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ON ROUGH ISOMETRIES OF POISSON PROCESSES
ON THE LINE

BY RON PELED

New York University

Intuitively, two metric spaces are rough isometric (or quasi-isometric) if
their large-scale metric structure is the same, ignoring fine details. This con-
cept has proven fundamental in the geometric study of groups. Abért, and
later Szegedy and Benjamini, have posed several probabilistic questions con-
cerning this concept. In this article, we consider one of the simplest of these:
are two independent Poisson point processes on the line rough isometric al-
most surely? Szegedy conjectured that the answer is positive.

Benjamini proposed to consider a quantitative version which roughly
states the following: given two independent percolations on N, for which
constants are the first n points of the first percolation rough isometric to an
initial segment of the second, with the first point mapping to the first point
and with probability uniformly bounded from below? We prove that the orig-
inal question is equivalent to proving that absolute constants are possible in
this quantitative version. We then make some progress toward the conjec-
ture by showing that constants of order

√
logn suffice in the quantitative ver-

sion. This is the first result to improve upon the trivial construction which
has constants of order logn. Furthermore, the rough isometry we construct is
(weakly) monotone and we include a discussion of monotone rough isome-
tries, their properties and an interesting lattice structure inherent in them.

1. Introduction. The concept of rough isometry (sometimes also called
quasi-isometry or coarse quasi-isometry) of two metric spaces was introduced
by Kanai in [7] and, in the more restricted setting of groups, by Gromov in [6].
Informally, two metric spaces are rough isometric if their metric structure is the
same up to multiplicative and additive constants. This allows stretching and con-
tracting of distances, as well as having many points of one space mapped to one
point of the other. For example, Rd and Z

d are rough isometric. This concept
has proven fundamental in the geometric study of groups. On the one hand, the
rough isometry concept is stringent enough to preserve some of the metric prop-
erties of the underlying space. On the other hand, it is loose enough to allow for
large equivalence classes of spaces. For example, rough isometry preserves (under
some conditions) geometric properties of the space such as volume growth and
isoperimetric inequalities [7]. It preserves analytic properties such as the parabolic
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Harnack inequality [5] (and also [8], Section 2.1) and, in a more probabilistic con-
text, various estimates on transition probabilities of random walks (heat kernel
estimates) are preserved; again, see [8], Section 2, and the references contained
therein. Formally, we have the following.

DEFINITION 1.1. Two metric spaces X and Y are rough isometric (or quasi-
isometric) if there exists a mapping T :X → Y and constants M,D,R ≥ 0 such
that:

(i) any x1, x2 ∈ X satisfy

1

M
dX(x1, x2) − D ≤ dY (T (x1), T (x2)) ≤ MdX(x1, x2) + D;

(ii) for any y ∈ Y , there exists some x ∈ X such that dY (y, T (x)) ≤ R.

The first condition ensures that the metric is not distorted too much multiplica-
tively or additively; the second condition implies that the map is close to being
onto. On first inspection, it appears that the definition is not symmetric in X and Y ,
but one may easily check that if such a mapping T :X → Y exists, then another
mapping T̃ :Y → X also exists, satisfying the same conditions, with the roles of
X and Y interchanged (and with possibly different constants).

We will sometimes abbreviate “rough isometric” to “r.i.”
In this article, we are concerned with an aspect of the question of how large the

equivalence classes of rough isometric spaces are. We investigate this question in
a probabilistic setting. Specifically Miklós Abért asked in 2003 [1] whether, for
a finitely generated group, two infinite clusters of independent edge percolations
on its Cayley graph are rough isometric almost surely (assuming they exist). In
this generality, the question appeared difficult and so Balázs Szegedy suggested
considering whether two site percolations on Z

2 are rough isometric (disregarding
connectivity properties). When this also appeared difficult, he suggested consider-
ing the case of Z. These questions have since remained open. Independently, and a
short time later, the Z

d questions were also raised by Itai Benjamini (following the
related work [3]) who also introduced a quantitative variant. The one-dimensional
question is easily seen to be equivalent to the following (see Proposition 2.2 be-
low): are two independent Poisson processes on the line (viewed as random metric
spaces with their metric inherited from R) rough isometric a.s.? Szegedy conjec-
tured a positive answer to this question.

This question is a form of matching problem, but, unlike some other matching
problems in which we wish to minimize some quantity on average, or to have it
bounded for most points, here, we need to satisfy the rigid constraints of a rough
isometry for all points. To our aid comes the fact that the Poisson processes are
infinite and we may “start” constructing the rough isometry at a particularly con-
venient location and use the freedom afforded by large constants to “plan ahead.”
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Unfortunately, this article does not settle this conjecture, but it makes some modest
progress. In the next section, we prove the equivalence of the problem to several
other related problems involving percolations on the integers and on the natural
numbers, including Benjamini’s quantitative variant. Our main result is the con-
struction of a monotone rough isometry with certain properties giving a first non-
trivial upper bound on the quantitative variant. Section 3 presents a discussion
of monotone rough isometries, their properties and an interesting lattice structure
inherent in them. As noted there, in general, monotone rough isometries between
subsets of Z are more restrictive than general rough isometries. In particular, it may
be harder to find a monotone rough isometry between two independent Poisson
processes than to find a general rough isometry. Section 4 contains the proofs of
all the theorems in Section 2, except for the main construction. Section 5 presents
the main construction.

2. Versions of the problem and main result. In this section, we will first
state in precise terms the main open question described in the Introduction. We
will then proceed to show the equivalence of the question to several other related
problems. We shall go from the continuous Poisson process question to a discrete
variant (percolation on Z), then to an oriented discrete variant (percolation on N)
and, finally, to a finite variant (percolation on an initial segment of N), all of which
are equivalent. We will then state a quantitative version of our main open question
(due to Benjamini), based on the finite variant, and conclude the section with a
statement of our main result which gives the first nontrivial upper bound on this
quantitative version. The proofs of all statements in this section, except for the
main result, are presented in Section 4; the proof of the main result is presented in
Section 5.

PROPOSITION 2.1. Given two independent Poisson processes A,B ⊆ R (pos-
sibly of different intensities) and constants (M,D,R), the event that A and B are
rough isometric with constants (M,D,R) is a zero-one event.

Hence, we come to the following question.

MAIN OPEN QUESTION 1. Do there exist constants (M,D,R) for which two
independent Poisson processes of intensity 1 are rough isometric a.s.?

In this article, we shall mostly consider a discrete variant of the question involv-
ing Bernoulli percolations on Z or on N, rather than Poisson processes. We remind
the reader that a Bernoulli percolation on Z with parameter p is the random subset
A ⊆ Z obtained from Z by independently deleting each integer with probability
1 − p. It is defined analogously for N. The next proposition states the equivalence
of the problem for Bernoulli percolations and for Poisson processes.
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PROPOSITION 2.2. The following are equivalent:

(i) for some intensities α,β > 0, two independent Poisson processes, one with
intensity α and the other with intensity β , are rough isometric a.s.;

(ii) for any intensities α,β > 0, two independent Poisson processes, one with
intensity α and the other with intensity β , are rough isometric a.s.;

(iii) for some 0 < p,q < 1, two independent Bernoulli percolations on Z, one
with parameter p and the other with parameter q , are rough isometric a.s.;

(iv) for any 0 < p,q < 1, two independent Bernoulli percolations on Z, one
with parameter p and the other with parameter q , are rough isometric a.s.

Since, by the previous proposition, we may equivalently consider any intensity
for the Poisson process and any parameter for Bernoulli percolation, we fix nota-
tion and, from this point on, consider only Poisson processes with unit intensity
and Bernoulli percolations with parameter 1

2 .
A rough isometry between two Poisson processes or between two Bernoulli

percolations on Z is not necessarily order preserving (or order reversing), as will
be discussed in more detail near the end of this section. Still, one feels intuitively
that such a mapping should be monotonic in some rough sense. Indeed, for the
next two theorems, we will need to show that such a mapping is at least “almost
monotonic at most points,” in a sense made precise in the following statements and
their proofs. We start by showing that a certain oriented version of the problem is
equivalent to the original problem. For this purpose, we introduce the following
new concept.

DEFINITION 2.1. Two rooted metric spaces (X,a) and (Y, b) are rooted rough
isometric if there exists a mapping T :X → Y and constants M,D,R ≥ 0 such that
T (a) = b and the conditions in the usual definition of rough isometry hold for T

and the constants (M,D,R).

We also introduce a different random model, as follows.

DEFINITION 2.2. A rooted Bernoulli percolation on N (with parameter 1
2 )

is a random subset A ⊆ N ∪ {0} in which 0 ∈ A deterministically and any n ∈ N

belongs to A with probability 1
2 independently.

THEOREM 2.3. The following are equivalent:

(i) two independent Bernoulli percolations on Z (with parameter 1
2 ) are rough

isometric a.s.;
(ii) two independent rooted Bernoulli percolations (A,0) and (B,0) on N are

rooted rough isometric with positive probability.

To prove this theorem, we need the following definition.
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DEFINITION 2.3. Given two subsets A,B ⊆ Z and a mapping T :A → B , the
point x ∈ A is called a cut point for T if one of the following occurs:

(α) for all z ∈ A with z > x, we have T (z) ≥ T (x);
(β) for all z ∈ A with z > x, we have T (z) ≤ T (x).

We also require the following lemma.

LEMMA 2.4. If two independent Bernoulli percolations on Z are rough iso-
metric a.s. with constants (M,D,R), then, with probability 1, any rough isometry
T :A → B with constants (M,D,R) has a cut point.

We continue to construct a finite variant of our problem. First, we define, for
a given infinite subset A ⊆ N ∪ {0}, A(n) ⊆ A to be its first n points [e.g., if
A = (0,1,3,4,6, . . .), then A(3) = (0,1,3)]. Also, given A,B ⊆ N ∪ {0} both
containing 0, we sometimes say that A(n) is rooted r.i. to some initial segment
of B if there exists an m and a rooted r.i. T :A(n) → B(m). We may also phrase
this as T is a rooted r.i. of A(n) to some initial segment of B . We now have the
following result.

