1+1R1+(x) + α1−1R1−(x),

a23(x) = a32(x) := α2+1R2+(x) + α2−1R2−(x),(2.28)

a31(x) = a13(x) := α3+1R3+(x) + α3−1R3−(x); x ∈ R3,

where Ri±, i = 1,2,3, are subsets of R3 defined by

R1+ := {x ∈ R3 : f1(x) > 0}, R2+ := {x ∈ R3 : f1(x) = 0, f2(x) > 0},
R1− := {x ∈ R3 : f1(x) < 0}, R2− := {x ∈ R3 : f1(x) = 0, f2(x) < 0},
R3+ := {x ∈ R3 : f1(x) = f2(x) = 0, f3(x) > 0},
R3− := {x ∈ R3 : f1(x) = f2(x) = 0, f3(x) < 0},
f1(x) := [

x3 − x1 − (−2 + √
3
)
(x2 − x3)

] · [x3 − x1 − (−2 − √
3
)
(x2 − x3)

]
,

f2(x) := [
x2 − x3 − (−2 + √

3
)
(x1 − x2)

] · [x2 − x3 − (−2 − √
3
)
(x1 − x2)

]
,

f3(x) := [
x1 − x2 − (−2 + √

3
)
(x3 − x1)

] · [x1 − x2 − (−2 − √
3
)
(x3 − x1)

]
for x ∈ R3 with the six constants αi± satisfying 0 < αi+ ≤ 1/2, −1/2 ≤ αi− < 0,
for i = 1,2,3. Note that the zero set Z defined in (2.10) is {x ∈ R3 : f1(x) =
f2(x) = f3(x) = 0}. Thus we split the region R3 \ Z into six disjoint polyhedral
regions Ri±, i = 1,2,3. See Figure 1, and Section A.3 for the details of this ex-
ample.

REMARK 2.4. In the example of Bass and Pardoux [3], mentioned briefly
in the Introduction, the diffusion matrix σ(·) = ∑m

ν=1 σν(·)1Rν (·) in (1.3) has a
special characteristic in the allocation of its eigenvalues: All eigenvalues but the
largest are small; namely, they are of the form (1, ε, . . . , ε) where 0 < ε < 1/2
satisfies, for some 0 < δ < 1/2,∣∣∣∣x′σ(x)σ ′(x)x

‖x‖2 − 1
∣∣∣∣≤ δ for x ∈ Rn \ {0} and

(n − 1)ε2 + δ

1 − δ
< 1.
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FIG. 1. Polyhedral regions in Remark 2.3.

This is the case when the diffusion matrix σ(·) can be written as a piecewise
constant function

∑m
ν=1 σν1Rν (·) where the constant (n × n) matrices {σν, ν =

1, . . . ,m} have the decomposition,

σνσ
′
ν := (yν,Bν)diag(1, ε2, . . . , ε2)

(
y′
ν

B ′
ν

)
,

the fixed (n × 1) vector yν ∈ Rν satisfies

‖yν‖ = 1,
|〈x, yν〉|2

‖x‖2 ≥ 1 − ε; x ∈ Rν \ {0},
and the (n × (n − 1)) matrix Bν consists of (n − 1) orthonormal n-dimensional
vectors orthogonal to each other and orthogonal to yν , for ν = 1, . . . ,m. Then for
all x ∈ Rn, we have

‖x‖2 trace(σ (x)σ ′(x))

x′σ(x)σ ′(x)x
− 1 ≤ (n − 1)ε2 + δ

1 − δ
< 1.

This is sufficient for the process X(·) to hit the origin in finite time.
To exclude this situation, we introduce the effective dimension EDA(·) of the

elliptic second-order operator A defined in (2.7), namely

EDA(x) := ‖x‖2 trace(σ (x)σ ′(x))

x′σ(x)σ ′(x)x
= ‖x‖2 trace(A(x))

x′A(x)x
(2.29)

for x ∈ Rn \ {0}. This function comes from the theory of the so-called exterior
Dirichlet problem for second-order elliptic partial differential equations, pioneered
by Meyers and Serrin [18]. These authors showed that

inf
x∈Rn\{0} EDA(x) > 2(2.30)

is a sufficient condition for the existence of solution to an exterior Dirichlet prob-
lem. In a manner similar to the proof of Proposition 1, it is possible to show that
(2.30) is sufficient for Px0(X1(t) = · · · = Xn(t) = 0 for some t ≥ 0) = 0 since R̃(·)
becomes EDA(·) when the matrix D is replaced by the identity matrix. [In this
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manner, the function R̃(·) of (2.12) is interpreted as a “local” version of the effec-
tive dimension.]

With σ(·) as in (1.3), the effective dimension EDA(·) satisfies

EDA(x) ≥ min
ν=1,...,m

(‖x‖2 trace(σν(x)σ ′
ν(x))

x′σν(x)σ ′
ν(x)x

)
≥ min

ν=1,...,m

( ∑n
i=1 λiν(x)

maxi=1,...,n λiν(x)

)
for x ∈ Rn \ {0} where {λiν(·), i = 1, . . . , n} are the eigenvalues of the matrix-
valued functions σν(·)σ ′

ν(·), for ν = 1, . . . ,m. Thus EDA(·) > 2 if

inf
x∈Rn\{0} min

ν=1,...,m

( ∑n
i=1 λiν(x)

maxi=1,...,n λiν(x)

)
> 2;

this can be interpreted as mandating that the relative size of the maximum eigen-
value is not too large when compared to all the other eigenvalues.

REMARK 2.5. Friedman [9] established theorems on the nonattainability of
lower-dimensional manifolds by nondegenerate diffusions. Let M be a closed k-
dimensional C2-manifold in Rn with k ≤ n− 1. At each point x ∈ M, let Nk+i(x)

form a set of linearly independent vectors in Rn which are normal to M at x.
Consider the matrix α(x) := (αij (x)) with

αij (x) = 〈A(x)Nk+i (x),Nk+j (x)〉; 1 ≤ i, j ≤ n − k, x ∈ M.

