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In this paper, the forgetting of the initial distribution for a nonergodic
Hidden Markov Models (HMM) is studied. A new set of conditions is pro-
posed to establish the forgetting property of the filter. Both a pathwise and
mean convergence of the total variation distance of the filter started from two
different initial distributions are obtained. The results are illustrated using
a generic nonergodic state-space model for which both pathwise and mean
exponential stability is established.

1. Introduction and notation. There are many applications where the current
state of a dynamical system need to be estimated from observations up to the cur-
rent time. In this paper, it is assumed that the underlying state process {Xk}k≥0 (of-
ten referred to as the signal process) is a general state space discrete time Markov
chain and the observation process {Yk}k≥0 is independent conditionally to the state
sequence. More specifically, let X and Y be Polish spaces endowed with their Borel
σ -fields X and Y . We denote by Q the transition kernel on (X, X ), μ a measure
on (Y, Y) and a transition density g from (X, X ) to (Y, Y). Consider the Markov
transition kernel defined for any (x, y) ∈ X × Y and C ∈ X ⊗ Y by

T [(x, y),C] def=
∫ ∫

Q(x,dx′)g(x′, y′)1C(x′, y′)μ(dy′).(1)

We consider {(Xk,Yk)}k≥0 the Markov chain with transition kernel T and initial
distribution C �→ ∫∫

g(x, y)1C(x, y)ν(dx)μ(dy), where ν is a probability mea-
sure on (X, X ). With a slight abuse in the terminology, ν is referred to as the
initial distribution of {(Xk,Yk)}k≥0 and we denote by Pν the distribution of this
process over a suitably defined measurable space (�, F ). We assume that the chain
{Xk}k≥0 is not observed. The distribution of the hidden state Xn conditionally on

the observations Y0 : n
def= [Y0, . . . , Yn], denoted φν,n[Y0 : n], is referred to as the fil-

tering distribution.
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A typical question consists in finding conditions under which the filtering distri-
bution is stable, that is, that an appropriately chosen distance between the filtering
distributions φν,n[Y0 : n] and φν′,n[Y0 : n] for two different choices of the initial dis-
tribution ν and ν′ vanishes as n goes to infinity. In this paper, assuming that {Yk}k≥0

is a Y-valued stochastic process defined on (�, F ,P�), our objective is to establish
either pathwise or mean filter stability in the total variation distance

lim sup
n→∞

‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV = 0, P�-a.s.,(2)

lim sup
n→∞

E�

[‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV
] = 0,(3)

where ‖ · ‖TV denotes the total variation norm. In contrast with most contributions
on this subject, P� need not be equal to Pν which means that our results apply even
if the filtering model is misspecified. Under more stringent conditions, we may
strengthen (2) or (3) by specifying rates of convergence. Of particular importance
are the exponential rates (or exponential stability), which amounts to requiring that

lim sup
n→∞

n−1 log(‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV) < 0, P�-a.s.,(4)

lim sup
n→∞

n−1 log E�

[‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV
]
< 0.(5)

As stressed by [5], the most important motivation for studying the stability of the
filter is the time-uniform convergence of estimators of the filtering distribution.
Since these estimators are most often defined recursively, the approximation error
at a given time instant has an impact at all subsequent time instants. As shown
in [6], the propagation of error can be considered as an incorrect initialization at
the time when the error was made. If the rate of convergence of the filter is fast
enough (e.g., if the filter is exponentially stable), then the effects of these local
errors do not build up. Another important application of the stability is for the in-
ference of the transition kernel Q or the likelihood g, when these quantities belong
either to parametric or nonparametric family of distributions. As shown in [8], the
convergence of the likelihood of the observation and the consistency of the maxi-
mum likelihood estimator rely on the stability of the filter for a misspecified model
of the observations (several examples of this type will be given later).

The stability of the filter in nonlinear state space models has attracted many
research efforts; see, for example, the in-depth tutorial of [4]. The brief overview
below is mainly intended to allow comparison of assumptions and results presented
in this contribution with respect to those previously reported in the literature.

The filtering equation can be seen as a positive random nonlinear operator acting
on the space of probability measures; the stability can be investigated using tools
from the theory of positive operators, namely the Birkhoff contraction inequality
for the Hilbert projective metric (see [1, 12, 13]). The results obtained using this
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approach require strong mixing conditions for the transition kernels: there exist
positive constants ε− and ε+ and a probability measure λ on (X, X ) such that

ε−λ(f ) ≤ Q(x,f ) ≤ ε+λ(f ) for any x ∈ X,A ∈ X .(6)

This condition in particular implies that the chain is uniformly geometrically er-
godic. Under weak additional assumptions on the likelihood, (6) allows to establish
both pathwise and mean exponential stability of the filter, with bounds which are
uniform with respect to the observations Y0 : n.

In [13], the stability of the optimal filter is studied for a class of kernels referred
to as pseudo-mixing. The definition of pseudo-mixing kernel is adapted to the case
where the state space is X = R

d , equipped with the Borel sigma-field X . A kernel
Q on (X, X ) is pseudo-mixing if for any compact set C with a diameter d large
enough, there exist positive constants ε−(d) > 0 and ε+(d) > 0 and a measure λC

(which may be chosen to be finite without loss of generality) such that

ε−(d)λC(A) ≤ Q(x,A) ≤ ε+(d)λC(A) for any x ∈ C, A ∈ X .(7)

This condition is more general than (6), but still it is not satisfied in the linear
Gaussian case (see [13], Example 4.3).

A significant improvement has been achieved by [11], who considered the filter-
ing problem of a signal {Xk}k≥0 taking values in X = R

d filtered from observations
{Yk}k≥0 in Y = R

	,

Xk+1 = f (Xk) + σ(Xk)ζk,(8)

Yk = h(Xk) + βεk.(9)

Here, {(ζk, εk)}k≥0 is a i.i.d. sequence of random vectors in R
d+	 with density

qζ (x)qε(y), f (·) is a d-dimensional vector function, σ(·) a (d × d)-matrix func-
tion, h(·) is a 	-dimensional vector-function and β > 0. The authors established
both pathwise (2) and mean (3) stability of the filter under appropriate conditions
on the functions f , h and σ and on the signal and measurement noise {(ζk, εk)}k≥0.
These conditions cover (with some restrictions) the linear Gaussian state space
model. Note however that these results hold only if P� = Pν and ν � ν′. These
results were later extended in [7]. Both pathwise and mean stability are estab-
lished for initial distributions ν and ν′ that are not necessarily comparable (i.e.,
ν � ν′ and ν′ � ν) and a distribution P� which might be different from Pν . The
results hold under weaker conditions than those mentioned above; in particular,
these results cover the linear Gaussian state-space model without restriction on the
measurement and noise variance.

The works mentioned above mainly are obtained under the assumption that the
signal process is ergodic. Results for nonergodic signals in the linear Gaussian
case have been obtained in [14]. Nonlinear nonergodic state-space models have
been considered much less frequently in the literature. These extensions are im-
portant because many models in engineering or econometrics are nonergodic (see
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[9] and [16] and the references therein). In [3], the model (8) and (9) is consid-
ered: f is assumed to be Lipshitz and h(x) = x, for all x ∈ X = R

d . The pathwise
exponential stability is established [3], Theorem 2.1, under the assumptions that
the state and the observation noise are both Gaussian and that the variance of the
observation noise is small enough. More general distributions for the state and the
observation noises are considered in [3], Theorem 2.4, but still the exponential sta-
bility is obtained only under the condition that the scale of the observation noise is
small enough.

