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THE LIMITING MOVE-TO-FRONT SEARCH-COST IN LAW
OF LARGE NUMBERS ASYMPTOTIC REGIMES

BY JAVIERA BARRERA1,3 AND JOAQUÍN FONTBONA2,3

Universidad Adolfo Ibáñez and Universidad de Chile

We explicitly compute the limiting transient distribution of the search-
cost in the move-to-front Markov chain when the number of objects tends to
infinity, for general families of deterministic or random request rates. Our
techniques are based on a “law of large numbers for random partitions,”
a scaling limit that allows us to exactly compute limiting expectation of em-
pirical functionals of the request probabilities of objects. In particular, we
show that the limiting search-cost can be split at an explicit deterministic
threshold into one random variable in equilibrium, and a second one related
to the initial ordering of the list. Our results ensure the stability of the lim-
iting search-cost under general perturbations of the request probabilities. We
provide the description of the limiting transient behavior in several examples
where only the stationary regime is known, and discuss the range of validity
of our scaling limit.

1. Introduction. We consider the search-cost process in the move-to-front
(MtF) Markov chain. A finite set of objects labeled 1, . . . , n is dynamically main-
tained as a serial list, and objects are requested at random instants with a given
probability p

(n)
i , i = 1, . . . , n. Instantaneously after request, an object is moved to

the front of the list, while the relative order of the other objects is left unchanged.
The search-cost at a given instant is defined as the position in the list of the next
requested object.

The exact and limiting behaviors of the move-to-front rule have received much
attention in the computer science and discrete probability literature since the 1960s
(see Fill [7] and Jelenković [10] for historical references). For a fixed and finite
number of objects, the search-cost distribution has been studied by Fill [6, 7], Fill
and Holst [8] and Flajolet, Gardy and Thimonier [9] for different deterministic re-
quest probability vectors p(n) = (p

(n)
1 , . . . , p

(n)
n ). To our knowledge, the limiting

search-cost distribution as the number of objects goes to infinity is known only
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for the stationary regime of the MtF Markov chain. This problem was first studied
by Fill [6] for several types of deterministic request probabilities p(n), and later
by Barrera, Huillet and Paroissin [2, 3] and Barrera and Paroissin [1] for random
request probabilities p(n) defined by normalized samples of positive i.i.d. random
variables. A different approach was adopted by Jelenković [10], who considered
various scaling limits for the stationary search-cost when the optimal static distri-
bution of objects in the list is specified.

In this article we explicitly compute the limiting law of the transient search-
cost as the number n of objects tends to infinity, for a large class of deterministic
or random request probabilities. This class includes several previously considered
cases. To be more precise, let w

(n)
1 , . . . ,w

(n)
n ≥ 0 be deterministic or random real

numbers and consider the probability vector p(n) = (p
(n)
i )ni=1 defined by

p
(n)
i = w

(n)
i∑n

j=1 w
(n)
j

.(1)

We call p
(n)
i the “popularity” of object i. Let us denote by P(R+) the space of

Borel probability measures in R+. We consider request probabilities p(n) of this
type that exhibit a weak law of large numbers behavior. That is, we assume that
as n goes to infinity, the empirical measure

ν̂(n) := 1

n

n∑
i=1

δ
w

(n)
i

∈ P(R+), n ∈ N,

converges in distribution [as a random element of the Polish space P(R+)] to a
deterministic limit P ∈ P(R+). Moreover, we assume that

∫
xν̂(n)(dx) converges

to μ := ∫
xP (dx) ∈ (0,∞) in distribution. (These conditions hold if, for instance,

w
(n)
i = wi , i = 1,2, . . . , are i.i.d. random variables with finite mean μ.)
Denote by ν(n) the empirical measure of the scaled vector (nμ)p(n). As we

shall see, the computation of the search-cost distribution will involve continuous
functionals of ν(n). On the other hand, we will show that the sequence ν(n) shares
the same law of large numbers behavior and limit of ν̂(n). This fact is what we call
“law of large numbers for random partitions of the interval.” With these elements,
we will be able to explicitly compute for all t > 0 the limiting distribution of
the (suitably normalized) transient search-cost, in terms of the limiting probability
measure P .

We will show the existence of an explicit deterministic threshold, depending
only on P and t , such that the limiting transient and stationary search-costs have
the same distribution in the event they fall below it. The limiting transient search-
cost restricted to that event will be called “equilibrium part” of the transient search-
cost, and its distribution (as well as the limiting stationary one) will depend only
on the law P . Alternatively, we will call “out-of-equilibrium part” of the transient
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search-cost its restriction to the complementary event. The asymptotic behavior
of the out-of-equilibrium part will depend on P , but also on the relative order
of popularities in the list at t = 0. Concretely, three situations will be studied:
(1) no information at all about the request probabilities is available at the begin-
ning; (2) objects in the list are known to be initially arranged in decreasing order
of popularity; and (3) objects are known to be initially arranged in increasing or-
der of popularity. In all three cases, we find an explicit expression for the limiting
law of the out-of-equilibrium part in terms of P .

As a consequence, we obtain an upper bound for the total variation distance be-
tween the transient and the stationary limiting search-cost distributions. The dis-
tance from equilibrium at time t turns out to behave like O(

∫
xe−txP (dx)) in each

of the three situations we consider. The techniques we introduce also show that the
limiting transient search-cost distribution is stable under perturbations of the re-
quest probabilities preserving both the limiting law P and the initial relative order
in the list.

The rest of this article is organized as follows. In Section 2 we define the MtF
Markov chain in continuous time and the associated search-cost process following
the lines of Fill and Holst [8]. We also recall some nonasymptotic results about its
law. In Section 3 we state our main results, namely Theorems 3.2 and 3.3, which
provide the limiting expressions for the Laplace transforms of the two components
of the suitably normalized transient search-cost. We deduce from them the limiting
search-cost law in terms of P and its Laplace transform. We also present exam-
ples, we discuss connections with the Persistent-Caching-Algorithm introduced by
Jelenković and Radovanović [11] and we compare our type of law of large num-
bers asymptotic with the fluid limit considered by Jelenković [10]. Furthermore,
we prove stochastic order relations between the search-costs in the three situations
(regarding the initial ordering) that are considered. In Section 4, we prove our law
of large numbers for random partitions, we discuss its connection with the prop-
agation of chaos property arising in the probabilistic study of mean field models,
and we use those ideas to prove Theorems 3.2 and 3.3. In the last section, we
discuss the scope of application and the limitations of our techniques.

Let us establish some notation. In the sequel, →d means convergence in distrib-
ution, and the notation �⇒ stands for weak convergence of probability measures.
We denote by δx the Dirac mass at some point x. The convention 0

0 := 0 is adopted
throughout.

2. Preliminaries and notation. Consider a list of n objects labeled {1, . . . , n}
and a permutation π of {1, . . . , n}. Assume that at time t = 0, object i is at position
π(i) of the list. Then, objects are requested at random instants t > 0 after which
the list is instantaneously modified, by placing the requested object on its top.
This is the MtF rule. It is customary to assume that different objects are requested
at random instants given by independent standard Poisson processes in the line.
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Let wi denote the intensity at which object i is requested. The total number of
requests up to time t defines a Poisson process, say Ñt , of rate

w =
n∑

j=1

wj .

By the strong Markov property, the probability that object i is requested at a given
arrival time of Ñt is

pi := wi

w
.

We call this quantity the “popularity” of object i.
We shall in the sequel work with the time-changed process

Nt := Ñt/w

and its requests instants. This is the time scale considered, for instance, in [4, 8],
and in our case it will simplify the asymptotic analysis by keeping a constant (uni-
tary) total rate of requests. The request rate wi of object i becomes pi in the new
time scale, but its popularity remains unchanged.

REMARK 2.1. Nevertheless, our statements will rely on hypotheses made on
the parameters (wi) and will be interpreted also in the original time scale (see
Remark 3.4 below).

We denote by

S(n,i)(t)

the position in the list at time t of object i, and by Ik ∈ {1, . . . , n} the kth requested
object (in chronological order). Thus, the label of the first object requested in the
time interval [t,+∞) is INt−+1. We are interested in the search-cost of that object.
That is, in the random variable defined by

S(n)(t) :=
n∑

i=1

S(n,i)(t)1{IN
t−+1=i}.

Notice that although the processes S(n,i)(t) are left continuous, S(n)(t) is right
continuous since the list is modified instantaneously after each request.