Roughly speaking, the strong solution of (1.1) under a linear growth condition and
a Lipschitz condition on the coefficients cannot attain M if rank(α(x)) ≥ 2 holds
for all x ∈ M. The rank indicates how wide the orthogonal complement of M is.
If the rank is large, the manifold M is too thin to be attained. The fundamental
lemma there is based on the solution u(·) of partial differential inequality Au(·) ≤
μu(·) for some μ ≥ 0, outside but near M with limdist(x,M)→∞ u(x) = ∞ which
is different from our treatment in the previous sections.

Ramasubramanian [20, 21] examined the recurrence and transience of projec-
tions of weak solution to (1.1) for continuous diffusion coefficient σ(·) showing
that any (n − 2)-dimensional C2-manifold is not hit. The integral test developed
there has an integrand similar to the effective dimension studied in [18] as pointed
out by M. Cranston in Mathematical Reviews.

Propositions 1 and 2 are complementary to these previous general results since
the coefficients here are allowed to be piecewise continuous; however, they depend
on the typical geometric characteristic on the manifold Z we are interested in.
Since the manifold of interest in this work is the zero set Z of the function s(·),
the projection s(X(·)) of the process and the corresponding effective dimensions
EDA(·) and R̃(·) are studied.

REMARK 2.6. As V. Papathanakos first pointed out, the conditions (2.19),
(2.21) in Propositions 1 and 2 are disjoint, and there is a “gray” zone of sets of
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coefficients which satisfy neither of the conditions. This is because we compare
with Bessel processes, replacing the n-dimensional problem by a solvable one-
dimensional problem. In order to look at a finer structure, we discuss a special
case in the next section by reducing it to a two-dimensional problem. This follows
a suggestion of A. Banner.

3. A second approach. In this section we discuss a class of weak solutions to
equation (1.1) with the structure (1.3) which exhibits “no triple collisions” using
the n-dimensional ranked process and the (n− 1)-dimensional reflected Brownian
motion on polyhedral domains.

3.1. Ranked process. Given a vector process X(·) := {(X1(t), . . . ,Xn(t));
0 ≤ t < ∞}, we define the vector X(·) := {(X(1)(t), . . . ,X(n)(t));0 ≤ t < ∞} of
ranked processes ordered from largest to smallest by

X(k)(t) := max
1≤i1<···<ik≤n

(min(Xi1(t), . . . ,Xik (t))); 0 ≤ t < ∞,(3.1)

for k = 1, . . . , n. If, for every j = 1, . . . , n − 2, the two-dimensional process

(Yj (·), Yj+1(·))′ := (
X(j)(·) − X(j+1)(·),X(j+1)(·) − X(j+2)(·))′(3.2)

obtained by looking at the “gaps” among the three adjacent ranked processes
X(j)(·),X(j+1)(·),X(j+2)(·), never reaches the corner (0,0)′ of R2, almost surely,
then the process X(·) satisfies

Px0

(
Xi(t) = Xj(t) = Xk(t), for some (i, j, k), t > 0

)= 0(3.3)

for x0 ∈ Rn \ Z . On the other hand, if for some j = 1, . . . , n− 2 the vector of gaps
(X(j)(·) − X(j+1)(·),X(j+1)(·) − X(j+2)(·))′ does reach the corner (0,0)′ of R2

almost surely, then we have

Px0

(
Xi(t) = Xj(t) = Xk(t), for some (i, j, k), t > 0

)= 1; x0 ∈ Rn.

Thus, we are led to study the ranked process X(·) and its adjacent differences.
In the following we use the parametric result of Varadhan and Williams [25] on
Brownian motion in a two-dimensional wedge with oblique reflection at the bound-
ary, and the result of Williams [26] on Brownian motion with reflection along the
faces of a polyhedral domain.

There is a long list of contributions to the study of attainability of the origin for
the Brownian motion with reflection. Recently Delarue [6] considered the hitting
time of a corner by a reflected diffusion in the square. Rogers [22, 23] and Burdzy
and Marshall [4] considered Brownian motion in a half-space with variable angle
of reflection. Here we consider oblique constant reflection on each face of the
polyhedral region.
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3.2. Reflected Brownian motion. Let e1, . . . , en−1 be unit vectors in Rn−1,
n ≥ 3, and consider the nonnegative orthant

S := Rn−1+ =
{

n−1∑
k=1

xkek :x1 ≥ 0, . . . , xn−1 ≥ 0

}
,

whose (n − 2)-dimensional faces F1, . . . ,Fn−1 are given as

Fi :=
{

n−1∑
k=1

xkek :xk ≥ 0 for k = 1, . . . , n − 1, xi = 0

}
; 1 ≤ i ≤ n − 1.

Let us denote the (n − 3)-dimensional faces of intersection by Fo
ij := Fi ∩ Fj for

1 ≤ i < j ≤ n − 1 and their union by Fo :=⋃
1≤i<j≤n−1 Fo

ij .
We define the (n − 1)-dimensional reflected Brownian motion Y(·) := {(Y1(t),

. . . , Yn−1(t)); t ≥ 0} on the orthant Rn−1+ with zero drift, constant ((n − 1) × (n −
1)) constant variance/covariance matrix A := ��′ and reflection along the faces
of the boundary along constant directions by

Y(t) = Y(0) + �B(t) + RL(t); 0 ≤ t < ∞, Y (0) ∈ Rn−1+ \ Fo.(3.4)

Here, {B(t);0 ≤ t < ∞} is (n − 1)-dimensional standard Brownian motion start-
ing at the origin of Rn−1. The ((n − 1) × (n − 1)) reflection matrix R has
all its diagonal elements equal to one, and a spectral radius strictly smaller
than one. Finally, the components of the (n − 1)-dimensional process L(t) :=
(L1(t), . . . ,Ln−1(t));0 ≤ t < ∞, are adapted, nondecreasing, continuous and sat-
isfy

∫∞
0 Yi(t) dLi(t) = 0 [i.e., Li(·) is flat off the set {t ≥ 0 :Yi(t) = 0}] almost

surely, for each i = 1, . . . , n − 1. Note that, if Y(t) lies on Fo
ij = Fi ∩ Fj , then

Yi(t) = Yj (t) = 0 for 1 ≤ i 	= j ≤ n − 1.
Harrison and Reiman [11] introduced and constructed this process pathwise

through the multi-dimensional Skorohod reflection problem.