These results were later extended in [15] to allow more general functions h. The
authors establish stability in the mean of the filter, under conditions essentially sta-
ting that the tails of the observation noise {εk}k≥0 are sufficiently light compared
to the tails of the signal noise {ζk}k≥0. These results are derived under the addi-
tional assumption that the two initial conditions ν and ν′ are comparable and that
the distribution of the observation P� = Pν . Similar conditions have been studied
in [5], which established the pathwise stability, again under Pν . The conditions in
these two publications are not equivalent; in particular [5] assume that σ(·) ≡ 1 in
(8) and that the signal and observation noises are i.i.d. whereas [15] allow a form
of weak dependence in the signal noise (see Section 4 for further discussion).

In a related work, [10] have considered the stability of the filter for denumerable
Markov chains. In this work, {Xk}k≥0 is a finite or denumerable Markov chain.
The authors establish exponential pathwise stability when the observation noise
variance β is sufficiently small and h is one-to-one. Here again, ν � ν′ and the
distribution of the observation process is P� = Pν .

A significant weakening of these assumptions has been achieved in [17]
and [18]. These contributions establish the stability of the filter (in bounded Lip-
shitz norm) for an observation model (9) under the conditions that h possesses
a uniformly continuous inverse and the noise {εk}k≥0 has a density with respect
to the Lebesgue measure whose Fourier transform vanishes nowhere but without
imposing any assumption on the transition kernel Q of the signal. Stability in to-
tal variation distance can be obtained under the uniform strong Feller assumption,
that is, that x �→ Q(x, ·) is uniformly continuous for the total variation distance on
the space of probability measures. The pathwise and the mean filter stability are
obtained under the conditions that the initial distributions of the process ν and ν′
satisfy ν � ν′ and the distribution of the observation process is P� = Pν .

In this contribution, we propose a new set of conditions to establish pathwise
and mean filter stability under possible model misspecification. We assume an
observation model that can be more general than (9) and do not assume that ν � ν′;
in addition, the distribution of the observation process P� is not constrained to
be Pν and may, on the contrary, be fairly general. Compared to the very weak
conditions introduced in [17] and [18], the price to pay are stronger conditions on
the transition kernel Q, which are reminiscent from the Local Doeblin condition
introduced in [7].
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The paper is organized as follows. In Section 2, the assumptions are introduced
and the main results are stated. In Theorem 5, the pathwise stability of the filter (2)
is established and an explicit bound of the deviation is given. In Theorem 6, the
average stability of the filter (3) is established together with a computable bound.
In Section 3, different nonlinear state-space models are considered. For these mod-
els, we provide conditions upon which the exponential pathwise and mean stability
hold. Several technical lemmas required to study the examples are given in Sec-
tions 4 and 5.

2. Main results. Our results require the existence of a set-valued function,
referred to as Local Doeblin (LD) set function, which extends the so-called LD-
sets introduced in [19] and later exploited in [11]. The difference between LD-sets
of [19] and LD-set functions lies in the dependence on the successive observations.

DEFINITION 1 (LD-set function). A set-valued function C :y �−→ C(y) from
Y to X is called a Local Doeblin set function (LD-set function) if there exist a
measurable function (y, y′) �−→ (ε−

C (y, y′), ε+
C (y, y′)) from Y × Y to (0,∞)2 and

a transition kernel λ : Y × Y × X → [0,1]1 such that, for all x ∈ C(y) and A ∈ X ,

ε−
C (y, y′)λ

(
y, y′;A ∩ C(y′)

) ≤ Q[x,A ∩ C(y′)]
(10)

≤ ε+
C (y, y′)λ

(
y, y′;A ∩ C(y′)

)
.

In addition, the map (x, y) �→ 1C(y)(x) from (X × Y, X ⊗ Y) to R equipped with
its Borel σ -field is measurable.

Consider the following assumptions on the likelihood of the observations.

(H1) g is continuous and positive.

This excludes the case of additive noise with bounded support; see for exam-
ple [2]. Stability of the filter may hold in such context, but the fact that the likeli-
hood might vanish creates additional technical difficulties which will obscure the
main points of the paper. In particular, under this assumption, for any distribution
ν on (X, X ), n ≥ 0 and sequence y0 : n ∈ Yn+1,

E
Q
ν

[
n∏

k=0

g(Xk, yk)

]
(11)

def=
∫

· · ·
∫

ν(dx0)

n∏
k=1

Q(xk−1, dxk)

n∏
k=0

g(xk, yk) > 0.

1For any (y, y′) ∈ Y → Y, λ(y, y′; ·) is a σ -finite measure on (X, X ) and for any A ∈ X , the
function (y, y′) �→ λ(y, y′;A) is measurable from (Y × Y, Y ⊗ Y) for [0,1] equipped with its Borel
σ -field.
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The filtering distribution can thus be expressed, for A ∈ X ,

φν,n[y0 : n] def=
∫ · · · ∫ ν(dx0)

∏n
k=1 Q(xk−1, dxk)

∏n
k=0 g(xk, yk)1A(xn)∫ · · · ∫ ν(dx0)

∏n
k=1 Q(xk−1, dxk)

∏n
k=0 g(xk, yk)

.(12)

The continuity can also be relaxed, also at the expense of some minor technical
adaptations. The main idea of the proof is that the states belong very often to
the LD-sets. Every time the state is in a LD set and jumps to another LD set,
the forgetting mechanism comes into play. From now on, for all (x, x′) ∈ X2,
denote by x̄ = (x, x′) and by ḡ the product ḡ(x̄, y) = g(x, y)g(x′, y). Simi-
larly, for all A ∈ X , denote Ā = A × A, for all LD-set function C, C̄ the set-
valued function C̄(y) = C(y) × C(y). For all (x, x′) ∈ X2, and A, B ∈ X , set
Q̄(x, x′,A × B) = Q(x,A)Q(x′,B). Finally, for ν, ν′ two probability distribu-

tions on (X, X ), we denote by E
Q
ν and E

Q̄
ν⊗ν′ the expectation with respect to the dis-

tribution of a Markov chain on X (resp., on X × X) with initial distribution ν (resp.,
ν ⊗ ν′) and transition kernel Q (resp., Q̄). Then, under the stated assumptions, for
any A ∈ X , any ν and ν′ two probability distributions on (X, X ), any integer n and
any sequence y0 : n ∈ Yn+1, the difference φν,n[y0 : n](A) − φν′,n[y0 : n](A) may be
expressed as

φν,n[y0 : n](A) − φν′,n[y0 : n](A)

= E
Q
ν [∏n

i=0 g(Xi, yi)1A(Xn)]
E

Q
ν [∏n

i=0 g(Xi, yi)]
− E

Q
ν′ [∏n

i=0 g(Xi, yi)1A(Xn)]
E

Q
ν′ [∏n

i=0 g(Xi, yi)]
(13)

= E
Q̄
ν⊗ν′ [∏n

i=0 ḡ(X̄i, yi)1A(Xn)] − E
Q̄
ν′⊗ν[

∏n
i=0 ḡ(X̄i, yi)1A(Xn)]

E
Q
ν [∏n

i=0 g(Xi, yi)]EQ
ν′ [∏n

i=0 g(Xi, yi)]

= E
Q̄
ν⊗ν′ [∏n

i=0 ḡ(X̄i, yi){1A(Xn) − 1A(X′
n)}]

E
Q
ν [∏n

i=0 g(Xi, yi)]EQ
ν′ [∏n

i=0 g(Xi, yi)]
.