We will further need the following notation:

• Rt is the subset of {1, . . . , n} consisting of objects that have been requested
at least once in the time interval [0, t[.

• We decompose the search-cost S(n)(t) into two random variables:

S(n)(t) = S(n)
e (t) + S(n)

o (t),
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where

S(n)
e (t) := S(n)(t)1{IN

t−+1∈Rt }
and

S(n)
o (t) := S(n)(t)1{IN

t−+1 /∈Rt }.

Thus, S
(n)
e (t) is the search-cost of the requested object if it has been requested

at least once in [0, t[, and it is 0 otherwise. S
(n)
o (t) is defined conversely. The

subscripts e and o respectively stand for “equilibrium” and “out of equilibrium.”
This decomposition and notation are inspired in Fill’s work [7], where a coupling
was introduced which simultaneously updates the list in stationary regime and an
arbitrary second list. In that coupling, each object had the same search-cost in the
two lists after its first request.

REMARK 2.2. Notice that an object has been requested before time t if and
only if it stands at one of the first |Rt | positions in the list. Therefore, we have{

S(n)
e (t) > 0

} = {
S(n)(t) ≤ |Rt |}.

The next result will be used in the sequel.

PROPOSITION 2.1. Let π(i) be the position in the list of item i at time 0. For
given real parameters q1, . . . , qn ∈ [0,1] let (B1(q1) . . . ,Bn(qn)) denote a vector
of n independent Bernoulli random variables of such parameters.

(a) For all k, i ∈ {1, . . . , n},
P
{
S(n,i)(t) = k, i ∈ Rt

} =
∫ t

0
pie

−piuP
{
J (n)

e (u) = k
}
du,

where J
(n)
e (u) =d ∑n

j=1,j 	=i Bj (1 − e−pju).
(b) For all k, i ∈ {1, . . . , n},

P
{
S(n,i)(t) = k, i /∈ Rt

} = P
{
J (n)

o (t) = k
}
e−pi t ,

where J
(n)
o (t) =d ∑n

j=1,j 	=i Bj (1 − e−pj t1π(i)<π(j)) and 1π(i)<π(j) = 1 if object i

precedes j in the initial permutation or 0 otherwise.
(c) For all k ∈ {1, . . . , n},

P
{
S(n)

e (t) = k
} =

n∑
i=1

∫ t

0
p2

i e
−piuP

{
J (n)

e (u) = k
}
du.

(d) For all k ∈ {1, . . . , n},

P
{
S(n)

o (t) = k
} =

n∑
i=1

piP
{
J (n)

o (t) = k
}
e−pi t .
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PROOF. The proof of relations (a) and (b) can be deduced from Proposition 2.1
in [8]. The basic ideas are to condition in the last instant u ∈ ]0, t] where object i

has been requested and to consider the Poisson point process in reversed time
starting from t (see Theorem 2.3.1.3. and Corollary 2.3.1.6 in [4] for a complete
proof).

Relation (c) [resp. (d)] follows easily from (a) [resp. (b)], thanks to inde-
pendence of the events {S(n,i)(t) = k, i ∈ Rt } [resp. {S(n,i)(t) = k, i /∈ Rt }] and
{INt−+1 = i}. �

3. Main statements, examples and consequences. For each n we next con-
sider a random or deterministic vector of nonnegative real numbers

w(n) = (
w

(n)
1 , . . . ,w(n)

n

)
.

Then, conditionally on w(n), we define the MtF Markov chain and its search-cost
S(n)(t) in the same way as was done in the previous section for deterministic re-
quest rates. Recall that the process S(n)(t) refers to the time-scale at which requests
arrive at rate 1.

REMARK 3.1. By Proposition 2.1, the law of S(n)(t) conditional on w(n) de-
pends on that vector only through the popularities

p(n) = (
p

(n)
1 , . . . , p(n)

n

)
defined as in (1).

Let us recall the result obtained in [3] for request probability vectors given by
normalized samples of positive i.i.d. random variables.

THEOREM 3.1. Let (wi)i∈N be an i.i.d. sequence of nonnegative random vari-
ables with finite mean μ and Laplace transform φ(t) and, for each n ∈ N, take
w(n) = (wi)

n
i=1.

Let S(n)(∞) be a random variable defined, conditionally on w(n), as the search-
cost associated with the MtF Markov chain in stationary regime. Then, when n →
∞, we have the convergence

S(n)(∞)

n
→d S(∞),

where S(∞) is a random variable in [0,1] with density given by

fS(∞) (x) = − 1

μ

φ′′(φ−1(1 − x))

φ′(φ−1(1 − x))
1[0,1−p0],

and p0 = P(wi = 0).
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The proof of Theorem 3.1 relied on Laplace integral techniques. Our goal now is
to describe the behavior of a suitable normalization of the random variable S(n)(t)

when n goes to ∞. Furthermore, we will do this under an assumption naturally
generalizing that of [3].

DEFINITION 3.1 (Condition LLN-P ). We say that a sequence of (random or
deterministic) vectors w(n) = (w

(n)
1 , . . . ,w

(n)
n )n∈N satisfies a law of large numbers

with limiting law P (LLN-P for short), if there exist a probability measure P ∈
P(R+) with finite first moment μ 	= 0 and positive random variables Zn, such that
the empirical measures

ν̂(n) := 1

n

n∑
i=1

δ
Znw

(n)
i

converge in law to P , and their empirical means

1

n

n∑
i=1

Znw
(n)
i

converge in law to μ.

REMARK 3.2.

(i) Condition LLN-P may hold true with random variables Zn’s that are not
identically equal to 1 and fail to hold if one takes Zn ≡ 1 [see, e.g., (c) below].

(ii) LLN-P is equivalent to say that the sequence (ν̂(n)) converges in distrib-
ution to the deterministic value P , when seen as random variables in the Polish
space P1(R+) of Borel probability measures with finite first moment, endowed
with the Wasserstein distance W1 (see Theorem 4.1).

(iii) In the time scale originally introduced in Section 2, the constant μ may be
thought of as the (asymptotic in n) average request rate per object.

Provided that the empirical means converge in law, LLN-P holds in several
situations. The following are some examples:

(a) w
(n)
i = wi for all n ∈ N, with (wi)i∈N an ergodic process with invariant

measure P , and Zn = 1.
(b) (w

(n)
1 , . . . ,w

(n)
n ), n ∈ N, is an exchangeable and P -chaotic vector and

Zn = 1. Recall that a random vector v = (vi)
n
i=1 in R

n is said to be exchange-
able if the law of (vσ(i))

n
i=1 is the same for any n-permutation σ . The notion of

“P -chaotic vector” is recalled in Section 4.
(c) w

(n)
i = iα for all n ∈ N, α ∈ R and Zn = n−α . Indeed, for any ϕ : R → R

continuous and bounded, one has 1
n

∑n
i=1 ϕ( iα

nα ) → ∫ 1
0 ϕ(xα) dx, using the conti-
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nuity of x �→ xα in (0,1] for any α. By the obvious change of variable we get

P(dx) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

α
x1/α−11[0,1](x) dx, if α > 0,

δ1(dx), if α = 0,
1

|α|x
1/α−11[1,∞)(x) dx, if α < 0.

(2)

Thus, one can check that LLN-P holds for these w
(n)
i if and only if α > −1.

(d) Let q be a continuous probability density with compact support in [0, c],
and for each n ∈ N define

w
(n)
i := Q(ci/n) − Q(c(i − 1)/n), i = 1, . . . , n,

where Q(x) = ∫ x
0 q(y) dy is the primitive of q . Then, setting Zn := n/c, for certain

x
(n)
i ∈ ((i − 1)/n, i/n], i = 1, . . . , n, we have

1

n

n∑
i=1

ϕ
(
Znw

(n)
i

) = 1

n

n∑
i=1

ϕ
(
q
(
cx

(n)
i

))
.

Hence, for any continuous and bounded function ϕ : R → R, we get

1

n

n∑
i=1

ϕ
(
Znw

(n)
i

) → 1

c

∫ c

0
ϕ(q(x)) dx,

and so LLN-P holds in this case with P(dx) = (1
c
1x∈[0,c] dx) ◦ q−1, the push-

forward of the normalized Lebesgue’s measure by q . (The convergence of empiri-
cal means is in this case trivial.)

Case (c) above was considered by Fill [6]. Case (d) is a particular instance of
the “light tail” condition studied in Jelenković [10]. See the examples below for
more details.