THEOREM 2.5. The following are equivalent:

(i) two independent rooted Bernoulli percolations (A,0) and (B,0) on N are
rooted rough isometric with positive probability;

(ii) there exists some p > 0 and constants (M,D,R) such that, given two in-
dependent rooted Bernoulli percolations (A,0) and (B,0) on N, for any n ≥ 1,
A(n) is rooted r.i. to some initial segment of B with constants (M,D,R) and with
probability at least p.

Although this theorem may initially seem straightforward, it transpires that the
direction (i) → (ii) is somewhat problematic. The main difficulty stems from the
fact that, given a rooted rough isometry from A ⊆ N ∪ {0} to B ⊆ N ∪ {0}, its re-
striction to A(n) is not necessarily a rooted rough isometry to some B(m) with the
same constants. This is due to the fact that a rough isometry need not be monotonic
and hence the image of its restriction to A(n) may still have big “holes” [i.e., points
b ∈ B where property (ii) in the definition of rough isometry does not hold] which
are “filled” by the mapping at subsequent points of A. To prove this theorem, we
will need a statement asserting that if A and B are rooted Bernoulli percolations,
then T :A → B is a rooted rough isometry with constants (M,D,R), and if we
allow the constant R to be increased sufficiently, say to some L := L(M,D,R),
then for “most n’s” the restriction of T to A(n) will still be a rooted rough isometry
to some initial segment of B with constants (M,D,L). This is the content of the
next three lemmas: they make precise what was meant when we stated previously
that a rough isometry is “almost monotonic at most points.”
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We now introduce the following notation: given A ⊆ N ∪ {0} and x ∈ A, let
Succ(x) be the smallest point in A which is larger than x (or ∞ if there is no such
point) and let Gap(x) := Succ(x) − x. We start with a deterministic lemma.

LEMMA 2.6. Let A,B ⊆ N ∪ {0} be infinite subsets, both containing 0, and
let T :A → B be a rooted r.i. between them with constants (M,D,R). There exists
L := L(M,D) such that if there exist x, y ∈ A with x < y and T (y) ≤ T (x) − L,
then there exists z ∈ A, z ≥ y and z − x ≥ L

2M
such that Gap(z) ≥ z−x

2M2 .

We continue with a probabilistic aspect of the previous lemma.

LEMMA 2.7. Let A be a rooted Bernoulli percolation on N, let w ∈ N

and define, for constants L,M , the event Ew
L,M := {∃z ∈ A,z > w,Gap(z) ≥

max( L
4M3 , z−w

2M2 )}. Then P(Ew
L,M) ≤ C( L

M
+1)e−cL/M3

for some absolute constants
C,c > 0 (not depending on any parameter).

Finally, we have one more deterministic lemma.

LEMMA 2.8. Let A,B ⊆ N ∪ {0} be infinite subsets, both containing 0, and
let T :A → B be a rooted r.i. between them with constants (M,D,R). Fix L > R

and n ≥ 1, let xn be the nth point of A and suppose that the event E
xn

L−R,M of
Lemma 2.7 does not hold for A. Then T restricted to A(n) is a rooted r.i. of A(n)

to B(m) for some m with constants (M,D,L).

REMARK 2.1. Close inspection of the proof of part (ii) → (i) of Theorem 2.5
reveals that (ii) is, in fact, equivalent (by the same proof) to the following, seem-
ingly weaker, statement [the R-denseness property is property (ii) in the definition
of r.i.]:

(iii) There exists p > 0, constants (M,D,R) and a function f (n) → ∞ such
that given two independent rooted Bernoulli percolations (A,0) and (B,0) on N,
for any n ≥ 1, with probability at least p, there exists T from A(n) to B(m) for
some m (a function of A, B and n) which satisfies the properties of a rooted rough
isometry with constants (M,D,R), except that we only require the R-denseness
property to hold for b ∈ B(m) with b ≤ f (n).

Since this statement is complicated to state and we make no use of it in the
sequel, we simply leave it as a remark.

The last theorem gives rise to the following quantitative variant of our main
question which will be our main concern in this article.

MAIN OPEN QUESTION 2. Given two independent rooted Bernoulli percola-
tions (A,0) and (B,0) on N, for which functions (M(n),D(n),R(n)) does there
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exist a rooted rough isometry T with constants (M(n),D(n),R(n)) from (A(n),0)

to (B(m),0) for some m (a function of A, B and n) with probability not tending
to 0 with n?

By the previous theorem, our first open question is equivalent to the claim that
constant functions suffice. Both the original open question and this quantitative
variant were posed to the author by Itai Benjamini [4] (although without the proof
of equivalence) and it is the main aim of this paper to present some progress on
this quantitative variant.

Trivially, one has that the functions (log2 n,0,0), or even (log2 n − C,0,0) for
some C > 0, suffice for this quantitative question by considering the mapping from
(A(n),0) to (B(n),0) which maps the ith point of A to the ith point of B . We are
not aware of any improvement on this trivial result in the literature. We can now
state our main result.

THEOREM 2.9. There exists N > 0 such that, given two independent rooted
Bernoulli percolations (A,0) and (B,0) on N, for any n > N , there exists a ran-
dom m (a function of A, B and n) such that (A(n),0) and (B(m),0) are rooted
rough isometric with constants (30

√
log2 n, 1

2 ,10
√

log2 n) and with probability

1 − 2−8
√

log2 n.

This theorem is proved by a direct construction which will be detailed in Sec-
tion 5. Furthermore, the mapping we construct is (weakly) monotone increasing
(in fact, we construct a Markov rough isometry in the sense of Section 3.2). As
already noted, monotonicity is not required by the definition of rough isometry,
but monotone mappings are easier to construct, have nicer properties and an inter-
esting structure, as explained in the next section. We do not know if the question of
having a monotone rough isometry between (say) two Poisson processes is equiv-
alent to the question of having just a general rough isometry between them. The
next section also makes this question precise.

REMARK 2.2. We note that, up to the constant 8, the success proba-
bility achieved in Theorem 2.9 is optimal. To see this, consider the event
(0,1, . . . , �15

√
log2 n� + 1) ⊆ A and that in B the next point after 0 is greater

than 30
√

log2 n + 1
2 . This event has probability larger than 2−45

√
log2 n−3 and

we claim that on it there is no rooted r.i. between A and B with constants
(30

√
log2 n, 1

2 ,10
√

log2 n). To see this, suppose, in order to reach a contradiction,
that there was such a rooted r.i. T . If we let x0 = max(x ∈ A|T (x) = 0), then we
must have x0 ≤ 15

√
log2 n by property (i) of the r.i. [and since T (0) = 0]. Hence,

x0 + 1 ∈ A and we must have T (x0 + 1) > 30
√

log2 n + 1
2 . This is a contradiction

since, then, 30
√

log2 n + 1
2 < T (x0 + 1) − T (x0) ≤ 30

√
log2 n(x0 + 1 − x0) + 1

2 .
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FIG. 1. Monotonic rough isometry must have large constants.

3. Monotone rough isometries. In this section, we consider the notion of a
(weakly) increasing rough isometry, that is, a rough isometry mapping T :X → Y

between two subsets X,Y ⊆ R for which T (x) ≥ T (y) whenever x ≥ y. As is easy
to check, the notion of an increasing rough isometry defines an equivalence class
on subsets of R, that is, if X,Y,Z ⊆ R and T1 :X → Y , T2 :Y → Z are increasing
rough isometries, then there also exist T3 :Y → X and T4 :X → Z (T4 := T2 ◦ T1)
which are increasing rough isometries. If there exists an increasing rough isom-
etry between such X and Y , we shall call X and Y increasing rough isometric.
On first reflection, one may hope that the notions of increasing rough isometry
and general rough isometry are equivalent, that is, that if two spaces X,Y ⊆ R are
rough isometric, then they are also increasing rough isometric (perhaps with dif-
ferent constants). Unfortunately, this is not the case in general, as one may see by
means of various examples. Figures 1 and 2 show a variant of an example shown
to the author by Gady Kozma [9]. For each integer L ≥ 1, Figure 1 shows two
subsets AL,BL ⊆ N (each containing four points), between which there exists a
nonmonotone rough isometry with constants (3,0,0) (which is depicted). How-
ever, as is easy to see, any (weakly) monotone rough isometry will have constants
tending to infinity with the parameter L.

Although this example involves two finite sets of points and, of course, any
two finite sets are increasing rough isometric for some constants, one may use
this example to construct two infinite sets of points which are rough isometric, but
not increasing rough isometric. Figure 2 shows two such sets A and B which are
constructed by concatenating the previous (AL,BL) example, but with a gap of
size L! in both A and B between (AL,BL) and (AL+1,BL+1). On the one hand,
concatenating the rough isometries of Figure 1 gives a rough isometry with finite
constants here, but, on the other hand, such a fast growing gap ensures that any

FIG. 2. No monotonic rough isometry exists.
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rough isometry between A and B will have some large L (depending on its con-
stants) such that for all j ≥ L, the points of Aj will only be mapped to the points
of Bj , thereby reducing to the example of Figure 1 within each such segment. In
particular, the rough isometry cannot be monotonic.

In our context, it is then natural to ask the following question.

MAIN OPEN QUESTION 3. Given two independent Poisson processes A,B ,
does there exist a (weakly) increasing rough isometry between them a.s.?

As in Section 2, one can prove the following.

PROPOSITION 3.1. Given two independent Poisson processes A,B ⊆ R (pos-
sibly of different intensities) and constants (M,D,R), the event that A and B are
increasing rough isometric with constants (M,D,R) is a zero-one event.

We also have the following equivalences.

PROPOSITION 3.2. The following are equivalent:

(i) for some intensities α,β > 0, two independent Poisson processes, one with
intensity α and the other with intensity β , are increasing rough isometric a.s.;

(ii) for any intensities α,β > 0, two independent Poisson processes, one with
intensity α and the other with intensity β , are increasing rough isometric a.s.;

(iii) for some 0 < p,q < 1, two independent Bernoulli percolations on Z, one
with parameter p and the other with parameter q , are increasing rough isometric
a.s.;

(iv) for any 0 < p,q < 1, two independent Bernoulli percolations on Z, one
with parameter p and the other with parameter q , are increasing rough isometric
a.s.