We compute bounds for the numerator and the denominator of the previous ex-
pression. Such bounds are given in the two following propositions. For an LD-set
function C denote:

ρC(y, y′) def= 1 − (ε−
C /ε+

C )2(y, y′).(14)

For any integer n and any sequence {yi}ni=0 in Y, let us define

�n(ν, ν′, y0 : n)
(15)

= sup
A∈X

∣∣∣∣∣EQ̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)1A(Xn)

]
− E

Q̄
ν′⊗ν

[
n∏

i=0

ḡ(X̄i, yi)1A(Xn)

]∣∣∣∣∣.
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PROPOSITION 2. Let C be an LD-set function and ν and ν′ be two probability
measures on (X, X ). Then

�n(ν, ν′, y0 : n) ≤ E
Q̄
ν⊗ν′

{
ḡ(X̄0, y0)

n∏
i=1

ḡ(X̄i, yi)ρ
δi

C (yi−1, yi)

}
,

where δi = 1C̄(yi−1)×C̄(yi )
(X̄i−1, X̄i).

PROOF. For convenience, we write Ci = C(yi), ε−
i = ε−

C (yi−1, yi), ε+
i =

ε+
C (yi−1, yi), gi(x) = g(x, yi), λi(·) = λ(yi−1, yi; ·) and ρi = 1 − (ε−

i /ε+
i )2. Let

us define λ̄i
def= λi ⊗ λi . Since C is an LD-set function, for all i = 1, . . . , n,

x̄ ∈ C̄i−1, and f̄ a nonnegative function on X × X,

(ε−
i )2λ̄i(1C̄i

f̄ ) ≤ Q̄(x̄,1C̄i
f̄ ) ≤ (ε+

i )2λ̄i(1C̄i
f̄ ).(16)

Define the sequence of unnormalized kernels Q̄0
i and Q̄1

i as follows: for all x̄ ∈ X2,
and f̄ a nonnegative function on X × X,

Q̄0
i (x̄, f̄ ) = (ε−

i )21C̄i−1
(x̄)λ̄i(1C̄i

f̄ ),

Q̄1
i (x̄, f̄ ) = Q̄(x̄, f̄ ) − (ε−

i )21C̄i−1
(x̄)λ̄i(1C̄i

f̄ ).

It follows from (16) that, for all x̄ in C̄i−1, 0 ≤ Q̄1
i (x̄,1C̄i

f̄ ) ≤ ρiQ̄(x̄,1C̄i
f̄ ) which

implies that, for all x̄ ∈ X2,

Q̄1
i (x̄, f̄ ) = 1C̄i−1

(x̄)Q̄1
i (x̄,1C̄i

f̄ )

+ 1C̄i−1
(x̄)Q̄1

i (x̄,1C̄c
i
f̄ ) + 1C̄c

i−1
(x̄)Q̄1

i (x̄, f̄ )

≤ ρi1C̄i−1
(x̄)Q̄(x̄,1C̄i

f̄ ) + 1C̄i−1
(x̄)Q̄1

i (x̄,1C̄c
i
f̄ )(17)

+ 1C̄c
i−1

(x̄)Q̄1
i (x̄, f̄ )

≤ Q̄
(
x̄, ρ

1C̄i−1
(x̄)1C̄i

i f̄
)
.

We write �n(ν, ν′, y0 : n) = supA∈X |�n(A)|, where

�n(A)
def= ν ⊗ ν′(ḡ0Q̄ḡ1 · · · Q̄ḡn1A×X) − ν′ ⊗ ν(ḡ0Q̄ḡ1 · · · Q̄ḡn1A×X).

We decompose �n(A) into �n(A) = ∑
t0 : n−1∈{0,1}n �n(A, t0 : n−1), where

�n(A, t0 : n−1)
def= ν ⊗ ν′(ḡ0Q̄

t0
0 ḡ1 · · · Q̄tn−1

n−1ḡn1A×X)

− ν′ ⊗ ν(ḡ0Q̄
t0
0 ḡ1 · · · Q̄tn−1

n−1ḡn1A×X).

Note that, for any t0 : n−1 ∈ {0,1}n and any sets A,B ∈ X ,

ν ⊗ ν′(ḡ0Q̄
t0
0 ḡ1 · · · Q̄tn−1

n−1ḡn1A×B) = ν′ ⊗ ν(ḡ0Q̄
t0
0 ḡ1 · · · Q̄tn−1

n−1ḡn1B×A).
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If there is an index i ∈ {0, . . . , n − 1} such that ti = 0, then

ν ⊗ ν′(ḡ0Q̄
t0
0 ḡ1 · · · Q̄tn−1

n−1ḡn1A×X)

= ν ⊗ ν′(ḡ0Q̄
t0
0 ḡ1 · · · Q̄ti−1

i−1ḡi1C̄i
)

× (ε−
i+1)

2λ̄i(1C̄i+1
ḡi+1Q̄

ti+1
i+1 · · · Q̄tn−1

n−1ḡn1A×X)

= ν′ ⊗ ν(ḡ0Q̄
t0
0 ḡ1 · · · Q̄ti−1

i−1ḡi1C̄i
)

× (ε−
i+1)

2λ̄i(1C̄i+1
ḡi+1Q̄

ti+1
i+1 · · · Q̄tn−1

n−1ḡn1A×X).

Thus, �n(A, t0 : n−1) = 0 except if for all i ∈ {0, . . . , n − 1}, ti = 1, and we obtain

�n(A) = ν ⊗ ν′[ḡ0Q̄
1
0ḡ1 · · · Q̄1

n−1ḡn(1A×X − 1X×A)].
It then follows using (17)

�n(ν, ν′, y0 : n) ≤ ν ⊗ ν′(ḡ0Q̄
1
0ḡ1 · · · Q̄1

n−1ḡn)

≤ E
Q̄
ν⊗ν′

[
ḡ(X̄0, y0)

n∏
i=1

ḡ(X̄i, yi)ρ
δi

i

]

with δi = 1C̄i−1×C̄i
(X̄i−1, X̄i). �

We now compute a bound for the denominator. For a given LD-set function C,
we set

�ν,C(y, y′) def= E
Q
ν

[
g(X0, y)g(X0, y

′)1C(y′)(X1)
]

(18)
= ν

[
g(·, y)Qg(·, y′)1C(y′)(·)],

�C(y, y′) def= λ
(
y, y′;g(·, y′)1C(y′)

)
.(19)

PROPOSITION 3. Let C be an LD-set function and {yi}ni=0 a sequence in Y.
We have for all n ∈ N