3.2.1. Rotation and rescaling. Assume that the constant covariance matrix
A = ��′ is positive-definite; let U be a unitary matrix whose columns are the
orthonormal eigenvectors of A; and let L be the corresponding diagonal matrix of
(positive) eigenvalues such that L = U ′AU . Define Ỹ (·) := L−1/2UY(·) and note
that, by this rotation and rescaling, we obtain

Ỹ (t) = Ỹ (0) + B̃(t) + L−1/2URL(t); 0 ≤ t < ∞,

from (3.4) where B̃(t) := L−1/2U�B(t),0 ≤ t < ∞, is another standard (n − 1)-
dimensional Brownian motion. We may regard Ỹ (·) as reflected Brownian motion
in a new state space S̃ := L−1/2URn−1+ . The transformed reflection matrix R̃ :=
L−1/2UR can be written as

R̃ = L−1/2UR = (Ñ + Q̃)C = (̃r1, . . . , r̃n−1), where

C := D−1/2, D := diag(A), Ñ := L1/2UC ≡ (̃n1, . . . , ñn−1),(3.5)

Q̃ := L−1/2URC−1 − Ñ ≡ (̃q1, . . . , q̃n−1).
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Here D = diag(A) is the ((n−1)×(n−1)) diagonal matrix with the same diagonal
elements as those of A = ��′ (the variances). The constant vectors r̃i , q̃i , ñi , i =
1, . . . , n − 1, are ((n − 1) × 1) column vectors.

Since U is an orthonormal matrix that rotates the state space S = Rn−1+ , and
L1/2 is a diagonal matrix which changes the scale in the positive direction, the
new state space S̃ is an (n − 1)-dimensional polyhedron whose ith face F̃i :=
L−1/2UFi has dimension (n − 2), for i = 1, . . . , n − 1.

Note that diag(Ñ′Q̃) = 0 and diag(Ñ′Ñ) = I , that is, ñi and q̃i are orthogonal
and ñi is a unit vector, that is, ñ′

i q̃i = 0 and ñ′
i ñi = 1 for i = 1, . . . , n − 1. Also

note that ñi is the inward unit normal to the ith face F̃i of the new state space
S̃ on which the continuous, nondecreasing process Li(·) actually increases, for
i = 1, . . . , n − 1. The ith face F̃i can be written as {x ∈ S̃ : ñ′

ix = bi} for some
bi ∈ R, for i = 1, . . . , n − 1.

Moreover, the ith column r̃i of the new reflection matrix R̃ is decomposed into
components that are normal and tangential to F̃i , that is, r̃i = Cii (̃ni + q̃i) for
i = 1, . . . , n − 1 where Cii is the (i, i)-element of the diagonal matrix C. Since the
matrix L−1/2U of the transformation is invertible, we obtain

Ỹ (·) ∈ F̃o
ij := F̃i ∩ F̃j ⇐⇒ Y(·) ∈ Fo

ij ; 1 ≤ i < j ≤ n − 1.(3.6)

Thus, in order to decide whether the process Y(·) in (3.4) attains Fo, it is enough
to decide whether the transformed process Ỹ (·) attains the set F̃o := L−1/2UFo =⋃

1≤i<j≤n−1 F̃o
ij .

3.3. Attainability. With (3.6) we consider, for n = 3 and n > 3 separately, the
hitting times for 1 ≤ i 	= j ≤ n − 1:

τij := inf{t > 0 :Y(t) ∈ Fo
ij } = inf{t > 0 : Ỹ (t) ∈ F̃o

ij }.
First we look at the case n = 3, that is, two-dimensional reflected Brownian motion
and the hitting time τ12 of the origin. The directions of reflection r̃1 and r̃2 can be
written in terms of angles. Note that the angle ξ of the two-dimensional wedge S̃

is positive and smaller than π since all the eigenvalues of A are positive. Let θ1
and θ2 with −π/2 < θ1, θ2 < π/2 be the angles between ñ1 and r̃1, and between ñ2
and r̃2, respectively, measured so that θ1 is positive if and only if r̃1 points toward
the corner with local coordinate (0,0)′; similarly for θ2. See Figure 2.

FIG. 2. Directions of reflection: θ1 + θ2 < 0.
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Paraphrasing the result of Varadhan and Williams [25] for Brownian motion
reflected on the two-dimensional wedge, we obtain the following result on the
relationship between the stopping time and the sum θi + θj of angles of reflection
directions when n − 1 = 2.

LEMMA 3.1 (Theorem 2.2 of [25]). Suppose that Ỹ (0) = ỹ0 ∈ S̃ \ F̃o, and
consider the ratio β := (θ1 + θ2)/ξ .

The submartingale problem for the reflected Brownian motion on the two-
dimensional wedge is well-posed for β < 2 whereas it has no solution for β ≥ 2.
If 0 < β < 2, we have P(τ12 < ∞) = 1; if, on the other hand, β ≤ 0, then we have
P(τ12 < ∞) = 0.

In terms of the reflection vectors ñ1, r̃1 and ñ2, r̃2, and with the aid of (3.6), we
can cast this result as follows; the proof is in Section A.4.

LEMMA 3.2. Suppose that Y(0) = y0 ∈ R2 \ Fo. If ñ′
1q̃2 + ñ′

2q̃1 > 0,
then we have P(τ12 < ∞) = 1. If, on the other hand, ñ′

1q̃2 + ñ′
2q̃1 ≤ 0, then

P(τ12 < ∞) = 0.

We consider the general case n > 3 next. From (3.6) and Theorem 1.1 of
Williams [26] we obtain the following result, valid for n ≥ 3.

LEMMA 3.3. Suppose that Y(0) = y0 ∈ Rn−1+ \ Fo and n ≥ 3 and that the
so-called skew-symmetry condition

ñ′
i q̃j + ñ′

j q̃i = 0; 1 ≤ i < j ≤ n − 1,(3.7)

holds. Then we have P(τ < ∞) = 0 where τ := inf{t > 0 :Y(t) ∈ Fo}.
Moreover, the components of the adapted, continuous and nondecreasing

process L(·) defined in (3.4) are identified then as the local times at the origin
of the one-dimensional component processes

2Li(t) = Yi(t) − Yi(0) −
∫ t

0
sgn(Yi(s)) dYi(s); 0 ≤ t < ∞, i = 1, . . . , n.