Before stating our main results, notice that from Proposition 2.1 the law of
S

(n)
e (t) does not depend on the initial permutation π of the list, whereas that of

S
(n)
o (t) does. This is simply due to the fact that the cost of searching an already

requested object does not depend any more on its initial position. In turn, the value
of the initial permutation π remains present in the law of S

(n)
o (t). By this reason,

we need to study separately the two components of the transient search-cost. Let
us state our main theoretical result on the equilibrium part.

THEOREM 3.2. For λ ≥ 0 and t ≥ 0, define

An(t, λ) := E
(
exp

{−λS(n)
e (t)

}
1{S(n)

e (t)>0}
)

= E
(
exp

{−λS(n)(t)
}
1{S(n)(t)≤|Rt |}

)
.



730 J. BARRERA AND J. FONTBONA

Then, if LLN-P holds, we have

lim
n→∞An(nμt, λ/n) = 1

μ

∫ t

0

∫
R+

x2e−xuP (dx) exp
{−λ

(
1 − φ(u)

)}
du,

where φ : R+ → R+ is the Laplace transform of P .

REMARK 3.3. The Laplace transform of the limiting stationary search-cost
obtained in [3] corresponds to the limit of the latter expression when t → ∞.

By the above exposed reasons, some asymptotic assumptions on the initial or-
dering π of the list will be needed in order to observe a coherent limiting behavior
of the out-of-equilibrium part of the transient search-cost S

(n)
o (t). Notice that any

relevant property of π can be restated in terms of the vector of popularities p(n),
and one can therefore assume without loss of generality that π is equal to the iden-
tity permutation Id . We shall explicitly analyze three particular assumptions on
w(n) or (equivalently) on p(n):

LLN-P -ex: LLN-P holds, π = Id and w(n) is exchangeable for each n ∈ N.

LLN-P −: LLN-P holds, π = Id and w(n) is decreasing a.s. for each n ∈ N.

LLN-P +: LLN-P holds, π = Id and w(n) is increasing a.s. for each n ∈ N.

Clearly, the assumption π = Id is superfluous under LLN-P -ex, but we shall
adopt it for notational convenience. The asymptotic behavior of the out-of-
equilibrium part of the transient search-cost is stated in the following:

THEOREM 3.3. For λ ≥ 0 and t ≥ 0, define

Bn(t, λ) := E
(
exp

{−λS(n)
o (t)

}
1{S(n)

o (t)>0}
)

= E
(
exp

{−λS(n)(t)
}
1{S(n)(t)>|Rt |}

)
and define φ : R+ → R+ as before. Then, L(μ, t, λ) := limn→∞ Bn(nμt, λ/n) ex-
ists in the following cases:

(i) if LLN-P -ex holds, and then

L(μ, t, λ) = |φ′(t)|
μ

(
e−λ(1−φ(t)) − e−λ

λφ(t)

)

= |φ′(t)|
μ

∫ 1

0
e−λφ(t)x dx exp

{−λ
(
1 − φ(t)

)};
(ii) if LLN-P − holds, and then

L(μ, t, λ) = 1

μ

∫ ∞
0

xe−xt exp
{
−λ

∫ ∞
x+

e−ytP (dy)

}
P(dx) exp

{−λ
(
1 − φ(t)

)};
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(iii) if LLN-P + holds, and then

L(μ, t, λ) = 1

μ

∫ ∞
0

xe−xt exp
{
−λ

∫ x

0
e−ytP (dy)

}
P(dx) exp

{−λ
(
1 − φ(t)

)}
.

The proofs of Theorems 3.2 and 3.3 are deferred to the next section. They will
rely on what we call a law of large numbers for random partitions of the interval.
Let us now deduce the law of the limiting transient search-cost under the previous
sets of hypotheses.

COROLLARY 3.1. If LLN-P -ex holds, for each t > 0 we have

S(n)(nμt)

n
→d S(t),

where S(t) satisfies the relation in distribution

S(t) =(d) S(∞)1{S(∞)≤1−φ(t)} + U1{S(∞)>1−φ(t)},(3)

with S(∞) defined in Theorem 3.1 and U a uniform random variable in [1−φ(t),1]
independent of S(∞). Moreover, when n → ∞ we have

P
(
S(n)

o (nμt) > 0
) −→ P

(
S(∞) > 1 − φ(t)

) = |φ′(t)|
μ

.

Finally, the random variable S(t) has density

fS(t)(x) = fS(∞) (x)1[0,1−φ(t)] + |φ′(t)|
μφ(t)

1[1−φ(t),1]

and, with ‖ · ‖TV denoting the total variation distance, we have

∥∥ law(S(t)) − law
(
S(∞))∥∥

TV =
∫ 1−p0

1−φ(t)

∣∣∣∣fS(∞) (x) + |φ′(t)|
μφ(t)

∣∣∣∣dx + |φ′(t)|p0

μφ(t)

≤ 2
|φ′(t)|

μ
.

PROOF. The Laplace transform of S(∞) is

E
(
exp

{−λS(∞)}) = 1

μ

∫ ∞
0

φ′′(u) exp
{−λ

(
1 − φ(u)

)}
du

(see [3] or Remark 3.3). Now, from Theorem 3.2 we have

lim
n→∞An(nμt, λ/n) = 1

μ

∫ t

0
φ′′(u) exp

{−λ
(
1 − φ(u)

)}
du.
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Taking λ = 0 and using Remark 2.2, we obtain

lim
n→∞P

(
S(n)(nμt) ≤ |Rnμt |) = lim

n→∞An(nμt,0)

= 1 − (−φ′(t))
μ

= P
(
S(∞) ≤ 1 − φ(t)

)
.

On the other hand, since the Laplace transform of S(n)(nμt)
n

conditional on the
event S(n)(nμt) ≤ |Rnμt | is given by

E

(
exp

{
−λ

S(n)(nμt)

n

}∣∣∣S(n)(nμt) ≤ |Rnμt |
)

= An(nμt, λ/n)

An(nμt,0)
,

we obtain

lim
n→∞ E

(
exp

{
−λ

S(n)(nμt)

n

}∣∣∣S(n)(nμt) ≤ |Rnμt |
)

= 1

μ + φ′(t)

∫ t

0
φ′′(u) exp

{−λ
(
1 − φ(u)

)}
du

= E
(
exp

{−λS(∞)}|S(∞) ≤ 1 − φ(t)
)
.

Concerning the limiting behavior of Bn, we get in a similar way that

lim
n→∞ P

(
S(n)(nμt) > |Rnμt |) = −φ′(t)

μ

= P
(
S(∞) > 1 − φ(t)

)
,

and

lim
n→∞ E

(
exp

{
−λ

S(n)(nμt)

n

}∣∣∣S(n)(nμt) > |Rnμt |
)

= lim
n→∞

Bn(nμt, λ/n)

Bn(nμt,0)

=
(

e−λ(1−φ(t)) − e−λ

λφ(t)

)
= E(exp{−λU}).

Combining the previous limits yields

lim
n→∞ E

(
exp

{
−λ

S(n)(nμt)

n

})
= lim

n→∞An(nμt, λ/n) + Bn(nμt, λ/n)

= E
(
exp

{−λS(∞)}1{S(∞)≤1−φ(t)}
)

+ E
(
exp

{−λU
})

P
(
S(∞) > 1 − φ(t)

)
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= E
(
exp

{−λS(∞)}1{S(∞)≤1−φ(t)}
)

+ E
(
exp{−λU}1{S(∞)>1−φ(t)}

)
= E

(
exp−λ

{
S(∞)1{S(∞)≤1−φ(t)} + U1{S(∞)>1−φ(t)}

})
.

From the latter we obtain the density of S(t), and then the total variation distance
to equilibrium. The last asserted inequality follows from the well-known fact that
‖ law(X)− law(Y )‖TV ≤ 2P{X 	= Y } for any coupling of random variables (X,Y ).

�

COROLLARY 3.2. Define two functions gt and g̃t by

gt (y) =
∫ y

0
e−ztP (dz) and g̃t (y) = g−1

t (1 − y) if LLN-P − holds,

or by

gt (y) =
∫ ∞
y+

e−ztP (dz) and g̃t (y) = (1 − gt )
−1(y) if LLN-P + holds.