E
Q
ν

[
n∏

i=0

g(Xi, yi)

]
≥ �ν,C(y0, y1)

n∏
i=2

(ε−
C (yi−1, yi)�C(yi−1, yi)).(20)

PROOF. Since C is an LD-set function, there exist some applications ε−
C , ε+

C
such that, for all i = 1, . . . , n, for all x ∈ C(yi−1) and for all A ∈ X with A ⊂ C(yi),

ε−
C (yi−1, yi)λ(yi−1, yi;A) ≤ Q(x,A) ≤ ε+

C (yi−1, yi)λ(yi−1, yi;A).(21)

Obviously,

E
Q
ν

[
n∏

i=0

g(Xi, yi)

]
≥ E

Q
ν

[
g(X0, y0)

n∏
i=1

g(Xi, yi)1C(yi )(Xi)

]
.
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Then the right-hand side of this expression may be bounded using (21) by

E
Q
ν

[
g(X0, y0)

n∏
i=1

g(Xi, yi)1C(yi )(Xi)

]

= E
Q
ν

[
g(X0, y0)g(X1, y1)1C(y1)(X1)

×
n∏

i=2

g(Xi, yi)1C(yi−1)×C(yi)(Xi−1,Xi)

]

≥ ν
[
g(·, y0)Qg(·, y1)1C(y1)(·)

]
×

n∏
i=2

ε−
C (yi−1, yi)λ

(
yi−1, yi;g(·, yi)1C(yi )

)
.

�

Under (H1), �ν,C(y0, y1) > 0 for any initial distribution ν such that ν ×
Q[C(y1)] > 0. In the examples considered in Section 3, this condition is satis-
fied for the choices of local Doeblin sets by any initial distributions. Following
the same lines as above, it is easily seen that the lower bound (20) can be more
generally written as

E
Q
ν

[
n∏

i=0

g(Xi, yi)

]
≥ E

Q
ν

[
k∏

i=0

g(·, yk)1C(yk)(·)
]

×
n∏

i=k+1

(ε−
C (yi−1, yi)�C(yi−1, yi)).

This lower bound is positive as soon as νQk[C(yk)] > 0. The statements of the
results below can be directly extended to handle this more general condition.

By combining these two propositions, we obtain an explicit bound for the total
variation distance ‖φν,n[y0 : n] − φν′,n[y0 : n]‖TV. For a set A ∈ X and an observa-
tion y ∈ Y, the supremum of the likelihood over A is denoted

ϒA(y)
def= sup

x∈A

g(x, y).(22)

Consider the following assumption.

(H2) For any η ∈ (0,1), there exists an LD-set function Cη such that y �→
ϒCc

η(y)(y) is measurable and for all y ∈ Y,

ϒCc
η(y)(y) ≤ ηϒX(y).(23)

When X = R
d , this assumption is typically satisfied when, for any given y, the

likelihood goes to zero as the state |x| goes to infinity: lim|x|→∞ g(x, y) = 0. This
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condition is satisfied in many models of practical interest, and roughly implies that
the observation effectively provides information on the state range of values.

It is worthwhile to note that the bound we obtain is valid for any sequence y0 : n

and any initial distributions ν and ν′. Under assumption (H2), for any η ∈ (0,1)

there exists a LD-set function Cη satisfying (23). For any α ∈ (0,1) and a sequence
y0 : n = {yi}ni=0 in Y, define

�η(y0 : n,α)
def= max

{
n∏

k=1

ρδk
η (yk−1, yk) : {δk}nk=1 ∈ {0,1}n,

n∑
k=1

δk ≥ αn

}
,(24)

where ρη is a shorthand notation for ρCη [see (14)].

PROPOSITION 4. Assume (H1) and (H2). Let C be an LD-set function. Let
α be some number in (0,1), ν and ν′ some probability measures on (X, X ) and
{yi}ni=0 a sequence in Y. Then, for any η > 0,

‖φν,n[y0 : n] − φν′,n[y0 : n]‖TV

≤ 2�η(y0 : n,α) + 2ηan

n∏
i=0

ϒ2
X(yi)

n∏
i=2

(ε−
C (yi−1, yi)�C(yi−1, yi))

−2(25)

× �−1
ν,C(y0, y1)�

−1
ν′,C(y0, y1)

with an
def= (1−α)n

2 − 1
2 .

PROOF. Equation (13) implies

‖φν,n[y0 : n] − φν′,n[y0 : n]‖TV = 2�n(ν, ν′, y0 : n)

E
Q
ν [∏n

i=0 g(Xi, yi)]EQ
ν′ [∏n

i=0 g(Xi, yi)]
,

where �n(ν, ν′, y0 : n) is defined by (15). We stress that we will use two different
LD-set functions, Cη for the numerator and C for the denominator. Set

Nη,n
def=

n∑
i=1

1{(X̄i−1, X̄i) ∈ C̄η(yi−1) × C̄η(yi)}.

Using Proposition 2, we obtain

�n(ν, ν′, y0 : n)

≤ E
Q̄
ν⊗ν′

[
ḡ(X̄0, y0)

n∏
i=1

ḡ(X̄i, yi)ρ
δi
η (yi−1, yi)1{Nη,n ≥ αn}

]
(26)

+ E
Q̄
ν⊗ν′

[
ḡ(X̄0, y0)

n∏
i=1

ḡ(X̄i, yi)ρ
δi
η (yi−1, yi)1{Nη,n < αn}

]
,
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with δi = 1C̄η(yi−1)×C̄η(yi)
(X̄i−1, X̄i). The first term in the right-hand side expres-

sion of (26) satisfies

E
Q̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)

n∏
i=1

ρδi
η (yi−1, yi)1{Nη,n ≥ αn}

]

≤ E
Q̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)

]
�η(y0 : n,α).

Consider now the second term of the right-hand side of (26). Let Mη,n
def=∑n−1

i=0 1C̄c
η(yi)

(X̄i). For any sequence {uj }, such that uj ∈ {0,1} for j ∈ {0, . . . , n},

n ≥
n−1∑
i=0

ui ∨ ui+1 =
n−1∑
i=0

(ui + ui+1 − uiui+1) ≥ 2
n−1∑
i=0

ui − 1 −
n−1∑
i=0

uiui+1,

which implies that
∑n−1

i=0 ui ≤ (n + 1)/2 + (1/2)
∑n

i=1 ui−1ui . Using this inequal-
ity with ui = 1{X̄i ∈ C̄η(yi)} for i ∈ {0, . . . , n} shows that Nη,n < αn implies that
Mη,n ≥ an. Then

E
Q̄
ν⊗ν′

[
ḡ(X̄0, y0)

n∏
i=1

ḡ(X̄i, yi)ρ
δi
η (yi−1, yi)1{Nη,n < αn}

]

≤ E
Q̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)1{Mη,n ≥ an}
]
.