The proofs of these statements are exactly the same as in Section 2, but with
“rough isometry” replaced by “increasing rough isometry,” and are hence omitted.
Again, due to these equivalences, we shall only consider Poisson processes of unit
intensity and Bernoulli percolations with parameter 1

2 .
Analogously to Section 2, we can define a rooted increasing rough isometry

between two rooted spaces (X,a) and (Y, b), where X,Y ⊆ R, as a mapping
T :X → Y which is an increasing rough isometry and has T (a) = b. For increas-
ing rough isometries, it is much easier to pass from the question about percolations
on Z to the question about percolations on N, and from there to the finite version.
This is due to the following obvious statement.

PROPOSITION 3.3. If A,B ⊆ R are increasing rough isometric by a mapping
T :A → B with constants (M,D,R), then, for any x, y ∈ A with x < y, we have
that T restricted to A ∩ [x, y] is an increasing rough isometry from A ∩ [x, y] to
B ∩ [T (x), T (y)] with constants (M,D,R).
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We emphasize once more that this statement is not true for general rough isome-
tries, although, for increasing rough isometries, it is trivial to check that it holds
(we omit the proof). From this, we easily deduce the following result.

THEOREM 3.4. The following are equivalent:

(i) two independent Bernoulli percolations on Z are increasing rough isomet-
ric a.s.;

(ii) two independent rooted Bernoulli percolations (A,0) and (B,0) on N are
rooted increasing rough isometric with positive probability;

(iii) there exists some p > 0 and constants (M,D,R) such that, given two inde-
pendent rooted Bernoulli percolations (A,0) and (B,0) on N, for any n ≥ 1, A(n)

is a rooted increasing r.i. to some initial segment of B with constants (M,D,R)

and with probability at least p.

Using Proposition 3.3, the equivalences (i) → (ii) and (ii) → (iii) are trivial
to prove. The proofs of (ii) → (i) and (iii) → (ii) are the same as those given
in Theorems 2.3 and 2.5, with “rough isometry” replaced by “increasing rough
isometry.”

Of course, one can now formulate a quantitative version of our question, as
follows.

MAIN OPEN QUESTION 4. Given two independent rooted Bernoulli percola-
tions (A,0) and (B,0) on N, for which functions (M(n),D(n),R(n)) does there
exist an increasing rooted rough isometry T with constants (M(n),D(n),R(n))

from (A(n),0) to (B(m),0) for some m (a function of A, B and n) with probabil-
ity not tending to 0 with n?

As was mentioned earlier, Theorem 2.9 is still relevant in this context since the
rough isometries we construct there are increasing rough isometries.

Until now, we have stated the common features of general rough isometries
and increasing rough isometries. The next two subsections present some features
which are unique to increasing rough isometries, revealing more of the interest in
this concept. The first of these is a structure present in increasing rough isometries
which we find quite interesting, although, unfortunately, we have not found a way
to use it to our benefit in the sequel. The second of these is a slight variant on
rooted increasing rough isometries which will be much easier for us to construct
than general rough isometries; this variant is fundamental to our construction in
Section 5.

3.1. Increasing rough isometries as finite distributive lattices. In this sub-
section, we shall show that, given constants (M,D,R) and two finite subsets
A,B ⊆ N ∪ {0}, both containing 0, the set of rooted increasing rough isometries



472 R. PELED

from A to B with constants (M,D,R) is either empty or a finite distributive lat-
tice. This immediately implies a host of correlation inequalities (such as the FKG
inequality), as discussed below. However, although we consider this to be a very
interesting fact and a possibly useful structure, we should mention at the outset
that we do not use this fact in our results and only include it here in the hope that
it will prove useful in further work on the problem.

We start with (see, e.g., [2], Chapter 6) the following definition.

DEFINITION 3.1. A finite partially ordered set L is called a finite distributive
lattice if any two elements x, y ∈ L have a unique minimal upper bound x ∨ y

(called the join of x and y) and a unique maximal lower bound x ∧ y (called the
meet of x and y), such that, for any x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).(1)

Now, fix constants (M,D,R) and finite subsets A,B ⊆ N ∪ {0}, both con-
taining 0, which are rooted increasing r.i. with constants (M,D,R). Let L be
the set of all such rooted increasing r.i. mappings from A to B . For T1, T2 ∈ L,
we write T1 � T2 if, for all x ∈ A, we have T1(x) ≤ T2(x). We also define
T1 ∨ T2 as (T1 ∨ T2) :A → B , (T1 ∨ T2)(x) := max(T1(x), T2(x)) and, similarly,
(T1 ∧ T2)(x) := min(T1(x), T2(x)). It is clear that if (T1 ∨ T2) ∈ L, then it is the
unique minimal upper bound of T1 and T2 in L and, similarly, that if (T1 ∧T2) ∈ L,
then it is their unique maximal lower bound. It is also clear that the distributive
property (1) holds. Therefore, to show that L is a finite distributive lattice, it re-
mains to show the following.

LEMMA 3.5. For any T1, T2 ∈ L, we have (T1 ∨ T2), (T1 ∧ T2) ∈ L. Or, in
words, the maximum and minimum of two rooted increasing r.i.’s with constants
(M,D,R) are also rooted increasing r.i.’s with constants (M,D,R).

We remark that this lemma is not true for general rooted rough isometries as it
is easy to see, by means of examples, that the monotonicity property is required.

PROOF OF LEMMA 3.5. We shall show this for T1 ∨ T2, the proof for (T1 ∧
T2) being analogous (or even deducible from the T1 ∨ T2 case by considering the
reversed mappings). Letting T := T1 ∨ T2, it is clear that T (0) = 0 and that T is
still (weakly) monotonic. We continue by verifying property (ii) in the definition
of r.i. (see Figure 3). If we fix b ∈ B , then there exist x, y ∈ A with |T1(x)−b| ≤ R

and |T2(y) − b| ≤ R and we may assume, without loss of generality, that x ≤ y.
Of course, if T (x) = T1(x), then property (ii) holds, hence we assume that T (x) =
T2(x). We obtain that T1(x) ≤ T (x) = T2(x) ≤ T2(y), from which |T (x) − b| ≤ R

readily follows.
Fixing x, y ∈ A, x < y, it remains to verify property (i) in the definition of r.i.

for T and x, y (see also Figure 3). If T (x) = Ti(x) and T (y) = Ti(y) for i = 1 or
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FIG. 3. T1: solid line; T2: dashed line.

i = 2, then the properties clearly hold since they hold for Ti , hence we assume,
without loss of generality, that T (x) = T2(x) > T1(x) and T (y) = T1(y) > T2(y),
to obtain

1

M
(y−x)−D ≤ T2(y)−T2(x) < T (y)−T (x) < T1(y)−T1(x) ≤ M(y−x)+D,

proving the lemma. �

The usefulness of the finite distributive lattice structure in probability lies in the
fact that it allows one to obtain correlation inequalities in many cases. Following
[2], Chapter 6, we have the following definition and theorem.

DEFINITION 3.2. A probability measure μ on L is called log-supermodular
if, for all T1, T2 ∈ L,

μ(T1)μ(T2) ≤ μ(T1 ∨ T2)μ(T1 ∧ T2).

THEOREM 3.6 (FKG inequality). If μ is log-supermodular and f,g :L → R+
are increasing [in the sense that f (T1) ≤ f (T2) whenever T1 � T2], then

Eμfg ≤ (Eμf )(Eμg).

In our case, one may take, for example, μ to be the uniform measure on L, and,
supposing x, y ∈ A, we may take f (T1) = T1(x) and g(T1) = T1(y). We immedi-
ately obtain that when sampling a rough isometry uniformly from L,the images of
x and y are positively correlated. This example may not be so impressive since the
result is intuitive, but, it is still not obvious how to prove this result directly (for
arbitrary r.i. A and B) and the significant point is that we obtained it here for free
from the structure of L.

3.2. Markov rough isometries. In this subsection, we introduce a slightly dif-
ferent (but equivalent up to constants) definition of a rooted increasing rough isom-
etry which will be much easier to work with in the sequel.

DEFINITION 3.3. Two subsets A,B ⊆ N ∪ {0} both containing 0 are Markov
rough isometric if there exists a mapping T :A → B and constants M,F,R ≥ 0
such that:
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(i) T (0) = 0;
(ii) if x, y ∈ A and x ≥ y, then T (x) ≥ T (y);

(iii) for all adjacent x, y ∈ A (i.e., with no point of A between x and y) with
T (x) �= T (y), we have 1

M
|x − y| ≤ |T (x) − T (y)| ≤ M|x − y|;

(iv) for all b ∈ T (A), we have maxT −1(b) − minT −1(b) ≤ F ;
(v) for any b ∈ B , there exists x ∈ A such that |T (x) − b| ≤ R.

The reason for the name “Markov rough isometry” is that all of the restrictions
in the definition are, in some sense, local. To check that a given mapping T is
a valid Markov rough isometry, one scans its values on A starting from 0 and
proceeding in increasing order. To check the properties, one needs to remember the
value of T on a point x ∈ A only until one reaches a point y > x with T (y) > T (x)

and, by property (iv), this must happen after checking at most F points. Hence,
there is a form of finite-memory property for Markov rough isometries, which
accounts for the name. Still, although they may appear weaker at first, Markov
rough isometries are equivalent to rooted increasing rough isometries as follows.

LEMMA 3.7. Fix two subsets A,B ⊆ N ∪ {0}, both containing 0.

1. If T :A → B is a Markov rough isometry with constants (M,F,R), then T is
a rooted increasing rough isometry with constants (2F + M, 1

2 ,R).
2. If T :A → B is a rooted increasing rough isometry with constants (M,D,R),

then T is a Markov rough isometry with constants (MD + M + D,MD,R).