(Here, g−1 stands for the generalized inverse of a nondecreasing right continuous
function g : R+ → R+.) Then, under LLN-P − or LLN-P +, for each t > 0 we have

S(n)(nμt)

n
→d S(t),

where S(t) has the density

fS(t)(x) = 1[0,1−φ(t)](x)fS(∞) (x) + 1[1−φ(t),1](x)
1

μ
g̃t (x).(4)

Moreover, we have

P
(
S(n)

o (nμt) > 0
) −→ P

(
S(t) > 1 − φ(t)

) = P
(
S(∞) > 1 − φ(t)

) = |φ′(t)|
μ

,

when n → ∞, and for all t ≥ 0, ‖ law(S(t)) − law(S(∞))‖TV ≤ 2 |φ′(t)|
μ

.

PROOF. If LLN-P − holds, the result follows by using Theorem 3.3 and mak-
ing the change of variable z = 1 − gt (x) to obtain

L(μ, t, λ) = 1

μ

∫ ∞
0

xe−xt exp
{
−λ

∫ ∞
x+

e−ytP (dy)

}
P(dx) exp

{−λ
(
1 − φ(t)

)}
= 1

μ

∫ 1

1−φ(t)
exp{−λz}g−1

t (1 − z) dz.

The remaining case is similar. �
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REMARK 3.4. If S̃(n)(t) denotes the search cost of the MtF process in the
original time-scale (see Section 2), it is clear that the previous results are equiva-
lently stated replacing S(n)(nμt) by

S̃(n)(nμt/w(n)),
where w(n) = ∑n

j=1 w
(n)
j .

3.1. Examples and applications. In what follows, we give the limiting distrib-
ution of the transient search-cost for examples of random or deterministic request
probabilities. The first ones are examples where explicit computations can be eas-
ily done.

(1) Let wi ∼ Bernoulli(p), then

fS(t)(x) = 1

p
1[0,p(1−e−t ))(x) + e−t

1 − p + pe−t
1[p(1−e−t ),1](x).

(2) Let wi ∼ Gamma(1, α), then

fS(t)(x) =
(

1 + 1

α

)
(1 − x)1/α1[0,u(t))(x) + (1 + t)−11[u(t),1](x),

with u(t) = 1 − (1 + t)−α .
(3) If wi ∼ Geometric(p), then

fS(t)(x) = 2(1 − x) − p

1 − p
1[0,u(t))(x) + pe−t

1 − (1 − p)e−t
1[u(t),1](x),

where u(t) = (1−p)(1−e−t )
p+(1−p)(1−e−t )

.
(4) If wi = 1 or equivalently, wi ∼ δ1, we get fS(t)(x) = 1 (using any of LLN-

P -ex, LLN-P + or LLN-P −). That is, the limiting search cost is uniform for all
t ≥ 0.

The stationary distributions associated with examples (5)(i) and (6)(i) below
were first studied in Fill [6], whereas the stationary regimes of examples (5)(ii)
and (6)(ii) were considered by Barrera, Huillet and Paroissin in [3]. The descrip-
tion of the stationary behavior of example (5)(i) is also included in Theorem 2 of
Jelenković and Radovanović [11], in the more general context of the Persistent-
Access-Caching (PAC) algorithm introduced therein (see the more detailed dis-
cussion below on the PAC algorithm and the Last-Recently-Used rule).

(5) Let α ∈ (−1,0) and define

Pα(dx) = − 1

α
x1/α−11[1,∞)(x) dx (Pareto law),

φ(s) = − 1

α

∫ ∞
1

e−xsx1/α−1 dx,

gt (y) = − 1

α

∫ y

1
e−xtx1/α−1 dx.



L.L.N. FOR RANDOM PARTITIONS 735

(i) If wi = iα , we have using (2) that

fS(t)(x) = −(α + 1)
φ′′(φ−1(1 − x))

φ′(φ−1(1 − x))
1[0,1−φ(t))(x)

+ (α + 1)g−1
t (1 − x)1[1−φ(t),1](x).

(ii) If wi are i.i.d. with law Pα , then

fS(t)(x) = −(α + 1)
φ′′(φ−1(1 − x))

φ′(φ−1(1 − x))
1[0,1−φ(t))(x)

+ (α + 1)
|φ′(t)|
φ(t)

1[1−φ(t),1](x).

(6) Let α > 0 and set now

φ(s) = 1

α

∫ 1

0
e−xsx1/α−1 dx,

gt (y) = 1

α

∫ 1

y
e−xtx1/α−1 dx.

(i) If wi = iα , we have by (2) that

fS(t)(x) = −(α + 1)
φ′′(φ−1(1 − x))

φ′(φ−1(1 − x))
1[0,1−φ(t))(x)

+ (α + 1)(1 − gt )
−1(x)1[1−φ(t),1](x).

(ii) If wi are i.i.d. with law Beta(1,1/α), then

fS(t)(x) = −(α + 1)
φ′′(φ−1(1 − x))

φ′(φ−1(1 − x))
1[0,1−φ(t))(x)

+ (1 + α)
|φ′(t)|
φ(t)

1[1−φ(t),1](x).

It was remarked in [3] that example (5)(i) shares the same stationary distribution
as example (5)(ii), and example (6)(i) the same as that of (6)(ii). We observe here
that the equilibrium parts of the transient search-costs of examples (5)(i) and (5)(ii)
coincide as well, as happens also with examples (6)(i) and (6)(ii). In turn, their
out of equilibrium transient search-cost are different. In Section 5 we discuss and
explain these facts in the light of the new techniques that will be shortly introduced.

To motivate our last example, we recall that Jelenković [10] considered a con-
tinuum (thus infinite) list of objects representing an “efficient static” or popularity
decreasing arrangement of objects. More precisely, a probability measure Q on R+
with decreasing density q is used therein to specify the probability q(x) dx that an
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object lying at position x ∈ R+ is requested. The stationary search-cost was stud-
ied by approximating the continuum list by discrete albeit countably infinite lists
(Qn)n∈N, (a “fluid limit”). That is, for each n, object at position i/n, i ∈ N, is
requested with probability Qn(i) = Q((i + 1)/n) − Q(i/n). In this case the tran-
sient search cost S(t) can be obtained by our approach when the continuum list
has finite length.

(7) Let Q(dx) = q(x) dx be supported in [0, c] and w
(n)
i , i = 1, . . . , n, be de-

fined as in (d) above. If q is a continuous decreasing probability density, then
LLN-P − holds and we get

fS(t)(x) = −c
φ′′(φ−1(1 − x))

φ′(φ−1(1 − x))
1[0,1−φ(t))(x) + cg−1

t (1 − x)1[1−φ(t),1](x),

where

φ(s) = 1

c

∫ c

0
e−q(x)s dx and

gt (y) = 1

c

∫ y

0
e−q(x)t dx.

Observe that in this case μ = 1/c since P(dx) = (1
c
1x∈[0,c] dx) ◦ q−1, so that the

Laplace transform computed in Theorem 3.2 reads∫ t

0

(∫ c

0
q2(u)e−q(u)s du

)
exp

(
−λ

(
1 − 1

c

∫ c

0
e−q(u)s du

))
ds.

The limit of this expression when t → ∞ is exactly formula 4.1 in [10] evaluated
in s = λ/c.

We notice that the fluid limit approximation of Jelenković [10] also corresponds
to a law of large numbers asymptotic, in the sense that the (infinite) empirical mea-
sures 1

n

∑
i∈N δi/n approach dx in R+ as the space scale 1/n goes to 0. However,

in our case the search-cost is defined in terms of the relative position in a finite
list, whereas in [10] it is understood as the absolute position in a possibly infinite
list. (The reader familiar with particle systems will recognize a similar difference
between the hydrodynamic and mean field limit formalisms; it is from the latter
that we have borrowed the law of large numbers terminology; see next section.)
Although we can “simulate” the fluid limit for compactly supported measures Q

[as example (7) shows] the general case is not tractable with our techniques (see
the discussion in Section 5).