REMARK 3.1. In the planar (two-dimensional) setting of Lemma 3.2, the
skew-symmetry condition (3.7) takes a weaker form, that of an inequality. In the
next section we shall discuss some details of the resulting model as an application
of Lemma 3.3.

Lemmata 3.2 and 3.3 lead to the following result, proved in Section 4.2.2, on
the absence of triple-collisions for a system of n one-dimensional Brownian parti-
cles interacting through their ranks. Let us introduce a collection {Q(i)

k }1≤i,k≤n of

polyhedral domains in Rn, such that {Q(i)
k }1≤i≤n is partition Rn for each fixed k,
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and {Q(i)
k }1≤k≤n is partition Rn for each fixed i. By analogy with (3.1), the inter-

pretation is as follows:

y = (y1, . . . , yn)
′ ∈ Q

(i)
k means that yi is ranked kth among y1, . . . , yn

with ties resolved by resorting to the smallest index for the highest rank.

PROPOSITION 3. For n ≥ 3, consider the weak solution of the equation (2.6)

with diffusion coefficient (1.3) where σ(·) is the diagonal matrix

σ(x) := diag

(
n∑

k=1

σ̃k1
Q

(1)
k

(x), . . . ,

n∑
k=1

σ̃k1
Q

(n)
k

(x)

)
; x ∈ Rn.(3.8)

If the positive constants {σ̃k;1 ≤ k ≤ n} satisfy the linear growth condition

σ̃ 2
2 − σ̃ 2

1 = σ̃ 2
3 − σ̃ 2

2 = · · · = σ̃ 2
n − σ̃ 2

n−1,(3.9)

then (3.3) holds: there are no triple-collisions among the n particles.
If n = 3, the weaker condition σ̃ 2

2 − σ̃ 2
1 ≥ σ̃ 2

3 − σ̃ 2
2 is sufficient for the absence

of triple collisions.

REMARK 3.2. The special structure (3.8) has been studied in the context of
Mathematical Finance. Recent work on interacting particle systems by Pal and
Pitman [19] clarifies the long-range behavior of the spacings between the arranged
Brownian particles under the equal variance condition: σ̃1 = · · · = σ̃n; the setting
of systems with countably many particle is also studied there, and related work
from Mathematical Physics on competing tagged particle systems is surveyed. The
“linear growth” condition (3.9) should be seen in the light of Figure 5.5, page 109
in Fernholz [8].

4. Application.

4.1. Atlas model for an Equity Market. Let us recall the Atlas model

dXi(t) =
(

n∑
k=1

gk1
Q

(i)
k

(X(t)) + γ

)
dt

+
n∑

k=1

σ̃k1
Q

(i)
k

(X(t)) dWi(t);(4.1)

for 1 ≤ i ≤ n,0 ≤ t < ∞, (X1(0), . . . ,Xn(0))′ = x0 ∈ Rn,

introduced by Fernholz [8] and studied by Banner, Fernholz and Karatzas [1].
Here X(·) = (X1(·), . . . ,Xn(·))′ represents the vector the logarithms of asset cap-
italizations in an equity market, and we are using the notation of Proposition 3.
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We assume that the constants σ̃k > 0 and gk , k = 1, . . . , n satisfy the following
conditions which ensure that X(·) is ergodic:

g1 < 0, g1 + g2 < 0, . . . ,

g1 + · · · + gn−1 < 0, g1 + · · · + gn = 0.

The dynamics of (4.1) induce corresponding dynamics for the ranked processes
X(1)(·) ≥ X(2)(·) ≥ · · · ≥ X(n)(·) of (3.1). These involve the local times �k,�(·) ≡
LX(k)−X(�)(·) for 1 ≤ k < � ≤ n, where LY (·) denotes the local time at the origin
of a continuous semimartingale Y(·) ≥ 0. An increase in �k,�(·) is due to a si-
multaneous collision of � − k + 1 particles in the ranks k through �. In general,
when multiple collisions can occur, there are (n− 1)n/2 such possible local times;
all these appear then in the dynamics of the ranked processes, as in Banner and
Ghomrasni [2].

Let Sk(t) := {i :Xi(t) = X(k)(t)} be the set of indices of processes which are
kth ranked, and denote its cardinality by Nk(t) := |Sk(t)| for 0 ≤ t < ∞. Banner
and Ghomrasni show in Theorem 2.3 of [2] that for any n-dimensional continuous
semimartingale X(·) = (X1(·), . . . ,Xn(·)), its ranked process X(·)(·) with compo-
nents X(k)(t) = Xpt(k)(t), k = 1, . . . , n, is

dX(k)(t) =
n∑

i=1

1{X(k)(t)=Xi(t)} dXi(t)

(4.2)

+ 1

Nk(t)

[
n∑

j=k+1

d�k,j (t) −
k−1∑
j=1

d�j,k(t)

]
.

Here pt := {(pt (1), . . . , pt (n))} is the random permutation of {1, . . . , n} which
describes the relation between the indices of X(t) and the ranks of X(·)(t) such
that pt(k) < pt(k + 1) if X(k)(t) = X(k+1)(t) for 0 ≤ t < ∞.

Let �n be the symmetric group of permutations of {1, . . . , n}. The map pt :�×
[0,∞) → �n is measurable with respect to σ -field generated by the adapted con-
tinuous process {X(s),0 ≤ s ≤ t}, so is predictable. Consider the inverse map
p−1

t := (p−1
t (1), . . . , p−1

t (n)) :� × [0,∞) → �n, also predictable, indicating the
rank of Xi(t) in the n-dimensional vector X(t);

X
(p−1

t (i))
(t) = Xi(t); i = 1, . . . , n, 0 ≤ t < ∞.(4.3)

Under the assumption of “no triple collisions” [that is, when the only nonzero
change-of-rank local times are those of the form �k,k+1(·), 1 ≤ k ≤ n − 1], Fern-
holz [8] considered the stochastic differential equation of the vector of ranked
process X(·) in a general framework; Banner, Fernholz and Karatzas [1] obtained
a rather complete analysis of the Atlas model (4.1).