PROOF.

1. Let T :A → B be a Markov rough isometry with constants (M,F,R) and de-
fine (M̃, D̃, R̃) := (2F + M, 1

2 ,R). To show that T is a rooted increasing r.i.
with constants (M̃, D̃, R̃), only property (i) in the definition of rough isom-
etry needs to be checked. If we let x, y ∈ A, x < y, and first suppose that
T (x) �= T (y), then we can find some k ≥ 2 and a sequence of points of A,
x ≤ z1

r < z2
l ≤ z2

r < · · · < zk−1
l ≤ zk−1

r < zk
l ≤ y, such that for each i, zi

r is
adjacent in A to zi+1

l , T (zi
r ) �= T (zi+1

l ), T (zi
l ) = T (zi

r ), T (x) = T (z1
r ) and

T (y) = T (zk
l ) (Figure 4 shows an example with k = 5). Then

y − x = (y − zk
l ) + (zk

l − zk−1
r ) + (zk−1

r − zk−1
l ) + · · · + (z1

r − x)

≤ kF + M
(
T (zk

l ) − zk−1
r

) + · · · + M
(
T (z2

l ) − T (z1
r )

)
= kF + M

(
T (y) − T (x)

)
and noting that T (y)−T (x) ≥ k − 1 [and, in particular, that T (y)−T (x) ≥ 1],
we obtain

y − x ≤ kF + M
(
T (y) − T (x)

) ≤ 2
(
T (y) − T (x)

)
F + M

(
T (y) − T (x)

)
= M̃

(
T (y) − T (x)

)
.
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FIG. 4. An example for Lemma 3.7 with k = 5.

The lower bound follows more easily:

y − x ≥ (zk
l − zk−1

r ) + (zk−1
l − zk−2

r ) + · · · + (z2
l − z1

r )

≥ 1

M

(
T (zk

l − zk−1
r ) + · · · + T (z2

l ) − T (z1
r )

) = 1

M

(
T (y) − T (x)

)
.

If we now suppose that x, y ∈ A, x < y, satisfy T (x) = T (y), then y −
x ≤ F , hence

0 = T (y) − T (x) ≥ 1

2F + M
(y − x) − 1

2
= 1

M̃
(y − x) − D̃

as required.
2. Let T :A → B be a rooted increasing rough isometry with constants (M,D,R)

and define (M̃, F̃ , R̃) = (MD + M + D,MD,R). To show that T is a Markov
r.i. with constants (M̃, D̃, R̃), only properties (iii) and (iv) in the definition of
Markov rough isometry need to be checked. If we let x, y ∈ A with x adjacent
to y and T (x) �= T (y), then

y −x ≤ M
(
T (y)−T (x)+D

) ≤ (M +MD)
(
T (y)−T (x)

) ≤ M̃
(
T (y)−T (x)

)
and

T (y) − T (x) ≤ M(y − x) + D ≤ (M + D)(y − x) ≤ M̃(y − x).

If we now suppose that x, y ∈ A satisfy T (x) = T (y), then we have

0 = T (y) − T (x) ≥ 1

M
(y − x) − D,

hence y − x ≤ MD = F̃ , as required. �

We conclude this subsection by remarking that some properties of rooted in-
creasing rough isometries also hold for Markov rough isometries (without the need
to change the constants). First, it is trivial to check the following (analogous to
Proposition 3.3).

PROPOSITION 3.8. If A,B ⊆ R are Markov rough isometric by a mapping
T :A → B with constants (M,F,R), then, for any x, y ∈ A with x < y, we have
that T restricted to A ∩ [x, y] is a Markov rough isometry from A ∩ [x, y] to
B ∩ [T (x), T (y)] with constants (M,F,R).
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Second, we have the following proposition.

PROPOSITION 3.9. Given A,B ⊆ N ∪ {0}, both containing 0, which are
Markov rough isometric with constants (M,F,R), the set L of all Markov rough
isometries between them with constants (M,F,R) is a finite distributive lattice
(with the same operations as defined in Section 3.1).

The proof is very similar to the proof of Lemma 3.5 and is therefore omitted.

4. Proof of equivalence theorems. We start with the proof of Proposition 2.1.

PROOF OF PROPOSITION 2.1. We will use the well-known fact that a Poisson
process on R with the shift operation on R is ergodic. We also note that the event
E that A and B are rough isometric with constants (M,D,R) is measurable with
respect to A and B . Next, we note that for any fixed realization of B , the event EB

that A is rough isometric to B with constants (M,D,R) is translation invariant
(with respect to translations of A), hence, by ergodicity, it has probability 0 or 1.
Analogously, for any fixed realization of A, the event EA that A is rough isometric
to B with constants (M,D,R) is also translation invariant (with respect to transla-
tions of B) and hence has probability 0 or 1. It now follows from the independence
of A and B that E itself has probability 0 or 1. �

We continue with the proof of Proposition 2.2.

PROOF OF PROPOSITION 2.2. (ii) → (i). This is trivial.
(i) → (ii). Suppose that claim (i) holds for some α,β > 0. Fix γ > 0 and con-

sider two Poisson processes A and C, with intensities α and γ , respectively. Note
that they can be coupled by first sampling A and then letting the points of C be
{α
γ
x|x ∈ A}. Now, observe that under this coupling, A and C are r.i. with constants

( α
γ
,0,0) under the trivial mapping T :A → C defined by T (x) := α

γ
x.

In the same way, if we fix some δ > 0, then we can couple two Poisson processes
B and D, with intensities β and δ, respectively, so that they are rough isometric
a.s. Considering now two such independent Poisson processes A and B , and the
processes C and D which are coupled to them, we find that C and D are also inde-
pendent and that they are rough isometric a.s. by transitivity of the rough isometry
relation since C and A are rough isometric a.s. by our coupling, A and B are rough
isometric a.s. using (i) and B and D are rough isometric a.s. by our coupling.

By means of similar transitivity arguments, to prove that (iii) and (iv) are equiva-
lent to (i) and (ii), it is enough to establish that for any α > 0 and 0 < p < 1, a Pois-
son process A of intensity α and a Bernoulli percolation A with parameter p can
be coupled to be rough isometric a.s. We now show this. If we fix α and p to have
a coupling first sample A, then A will have a point at the integer n if and only if A
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has at least one point in the interval [nc, (n + 1)c), where c = − log(1−p)
α

is chosen
so that this is indeed a coupling. Now, define a mapping T : A → A by T (n) := xn,
where xn is some point of A in the interval [nc, (n + 1)c), say the smallest one. It
is easy to see that T is a rough isometry with constants (max(c, 1

c
), c, c) since if

n,n + k ∈ A, then (k − 1)c ≤ T (n + k) − T (n) ≤ (k + 1)c. �

4.1. Proof of Theorem 2.3. We first prove Lemma 2.4.

PROOF OF LEMMA 2.4. Let A and B be two independent Bernoulli percola-
tions on Z. First, by assumption, there exist constants (M,D,R) such that A and
B are rough isometric a.s. with constants (M,D,R). Let �1 be this event.

Second, for k, l,m ∈ Z with k < l < m, let �2
k,l,m be the event that k, l,m ∈ A, l

and m are adjacent in A (no point of A lies between them) and m − l ≥ l−k
M2 − 2D

M
.

Noting that for fixed k, we have P(�2
k,l,m) ≤ 2−(m−l)1(m−l)≥c(l−k)−C for some

C,c > 0, we get ∑
(m,l|m>l>k)

P(�2
k,l,m) ≤ ∑

(l|l>k)

2−c(l−k)+C+1 < ∞.

The Borel–Cantelli lemma then implies that with probability 1, only finitely many
�2

k,l,m occur for a fixed k.
Third, we condition on the events �1 and the event that for each k, only finitely

many �2
k,l,m occur. We fix two realizations A and B , and let T :A → B be the r.i.

between them. We will show (a deterministic claim) that there exists a cut point
for T . To see this, fix a ∈ A and let b := T (a) ∈ B , noting that if there are only
finitely many un ∈ A with un > a and T (un) < b, then if we take x to be the
largest of these un, x will satisfy (α) in the definition of cut point. Analogously, if
there were only finitely many vn ∈ A with vn > a and T (vn) > b, then (β) (in the
definition of cut point) would be satisfied for some x. Hence, we assume, by way
of contradiction, that there are infinitely many such un and vn. Since only finitely
many x ∈ A can be mapped to b, we must have infinitely many pairs v,u ∈ A,
adjacent in A with a < v < u, T (v) > b and T (u) < b. Each such pair must satisfy

u − v ≥ 1

M

(
T (v) − T (u) − D

) ≥ 1

M

(
T (v) − b − D

) ≥ 1

M

(
1

M
(v − a) − 2D

)
,

but this is a contradiction since only finitely many �2
a,l,m occur. �

PROOF OF THEOREM 2.3. (ii) → (i). Let A and B be two independent
Bernoulli percolations on Z. With probability 1

4 , they both contain 0. Conditional
on this event, let (A+,0) be the rooted Bernoulli percolation on N obtained from
A by considering only the nonnegative integers. Define similarly the independent
(A−,0) obtained by considering the nonpositive integers, and the independent
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(B+,0) and (B−,0). By (ii), there exist constants (M,D,R) such that, with posi-
tive probability, (A+,0) is rooted r.i. to (B+,0) and (A−,0) is rooted r.i. to (B−,0)

with these constants. Denote these r.i. mappings by T + and T −, respectively. Let
the map T :A → B be the map whose restriction to A+ is T + and whose restric-
tion to A− is T −. It is then easy to check directly from the definition that T is a r.i.
of A to B with constants (M,2D,R). This shows that, with positive probability,
A and B are r.i., but according to Propositions 2.1 and 2.2, A and B are r.i. with
probability 0 or 1. Hence, A and B are rough isometric a.s.