To finish the discussion on related works, we remark that our main results also
describe the transient behavior of particular instances of the Least-Recently-Used
(LRU) caching rule, which dynamically selects a collection of frequently accessed
documents and stores them in a low cost access place. Indeed, the probability that
at time nμt the requested document is not found among the δn selected ones (and
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a fault occurs) corresponds to the probability P(S(n)(nμt) > δn) that the search-
cost in the MtF scheme is bigger than δn (for a more detailed discussion of this
relation we refer to [10]). Consequently, from Corollary 3.1 we can, for instance,
compute the transient asymptotic fault probability under assumption LLN-P -ex:

P
(
S(t) > δ

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|φ′(ηδ)|

μ
, if ηδ < t ,

1 − δ

μ

φ′(t)
φ(t)

, if ηδ ≥ t ,
(5)

with ηδ = φ−1(1 − δ). Under LLN-P + or LLN-P −, thanks to Corollary 3.2, the
same value is obtained for the case ηδ < t , and an integral expression in terms of g̃t

(which can be written explicitly) in the case ηδ ≥ t .
We remark that the PAC algorithm introduced in [11] generalizes the LRU rule

by updating the list in a similar way, but only if the requested item at time t has
already been requested k − 1 times in the time interval ((t − β) ∨ 0, t). Thus, by
taking t = ∞ in formula (5) (see Remark 3.3) we obtain a generalization of the
stationary result of Theorem 2 of [11] in the case k = 1, β > 0 [the latter corre-
sponding to the particular φ given by the Pareto law of example (5)(i)]. Moreover,
for the case k = 1 and wi = iα , α ∈ (−1,0) of Theorem 2 of [11], we obtain the
transient asymptotic fault probability. This is given by

P
(
S(t) > δ

)
=

⎧⎪⎪⎨⎪⎪⎩
−α + 1

α
η

−(1+1/α)
δ �(1 + 1/α,ηδ), if ηδ < t ,

−α + 1

α
t−(1+1/α)[�(1 + 1/α, t) − �(1 + 1/α, tεδ,t )], if ηδ ≥ t ,

where �(z, y) := ∫ ∞
y xz−1e−x dx is the incomplete Gamma function, and εδ,t :=

g−1
t (1 − δ) with gt as in example (5)(i).

3.2. Stochastic order relations. In the remainder of this section we shall es-
tablish some stochastic order relations between the three situations LLN-P -ex,
LLN-P + and LLN-P −. Recall that given two real valued random variable X

and Y , we say that X is stochastically smaller than Y , if for all z ∈ R, one has
P(X ≤ z) ≥ P(Y ≤ z). This is written X � Y .

Notice now that the three assumptions can be seen as a priori information of dif-
ferent type about the initial positions of objects in the list. More precisely, LLN-
P -ex can be read as having no a priori knowledge at all, whereas LLN-P − can
be interpreted as the relative order of popularities being known, and objects being
placed at time 0 in decreasing order (intuitively, this is an efficient statical order-
ing). Accordingly, assumption LLN-P + can be interpreted as the least efficient
order at time 0, if the relative order of popularities is known. In this direction, Fill
and Holst proved in Corollary 4.2 of [8] that for a given finite request probability
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vector, the transient search-cost is stochastically larger than that of the same vector
rearranged in decreasing order, and smaller than when it is arranged in increasing
order. We shall prove that similar stochastic order relations hold in the large num-
bers limit, by using the explicit expressions for fS(t) we have already found.

COROLLARY 3.3. Let Sex(t), S+(t) and S−(t) denote the limiting transient
search-cost S(t) respectively under the assumptions, LLN-P -ex, LLN-P + and
LLN-P −. Then, we have

S−(t) � Sex(t) � S+(t).

PROOF. From Corollaries 3.1 and 3.2, we just need to prove that

P{1 − φ(t) ≤ S−(t) ≤ x} ≥ P{1 − φ(t) ≤ Sex(t) ≤ x}
≥ P{1 − φ(t) ≤ S+(t) ≤ x}

for all x ∈ [1 − φ(t),1]. The first inequality is equivalent to∫ ∞
g−1
t (1−x)

ze−ztP (dz) ≥ |φ′(t)|
φ(t)

(
x − 1 + φ(t)

)
for all x ∈ [1 − φ(t),1], where gt (y) = ∫ y

0 e−ztP (dz). This will follow if we can
prove that ∫ ∞

y+ ze−ztP (dz)

|φ′(t)| ≥
∫ ∞
y+ e−ztP (dz)

φ(t)

for all y ≥ 0 or, equivalently, that∫ y
0 ze−ztP (dz)

|φ′(t)| ≤
∫ y

0 e−ztP (dz)

φ(t)
.(6)

Observe that both sides have the same points of discontinuity, as functions of y.
Therefore, by suitably approximating P , we may assume that P(dz) has a con-
tinuous density f (z) which is strictly positive. Write a(y) = ∫ y

0 ze−ztf (z) dz and
b(y) = ∫ y

0 e−ztf (z) dz. We need to check that

h(y) := a(y)

a(∞)
− b(y)

b(∞)
≤ 0.

Since h is differentiable and h(0) = h(∞) = 0, it is enough to prove that h has a
unique critical point y0 and that h(y0) ≤ 0. By the assumption on P , the condition
h′(y0) = 0 is satisfied if and only if y0 = a(∞)

b(∞)
. But then, h(y0) ≤ 0 is the same as∫ a(∞)/b(∞)

0 ze−ztf (z) dz

a(∞)
≤

∫ a(∞)/b(∞)
0 e−ztf (z) dz

b(∞)
,

which is trivially true. We conclude that P{1 − φ(t) ≤ S−(t) ≤ x} ≥ P{1 − φ(t) ≤
Sex(t) ≤ x} for all x ≥ 0. The remaining inequality is easily seen to follow also
from (6). �
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4. Law of large numbers for random partitions of the interval and proofs
of Theorems 3.2 and 3.3. The main ingredient in the proofs of Theorems 3.2
and 3.3 will be what we call a “law of large numbers for random partitions of the
interval.” To illustrate this idea, consider first (wi)i∈N i.i.d. random variables in R+
of law P with finite mean μ > 0, and the probability vector p(n) = (p

(n)
i ) defined

by

p
(n)
i := wi∑n

j=1 wj

, i = 1, . . . , n.

Then, by the strong law of large numbers, we have(
nμp

(n)
1 , . . . , nμp

(n)
k

) −→ (w1, . . . ,wk)

almost surely when n → ∞. In particular, any k ≤ n fixed coordinates of the vector
nμp(n) become independent as n tends to infinity, and the limiting law of each
of them converges to P . The following result due to H. Tanaka implies that the
empirical measures

ν(n) := 1

n

n∑
i=1

δ
nμp

(n)
i

,

converge to P , as n goes to infinity.

PROPOSITION 4.1. For each n ∈ N, let X(n) = (X
(n)
1 , . . . ,X

(n)
n ) be an ex-

changeable random vector in R
n with law Pn. Then, the following assertions are

equivalent:

(i) There exists a probability measure P in R such that for all k ∈ N, when
n → ∞,

law
(
X

(n)
1 , . . . ,X

(n)
k

) �⇒ P ⊗k.

(ii) The random variables 1
n

∑n
i=1 δ

X
(n)
i

[taking values in the polish space

P(R)] converge in law as n goes to infinity to a deterministic limit equal to P .

A sequence of probability measures Pn satisfying condition (i) of Proposi-
tion 4.1 is said to be P -chaotic, or to have the propagation of chaos property with
limiting law P . This is a central property in the probabilistic study of mean field
models. For further background on these topics and a proof of Proposition 4.1, we
refer the reader to Sznitman’s course [14].

We now prove that the same conclusion about ν(n) can be obtained under a
weaker assumption on the vectors (w

(n)
i )ni=1, n ∈ N. Namely, we have:

THEOREM 4.1 (L.L.N. for random partitions of the interval). Assume that
(w(n))n∈N satisfy condition LLN-P and let (p(n))n∈N be defined as in (1). Then,
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the empirical measure

ν(n) := 1

n

n∑
i=1

δ
nμp

(n)
i

converges in law to the deterministic limit P .

This amounts to say that if LLN-P holds for (w
(n)
i )ni=1 and some sequence (Zn),

then it also holds for (p
(n)
i )ni=1 and the sequence (Z′

n) := (nμ) (the convergence of
the empirical means of ν(n) being trivial).