In this section we apply the main results of the previous sections to the Atlas
model. There are some cases of piecewise constant diffusion coefficients which
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satisfy the conditions in Proposition 1 or 3. Obviously, if the {σ̃ 2
k } are all equal, we

are in the case of standard Brownian motion. A bit more interestingly, if {σ̃ 2
k } are

linearly growing in the sense of (3.9), we can construct a weak solution to (4.1)
with no collision of three or more particles.

REMARK 4.1. On page 2305, the paper by Banner, Fernholz and Karatzas [1]
contains the erroneous statement that the “uniform nondegeneracy of the variance
structure and boundedness of the drift coefficients” preclude triple collisions. Part
of our motivation in undertaking the present work was a desire to correct this error.

4.2. Construction of weak solution.

4.2.1. Reflected Brownian motion. Let us start by writing the dynamics of the
sum (total log-capitalization) X(t) := X1(·) + · · · + Xn(·) as

dX(t) = nγ dt +
n∑

i=1

n∑
k=1

σ̃k1
Q

(i)
k

(X(t)) dWi(t) = nγ dt +
n∑

k=1

σ̃k dBk(t),(4.4)

where B(·) := {(B1(t), . . . ,Bn(t))
′,0 ≤ t < ∞} is given by Bk(t) :=∑n

i=1
∫ t

0 1
Q

(i)
k

(X(s)) dWi(s) for 1 ≤ k ≤ n, 0 ≤ t < ∞. By the F. Knight theorem

(e.g., Chapter 3 in Karatzas and Shreve [15]), this process B(·) is an n-dimensional
Brownian motion started at the origin.

Next, let h and �̃ be the (n−1)×1 vector and the (n−1)×n triangular matrix
with entries

h := (g1 − g2, . . . , gn−1 − gn)
′, �̃ :=

⎛⎜⎜⎜⎝
σ̃1 −σ̃2

σ̃2 −σ̃3
. . .

. . .

σ̃n−1 −σ̃n

⎞⎟⎟⎟⎠ ,

where the elements in the lower-triangular part and the upper-triangular part,
except the first diagonal above the main diagonal, are zeros. Then the process
{ht + �̃B(t),0 ≤ t < ∞} is an (n − 1)-dimensional Brownian motion starting at
the origin of Rn−1 with constant drift h and the covariance matrix

A := �̃�̃′ :=

⎛⎜⎜⎜⎜⎝
σ̃ 2

1 + σ̃ 2
2 −σ̃ 2

2

−σ̃ 2
2 σ̃ 2

2 + σ̃ 2
3

. . .

. . .
. . . −σ̃ 2

n−1
−σ̃ 2

n−1 σ̃ 2
n−1 + σ̃ 2

n

⎞⎟⎟⎟⎟⎠ .(4.5)

Now we construct as in Section 3.2 an (n − 1)-dimensional process Z(·) :=
{(Z1(t), . . . ,Zn−1(t))

′,0 ≤ t < ∞} on Rn−1+ by

Zk(t) := (gk − gk+1)t + σ̃kBk(t) − σ̃k+1Bk+1(t)
(4.6)

+ �k,k+1(t) − 1
2

(
�k−1,k(t) + �k+1,k+2(t)

); 0 ≤ t < ∞,
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for k = 1, . . . , n − 1. Here �k,k+1(·) is a continuous, adapted and nondecreasing
process with �k,k+1(0) = 0 and

∫∞
0 Zk(t) d�k,k+1(t) = 0 almost surely. Setting

�0,1(·) ≡ �n,n+1(·) ≡ 0, we write in matrix form

Z(t) = ht + �̃B(t) + R�(t); 0 ≤ t < ∞.

Here �(·) = (�1,2(·), . . . ,�k−1,k(·))′ and the reflection matrix R = I − Q is

R = I − Q :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −1/2

−1/2 1
. . .

. . .
. . .

. . .
. . .

. . . −1/2
−1/2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.(4.7)

If the process X(·) has no “triple collisions,” then from (4.2) we get

dX(k)(t) =
n∑

i=1

1{Xi(t)=X(k)(t)} dXi(t)

+ 1

2

(
d�k,k+1(t) − d�k−1,k(t)

)
, 0 ≤ t < ∞.

Substituting (4.1) into this equation and subtracting, we obtain that

X(k)(t) − X(k+1)(t) = Zk(t); 1 ≤ k ≤ n − 1,0 ≤ t < ∞,(4.8)

and that �k,k+1(·) is the local time at the origin of the one-dimensional process
Zk(·) ≥ 0 for k = 1, . . . , n − 1. In general, the process X(·) may have triple (or
higher-multiplicity) collisions, so that we have additional terms in (4.8):

X(k)(t) − X(k+1)(t) = Zk(t) + ζk(t), 1 ≤ k ≤ n − 1,0 ≤ t < ∞.(4.9)

The contribution ζ(·) := (ζ1(·), . . . , ζn−1(·)) from triple or higher-multiplicity col-
lisions can be written for 1 ≤ k ≤ n − 1,0 ≤ t < ∞ as ζk(0) = 0 and

dζk(t) =
n∑

�=3

�−11{Nk(t)=�}
[

n∑
j=k+2

d�k,j (t) −
k−2∑
j=1

d�j,k(t)

]

−
n∑

�=3

�−11{Nk(t)=�}
[

n∑
j=k+3

d�k+1,j (t) −
k−1∑
j=1

d�j,k+1(t)

]
.

REMARK 4.2. Note that ζ(·) consists of (random) linear combinations of lo-
cal times from collisions of three or more particles. It is flat, unless there are
triple collisions; that is,

∫∞
0 1Gc dζ(s) = 0, where G := {s ≥ 0 :Xi(t) = Xj(t) =

Xk(t) for some 1 ≤ i < j < k ≤ n}. We use this fact with Lemma 4.1 in the next
subsection.
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4.2.2. Proof of Proposition 3. Under the assumption of Proposition 3, we can
apply Lemma 3.3 to obtain

P
(
Zi(t) = Zj(t) = 0,∃t > 0,∃(i, j),1 ≤ i 	= j ≤ n

)= 0;(4.10)

see Section A.5. Thus Z(·) is a special case of multi-dimensional reflected Brown-
ian motion for which each continuous, nondecreasing process �k,k+1(·) is exactly
the local time at the origin of Zk(·).