(i) → (ii). Let p be the probability that two independent rooted Bernoulli per-
colations on N are rooted r.i. We need to show that p > 0. Let A and B be two
independent Bernoulli percolations on Z. For n,m ∈ Z, let A+

n be all points of
A not smaller than n and let A−

n be all points of A not larger than n; similarly
define B+

m and B−
m . Let E+

n,m be the event that n ∈ A, m ∈ B and there ex-
ists a rooted r.i. between (A+

n , n) and (B+
m,m); similarly define E−

n,m using A+
n

and B−
m . Note that P(E+

n,m) = P(E−
n,m) = p

4 . Now, since by (i) and Lemma 2.4,
with probability 1, there exists a r.i. T :A → B with a cut point x ∈ A, we get that
P(

⋃
n,m(E+

n,m ∪ E−
n,m)) = 1. This implies that p > 0, proving the claim. �

4.2. Proof of Theorem 2.5 and related lemmas. We start with the following
proof.

PROOF OF LEMMA 2.6. Let z ∈ A be the largest point such that T (z) ≤ T (x).
Note that z must be finite [since T (0) = 0 and A is infinite] and that z ≥ y > x.
First, note that for large enough L (as a function of M and D),

z − x ≥ y − x ≥ T (x) − T (y) − D

M
≥ L − D

M
≥ L

2M
.(2)

Second, let w := Succ(z). Note that, by definition of z, we have T (w) > T (x) ≥
T (z), hence,

w − z ≥ T (w) − T (z) − D

M
>

T (x) − T (z) − D

M

≥ 1

M

(
z − x

M
− 2D

)
= z − x

M2 − 2D

M

and, by combining this inequality with (2), we see that if L is large enough (as a
function of M and D), then w − z ≥ z−x

2M2 , as required. �

We next show the following.
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PROOF OF LEMMA 2.7. For any fixed z ∈ N, P(Gap(z) ≥ k) ≤ 2−(k−1) (with
equality if k is a positive integer). Hence, by a union bound,

P(Ew
L,M) ≤

(
L

2M
+ 1

)
2−(L/(4M3)−1) +

∞∑
i=�L/(2M)�

2−(i−1)/(2M2)

≤ C

(
L

M
+ 1

)
e−cL/(M3). �

We continue with the following proof.

PROOF OF LEMMA 2.8. Letting xi ∈ A be the ith point of A and ai be the ith
point of B , we choose m so that am = max1≤i≤n T (xi) [i.e., the minimal m such
that T (A(n)) ⊆ B(m)]. First, for any x, y ∈ A(n), we have

1

M
|x − y| − D ≤ |T (y) − T (x)| ≤ M|x − y| + D,

by the properties of T . Second, to reach a contradiction, assume that for some b ∈
B(m) and for all x ∈ A(n), |T (x) − b| > L. Since T is a rooted r.i. with constants
(M,D,R), there must exist some y ∈ A, y > xn with |T (y)−b| ≤ R; furthermore,
by the minimality of m, there must exist some x ∈ A(n) with T (x) > b +L, hence
x ≤ xn < y and T (x) − T (y) ≥ L − R. By Lemma 2.6, there exists some z ∈ A,
z ≥ y and z − x ≥ L−R

2M
such that Gap(z) ≥ z−x

2M2 . But, then, in particular, z > xn

and Gap(z) ≥ max(L−R
4M3 , z−xn

2M2 ), which contradicts the fact that E
xn

L−R,M does not
hold for A. �

Finally, we have the following proof.

PROOF OF THEOREM 2.5. (i) → (ii). Let (A,0) and (B,0) be two inde-
pendent rooted Bernoulli percolations on N and let E be the event that they are
rooted r.i. with constants (M,D,R). Suppose that P(E) ≥ r for some r > 0.
On the event E, let T :A → B be such a rooted r.i. Fix n ≥ 1, let xn ∈ A be
the nth point of A, fix L > R and let E

xn

L−R,M be the event from Lemma 2.7.
Note that since xn is a stopping time for the percolation A (i.e., {xn > k} only
depends on whether i ∈ A for 0 ≤ i ≤ k) and since Ex

L,M only depends on
the future of x (i.e., on the events {i ∈ A}i>x), we have, by Lemma 2.7, that
P(E

xn

L−R,M) ≤ C(L−R
M

+ 1)e−c(L−R)/(M3) for some absolute constants C,c > 0.
Hence, for each fixed 0 < p < r , we can choose L sufficiently large (uniformly
in n) so that P(E ∩ (E

xn

L−R,M)c) ≥ p; we fix such a pair of p and L. We are now
done since, on the event E∩(E

xn

L−R,M)c, Lemma 2.8 gives that T restricted to A(n)

is a rooted r.i. of A(n) to some initial segment of B with constants (M,D,L).
(ii) → (i). Let En be the event that A(n) is rooted r.i. to some initial segment of

B with constants (M,D,R), so that by assumption that P(En) ≥ p > 0 for all n.
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Let E := lim supEn, so that, by Fatou’s lemma, P(E) ≥ lim sup P(En) ≥ p. Let
(A,B) ∈ E, that is, A and B are two realizations of rooted Bernoulli percolation
on N such that, for an infinite sequence nk → ∞ (depending on A and B), there
exists a rooted r.i. Tnk

from A(nk) to some initial segment of B with constants
(M,D,R). We now deduce that A and B are themselves rooted r.i. with constants
(M,D,R). Let xi be the ith point of A. To define T :A → B , we need to pick
ai ∈ B such that T (xi) := ai ; we do this by induction. Since x1 = 0, we also choose
a1 := 0. Assume that we have already chosen {ai}N−1

i=1 for some N ≥ 2 in such a
way that there exists an infinite sequence nj := nkj

such that Tnj agrees with T on

{xi}N−1
i=1 . To choose aN , we note that {Tnj (xN)}j is a finite set since, for example,

for each j , xN

M
− D ≤ Tnj (xN) ≤ MxN + D. Hence, we can choose aN in such a

way that it agrees with an infinite subsequence of {Tnj }j . In this way, we obtain T .
To see that T is a rooted r.i. with constants (M,D,R), we note that for each

x, y ∈ A, by our construction, there exists some k such that Tnk
agrees with T

on x and y. Hence, |x−y|
M

− D ≤ |T (x) − T (y)| ≤ M|x − y| + D. Next, we fix
b ∈ B , choose N sufficiently large that xN ≥ M(b + R + D) and choose k so
that Tnk

agrees with T on {xi}Ni=1. Since Tnk
is a rooted r.i., there exists x ∈ A

such that |T (x) − b| ≤ R. We cannot have x > XN since, otherwise, |T (x)| ≥
x
M

− D > xN

M
− D ≥ b + R. Hence, x ≤ xN and so |T (x) − b| ≤ R, as required.

This completes the proof of the theorem. �

5. The main construction. In this section, we shall prove Theorem 2.9. Let
us recall the setting. We are given two independent rooted Bernoulli percolations
(A,0) and (B,0) on N. We will show that, for any large enough n (independent
of A and B), there exists a Markov rough isometry from A(n) to some initial
segment of B with constants (10

√
log2 n,10

√
log2 n,10

√
log2 n) and with proba-

bility 1 − 2−8
√

log2 n. As explained before, existence of a Markov rough isometry
is a stronger statement than existence of a general rough isometry since Markov
rough isometries are monotone and, by Lemma 3.7, the same mapping will also
be a rooted increasing rough isometry with constants (30

√
log2 n, 1

2 ,10
√

log2 n).
The reason we construct a Markov rough isometry rather than an increasing rooted
rough isometry is that we will frequently rely on the fact that one can check the
validity of a Markov rough isometry by simply looking at local configurations (as
explained in Section 3.2).

We fix n very large. It would be convenient for us to assume that M,F and R

are integers, hence we choose 0.99 < α < 1 (depending on n) so that α
√

log2 n

is an integer. We then let M = F = R := 10α
√

log2 n. We also introduce a new

parameter, K := 2α
√

log2 n = (2M)1/10, whose use will be made clear in the sequel.
Given a sorted sequence U := (0, x1, x2, . . . , xL) ⊆ N ∪ {0} (where we allow L

to be infinite), we define some notation. For a point t ∈ U , let sU (t) or, equiva-
lently, sU

1 (t) be its successor point in U ; similarly, let sU
k (t) be its kth successor

point in U and define sU
0 (t) := t . We call the quantity gU(t) := sU (t) − t the gap
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at t . When the set U is clear from the context, we sometimes omit the superscript
and simply write sk(t) and g(t).

We will sometimes refer to U equivalently by its gap sequence {GU(i)}Li=1,
defined by GU(i) := xi − xi−1.

Let A and B be two independent rooted Bernoulli percolations (A,0) and (B,0)

on N. Note that for A and B , the sequences GA and GB are simply i.i.d. Geom(1
2)

random variables.
We shall call a gap short if it less than or equal to M , otherwise we call it long.

5.1. Partitioning into blocks. The first thing we will do is to partition A and
B into blocks (which overlap at their end points). Let us first describe this parti-
tion informally and then give a rigorous definition. Each block will consist of two
parts, a “blue” initial segment followed by a “red” segment. A blue segment is
a segment of the percolation points containing only short gaps (of length ≤ M).
A red segment is a segment of the percolation points starting with a long gap (of
length > M) and ending just before K short gaps (see Figure 5).

More formally, to define blocks in A, we define a sequence of times inductively,
T A

0 := 0, and, for each k ≥ 1,

SA
k := min{t ∈ A|t > T A

k−1, g(t) > M},
(3)

T A
k := min{t ∈ A|t > SA

k , g(si(t)) ≤ M for all 0 ≤ i ≤ K − 1}.
For each k ≥ 1, SA

k is the first point in A after T A
k−1 and immediately preceding

a gap longer than M , and T A
k is the first point in A after SA

k which precedes K

short gaps.
The points of A in the segment [T A

k−1, T
A
k ] constitute the kth block of A. In each

block, the blue segment consists of the points in [T A
k−1, S

A
k ]. By definition (except

possibly for the first block), the blue segment has at least K short gaps (and no
long gaps). It is followed by a red segment, consisting of the points in [SA

k , T A
k ],

which starts with a long gap and continues until the starting point of a run of K

short gaps (not including that run). Note that the red segment may contain many
long gaps or as few as one. Also, it must start with a long gap and end immediately
after a long gap. The first block is different from the rest since it may have less
than K gaps in its blue segment. However, letting

EA
0 := {A starts with at least K short gaps},(4)

FIG. 5. A sample of the first three blocks followed by the blue segment of the fourth block. The third
red segment has long and short gaps indicated.
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we have P(EA
0 ) = (1 − 1

2M )K ≥ 1 − K
2M = 1 − 2−9α

√
log2 n. We emphasize that,

conditioned on EA
0 , the distribution of blocks after subtracting their starting points

(or, equivalently, when looking at their gap sequences) is i.i.d. and we shall refer to
that common distribution as Lblock, or, in words, the distribution of a rooted block.