PROOF OF THEOREM 4.1. The proof is simple by using the Wasserstein dis-
tance W1 in the space P1(R) of Borel probability measures on R with finite first
moment. Recall that

W1(m,m′) = inf
Q

∫
R2

|x − y|Q(dx, dy),

where the inf is taken over all Borel probability measures Q on R
2 with first and

second marginal laws in P1(R) respectively equal to m and m′ (i.e., couplings of m

and m′). Then, W1 is a distance inducing the weak topology, strengthened with the
convergence of first-order moments (see, e.g., [16]). Let us define

Q(n) := 1

n

n∑
i=1

δ
(nμp

(n)
i ,Znw

(n)
i )

which is a coupling of ν̂(n) and ν(n). Then, on the event {∑n
j=1 Znw

(n)
j > 0} we

have ∫
R2

|x − y|Q(n)(dx, dy) = 1

n

n∑
i=1

∣∣nμp
(n)
i − Znw

(n)
i

∣∣
= 1

n

n∑
i=1

Znw
(n)
i

∣∣∣∣ nμ∑n
j=1 Znw

(n)
j

− 1
∣∣∣∣

=
∣∣∣∣μ −

∑n
i=1 Znw

(n)
i

n

∣∣∣∣,
from where

W1
(
ν(n), ν̂(n)) ≤

∣∣∣∣
∑n

i=1 Znw
(n)
i

n
− μ

∣∣∣∣.
We deduce that

W1
(
ν(n),P

) ≤
∣∣∣∣
∑n

i=1 Znw
(n)
i

n
− μ

∣∣∣∣ + W1
(
ν̂(n),P

)
.
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Now, from LLN-P we have
∑n

i=1 Znw
(n)
i

n
→ μ and ν̂(n) → P , both in probability

(the second with respect to W1). On the other hand, we have P{∑n
j=1 Znw

(n)
j =

0} → 0 as n → ∞, since μ > 0. We deduce that ν(n) converges to P in probability
with respect to W1, and therefore also with respect to the usual weak topology. �

REMARK 4.1. Assumption LLN-P together with Theorem 4.1, imply that for
any bounded continuous function � : P(R+) → R, one has

E(�(νn)) → �(P ) when n → ∞.

We shall systematically rely on this fact in the proof of Theorems 3.2 and 3.3,
in order to compute the limits of quantities of the form E(fn(p(n))), for adequate
functions fn : Rn+ → R, n ∈ N. Namely, we will use the fact that

E
(
fn

(
p(n))) → �(P )

whenever fn(p(n)) is equal (or asymptotically close enough) to �(νn), for some
bounded continuous � not depending on n.

We shall also need the following lemma on the size-biased picking of proba-
bility measures on R

+. Recall that given m ∈ P(R+) with 0 < 〈m, x〉 < ∞, the
size-biased picking of m is the law

m(dy) := y

〈m, x〉m(dy);
it is obtained from m as in the waiting time paradox (see, e.g., Feller [5], Chap-
ter VI).

LEMMA 4.1. Let (mn) be a sequence of probability measures on R+ with fi-
nite means and weakly converging to a probability measure m 	= δ0. Assume more-
over that 〈m, x〉 < ∞ and that 〈mn, x〉 → 〈m, x〉 when n goes to ∞. Then, we have

mn �⇒ m.

PROOF. Since 〈mn,1〉 −→ 〈m,1〉 as n goes to ∞, it is enough to prove that
〈mn, f 〉 −→ 〈m, f 〉 for each continuous function f with compact support. Since
for such f the function xf (x) is continuous and bounded, this follows from the
assumptions. �

PROOF OF THEOREM 3.2. In what follows, we drop for notational simplicity
the superscript (n) of the popularity p

(n)
i = pi .

From Proposition 2.1, it holds that

An(nμt, λ/n) = E

(∫ nμt

0
e−u

n∑
i=1

p2
i

(
n∏

j=1,j 	=i

(
1 + (epju − 1)e−λ/n))du

)
.



742 J. BARRERA AND J. FONTBONA

Let gn,hn : R2+ → R be functions defined by

gn(u, x) = x2e−xu

1 − (1 − e−xu)(1 − e−λ/n)
,

hn(u, x) = n log
(
1 − (1 − e−xu)(1 − e−λ/n)

)
.

Making the right change of variable we can write An(nμt, λ/n) as

An(nμt, λ/n) = 1

μ
E

(∫ t

0

1

n

n∑
i=1

gn(u,nμpi) exp

(
1

n

n∑
i=1

hn(u,nμpi)

)
du

)

= 1

μ
E

(∫ t

0

〈
ν(n), gn(u, ·)〉 exp

(〈
ν(n), hn(u, ·)〉)du

)
.

Now define g(u, x) = x2e−xu and h(u, x) = −(1 − e−xu)λ. Then, if

Ãn(nμt, λ/n) := 1

μ
E

(∫ t

0

〈
ν(n), g(u, ·)〉 exp

(〈
ν(n), h(u, ·)〉)du

)
,

we see that

|Ãn(nμt, λ/n) − An(nμt, λ/n)| ≤ I1(t, λ) + I2(t, λ),

with I1(t, λ) and I2(t, λ) defined by

I1(t, λ) = 1

μ
E

(∫ t

0

〈
ν(n), |gn(u, ·) − g(u, ·)|〉 exp

(〈
ν(n), hn(u, ·)〉)du

)
,

I2(t, λ) = 1

μ
E

(∫ t

0

〈
ν(n), g(u, ·)〉∣∣ exp

(〈
ν(n), hn(u, ·) − h(u, ·)〉) − 1

∣∣du

)
.

On the other hand, we have the following estimates for n large enough:

|gn(u, x) − g(u, x)| ≤ g(u, x)
1 − e−λ/n

1 − (1 − e−ux)(1 − e−λ/n)
(7)

≤ 2g(u, x)λ/n

(we use the bound 1−e−α

1−c(1−e−α)
≤ eα − 1 for c ∈ [0,1], α ≥ 0), and

|hn(u, x) − h(u, x)| ≤ 2λ

{(
log(1 − (1 − e−xu)(1 − e−λ/n))

(1 − e−xu)(1 − e−λ/n)
+ 1

)
+ λ/n

}
(8)

≤ 8λ2

n
.

In the last line, we have used the bound∣∣∣∣ log(1 − c(1 − e−α))

c(1 − e−α)
+ 1

∣∣∣∣ ≤ 2(1 − e−α)
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for all c ∈ [0,1] and (1 − e−α) ≤ 1/2.
Estimates (7) and (8) imply that for large enough n, we have

I1(t, λ) ≤ 2

μ
E

(∫ t

0

〈
ν(n), g(u, ·)〉du

)
λ/n

and

I2(t, λ) ≤ 1

μ
E

(∫ t

0

〈
ν(n), g(u, ·)〉〈ν(n), |hn(u, ·) − h(u, ·)|〉du

)

≤ 8

μ
E

(∫ t

0

〈
ν(n), g(u, ·)〉du

)
λ2

n
.

Since
∫ t

0 〈ν(n), g(u, ·)〉du = ∫
R+ x(1 − e−xt )ν(n)(dx) ≤ μ by Fubini’s theorem, we

get from the previous estimates that

|Ãn(nμt, λ/n) − An(nμt, λ/n)| ≤ C

n

for all n large enough. Consequently, we just need to prove that

lim
n→∞ Ãn(t, s) = 1

μ
E

(∫ t

0
〈P,g(u, ·)〉 exp〈P,h(u, ·)〉du

)
.(9)

Let us set

�(t, n) :=
∣∣∣∣E(∫ t

0

〈
ν(n), g(u, ·)〉 exp

(〈
ν(n), h(u, ·)〉)du

)
−

∫ t

0
〈P,g(u, ·)〉 exp〈P,h(u, ·)〉du

∣∣∣∣.
For each δ > 0, since h(u, x) ≤ 0 we have the estimate

�(t, n) ≤
∣∣∣∣E(∫ t

δ

〈
ν(n), g(u, ·)〉 exp

〈
ν(n), h(u, ·)〉du

)
−

∫ t

δ
〈P,g(u, ·)〉 exp〈P,h(u, ·)〉du

∣∣∣∣
+

∫ δ

0
E
〈
ν(n), g(u, ·)〉du +

∫ δ

0
〈P,g(u, ·)〉du.