Now let us state the following lemma to examine the local times from collisions
of three or more particles. Its proof is in Section A.6.

LEMMA 4.1. Let α(·) = {α(t);0 ≤ t < ∞} be a nonnegative continuous func-
tion with decomposition α(t) = β(t) + γ (t) where β(·) is strictly positive and
continuous, and γ (·) is of finite variation and flat off {t ≥ 0 :α(t) = 0}, that is,∫∞

0 1{α(t)>0} dγ (t) = 0. Assume γ (0) = 0 and α(0) = β(0) > 0; then, γ (t) = 0
and α(t) = β(t) for all 0 ≤ t < ∞.

Under the assumption of Proposition 3, applying the above Lemma 4.1 with
(4.9), (4.10) and α(·) = X(k)(·,ω) − X(k+2)(·,ω), β(·) = Zk(·,ω) + Zk+1(·,ω)

and γ (·) = ζk(·,ω) + ζk+1(·,ω) for ω ∈ �, we obtain α(·) = β(·):
X(k)(·) − X(k+2)(·) = Zk(·) + Zk+1(·), k = 1, . . . , n − 2.(4.11)

Combining (4.11) with (4.10), we obtain X(k)(·) − X(k+2)(·) > 0 or

P
(
X(k)(t) = X(k+1)(t) = X(k+2)(t),∃t > 0,∃k,1 ≤ k ≤ n − 2

)= 0.

Therefore, there are “no triple collisions” under the assumption of Proposition 3,
whose proof is now complete.

4.2.3. Recovery. In conclusion, we recover the n-dimensional ranked process
X(·) of X by considering a linear transformation. Specifically, we construct the
n-dimensional “ranked” process,

�(·)(t) := (
�(1)(t), . . . ,�(n)(t)

); 0 ≤ t < ∞,

from the sum X(t),0 ≤ t < ∞, defined in (4.4) and the reflected Brownian motion
Z(·), so that the differences (gaps) satisfy

�(k)(t) − �(k+1)(t) = Zk(t), k = 1, . . . , n − 1,(4.12)

and the sum satisfies
n∑

k=1

�(k)(t) = X(t); 0 ≤ t < ∞.(4.13)
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In particular, each component of �(·)(t) is uniquely determined by⎛⎜⎜⎜⎝
�(1)(t)

�(2)(t)
...

�(n)(t)

⎞⎟⎟⎟⎠= 1

n

⎛⎜⎜⎜⎝
X(t) + Zn−1(t) + (n − 2)Zn−2(t) + · · · + (n − 1)Z1(t)

X(t) + Zn−1(·) + (n − 2)Zn−2(t) + · · · − Z1(t)
...

X(t) − (n − 1)Zn−1(t) − (n − 2)Zn−2(t) − · · · − Z1(t)

⎞⎟⎟⎟⎠
for 0 ≤ t < ∞. Under the assumption of Proposition 3, we obtain (4.10) and hence
with (4.12) we arrive, in the same way as discussed in (3.3), at

P
(
�(k)(t) = �(k+1)(t) = �(k+2)(t),∃t > 0,1 ≤ ∃k ≤ n − 2

)= 0.

Thus, the ranked process {X(·)(t),0 ≤ t < ∞} of the original process X(·) without
collision of three or more particles, and the ranked process �(·)(·) defined in the
above, are equivalent, since both of them have the same sum (4.13) and the same
nonnegative difference processes Z(·) identified in (4.8) and (4.12). We may thus
view �(·)(·) as the weak solution to the SDE for the ranked process X(·)(·). Finally,
we define �(·) := (�1(·), . . . ,�n(·)) where �i(·) = �

(p−1
t (i))

(·) for i = 1, . . . , n,

and p−1
t (i) is defined in (4.3). Then, �(·) is the weak solution of SDE (4.1). This

construction of solution leads us to the invariance properties of the Atlas model
given in [1] and [13].

APPENDIX

A.1. Proof of Lemma 2.1. From the assumption x0 ∈ Rn \ Z , where the zero
set Z is defined in (2.10), it follows that s(0) = s(X(�0)) > 0 and there exists
an integer m0 such that m−1

0 < s(0) < m0. Recall that with R̃(X(�·)) = d(·) and
s(X(�·)) = s(·) we obtained (2.14); namely,

s(t) = s(0) +
∫ t

0

d(u) − 1

2s(u)
du + B̃(t); 0 ≤ t < ∞.

Let us consider first the case d := essup sup0≤t<∞ d(t) < 2 for (2.16). Define
two continuous functions b1(x) := (d − 1)/(2x) and b2(x) := d/(4x) for x ∈
(0,∞). If d < 2, then b1(·) < b2(·) in (0,∞). For each integer m ≥ m0, there ex-
ists a nonincreasing Lipschitz continuous function fm(·) := (b1(·) + b2(·))/2 with
Lipschitz coefficient Km := maxx∈[m−1,m] |b′

2(x)|, such that b1(·) ≤ fm(·) ≤ b2(·)
in [m−1,m].

Define an auxiliary Bessel process r(·) of dimension (d + 2)/2 (< 2):

r(t) := s(0) +
∫ t

0
b2(r(u)) du + B̃(t); 0 ≤ t < ∞.

Consider also the increasing sequence of stopping times

τm := inf{t ≥ 0 : max[s(t), r(t)] ≥ m or min[s(t), r(t)] ≤ m−1}(A.1)
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for m0 ≤ m < ∞, and τ := inf{t ≥ 0 : r(t) = 0}. From the property of the Bessel
process with dimension strictly less than 2, the process r(·) attains the origin within
finite time; τ∗ := limm→∞ τm ≤ τ < ∞ holds a.s.

Now take a strictly decreasing sequence {an}∞n=0 ⊂ (0,1] with a0 = 1,
limn→∞ an = 0 and

∫
(an,an−1)

u−2 du = n for every n ≥ 1. For each n ≥ 1,
there exists a continuous function ρn(·) on R with support in (an, an−1), so that
0 ≤ ρn(x) ≤ 2(nx2)−1 holds for every x > 0 and

∫
(an,an−1)

ρn(x) dx = 1. Then
the function ψn(x) := ∫ |x|

0 (
∫ y

0 ρn(u)du)dy; x ∈ R, is even and twice continu-
ous differentiable with |ψ ′

n(x)| ≤ 1 and limn→∞ ψn(x) = |x| for x ∈ R. Define
ϕn(·) := ψn(·)1(0,∞)(·).