We partition B in the same way, into blocks analogously defining T B
k , SB

k

and EB
0 .

It will be useful to define the distributions of blocks and of blue and red seg-
ments precisely, which we now proceed to do.

DEFINITION 5.1. We say that X ∼ Geom≤M(1
2) if X is distributed like a

Geom(1
2) random variable conditioned to be less than or equal to M . We say that

Y ∼ Geom>M(1
2) if Y is distributed like a Geom(1

2) random variable conditioned
to be larger than M or, in other words, as M + Geom(1

2).

The following observation will be useful in the sequel. It is also true in much
greater generality.

LEMMA 5.1. The Geom≤M(1
2) distribution is stochastically dominated by the

Geom(1
2) distribution.

PROOF. Define a coupling of (X,Y ) with X ∼ Geom≤M(1
2) and Y ∼

Geom(1
2) using the following algorithm: take an infinite sequence (Zi)

∞
i=1 of i.i.d.

Geom(1
2) random variables, and let Y = Z1 and X = Zi , with i the minimal index

for which Zi ≤ M . It is then clear that X ≤ Y a.s. �

DEFINITION 5.2. For a given integer L > 0, say that U := (0, x1, x2, . . . ,

xL) ⊆ N ∪ {0} is distributed Lblue
L , or in words, distributed as a rooted blue seg-

ment of length L if (xi − xi−1)
L
i=1 are i.i.d. Geom≤M(1

2) (where x0 := 0).

LEMMA 5.2. Let B = (0, x1, . . . , xP , xP+1, . . . , xQ) be a rooted block, with
U := (0, x1, . . . , xP ) being its blue segment and (xP , xP+1, . . . , xQ) being its red
segment. Also, let V := (0, xP+1 − xP , . . . , xQ − xP ) = (0, y1, . . . , yQ−P ) be the
red segment minus its starting point. Then:

1. U and V are independent;
2. U is distributed Lblue

P , where P is a random variable distributed Geom( 1
2M )−1,

conditioned to be at least K [or, in other words, P ∼ K − 1 + Geom( 1
2M )],

independently of the lengths of the gaps in the block;
3. the distribution of V is characterized by:

(a) y1 ∼ Geom>M(1
2), independently of the other gaps;
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(b) y2, . . . , yQ−P are the concatenation of N ∼ Geom((1 − 1
2M )K) − 1 sub-

sequences which are i.i.d., given N . Each such subsequence starts with Z

gaps, each having distribution Geom≤M(1
2) independently of each other

and where Z is distributed Geom( 1
2M ) − 1, conditioned to be less than K .

The subsequence then continues with one last gap distributed Geom>M(1
2)

independently of the other gaps.

PROOF. The red segment begins at the first long gap of a block. It is clear that
knowing the lengths of all of the gaps previous to this gap does not provide any
additional information on the length of this or the following gaps.

The first, say, blue segment of A contains all of the gaps up to the first long gap
from the beginning of A. The length of this run of short gaps is Geom( 1

2M )−1 and
it is independent of the lengths of the short gaps in it. Hence, conditioned that this
run of short gaps contains at least K gaps, we obtain the characterization given in
the lemma.

The first, say, red segment of A is defined to start where the first run of short
gaps of A ends and to continue until just before a run of at least K short gaps.
Hence, it can be described in the following way. First, since it ends a run of short
gaps, it has to start with a long gap. Since the gaps in A are i.i.d. and all we know
about this gap is that it is long, its size will be independent of the size of all other
gaps [but distributed Geom>M(1

2)]. We then test to see if the following K gaps are
all short. If they are, then we end the red segment, otherwise we include the run of
short gaps coming afterward and the long gap following it in the red segment. We
now continue in the same manner with another independent trial to see if the next
K gaps are all short. If so, we end, otherwise we include them and the long gap
at their end in the red segment. These independent trials continue until we finally
find a run of at least K short gaps. Hence, the number of trials is geometric (but
we subtract one since once we succeed, we do not concatenate anything to the red
segment) and its success parameter is (1− 1

2M )K , which is the probability of seeing
K short gaps in a row. When a trial fails, it means that the number of short gaps
after it is less than K . Since, a priori, the number of short gaps is Geom( 1

2M ) − 1,

we have that Z, the number of short gaps following a failed trial, is Geom( 1
2M )−1,

conditioned to be less than K . Finally, the lengths of the short gaps themselves are
unaffected by the number of short gaps in a run, hence they are all Geom≤M(1

2),
independently of everything else. Similarly, the length of the long gap which ends
a run of short gaps is Geom>M(1

2), independently of everything else. �

DEFINITION 5.3. We say that a vector having the distribution of the vector V

of the previous lemma is distributed Lred or, in words, distributed as a rooted red
segment.
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5.2. Properties of blocks. In this subsection, we will prove some basic prop-
erties of rooted blue and red segments which will be useful for our construction in
the sequel. We start with two properties of red segments.

LEMMA 5.3. Let V ∼ Lred, X be the number of long gaps in V and {bi}Xi=1
be their lengths. There then exist β,γ > 0 such that

P

(
X >

1

8

√
log2 n

)
= o

(
1

n1+β

)
,

P

(
X∑

i=1

bi ≥ 3 log2 n

)
= o

(
1

n1+γ

)
.

PROOF. By Lemma 5.2, we know that X ∼ Geom((1 − 1
2M )K). Hence,

P

(
X >

1

8

√
log2 n

)
=

[
1 −

(
1 − 1

2M

)K]1/8
√

log2 n

≤
(

K

2M

)1/8
√

log2 n

(5)

= 2−9/8α log2 n = o

(
1

n1+β

)
for some β > 0, proving the first claim. Now, conditioned on X, the {bi}Xi=1
are i.i.d. with distribution Geom>M(1

2), that is, with distribution M + Geom(1
2).

Hence,

P

(
X∑

i=1

bi ≥ 3 log2 n|X
)

= ∑
s≥3 log2 n

∑
b1+···+bX=s

bi>M

2−∑X
i=1(bi−M)

= 2MX
∑

s≥3 log2 n

2−s#{b1 + · · · + bX = s|bi > M}

≤ 210α
√

log2 nX
∑

s≥3 log2 n

2−ssX,

so, denoting E := {X ≤ 1
8

√
log2 n}, we have, for large enough n and some C > 0,

P

({
X∑

i=1

bi ≥ 3 log2 n

}
∩ E

)
≤ 210/8α log2 n

∑
s≥3 log2 n

2−ss1/8
√

log2 n

≤ 25/4α log2 n
∑

s≥3 log2 n

2−ss1/8
√

s/3

≤ 25/4α log2 n
∑

s≥3 log2 n

2−4/5s

≤ C25/4α log2 n−12/5 log2 n = o

(
1

n1+γ̃

)
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for some γ̃ > 0. Hence, by (5), we have P(
∑X

i=1 bi ≥ 3 log2 n) ≤ o( 1
n1+β ) +

o( 1
n1+γ̃ ), proving the second claim. �

We continue with three properties of blue segments. We start with the following,
simple, lemma.

LEMMA 5.4. For a given integer L > 0 and U := (0, x1, x2, . . . , xL) ∼ Lblue
L ,

if 0 ≤ T ≤ L is a stopping time in the sense that the event {T ≤ k} depends only on
{xi}ki=1, then, conditioned on T , on the event {T < L}, the partial rooted segment
V := (0, xT +1 − xT , . . . , xL − xT ) is distributed Lblue

L−T .

PROOF. Consider the gap sequence GU = (x1, x2 − x1, . . . , xL − xL−1). By
definition, its elements are i.i.d. Geom≤M(1

2). If we let Ak := {T = k} for k < L

and B be an event that depends only on (xk+1 −xk, . . . , xL −xk), then, since Ak is
determined by (x1, . . . , xk) and these are, in turn, determined by (x1, x2 − x1, xk −
xk−1), we have that Ak and B are independent. Hence, conditioned on Ak , the
probability of B remains the same, implying that (xk+1 − xk, . . . , xL − xk) are still
i.i.d. Geom≤M(1

2), proving the claim. �

LEMMA 5.5. Fix integers L,Z > 0 and let U := (0, x1, . . . , xL) ∼ Lblue
L . Di-

vide the points of U into subsegments according to the following algorithm: the
first subsegment consists of (0, x1, x2, . . . , xl1) with l1 maximal such that xl1 ≤ Z;
by induction for i ≥ 2, the ith subsegment consists of (xli−1+1, . . . , xli ) with li max-
imal such that xli − xli−1+1 ≤ Z. Let Y be the number of subsegments required to
cover all L points. We claim that

P

(
Y >

3L

Z

)
≤ e−cL

for some c > 0.

PROOF. First, note that the event Y > m is contained in the event xL > mZ.
Hence, P(Y > 3L

Z
) ≤ P(

∑L
i=1 Gi > 3L), where the Gi are i.i.d. Geom≤M(1

2) ran-
dom variables. Since a Geom≤M(1

2) random variable is stochastically dominated
by a Geom(1

2) random variable, by Lemma 5.1, we get, by standard large deviation
estimates, that P(

∑L
i=1 Gi > 3L) ≤ e−cL for some c > 0, as claimed. �

The following lemma is a major ingredient in our rough isometry construction.