By splitting this last product, we obtain
n∏

i=0

ḡ(X̄i, yi)1{Mη,n ≥ an} = ∏
1

ḡ(X̄i, yi) × ∏
2

ḡ(X̄i, yi)1{Mη,n ≥ an}

≤ ηan

n∏
i=0

ϒ2
X(yi),

where
∏

1 is the product over the indices i ∈ {0, . . . , n} such that X̄i ∈ C̄c
η(yi) and∏

2 is the product on the remaining indices. This implies that

E
Q̄
ν⊗ν′

[
n∏

i=0

ḡ(X̄i, yi)1{Mη,n ≥ an}
]

≤ ηan

n∏
i=0

ϒ2
X(yi).

By combining the above relations and Proposition 3, the result follows. �

The last step consists in finding conditions upon which the bound in the right-
hand side of (25) is small. This bound depends explicitly on the observations Y ’s;
it is therefore not difficult to state general conditions upon which this quantity
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is small. Let {Yk}k≥0 be a stochastic process with probability distribution P� in
(Y, Y). We first formulate an almost sure convergence on the total variation dis-
tance of the filter initialized with two different probability measures ν and ν′ and
then later establish a convergence of the expectation.

THEOREM 5. Assume (H1) and (H2). Assume moreover that for some η0,
there exists some LD-set function Cη0 such that

lim sup
n→∞

[
−n−1

n∑
k=2

log ε−
Cη0

(Yk−1, Yk)

]
< ∞, P�-a.s.,(27)

lim sup
n→∞

[
n−1

n∑
k=0

logϒX(Yk)

]
< ∞, P�-a.s.,(28)

lim sup
n→∞

[
−n−1

n∑
k=2

log�Cη0
(Yk−1, Yk)

]
< ∞, P�-a.s.(29)

Assume in addition that there exists α ∈ (0,1) such that for all η > 0,

lim sup
n→∞

n−1 log�η(Y0 : n,α) < 0, P�-a.s.(30)

Then, for any initial probability distributions ν and ν′ on (X, X ) such that

�ν,Cη0
(Y0, Y1) < ∞ and �ν′,Cη0

(Y0, Y1) < ∞, P�-a.s.,

we have

lim sup
n→∞

n−1 log‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV < 0, P�-a.s.

PROOF. We apply (25) with C = Cη0 . Note that for any positive sequences
{un} and {vn},

lim sup
n→∞

n−1 log(un + vn) ≤ max(lim supn−1 logun, lim supn−1 logvn).

Under the stated assumptions, there exists some constant 0 < M < ∞ such that
for any η > 0,

lim supn−1 log‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV

≤ max
(

lim sup
n→∞

n−1 log�η(Y0 : n,α),
1 − α

2
log(η) + M

)
, P�-a.s.

The proof is concluded by choosing η small enough so that log(η)(1 − α)/2 +
M < 0. �

Compared to [7], Theorem 1, in the ergodic case, the conditions (27) and (30)
are specific to the nonergodic case, since they involve the functions ε−

C and ε+
C . In

the ergodic case, these functions are constant and assumptions (27) and (30) are
trivially satisfied.
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THEOREM 6. Assume (H1) and (H2). Then, for any η0 > 0, Mi > 0, i =
0, . . . ,3, δ > 0 and α ∈ (0,1), there exist constants η > 0 and β ∈ (0,1) such
that, for all n ∈ N,

E�

[‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV
]

(31)

≤ 2

(
βn + r0(ν, n) + r0(ν

′, n) +
4∑

i=1

ri(n)

)
,

where the sequences in the right-hand side of (31) are defined by

r0(ν, n)
def= P�

(− log�ν,Cη0
(Y0, Y1) ≥ M0n

)
,(32)

r1(n)
def= P�

(
−

n∑
k=2

log ε−
Cη0

(Yk−1, Yk) ≥ M1n

)
,(33)

r2(n)
def= P�

(
n∑

k=0

logϒX(Yk) ≥ M2n

)
,(34)

r3(n)
def= P�

(
−

n∑
k=2

log�Cη0
(Yk−1, Yk) ≥ M3n

)
,(35)

r4(n)
def= P�

(
log�η(Y0 : n,α) ≥ −δn

)
.(36)

PROOF. For any α ∈ (0,1) and γ ∈ (0,1), we can choose η small enough and
such that for all n ≥ 0, ηane2n

∑3
i=0 Mi ≤ γ n where an = n(1 − α)/2 − 1/2. Denote

by �n the event

�n =
{
− log�ν,Cη0

(Y0, Y1) < M0n,− log�ν′,Cη0
(Y0, Y1) < M0n,

−
n∑

i=2

log ε−
Cη0

(Yi−1, Yi) < M1n,

n∑
i=0

logϒX(Yi) < M2n,

−
n∑

i=2

log�Cη0
(Yi−1, Yi) < M3n, log�η(Y0 : n,α) < −δn

}
.

Under the stated assumptions, P�(�
c
n) ≤ r0(ν, n) + r0(ν

′, n) + ∑4
i=1 ri(n). On the

event �n, we have

�−1
ν,Cη0

(Y0, Y1)�
−1
ν′,Cη0

(Y0, Y1)

×
n∏

i=2

[ε−
Cη0

(Yi−1, Yi)�Cη0
(Yi−1, Yi)]−2

n∏
i=0

ϒ2
X(Yi) ≤ e2n

∑3
i=0 Mi .
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Then, by Proposition 4, on the event �n, we have ‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV ≤
2βn where β = max(γ, e−δ). Since

E�

[‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV
]

≤ E�

[‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV1�n

] + 2P�(�
c
n),

the result follows. �

Theorem 6 does not provide directly a rate of convergence. Indeed, only the first
term of the right-hand side of equation (31) gives a geometric rate. In Section 3, for
specific models, explicit bounds of the other terms will be obtained with geometric
rates.

3. Nonlinear state-space models. Let d be some integer and set X = Y = R
d

and Z = R
	; these spaces are endowed with their Borel σ -algebra X , Y , and Z .

We assume that the observations are generated by the following state-space model
(which defines the probability distribution P�){

Xk = f ∗(Xk−1) + τ ∗(Xk−1, ζk), X0 ∼ ν0,
Yk = h∗(Xk) + εk,

(37)

where f ∗ : X → X, h∗ : X → Y τ ∗ : X×Z → X are some functions, and ν0 the initial
distribution of X0. In the sequel, it is assumed that {ζk}k≥0 and {εk}k≥0 are two
independent i.i.d. sequences.

For a > 0, define the set Lipa of a-Lipshitz functions, that is, g ∈ Lipa if for all
x, x′ ∈ X2, |g(x) − g(x′)| ≤ a|x − x′|.

For b0, b > 0, consider the set Sb0,b the set of functions g : X → Y which are
uniformly continuous, surjective and which satisfy, for all x, x′ ∈ X2, |x − x′| ≤
b0 + b|g(x) − g(x′)|.

For a function h : X → Y, a transition density t : X × X → R and a probability
density υ on Y, we define

Q(x,A) =
∫
A

t
(
x, x′ − f (x)

)
Leb(dx′), x ∈ X,A ∈ X ,(38)

g(x, y) = υ
(
y − h(x)

)
.(39)

In the sequel, we study the ergodicity of the filter (12) computed using the transi-
tion kernel Q and g defined in the above equations under the following assump-
tions:

(M1) There exist constants a, b0, b > 0 such that f ∈ Lipa and h ∈ Sb0,b.