Observe that for each u > 0 the functions g(u, ·) and h(u, ·) are continuous
and bounded. Moreover, for each δ > 0, the restriction of g to [δ,∞] is uniformly
bounded. Thus, by using dominated convergence, the mapping

ν �→ F(ν) :=
∫ t

δ
〈ν, g(u, ·)〉 exp〈ν,h(u, ·)〉du

is seen to be continuous and bounded on ∈ P(R+). Thanks to LLN-P and Theo-
rem 4.1, we deduce that

E
(
F

(
ν(n))) → F(P ) when n goes to ∞
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and, consequently, we get that for any δ > 0

lim sup
n→∞

�(t, n) ≤ sup
n∈N

∫ δ

0
E
〈
ν(n), g(u, ·)〉du +

∫ δ

0
〈P,g(u, ·)〉du.(10)

In order to prove (9) it is therefore enough to establish that the two terms on the
r.h.s. of inequality (10) go to 0 with δ. Notice that the second term is equal to∫

R+

(∫ δ

0
x2e−xu du

)
P(dx) =

∫
R+

xP (dx) −
∫

R+
xe−xδP (dx)

= μ
(
φ(0) − φ(δ)

)
,

where φ(s) := 1
μ

∫
R+ xe−sxP (dx) is the Laplace transform of the size-biased pick-

ing of P . Thus, that term goes to 0 with δ by continuity of φ̄.
To tackle the first term on the r.h.s in (10), we consider the intensity measures

associated with the random measures ν(n). That is, the (deterministic) probability
measures defined for each n ∈ N by

〈mn, f 〉 := E
〈
ν(n), f

〉
.

Notice that mn has mean μ for all n ∈ N. On the other hand, if we denote by mn

the size-biased picking of mn, we get through similar computations as before that∫ δ

0
E
〈
ν(n), g(u, ·)〉du = μ

(
φn(0) − φn(δ)

)
,

with φn(s) := 1
μ

∫
R+ xe−sxmn(dx) the Laplace transform of mn.

Consequently, what we need to prove is that

lim
δ→0

sup
n∈N

|φn(δ) − φn(0)| = 0.(11)

But from LLN-P and Theorem 4.1, for all f ∈ Cb(R) we have that

〈mn, f 〉 = E
〈
ν(n), f

〉 → 〈P,f 〉
since the mapping ν �→ 〈ν,f 〉 is continuous and bounded. In other words, the
sequence mn converges weakly to P . With Lemma 4.1 we deduce that the se-
quence mn is weakly convergent, and therefore, by standard properties of the
Laplace transform, the family of functions (φn)n∈N is equicontinuous. Clearly,
this implies that (11) holds, and the proof is finished. �

In the remaining proof we shall use the following result.

LEMMA 4.2. Let Fm denote the distribution function of m ∈ P(R), and

F−1
m (x) := inf{t ≥ 0 :Fm(t) ≥ x}

be its generalized inverse. Assume that mk ∈ P(R) converges weakly to m. Then,
F−1

mk
(x) converges to F−1

m (x) for dx—almost every x ∈ [0,1].
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PROOF. By Lemma 21.2 in van der Waart [15], F−1
mk

(x) converges to F−1
m (x)

for all x at which F−1
m is continuous. Since F−1

m is increasing, this fails to happen
for at most countably many points x ∈ [0,1]. The statement follows. �

PROOF OF THEOREM 3.3. Recall that we always take π = Id . From Propo-
sition 2.1 we have

Bn(nμt, λ/n) = E

(
n∑

i=1

pie
−nμt

n∏
j=1,j 	=i

[1i<j + (enμpj t − 1i<j )e
−λ/n]

)
.

Since
∑

j pj = 1, we can rewrite

Bn(nμt, λ/n)

= E

(
n∑

i=1

pie
−nμpi t

n∏
j=1,j 	=i

[1 − (1 − e−λ/n)(1 − 1i<j e
−nμpj t )]

)
.

Let us define

B̃n := E

(
1

nμ

n∑
i=1

nμpie
−nμpi t exp

{
−λ/n

n∑
j=1,j 	=i

(1 − e−nμpj t1i<j )

})
.

It is elementary to check that |Bn(nμt, λ/n) − B̃n| ≤ C
n

, so we shall study the
term B̃n. We have that

B̃n = E

(
exp

{
−λ/n

n∑
j=1

1 − e−nμpj t

}

× 1

nμ

n∑
i=1

nμpie
−nμpi t exp

{
−λ/n

i∑
j=1

e−nμpj t

}
eλ/n

)
.

Therefore, thanks to the bound xe−xt ≤ 1
t

we have

|e−λ/nB̃n − L(μ, t, λ)| ≤ 1

μλ
E|�(νn)| + |E(L̂n(μ, t, λ)) − L̂(μ, t, λ)|,

with

�(m) := exp
{
−λ

∫
R+

1 − e−xtm(dx)

}
− exp

{−λ
(
1 − φ(t)

)}
,

L̂n(μ, t, λ) := 1

nμ

n∑
i=1

nμpie
−nμpi t exp

{
−λ/n

i∑
j=1

e−nμpj t

}
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and L̂(μ, t, λ) defined as follows:

L̂(μ, t, λ) = −φ′(t)
μ

∫ 1

0
e−λφ(t)x dx if LLN-P -ex holds,

L̂(μ, t, λ) = 1

μ

∫ ∞
0

xe−xt exp
{
−λ

∫ ∞
x

e−ytP (dy)

}
P(dx) if LLN-P − holds

or

L̂(μ, t, λ) = 1

μ

∫ ∞
0

xe−xt exp
{
−λ

∫ x

0
e−ytP (dy)

}
P(dx) if LLN-P + holds.

Since � is continuous and bounded in P(R+) and �(P ) = 0, we get by LLN-P
and Theorem 4.1 that E|�(νn)| → 0 when n → ∞. Thus, we just have to prove
that

E(L̂n(μ, t, λ)) −→ L̂(μ, t, λ).

The exchangeable case. Notice that under LLN-P -ex,

E(L̂n(μ, t, λ))

= E

(
1

nμ

n∑
i=1

1

n!
∑
σ∈�

nμpσ(i)e
−nμpσ(i)t

× exp

{
−λ/n

i∑
j=1

e−nμpσ(j)t

})

= E

(
1

nμ

n∑
i=1

n∑
k=1

1

n!
∑

σ∈�,σ(i)=k

nμpσ(i)e
−nμpσ(i)t

× exp

{
−λ/n

i∑
j=1

e−nμpσ(j)t

})

= E

(
1

nμ

n∑
k=1

nμpke
−nμpkt

×1

n

n∑
i=1

1

(n − 1)!
∑

σ∈�,σ(i)=k

exp

{
−λ/n

i∑
j=1

e−nμpσ(j)t

})
.

Since by LLN-P and Theorem 4.1,

E

(
1

nμ

n∑
k=1

nμpke
−nμpkt

)∫ 1

0
e−λφ(t)x dx −→ −φ′(t)

μ

∫ 1

0
e−λφ(t)x dx
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when n → ∞, it is enough to show that δn(μ, t, λ) goes to 0 when n → ∞, where

δn(μ, t, λ) := E(L̂n(μ, t, λ)) − E

(
1

nμ

n∑
k=1

nμpke
−nμpkt

)∫ 1

0
e−λφ(t)x dx

= E(L̂n(μ, t, λ)) − 1

μ
E

(∫
R+

xe−xt ν(n)(dx)

)∫ 1

0
e−λφ(t)x dx.

Let us write for i = 1, . . . , n − 1, and a permutation σ of {1, . . . , n},

ασ
t (i, n) :=

i∑
j=1

e−nμpσ(j)t and αt(n,n) :=
n∑

j=1

e−nμpj t .

Define furthermore

I k
n = 1

n

n∑
i=1

(
exp

{
−λ

n
αt (n,n)

i

n

}

× 1

(n − 1)!
∑

σ∈�,σ(i)=k

[
exp

{
−λ/n

[
ασ

t (i, n) − i

n
αt (n,n)

]}
− 1

])
,

IIn = 1

n

n∑
i=1

exp
{
−λ

n
αt(n,n)

i

n

}
− exp

{
−λφ(t)

i

n

}
and

IIIn = 1

n

n∑
i=1

exp
{
−λφ(t)

i

n

}
−

∫ 1

0
e−λφ(t)x dx.