LEMMA 5.6. Let (Gi)
∞
i=1 be i.i.d. Geom≤M(1

2) random variables, termed
gaps. Let m > 0, M > a1, . . . , am > 0 and d1, . . . , dm−1 ≥ 0 be given integers.
We consider the {ai} as representing minimal required gap lengths and the {di}
as representing inter-gap distances. Say that a position l is valid if Gl ≥ a1,
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FIG. 6. A comb at two nonoverlapping positions.

Gl+d1+1 ≥ a2, Gl+d1+1+d2+1 ≥ a3, . . . ,Gl+m−1+∑m−1
i=1 di

≥ am. If we let Z be the

minimal valid position, then, for any a > 0 and s := ∑m
i=1 ai ,

P(Z > �a2s�) ≤ e−a/m2
.

PROOF. Let Il be the event that l is a valid position. Then

P(Il) =
m∏

i=1

(
1

2ai−1 − 1

2M

)/(
1 − 1

2M

)
≥

m∏
i=1

1

2ai
= 1

2s
.

For a given position l, let us denote by Cl := (l, l + d1 + 1, . . . , l + m − 1 +∑m−1
i=1 di) the comb at position l and say that two positions l, k overlap if their

combs intersect, that is, if Cl ∩ Ck �= ∅ (see Figure 6). Note that if F ⊆ N is a
subset of positions, no two of which overlap, then {Il}l∈F are independent.

Fixing an integer N > 0, to bound P(Z > N), we wish to choose a large collec-
tion of positions F ⊆ {1, . . . ,N}, no two of which overlap. We note that a given
comb Cl may only intersect at most m(m − 1) other combs Ck since each over-
lapping position k uniquely determines a pair of coordinates 1 ≤ i, j ≤ m, i �= j ,
such that the ith coordinate of Cl is equal to the j th coordinate of Ck by, say, the
smallest element of Cl ∩ Ck . Hence, we can find such a collection F with, say,
|F | ≥ � N

m2 �, by means of a greedy algorithm. Thus, we obtain the bound

P(Z > N) ≤ P

(⋂
l∈F

I c
l

)
= ∏

l∈F

(
1 − P(Il)

)

≤
(

1 − 1

2s

)�N/m2�
≤ e−2−s�N/m2�

and the claim follows by taking N := �a2s�. �

REMARK 5.1. We point out that in the notation of the previous lemma, the
position Z + m − 1 + ∑m−1

i=1 di is a stopping time for the process {Gi}∞i=1.

5.3. The construction. A major part of the construction of the rough isometry
between A and B will be constructing a rough isometry between a block of A and
the beginning of a blue segment of B or, alternatively, constructing a rough isome-
try between the beginning of a blue segment of A and a block of B . The following
theorem gives conditions under which this is possible with high probability.
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THEOREM 5.7. Fix integers L1,L2 satisfying L2 ≥ max(K,L1) and L1 ≥ K
2 .

Let U1 := (0, x1
1 , . . . , x1

L1
) ∼ Lblue

L1
, U2 := (0, x2

1 , . . . , x2
L2

) ∼ Lblue
L2

and V : (0, y1,

. . . , yN) ∼ Lred, where N is random, with U1,U2,V independent. Construct
the segment W := (0, x1

1 , . . . , x1
L1

, x1
L1

+ y1, . . . , x
1
L1

+ yN) by concatenating U1

and V . There then exists a random integer 1 ≤ S ≤ L2 which is a stopping time for
U2 conditioned on W . That is, the event {S ≤ l} is measurable with respect to W

and {x2
i }li=1, satisfying the conditions that if E = {S ≤ max(K

2 , L1√
log2 n

)}, then:

(i) P(E) = 1 − o( 1
n1+δ ) for some δ > 0;

(ii) on the event E, there exists a Markov rough isometry T1 from W to U2 ∩
[0, x2

S] with constants (M,F,R) such that the last point of W is mapped to x2
S and

it is the only point mapped to x2
S ;

(iii) on the event E, there exists a Markov rough isometry T2 from U2 ∩ [0, x2
S]

to W with constants (M,F,R) such that x2
S is mapped to the last point of W and

it is the only point mapped to the last point of W .

Let us show how to prove Theorem 2.9 using Theorem 5.7. We first require the
following definition.

DEFINITION 5.4. For a given integer L ≥ 0, a sorted infinite sequence U :=
(x1, x2, x3, . . .) ⊆ N∪{0} is said to be distributed as a Bernoulli percolation with L

initial short gaps if the rooted sequence V := (0, x2 −x1, x3 −x1, . . .) is distributed
as a rooted Bernoulli percolation on N conditioned to have its first L gaps short
and its next gap long.

The proof is by induction: for each stage 0 ≤ j ≤ n, we shall have an event
Ej denoting whether or not the j th stage was successful, with P(Ej |{Ei}j−1

i=0 ) =
1 − o( 1

n1+δ ) for j ≥ 1 and P(E0) ≥ 1 − 2−9α
√

log2 n+1. Conditioned on
⋂j

i=0 Ei ,
the following random variables are defined:

(i) two positions P A
j ∈ A and P B

j ∈ B , with P A
j ≥ sA

j (0);

(ii) a Markov rough isometry Tj :A ∩ [0,P A
j ] → B ∩ [0,P B

j ] with constants

(M,F,R) satisfying Tj (P
A
j ) = P B

j , with P A
j being the only source of P B

j ;

(iii) two numbers LA
j and LB

j , with max(LA
j ,LB

j ) ≥ K and min(LA
j ,LB

j ) ≥ K
2 .

Also, conditioned on all of these random variables, the distribution of A∩[P A
j ,∞)

is that of a Bernoulli percolation with LA
j initial short gaps and, independently, the

distribution of B ∩ [P B
j ,∞) is that of a Bernoulli percolation with LB

j initial short
gaps.

This implies Theorem 2.9 since if all events {Ej }nj=0 occur, then Tn :A ∩
[0,P A

n ] → B ∩ [0,P B
n ] is a Markov rough isometry with constants (M,F,R)
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FIG. 7. Illustration of the mapping of the first percolation into the other using the induction
procedure. The blue and red segments of blocks are depicted as in Figure 5. In this example,
LA

0 ≥ LB
0 ,LA

1 ≤ LB
1 , . . . .

and P A
n ≥ sA

n (0), and hence, by Proposition 3.8, we know that its restriction to
the first n points of A is a Markov r.i. to some initial segment of B with con-
stants (M,F,R), as the theorem requires. The probability that {Ej }nj=0 occur is at

least (1 − 2−9α
√

log2 n+1)(1 − o( 1
n1+δ ))

n > 1 − 2−8
√

log2 n for large enough n, as
required.

Let us show the above induction (see Figure 7). For j = 0, the event E0 :=
EA

0 ∩EB
0 [recall (4)], P A

j = P B
j = 0, T0 is just defined on 0 ∈ A by T0(0) = 0 and,

on the event E0, we let LA
0 be the length of the first blue segment of A and LB

0 be
the length of the first blue segment of B . It is easy to see that all of the properties
stated above hold.

Now, suppose that {Ei}j−1
i=0 have occurred and that we have already constructed

the above random variables up to stage j − 1 with the above properties. We con-
dition on

⋂j−1
i=0 Ei,P

A
j−1,P

B
j−1, Tj−1,L

A
j−1 and LB

j−1. There are two cases to con-
sider:

1. LB
j−1 ≥ LA

j−1 [note that this also implies LB
j−1 ≥ K , by property (iii) above].

Let QA
j := sLA

j−1
(P A

j−1), QB
j := sLB

j−1
(P B

j−1). By the induction assumption, the

segment A ∩ [P A
j−1,Q

A
j ] translated to start at 0 is distributed Lblue

LA
j−1

and the

segment B ∩ [P B
j−1,Q

B
j ] translated to start at 0 is distributed Lblue

LB
j−1

. Let P A
j

denote the end of the red segment which follows A ∩ [P A
j−1,Q

A
j ], that is,

P A
j := min{x ∈ A|x > QA

j , g(si(x)) ≤ M for all 0 ≤ i ≤ K − 1},
and let LA

j be the number of short gaps of A after P A
j , that is,

LA
j := max{N |g(si(P

A
j )) ≤ M for all 0 ≤ i ≤ N − 1}.
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Note that, by definition of P A
j , we have LA

j ≥ K . We now invoke Theorem 5.7

with the following parameters: U1 is the segment A ∩ [P A
j−1,Q

A
j ] translated

to start at 0, V is the segment A ∩ [QA
j ,P A

j ] translated to start at 0 and U2 is

the segment B ∩ [P B
j−1,Q

B
j ] translated to start at 0 (W is then A ∩ [P A

j−1,P
A
j ]

translated to start at 0). The theorem gives us S, which is a stopping time for
U2 conditioned on U1 and V . Let Ej be the event E of that theorem, that is,

Ej :=
{
S ≤ max

(
K

2
,

LA
j−1√

log2 n

)}
.

According to part (ii) of that theorem, on the event Ej , we have a Markov
rough isometry T̃j :W → U2 ∩ [0, sS(0)] with constants (M,F,R). Let
P B

j := sS(P B
j−1) and LB

j := LB
j−1 − S, and note that, on the event Ej ,

LB
j ≥ max(LA

j−1,K) − S ≥ 1
2 max(LA

j−1,K) ≥ K
2 . Finally, to construct Tj we

“concatenate” Tj−1 and T̃j , that is,

Tj (x) :=
{

Tj−1(x), x ∈ A,x ≤ P A
j−1,

T̃j (x − P A
j−1) + P B

j−1, x ∈ A,P A
j−1 ≤ x ≤ P A

j .

Note that Tj is indeed a Markov rough isometry with constants (M,F,R) since
Tj−1 and T̃j are, and since there is a unique preimage to P B

j−1. Also note that
by Lemma 5.4, we have that, conditioned on Ej and S, the distribution of B ∩
[P B

j ,∞) is that of a Bernoulli percolation with LB
j initial short gaps. Hence,

Ej , P A
j , P B

j , Tj , LA
j and LB

j satisfy the requirements of the induction step.