(M2) The density υ is positive, continuous and lim|u|→∞ υ(u) = 0.

The assumption (M1) has been first considered in [15]. A function h satisfy-
ing (M1) can be viewed as a perturbation of a bijective function whose inverse
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is b-Lipschtiz. The rationale for considering such assumption is the following.
For y1, y2 ∈ Y, the maximal distance between any two elements in the preimages
h−1({y1}) and h−1({y2}) is controlled by |y1 − y2|. The assumption (M2) is satis-
fied, for example, by Gaussian densities.

3.1. Nonlinear state-space model with i.i.d. state noise. In this section, we
assume that the observations and the filtering model are matched, that is, f ∗ = f

and h∗ = h, and that τ ∗(x, ζ ) = ζ for all (x, ζ ) ∈ X × X. In addition, we consider
the following assumptions:

(E1) The random variable ζ1 has a positive and continuous density γ with respect
to the Lebesgue measure on X.

(E2) The transition density t in (38) is taken to be t (x, x′) = γ (x′), for all (x,

x′) ∈ X2.

Under this assumption, for any A ∈ X , the transition kernel Q may be expressed
as

Q(x,A) =
∫
A

γ [x′ − f (x)]Leb(dx′).(40)

Define by D : Y × Y → R the function

D(y,y′) def= sup
{|f (z) − z′| : z ∈ h−1({y}), z′ ∈ h−1({y′})}.(41)

For any r > 0, we consider the minimum and the maximum of the state noise
density over a ball of radius r :

γ −(r)
def= inf|s|≤r

γ (s), γ +(r)
def= sup

|s|≤r

γ (s).(42)

LEMMA 7. Assume (M1), (M2), (E1) and (E2). Then, for any � ∈ (0,∞), the
set valued function C� : Y → X , defined by

y �−→ C�(y)
def= {x ∈ X : |h(x) − y| ≤ �}(43)

is a LD-set function: more precisely, for all A ∈ X and x ∈ C�(y),

ε−
�(y, y′)Leb[A ∩ C�(y′)] ≤ Q[x,A ∩ C�(y′)]

(44)
≤ ε+

�(y, y′)Leb[A ∩ C�(y′)],
where, setting c = (a + 1)b0 and d = (a + 1)b,

ε−
�(y, y′) def= γ −[c + d� + D(y,y′)],

(45)
ε+
�(y, y′) def= γ +[c + d� + D(y,y′)].
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The proofs of the results in this section are postponed to Section 4. Let Z�
k be

defined as:

Z�
k

def= − logγ −[2c + d� + ab|εk−1| + |ζk| + b|εk|].(46)

PROPOSITION 8. Assume (M1), (M2), (E1) and (E2). Assume in addition that
for all � > 0,

E|Z�
1 | < ∞.(47)

Then, for any probability distributions ν0, ν, and ν′ on (X, X ), we have

lim sup
n→∞

n−1 log‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV < 0, Pν0-a.s.

Condition (47) is not very restrictive. For example, assume that {ζk}k≥0 and
{εk}k≥0 are sequences of Gaussian random variables. It follows, that γ −(r) = γ (r)

for all r ≥ 0. Condition (47) holds if E(|ε1|2) < ∞ and E(|ζ1|2) < ∞ which are
trivially satisfied. This result also extends [5], Theorem 1.1; these authors assume
that the densities υ and γ are upper and lower bounded, that is, that there exist
positive constants mυ , Mυ , αυ , βυ , and mγ , Mγ , αγ and βγ such that

mυ exp(−αυ |x|βυ ) ≤ υ(x) ≤ Mυ exp(−αυ |x|βυ ),(48)

mγ exp(−αγ |x|βγ ) ≤ γ (x) ≤ Mγ exp(−αγ |x|βγ ),(49)

together with (M1) and a condition which is slightly more restrictive than (M2).
Under these assumptions, we may set γ−(r) = mυ exp(−αυrβυ ) for r > 0 and
condition (47) simply reads

E[|ε1|βυ ] < ∞ and E[|ζ1|βυ ] < ∞,

which is of course satisfied under (48) and (49), without any conditions on the
constants αυ , βυ , αγ and βγ . The stability of the filter holds without requiring that
the tails of the observation noise be light compared to the tails of the signal noise
(this type of conditions is prevalent in many works on this topic since [3]).

With more stringent conditions on initial distributions, the convergence of the
expected value of the total variation distance ‖φν,n[Y0 : n]−φν′,n[Y0 : n]‖TV may be
shown to be geometric. Define the log-moment generating function ψZ(α) of the

random variable Z is defined by ψZ(α)
def= log E[eαZ].

PROPOSITION 9. Assume that (M1), (M2), (E1) and (E2) hold. Then, for all
� > 0, there exists α0 > 0 such that

ψZ�
1
(α0) > 0.(50)
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Let C be the LD-set function defined by (43). Then, for any ν0, ν and ν′ probability
measures on (X, X ) and � > 0 such that

Eν0[exp(α0[log�ν,C(Y0, Y1)]−)] < ∞,
(51)

Eν0[exp(α0[log�ν′,C(Y0, Y1)]−)] < ∞,

we have

lim sup
n→∞

n−1 log Eν0

[‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV
]
< 0.

Assume that {ζk}k≥0 and {εk}k≥0 are sequences of Gaussian random variables.
The condition E[eα0Z

�
1 ] < ∞ is equivalent to∫

R3d
exp[(α0 − ς)|u|2]du < ∞,

where ς denotes some positive constant. Therefore, for α0 > 0 small enough, the
condition (50) is satisfied.

3.2. Nonlinear state-space model with dependent state noise. We now con-
sider the case where the state noise {ζk}k≥0 can depend on previous states. This
model has been introduced in [15], Section 3, and is important because it covers
the case of partially observed discretely sampled diffusions, as well as partially
observed stochastic volatility models [3], Section 2. This example also illustrates
that the forgetting property is kept even when the distributions of the observations
differ from the model. Consider the following assumptions:

(G1) There exist ψ a positive continuous probability density function and con-
stants μ− > 0 and μ+ > 0 such that, and for all x, x′ ∈ X2,

μ−ψ(x′) ≤ t (x, x′) ≤ μ+ψ(x′),

where t is the density transition kernel defined in (38).

(G2)
1. For some positive constants a∗, b∗

0 and b∗, f ∗ ∈ Lipa∗ and h∗ ∈ Sb∗
0,b∗ ,

where f ∗ and h∗ are defined in (37).
2. There exists a function τ+ : Z → R such that for all x ∈ X and ζ ∈ Z,

|τ ∗(x, ζ )| ≤ τ+(ζ ).
3. f ∗ and h∗ are such that ‖f − f ∗‖∞ < ∞ and ‖h − h∗‖∞ < ∞.