Then, we have

|δn(μ, t, λ)| ≤
∣∣∣∣∣E

(
1

nμ

n∑
k=1

nμpke
−nμpkt (I k

n + IIn + IIIn)

)∣∣∣∣∣
≤ 1

tμ

[
1

n

n∑
k=1

E|I k
n | + E|IIn| + |IIIn|

]

thanks to the bound xe−xt ≤ 1
t
. Term IIIn clearly goes to 0 when n → ∞. On the

other hand, we have

E|IIn| ≤ λ

n

n∑
i=1

i

n
E

∣∣∣∣1

n
αt (n,n) − φ(t)

∣∣∣∣ ≤ λ

2
E

∣∣∣∣ ∫
R+

e−xt νn(dx) − φ(t)

∣∣∣∣.
The mapping ν �→ | ∫

R+ e−xtν(dx) − ∫
R+ e−xtP (dx)| being continuous and

bounded on P(R+), the latter term goes to 0 by LLN-P and Theorem 4.1.
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Now, by exchangeability E|I k
n | does not depend on k, and moreover, setting

αt(i, n) := ∑i
j=1 e−nμpj t , we have

E|I k
n | ≤ 1

n

n∑
i=1

E

∣∣∣∣ exp
{
−λ/n

[
αt(i, n) − i

n
αt (n,n)

]}
− 1

∣∣∣∣
≤ 1

n

n∑
i=1

E

∣∣∣∣∣λ/n

[
i∑

j=1

e−nμpj t − i

n

n∑
k=1

e−nμpkt

]∣∣∣∣∣
= 1

n

n∑
i=1

E

∣∣∣∣∣λ/n

i∑
j=1

(
e−nμpj t −

∫
e−xtν(n)(dx)

)∣∣∣∣∣,
and so

E|I k
n | ≤ 1

n

n∑
i=1

E

∣∣∣∣∣λ/n

i∑
j=1

(
e−nμpj t − φ(t)

)∣∣∣∣∣ + λ

2
E

∣∣∣∣φ(t) −
∫

e−xt ν(n)(dx)

∣∣∣∣.
Thus, we just have to check that IVn := λ

n2

∑n
i=1 E|∑i

j=1(e
−nμpj t − φ(t))| goes

to 0. Indeed, we have

IVn ≤ λ

n2

n∑
i=1

[
E

(
i∑

j=1

(
e−nμpj t − φ(t)

))2]1/2

= λ

n2

n∑
i=1

[
i∑

j=1

E
(
e−nμpj t − φ(t)

)2

+
i∑

k=1

i∑
l=1,l 	=k

E
(
e−nμplt − φ(t)

)(
e−nμpkt − φ(t)

)]1/2

≤ 2λ√
n

+ λ

n2

n∑
i=1

[
i(i − 1)

∣∣E(
e−nμp1t − φ(t)

)(
e−nμp2t − φ(t)

)∣∣]1/2
.

Therefore,

IVn ≤ 2λ√
n

+ λ
∣∣E(

e−nμp1t − φ(t)
)(

e−nμp2t − φ(t)
)∣∣1/2

.

By LLN-P and Proposition 4.1(i) with k = 2, we conclude that the latter term goes
to 0. This finishes the proof in the exchangeable case.

The monotone cases. We consider the case when LLN-P + holds, the decreasing
case being similar. Notice that if F−1

n (x) := inf{t ≥ 0 :Fn(t) ≥ x} is the general-
ized inverse of Fn(x) = ν(n)([0, x]), we have that

L̂n(μ, t, λ) := 1

μ

∫ 1

0
F−1

n (x)e−F−1
n (x)t exp

{
−λ

∫ in(x)

0
e−F−1

n (y)t dy

}
dx,
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where in(x) = �nx�
n

and �·� is the ceiling function. On the other hand, under the
law dx the generalized inverse F−1 : [0,1] → R+ of F is a random variable of
law P . We thus have

L̂(μ, t, λ) := 1

μ

∫ 1

0
F−1(x)e−F−1(x)t exp

{
−λ

∫ x

0
e−F−1(y)t dy

}
dx.

Thanks to this and the bound xe−xt ≤ 1
t
, we get that

|E(L̂n(μ, t, λ)) − L̂(μ, t, λ)|
≤ λ

tμ
E

(∫ 1

0

∫ x

0

∣∣e−F−1
n (y)t − e−F−1(y)t

∣∣dy dx

)

+ λ

tμ

∫ 1

0

∫ in(x)

x
e−F−1(y)t dy dx

+ 1

μ
E

(∫ 1

0

∣∣F−1
n (x)e−F−1

n (x)t − F−1(x)e−F−1(x)t
∣∣dx

)

≤ λ

tμ
E

(∫ 1

0

∣∣e−F−1
n (y)t − e−F−1(y)t

∣∣dy

)
+ λ

ntμ

+ 1

μ
E

(∫ 1

0

∣∣F−1
n (x)e−F−1

n (x)t − F−1(x)e−F−1(x)t
∣∣dx

)
.

Therefore, and thanks also to LLN-P and Theorem 4.1, it is enough to prove that
the bounded functionals on P(R+)

ν �→
∫ 1

0

∣∣e−F−1
ν (y)t − e−F−1(y)t

∣∣dy

and

ν �→
∫ 1

0

∣∣F−1
ν (x)e−F−1

ν (x)t − F−1(x)e−F−1(x)t
∣∣dx

are continuous, since they both vanish at ν = P . This follows by dominated con-
vergence and Lemma 4.2. The proof of the theorem is finished. �

5. Concluding remarks. The limiting stationary regime of the MtF search-
cost as the number of objects tend to infinity has been considered by several au-
thors. One of the motivations is to compare efficiency among different popularity
distributions when equilibrium is reached. Nonetheless, the rate at which equilib-
ria are reached should also account for efficiency considerations. This was one of
the motivations of the present article.

We have developed a general framework for studying the limiting dynamical
behavior of the MtF search-cost when requests rates are sampled from empirical
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probability measures that asymptotically approach a specified law P . In this law
of large numbers asymptotic regime, popularities of objects are comparable, in
the sense that their asymptotic average is finite and nonnull. By this reason, al-
though the transient behavior depends on the initial ordering, is not considerably
sensitive to it. This can be seen in the fact that a common convergence rate to
equilibrium O(

∫
xe−txP (dx)) was obtained in the three representative situations

considered.
Our techniques also ensure the asymptotic stability under perturbations of re-

quest rates that preserve P . Namely, the limiting expectations of functionals of
(p

(n)
i )ni=1, which are symmetric functions of ν(n), depend only on P . This was the

case of the equilibrium part of the transient search-cost. The out-of-equilibrium
transient search-cost involved in turn nonsymmetric functionals of (p

(n)
i )ni=1,

which yielded different limits according to the different “enumerations” of ob-
jects. This is the explanation for the coincidences and discrepancies pointed out
in examples (5) and (6) of Section 3. Nevertheless, under the assumption of ex-
changeability one still might replace nonsymmetric functionals by symmetrized
versions of them (as in the proof of Theorem 3.3) and obtain “symmetric” limits.

It is in principle possible to use our techniques in the asymptotic analysis of
other sorting algorithms, at least in those cases where the corresponding relevant
variables depend on the empirical measures of the popularities or of the request
rates. However it is not obvious to identify which functionals of the empirical
measures are involved.

On the other hand, the law of large numbers asymptotic behavior we have de-
scribed corresponds to a very particular scaling limit, in the sense explained be-
fore. Therefore, it a priori excludes deterministic cases of interest such as the Zipf
laws wi = iα with α ≤ −1 or scaling approximations of the Poisson–Dirichlet
distribution (see, e.g., [13], Chapter 9, and Joyce and Tavaré [12] for the limits
of symmetric linear functionals of these random partitions). Neither the fluid limit
approximation of the search-cost studied by Jelenković [10] is covered in its whole
generality by our approach. Indeed, if Q has unbounded support, one might try to
approximate Q by compactly supported laws as in point (d) of Section 3. But if
one chooses therein c = cn diverging with n, the empirical means vanish as n goes
to infinity.

In these examples, the transient dynamics may be of particular interest, since
they exhibit coexistence of microscopic and macroscopic popularities which is
likely to affect the convergence to equilibrium. A similar question could be of in-
terest in the context of the PAC algorithm introduced in [11]. The splitting of the
transient search-cost we introduced here could be useful in those cases. A combi-
nation of ideas in [3] and results in [12] could help to extend part of our arguments
to Poisson–Kingman type asymptotics, although additional difficulties arise. The
computation of the search-cost law involved highly nonlinear functionals of the
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empirical measures, which cannot be deduced from the asymptotics results ob-
tained in [12]. These and related questions are addressed in progressing works by
the authors.

Acknowledgments. The authors thank the anonymous referee for drawing our
attention to the papers [10] and [11], so as for several suggestions that allowed us
to improve the presentation of this work.
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