By combining the properties of ϕn(·), b1(·), b2(·) and fm(·), we see that the
difference �(·) := s(·) − r(·) is a continuous process with

ϕn(�(t)) ≤
∫ t

0
ϕ′

n(�(u))
(
b1(s(u)) − b2(r(u))

)
du

≤
∫ t

0
ϕ′

n(�(u))
(
fm(s(u)) − fm(r(u))

)
du

≤ Km

∫ t

0
ϕ′

n(�(u))
(
s(u) − r(u)

)+
du

≤ Km

∫ t

0
(�(u))+ du; 0 ≤ t ≤ τm.

Letting n → ∞ we obtain (�(t))+ ≤ Km

∫ t
0 (�(u))+ du for 0 ≤ t ≤ τm. From

the Gronwall inequality and the sample-path continuity of s(·), r(·) in [0,∞), we
obtain �(·) = s(·) − r(·) ≤ 0 on [0, τm] for m ≥ m0 and

s(τ∗) = lim
t→τ∗

s(t) ≤ lim
t→τ∗

r(t) = r(τ∗) and max[s(τ∗), r(τ∗)] < ∞,(A.2)

almost surely. On the other hand, from the definition of {τm} we obtain 0 =
r(τ∗) ≥ s(τ∗), thus s(τ∗) = 0 and s(t) ≤ r(t) for 0 ≤ t ≤ τ∗, a.s., so for d =
essup sup0≤t<∞ d(t) < 2 we conclude

Qx0

(
s(X(t)) = 0 for some t > 0

)= Qx0

(
s(t) = 0 for some t ≥ 0

)= 1.

By the strong Markov property of the process X(·) under Q, we obtain

1 = Qx0

(
s(X(t)) = 0, inf. many t ≥ 0

)= Qx0

(
s(t) = 0, inf. many t ≥ 0

)
.

This gives (2.16) of Lemma 2.1. Moreover, by the formula of the first hitting-time
probability density function for the Bessel process with dimension d in Elworthy,
Li and Yor [7] and Göing–Jaeschke and Yor [10], we obtain

Qx0

(
s(t) = 0, for some t ∈ (0, T ]) ≥ Qx0

(
r(t) = 0, for some t ∈ (0, T ])

= 1 − κ(T ; s(x0),d),

where the tail probability distribution function κ(·; ·, ·) is defined in (2.18).
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We consider next the case of d := essinf inf0≤t<∞ d(t) ≥ 2. Define b3(x) :=
(d − 1)/(2x) and b4(x) := d/(4x) for x ∈ (0,∞). Following a course similar to
the previous case, using b3(·), b4(·) and defining a nonincreasing Lipschitz con-
tinuous function gm(·) := (b3(·) + b4(·))/2 with the Lipschitz coefficient Lm :=
maxx∈[m−1,m] |b′

3(x)| [rather than using b1(·), b2(·), fm(·) and Km], we obtain the
reverse inequality q(·) ≤ s(·) in [0, τ̃m] a.s. Here q(·) is the Bessel process in di-
mension (d + 2)/2 (≥ 2); namely

q(t) = s(0) +
∫ t

0
b4(q(u)) du + B̃(t); 0 ≤ t < ∞,

and the stopping times {τ̃m} are defined as in (A.1) but with r(·) replaced by q(·).
By a well-known property for Bessel processes of dimension at least 2, the process
q(·) never attains the origin; that is, q(·) > 0 on [0,∞), a.s.

If τ̃∗ := limm→∞ τ̃m < ∞, then by analogy with (A.2), we obtain s(τ̃∗) ≥
q(τ̃∗) > 0 and max[s(τ̃∗),q(τ̃∗)] < ∞ a.s., and from the construction of {τ̃m} a
contradiction follows: 0 = s(τ̃∗) > 0. Therefore, Qx0(s(t) > 0 for 0 ≤ t < ∞) = 1.
This gives (2.15) of Lemma 2.1 for d ≥ 2.

A.2. Proof of Propositions 1 and 2. Proposition 1 and the first half of Propo-
sition 2 are direct consequences of Lemma 2.1 and of the reasoning developed in
Section 2.2. Note that 〈
̃〉(t) ≥ c0t, t ≥ 0, in this uniformly nondegenerate case.
We obtain (2.22), because Qx0(s(X(t)) = 0 for some t ∈ [0, T ]) ≥ Qx0(s(u) = 0,
for some u ∈ [0, c0T ]). Under the original probability measure Px0 , because of the
drift μ(·), the process s(X(·)) is a semimartingale with the decomposition

ds(X(t)) =
(

(R(x) − 1)Q(x)

2s(x)
+ x′DD′μ(x)

s(x)

)∣∣∣∣
x=X(t)

dt + d
(t)

= h(X(t)) dt + d
(t); 0 ≤ t < ∞,

where h(·), 
(·) are obtained from h̃(·), 
̃(·) in (2.12) upon replacing R̃(·) in
(2.11) by R(·) in (2.23) and W̃ (·) in (2.2) by W(·). The comparison with Bessel
processes is then repeated in a similar manner. When supx∈Rn\Z R(x) < 2, we get
(2.24) and (2.25).

A.3. Example in Remark 2.3. With some computations we obtain the fol-
lowing simplification of the effective dimension given in (2.29):

EDA(x) = 2 +

⎡⎣‖x‖2 − 4a12(x) · x1x21R1+∪R1−
−4a23(x) · x2x31R2+∪R2−
−4a31(x) · x3x11R3+∪R3−

⎤⎦
x′A(x)x

for x ∈ R3 \ {0}
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and

R(x) = 2 +

⎛⎜⎝ 4a12(x) · [(x1 − x2)
2 + 2(x2 − x3)(x3 − x1)]1R1+∪R1−

+ 4a23(x) · [(x2 − x3)
2 + 2(x3 − x1)(x1 − x2)]1R2+∪R2−

+ 4a31(x) · [(x3 − x1)
2 + 2(x2 − x3)(x1 − x2)]1R3+∪R3−

⎞⎟⎠
x′DD′A(x)DD′x

for x ∈ R3 \ Z where R(·) is defined in (2.29) and Z is defined in (2.10). Under
the specification (2.28), we verify ED(·) > 2 and R(·) > 2, since the denomina-
tors of the fractions on the right-hand sides are positive quadratic forms and their
numerators can be written as

‖x‖2 − 4a12(x)x1x2

= (1 − 4a2
12)x

2
2 + x2

3 + (x1 − 2a12x2)
2 > 0; x ∈ R1+ ∪ R1−,

4a12(x)[(x1 − x2)
2 + 2(x2 − x3)(x3 − x1)]

= 4a12(x)f1(x) > 0; x ∈ R1+ ∪ R1−,

with similar formulas for x ∈ Ri+ ∪ Ri−, i = 2,3.