A first example of state equation satisfying (G1) is considered in [3]. A signal
takes its values in X and follows the equation

Xk = f (Xk−1) + σ(Xk−1)ζk,(52)



FORGETTING FOR NONERGODIC HMM 1655

where {ξk}k≥0 is a sequence of i.i.d. random variables and where σ : X → R
d×d is a

measurable function that satisfies, for all x,u ∈ X, the following uniform ellipticity
condition:

σ−|u|2 ≤ |σ ∗(x)u|2 ≤ σ+|u|2,(53)

where σ−, σ+ are positive constants. Another important example where assump-
tion (G1) is satisfied is the case of certain discretely sampled diffusions. Let
(Xt)t≥0 be the unique solution of the following stochastic differential equation:

dXt = ρ(Xt) dt + σ(Xt) dBt ,

where B is the d-dimensional Brownian motion and the functions ρ : Rd → R
d and

σ : Rd → R
d×d are, respectively, of class C1 and C3. Then, the sequence {Xk}k≥0

satisfies assumption (G2) if the function σ is uniformly elliptic [condition (53)];
The assumptions (M1), (M2) and (G2) are similar to those made in [3] and [15].
This allows us to establish the forgetting of the initial condition with probability
one without restriction on the signal-to-noise ratio and for sequences of observa-
tions which are not necessarily distributed according to the model used to compute
the filtering distribution.

For the same reasons as above, we consider the set-valued function C� defined
in (43). Denote

q−(r)
def= μ− × inf|v|≤r

ψ(v), q+(r)
def= μ+ × sup

|v|≤r

ψ(v).(54)

LEMMA 10. Assume (M1), (M2), (G1). Then, for all A ∈ X , y ∈ Y, and x ∈
C�(y),

ε−
�(y, y′)Leb[A ∩ C�(y′)] ≤ Q[x,A ∩ C�(y′)]

(55)
≤ ε+

�(y, y′)Leb[A ∩ C�(y′)],
where

ε−
�(y, y′) def= q−[c + d� + D(y,y′)], ε+

�(y, y′) def= q+[c + d� + D(y,y′)].
The proof is similar to the proof of Lemma 7 and is omitted for brevity.

LEMMA 11. Under (G1) and (G2), for all integer k ≥ 1,

D(Yk−1, Yk) ≤ κ + a∗b∗|εk−1| + b∗|εk| + τ+(ζk),

where

κ
def= ‖f ∗ − f ‖∞ + (b0 + b∗

0 + b‖h∗ − h‖∞)(1 + a∗).

Define, for all � > 0 and for all integer k ≥ 1,

V ∗�
k = − logq−[c + d� + κ + a∗b∗|εk−1| + b∗|εk| + τ+(ζk)].(56)
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PROPOSITION 12. Assume (M1), (M2), (G1) and (G2). Assume in addition
that for all � > 0,

E(|V ∗�
1 |) < ∞.(57)

Then, for any initial probability distributions ν and ν′ on (X, X ), we have

lim sup
n→∞

n−1 log‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV < 0, P�-a.s.,

where P� is the distribution of the process specified by (37).

PROPOSITION 13. Assume (M1), (M2), (G1) and (G2). Assume in addition
that for all � > 0, there exists a neighborhood α0 > 0 such that �V ∗�

1
(α0) < ∞.

Let C� be the LD-set function defined by (43). Then, for ν and ν′ two probability
measures on (X, X ) and � > 0 such that

E�{exp(α0[log�ν,C�(Y0, Y1)]−)} < ∞,
(58)

E�{exp(α0[log�ν′,C�
(Y0, Y1)]−)} < ∞,

we have

lim sup
n→∞

n−1 log E�

[‖φν,n[Y0 : n] − φν′,n[Y0 : n]‖TV
]
< 0.

Proofs of Propositions 12 and 13 are given in Section 5.

4. Proofs of Lemma 7, Propositions 8 and 9.

PROOF OF LEMMA 7. Under assumption (M1), for any z in h−1({y}), and
x ∈ C�(y),

|x − z| ≤ b0 + b�.(59)

Let (y, y′) ∈ Y2. By (M1), h is surjective and we may pick z ∈ h−1({y}) and z′ ∈
h−1({y′}). Using again (M1), it follows from (59) that, for all (x, x′) ∈ C�(y) ×
C�(y′),

|f (x) − x′| ≤ |f (x) − f (z)| + |f (z) − z′| + |z′ − x′|
(60)

≤ a(b0 + b�) + D(y,y′) + b0 + b�.

The proof follows from (40) and (60). �

PROOF OF PROPOSITION 8. We will apply Theorem 5. (H1) is satisfied.
By (M2), for all η > 0, we may choose �η large enough so that sup|s|>�η

υ(s) ≤
η sups∈X υ(s). This, combined with (44), implies (H2) with Cη = C�η and ϒX =
supX υ .
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To check (27)–(30), it will be needed to bound {D(Yk−1, Yk)}k≥1 where D is
defined in (41). For z, z′ ∈ X such that h(z) = Yk−1, h(z′) = Yk , it follows from
(M1) that

|f (z) − z′| ≤ |f (z) − f (Xk−1)| + |f (Xk−1) − Xk| + |Xk − z′|
≤ a(b0 + b|εk−1|) + |ζk| + b0 + b|εk|.

Therefore, for all integer k ≥ 1,

D(Yk−1, Yk) ≤ c + ab|εk−1| + |ζk| + b|εk|.(61)

We now consider conditions (27)–(29). Let η0 be fixed and set � = �η0 . Since by
definition (42), γ − is a nonincreasing function, it follows by plugging the bound
(61) into (45) that

−n−1
n∑

k=2

log ε−
�(Yk−1, Yk) ≤ n−1

n∑
k=2

Z�
k ,(62)

where Z�
k is defined in (46). Since the process {ab|εk−1| + |ζk| + b|εk|}k≥1 is sta-

tionary 2-dependent, the strong law of large numbers for m-dependent sequences
and the integrability condition (47) yield

lim
n→∞n−1

n∑
k=2

Z�
k = E(Z�

1 ) < ∞, Pν0-a.s.(63)

By combining (62) and (63), the first condition (27) of Theorem 5 is satisfied.
By assumption (M2), the density υ is bounded which implies that supy∈Y ϒX(y) ≤
supυ . Hence, the second condition (28) of Theorem 5 is satisfied. We now consider
the third condition (29). Since the measure appearing in the definition of the LD-set
function does not depend on y, y′, the function (y, y′) �→ �C�(y′)(y, y′), defined
in (19), does not depend on y and is given by

�C�(y′)(y, y′) =
∫

C�(y′)
υ[y′ − h(x)]Leb(dx)

≥ Leb[C�(y′)] × inf|s|≤�
υ(s).

Since the function h is uniformly continuous, for any fixed � > 0, there exists δ >

0 such that, for all x, x′ ∈ X satisfying |x − x′| ≤ δ, we have |h(x) − h(x′)| ≤ �.
Since h is surjective, it follows that Leb[C�(y′)] is bounded below by the volume
of a ball of radius δ in R

d . Thus, we have, for all y, y′ ∈ Y,

�C�(y′)(y, y′) ≥ ��(64)

for some �� > 0, depending only on �. The third condition (29) of Theorem 5
follows.
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We now prove (30). We have

log�η(Y0 : n,α) ≤ max

{
n∑

k=1

δkUk : {δk}nk=1 ∈ {0,1}n,
n∑

k=1

δk ≥ αn

}
,

where

R�η(x)
def= log{1 − (γ −/γ +)2[2c + d�η + x]},

(65)
Uk

def= R�η(ab|εk−1| + |ζk| + b|εk|).
Then, since for any u > 0, Uk ≤ −u1{Uk < −u}, we have

log�η(Y0 : n,α) ≤ max
{{δk}nk=1∈{0,1}n :

∑n
k=1 δk≥αn}

−u

n∑
k=1

δk1{Uk < −u}
(66)

≤ −u

⌊(
αn −

n∑
k=1

1{Uk ≥ −u}
)+⌋

.

Dividing by n and letting n goes to infinity, the strong LLN for 2-dependent se-
quences yields that Pν0-a.s.,

lim sup
n→∞

n−1 log�η(Y0 : n,α) ≤ −u[α − P(U1 > −u)].(67)

Note that U1 is nonpositive and P(U1 = 0) = P(|εk−1| + |ζk| + |εk| = ∞) = 0
by the integrability condition (47). Hence, U1 is almost surely negative and
limu→0 P(U1 > −u) = 0; we may thus choose u small enough so that α − P(U1 >

−u) > 0. The right-hand side is then negative by taking u sufficiently small. �

PROOF OF PROPOSITION 9. (51) implies that r0(ν, n) ∨ r0(ν
′, n) ≤ c0e

−δ0n

for some c0, δ0 > 0. Now, recall that ψZ denotes the log-moment generating func-

tion of the random variable Z defined by ψZ(λ)
def= log E[eλZ] and we define its

Legendre’s transformation by

ψ∗
Z(x) = sup

λ≥0
{xλ − ψZ(λ)}.

We start by giving an exponential inequality for m-dependent variables whose
proof is elementary.

LEMMA 14. Let {Zk}k≥0 be a sequence of m-dependent stationary random
variables. Then, for all M ≥ 0,

P

(
n∑

k=1

Zk ≥ Mn

)
≤ m exp[−�n/m�ψ∗

Z1
(M)].
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It follows from (62) that

P

(
−n−1

n∑
k=2

log ε−
�(Yk−1, Yk) ≥ M1n

)
≤ P

(
n∑

k=2

Z�
k ≥ M1n

)
.

Thanks to (50), by applying Lemma 14, there exists some constant c1, δ1 > 0 such
that r1(n) ≤ c1e

−δ1n. Since υ is bounded, we can choose M2 large enough such
that r2(n) = 0. By (64), for all (y, y′) ∈ Y2, �C�(y′)(y, y′) ≥ ��, for some �� > 0.
Then, by choosing M3 large enough, we have r3(n) = 0. Using (66), r4(n) is
bounded by

r4(n) ≤ P

(
−u

⌊(
n∑

k=1

(α − 1{Uk ≥ −u})
)+⌋

≥ −δn

)
.

Choosing u such that α − P(Uk > −u) > 0 and then δ such that u(α − P(Uk >

−u)) > δ and applying Lemma 14 with Zk = α − 1{Uk ≥ −u} which is bounded
provides the existence of constants c4, δ4 > 0 such that r4(n) ≤ c4e

−δ4n. Thus,
Theorem 6 applies and provides a geometric rate. �

5. Proofs of Lemma 11, Propositions 12 and 13.

PROOF OF LEMMA 11. For all integer k ≥ 1, z, z′ ∈ X such that h(z) =
Yk−1, h(z′) = Yk and u,u′ ∈ X such that h∗(u) = Yk−1, h

∗(u′) = Yk , we have

|f (z) − z′| ≤ |f (z) − f ∗(z)| + |f ∗(z) − f ∗(u)|
+ |f ∗(u) − u′| + |u′ − z′|(68)

≤ ‖f − f ∗‖∞ + a∗|z − u| + |f ∗(u) − u′| + |u′ − z′|.
Let us notice that

|z − u| ≤ b0 + b|h(z) − h(u)|
≤ b0 + b|h(z) − h∗(u)|︸ ︷︷ ︸

=0

+ b|h∗(u) − h(u)|.

Then, by denoting K = b0 +b‖h∗ −h‖∞, it follows that |z−u| ≤ K and similarly,
|z′ − u′| ≤ K . On the other hand,

|f ∗(u) − u′| ≤ |f ∗(u) − f ∗(Xk−1)| + |f ∗(Xk−1) − Xk| + |Xk − u′|
≤ a∗(

b∗
0 + b∗|Yk−1 − h∗(Xk−1)|)

+ τ+(ζk) + b∗
0 + b∗|Yk − h∗(Xk)|.

The proof follows. �



1660 DOUC, GASSIAT, LANDELLE AND MOULINES

PROOF OF PROPOSITION 12. Using the definitions (54), (55), q− and ε−
�,

Lemma 11 shows that

−n−1
n∑

k=2

log ε−
�(Yk−1, Yk) ≤ n−1

n∑
k=2

V ∗�
k .(69)

Thus, (27) follows from LLN for 2-dependent sequences.
The proof of assumptions (28) and (29) can be checked as in Proposition 8. It

remains to check (30). Denote

Uk
def= R�η [κ + a∗b∗|εk−1| + b∗|εk| + τ+(ζk)],(70)

where R�η is defined in (65). Similarly to (66), we have for any u > 0, P�-a.s.

lim sup
n

n−1 log�η(Y0 : n,α)

(71)

≤ −u

⌊(
α − lim sup

n
n−1

n∑
k=1

1{Uk ≥ −u}
)+⌋

.

Moreover, using the LLN for 2-dependent sequences, we have that P�-a.s.

lim sup
n→∞

n−1
n∑

k=1

1{Uk ≥ −u} = P[{U1 ≥ −u}].

Since G is P�-a.s. negative, the right-hand side of the above equation thus con-
verges P�-a.s. to 0 as u tends to 0. Thus, the right-hand side of (71) is negative by
choosing u sufficiently small. �

PROOF OF PROPOSITION 13. (58) implies that r0(ν, n) ∨ r0(ν
′, n) ≤ c0e

−δ0n

for some c0, δ0 > 0. It follows, by definition of r1 and Lemma 11 that

r1(n) = P�

(
−n−1

n∑
k=2

logq−[c + d� + D(Yk−1, Yk)] ≥ M1n

)

≤ P�

(
n−1

n∑
k=2

V ∗�
k ≥ M1n

)

with c0 = c + d� + κ . Then, applying Lemma 14, there exist some constants
c1, δ1 > 0 such that r1(n) ≤ c1e

−δ1n. By the same arguments as in proof of Proposi-
tion 9, the real numbers M2 and M3 can be chosen large enough such that r2(n) = 0
and r3(n) = 0. Similarly to the proof of Proposition 9, for any δ > 0,

r4(n) ≤ P

(
−u

⌊(
n∑

k=1

(α − 1{Uk ≥ −u})
)+⌋

≥ −δn

)
,

where Uk is defined in (70). We first choose u small enough so that α − P(Uk >

−u) > 0 holds; then δ is chosen such that u(α − P(Uk > −u)) > δ. By applying
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Lemma 14 with Zk = α − 1{Uk ≥ −u} which is a bounded random variable, there
exist constants c4, δ4 > 0 such that r4(n) ≤ c4e

−δ4n. Thus, Theorem 6 applies and
provides a geometric rate. �
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