A.4. Proof of Lemma 3.2. We recall the special geometric structure of or-
thogonality ñ′

i q̃i = 0 and ‖ñi‖ = 1, and observe that

(Ñ′Q̃ + Q̃′Ñ)ij
≥
<

0 ⇐⇒ ñ′
i q̃j + ñ′

j q̃i
≥
<

0 ∀(i, j).(A.3)

Note that if n = 3, that is, n − 1 = 2, then ñ′
i q̃j = ‖̂qj‖ sgn(−θj ) sin(ξ) for 1 ≤

i 	= j ≤ 2 where sgn(x) := 1{x>0} − 1{x<0}. The length ‖̃q2‖ of q̃2 determines the
angle θ2 and vice versa, that is,

‖̃qi‖≥
<

‖̃qj‖ ⇐⇒ |θi |≥
<

|θj |.
With this observation and 0 < ξ < π, sin(ξ) > 0, we obtain

ñ′
i q̃j + ñ′

j q̃i = sin(ξ)
(‖̃qj‖ sgn(−θj ) + ‖̃qi‖ sgn(−θi)

)≥
<

0

⇐⇒ β = (θi + θj )/ξ
≤
>

0; 1 ≤ i 	= j ≤ 2.

Thus, we apply Lemma 3.1 and obtain Lemma 3.2.

A.5. Coefficient structure, and proof of (4.10). Next, we consider the case
of linearly growing variance coefficients defined in (3.9), and recall the tri-diagonal
matrices A = �̃�̃′ as in (4.5) and R as in (4.7). Consider the (n − 1)-dimensional
reflected Brownian motion Y(·) defined in (3.4) with � = �̃ and R as in (4.7).
Such a pair (�̃,R) satisfies

(2D − QD − DQ − 2A)ij = 0; 1 ≤ i, j ≤ n − 1,(A.4)
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where D is the diagonal matrix with the same diagonal elements as A of (3.5), and
Q is the ((n−1)× (n−1)) matrix whose first-diagonal elements above and below
the main diagonal are all 1/2 and other elements are zeros as in (4.5). In fact, it
suffices to consider j = i + 1, i = 2, . . . , n − 1, for which the equalities (A.4) are

0 − (σ̃ 2
i + σ̃ 2

i+1) − (σ̃ 2
i−1 + σ̃ 2

i ) + 4σ̃ 2
i = 0,

or equivalently, (3.9): σ̃ 2
i − σ̃ 2

i−1 = σ̃ 2
i+1 − σ̃ 2

i for 2 ≤ i ≤ n − 1. Moreover, the

equalities (A.4) are equivalent to (Ñ′Q̃ + Q̃′Ñ)ij = 0 in (A.3). In fact, from (3.5)
with D1/2 = C−1 we compute

Ñ′Q̃ = D−1/2U ′L1/2L−1/2URD1/2 − Ñ′Ñ
= D−1/2(I − Q)D1/2 − D−1/2AD−1/2,

Ñ′Q̃ + Q̃′Ñ = 2I − D−1/2QD1/2 − D1/2QD−1/2 − 2D−1/2AD−1/2

and multiply both from the left and the right by the diagonal matrix D1/2 whose
diagonal elements are all positive:

D1/2(Ñ′Q̃ + Q̃′Ñ)D1/2 = 2D − QD − DQ − 2A.(A.5)

The equality in the relation (A.4) is equivalent to the so-called skew-symmetry
condition Ñ′Q̃ + Q̃′Ñ = 0 introduced and studied by Harrison and Williams in
[12, 26]. It follows from (A.3), (A.4) and (A.5) that the reflected Brownian motion
Z(·) defined in (4.6), under the assumption of Proposition 3, is such that any two
dimensional process (Zi,Zj ) never attains the corner (0,0)′ for 1 ≤ i < j ≤ n−1,
that is, (4.10) holds. Using this fact, we construct a weak solution to (4.1) from the
reflected Brownian motion. This final step is explained as an application in the last
part of Section 4.2.2.

A.6. Proof of Lemma 4.1. We fix an arbitrary T ∈ [0,∞). Since β(·) is
strictly positive, we cannot have simultaneously α(t) = β(t) + γ (t) = 0 and
γ (t) ≥ 0. The continuous function β(·) attains its minimum on [0, T ], so

{t ∈ [0, T ] :α(t) = 0} = {t ∈ [0, T ] :α(t) = 0, γ (t) < 0}
(A.6)

⊂
{
t ∈ [0, T ] :γ (t) ≤ − min

0≤s≤T
β(s) < 0

}
.

Let us define t0 := inf{t ∈ [0, T ] :α(t) = 0} with t0 = ∞ if the set is empty.
If t0 = ∞, then α(t) > 0 for 0 ≤ t < ∞; thus, it follows from the assump-
tions γ (0) = 0 and

∫ T
0 1{α(t)>0} dγ (t) = 0 for 0 ≤ T < ∞ that γ (·) ≡ 0. On the

other hand, if t0 < ∞, then it follows from the same argument as in (A.6) that
γ (t0) < −min0≤s≤t0 β(s) < 0. This is impossible, however, since α(s) > 0 for
0 ≤ s < t0 by the definition of t0, and hence the continuous function γ (·) is flat on
[0, t0), that is, 0 = γ (0) = γ (t0−) = γ (t0). Thus, t0 = ∞ and γ (·) ≡ 0. Therefore,
the conclusions of Lemma 4.1 hold.
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