2. LA
j−1 ≥ LB

j−1. The induction step in this case is performed in the same way as
in the first case, but with the roles of A and B interchanged and using part (iii)
of Theorem 5.7 instead of part (ii).

All that remains is to prove Theorem 5.7, which we now do.

PROOF OF THEOREM 5.7. We divide the proof into several parts:

1. First, consider U1. Applying the algorithm of Lemma 5.5 to U1 with Z = F ,
we obtain a division of U1 into Y subsegments. Denote these by U1

1 , . . . ,U1
Y .

If we let �1 := {Y ≤ 3L1
F

}, then, by Lemma 5.5, there exists a c > 0 such that

P(�c
1) ≤ e−cL1 ≤ e−cK/2.

2. Now, consider V . Let X be the number of long gaps in V and let {bi}Xi=1 be their
lengths. Let �2 := {X ≤ 1

8

√
log2 n} and �3 := {∑X

i=1 bi ≤ 3 log2 n}. Then, by
Lemma 5.3, for some β,γ > 0,

P(�c
2) ≤ o

(
1

n1+β

)
,

(6)

P(�c
3) ≤ o

(
1

n1+γ

)
.
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3. We continue to consider V . Let (zi)
X
i=1 ⊆ V be the starting points of the long

gaps in V (z1 = 0), that is, g(zi) > M for all i. They divide V into X − 1
subsegments, V 1 := V ∩ [s(z1), z2], . . . , V X−1 := V ∩ [s(zX−1), zX]. By the
(structure) Lemma 5.2, we know that each subsegment conditioned on its length
and translated to start at 0 is distributed as a blue segment of that length. Let us
again employ the algorithm of Lemma 5.5 with Z = F to each of these subseg-
ments to divide them further into “sub-subsegments.” Let Yi be the number of
sub-subsegments in the division of V i and denote them by (V i

j )
Yi

j=1 (for each

j , V i
j ⊆ V i). Let �4 := {∑X−1

i=1 Yi ≤ K
20}. To bound

∑X−1
i=1 Yi , we consider the

blue segment Ṽ obtained from V by deleting all of its long gaps and translating
to start at 0. More precisely, write V i = (yi

0, . . . , y
i
Ni ), where Ni is the number

of gaps in V i , let Ṽ i := (0, yi
1 − yi

0, . . . , y
i
Ni − yi

0) =: (0, ỹi
1, . . . , ỹ

i
Ni ) and then

define

Ṽ :=
(

0, ỹ1
1 , . . . , ỹ1

N1︸ ︷︷ ︸
Ṽ 1

, ỹ2
1 + ỹ1

N1, . . . , ỹ
2
N2 + ỹ1

N1︸ ︷︷ ︸
Translated Ṽ 2

, . . . ,

ỹX−1
1 +

X−2∑
j=1

ỹ
j

Nj , . . . , ỹ
X−1
NX−1 +

X−2∑
j=1

ỹ
j

Nj︸ ︷︷ ︸
Translated Ṽ X−1

)
.

Ṽ is a blue segment as a concatenation of many independent blue segments.
We also apply the algorithm of Lemma 5.5 to Ṽ with Z = F to divide it into Ỹ

subsegments. It is clear from the algorithm that Ỹ ≤ ∑X−1
i=1 Yi , but since, in the

passage from V to Ṽ , we only removed X long gaps, one must also check that
X−1∑
i=1

Yi ≤ Ỹ + X.(7)

We recall that N is the number of gaps in V and note that by the (structure)
Lemma 5.2, N ≤ 1 + K(X − 1) ≤ KX. We wish to show that

P

(
Ỹ >

K

21

)
= o

(
1

n1+β

)
.(8)

For this, we divide the problem into three cases:

• N > KF
70 . This implies that X > F

70 > 1
8

√
log2 n, which we know, by (6), to

have probability at most o( 1
n1+β ).

• KF
70 ≥ N > K

21 . Applying Lemma 5.5, we have

P

(
Ỹ >

K

21
,
KF

70
≥ N >

K

21

)
≤ P

(
Ỹ >

3N

F
,
KF

70
≥ N >

K

21

)
≤ Ee−cN1(KF/70≥N>K/21) ≤ e−cK/21.
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• N ≤ K
21 . On this event, we certainly must have Ỹ ≤ K

21 ,

and (8) follows. Using (6), (7) and (8), we deduce, for large enough n, that

P(�c
4) ≤ P

(
Ỹ >

K

21

)
+ P(�c

2) = o

(
1

n1+β

)
.

4. We now consider the gap sequence G := GU2 = (gi)
L2
i=1 of U2 and the se-

quence G̃ := (gi)
∞
i=Y (Y was defined in the first item of the proof), where we

have extended the sequence to be infinite by concatenating an i.i.d. sequence
(gi)

∞
i=L2+1 of Geom≤M(1

2) random variables, independent of everything else.

We apply Lemma 5.6 to G̃ with the parameters m = X,ai := � bi

M
� (recall that

{bi}Xi=1 are the lengths of the long gaps of V ) and di = Yi − 1, to obtain Z, the
first valid position along G̃ (“valid position” was defined in the lemma). Let

�5 := {Z ≤ K3/4}. Let s := ∑X
i=1 ai and choose a := 21/4

√
log2 n. Then, by the

lemma,

P(Z > �a2s�|X, {bi}Xi=1, {Yi}X−1
i=1 ) ≤ e−a/X2

.

Since, on the events �2 and �3, we have s ≤ 3 log2 n

M
+ X ≤ 9

20

√
log2 n, we

obtain, for large enough n,

P(Z > K3/4,�2,�3|X, {bi}Xi=1, {Yi}X−1
i=1 )

≤ P(Z > �a2s�,�2,�3|X, {bi}Xi=1, {Yi}X−1
i=1 ) ≤ e−a/X2

.

Hence, P(�c
5) = o( 1

n1+β ) + o( 1
n1+γ ).

5. Finally, we construct the required time S, event E and Markov rough isometries
T1 and T2. We define

S := Y + Z + X +
X−1∑
i=1

(Yi − 1) = Y + Z + 1 +
X−1∑
i=1

Yi.

We note that, just as in Remark 5.1, conditioned on W [in particular, on Y,X

and (Yi)
X−1
i=1 ], the time S is a stopping time for U2. We define the event

Ẽ := �1 ∩ �2 ∩ �4 ∩ �5.

Note that, by the previous calculations, P(Ẽc) = o( 1
n1+δ ) for some δ > 0. On

the event Ẽ, we have

S ≤ 3L1

F
+ K3/4 + 1 + K

20
≤ max

(
K

2
,

L1√
log2 n

)
,

hence the event E of the theorem satisfies E ⊇ Ẽ. On the event E, we now
construct T1 (see Figure 8). T2 is constructed analogously, using the fact that
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FIG. 8. Illustration of the constructed rough isometry. In the picture, Y = 7 and X = 3. When
mapping U1 to U2, we start mapping points one-to-one rather than many-to-one, starting from
subsegment j0 := 4.

R = F . First, we define T1 on the points of U1 in such a way that T1(x
1
L1

) =
x2
Y+Z . Note that, on the event E,

L1 − Y = L1 − S + Z + 1 +
X−1∑
i=1

Yi

(9)

≥ L1 − max
(

K

2
,

L1√
log2 n

)
+ Z ≥ Z

since L1 ≥ K
2 . We start mapping the points of U1 to U2 according to the subseg-

ment U1
j that the point of U1 is in. More precisely, we consider all of the points

of U1 in order and if a point x1
i ∈ U1

j , then we define T (x1
i ) := x2

j−1 (where

x2
0 is defined to be 0). By the definition of the subsegments (U1

j )Yj=1, for all j ,

we will have maxT −1(x2
j−1) − minT −1(x2

j−1) ≤ F , as required. Furthermore,

since x1
i+1 −x1

i ≤ M for all i and x2
j+1 −x2

j ≥ 1, we will not expand or contract
any distance by more than M . We stop mapping in this way when we reach a
point x1

i0
belonging to U1

j0
which satisfies L1 − i0 = Y + Z − (j0 − 1). Such a

point must be reached for some 0 ≤ i0 ≤ L1, by (9). From this point on, we map
the points sequentially as follows: T (x1

i0+l) := x2
j0−1+l for 0 ≤ l ≤ L1 − i0. As

before, no distances are expanded or contracted by more than M .
We continue to define T1 at the points of W which follow x1

L1
(the translated

points of V ). Recalling that (zi)
X
i=1 ⊆ V are the starting points of the long gaps

in V (the corresponding points of W are zi + x1
L1

), we construct the remainder
of the mapping T1 by induction on 1 ≤ j ≤ X. Note that since z1 = 0, we
have already defined T1(z1 + x1

L1
) = x2

Y+Z . Define further T1(s(z1 + x1
L1

)) :=
x2
Y+Z+1; this is the j = 1 stage. Note that by the definition of Z, we did not

contract the gap of W by more than M (and, of course, we did not expand it
since we mapped to a short gap).

For 2 ≤ j ≤ X, let Rj := ∑j−1
i=1 Yi . Suppose that we have already con-

structed the mapping T1 to be a Markov rough isometry with constants
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(M,F,R) from W ∩ [0, s(zj−1 + x1
L1

)] to U2 ∩ [0, x2
Y+Z+1+Rj−1

] in such a

way that T1(s(zj−1 + x1
L1

)) = x2
Y+Z+1+Rj−1

and that it is the only source of

x2
Y+Z+1+Rj−1

. Recall that we have divided the subsegment V j−1 into sub-

subsegments (V
j−1
k )

Yj−1
k=1 and consider a point xl ∈ W ∩ [s(zj−1 + x1

L1
), zj +

x1
L1

]. There then exists some k such that xl − x1
L1

∈ V
j−1
k . Define T1(xl) :=

x2
Y+Z+1+Rj−1+(k−1). Note that this is consistent with the definition of s(zj−1 +

x1
L1

), that T1(zj + x1
L1

) = x2
Y+Z+Rj

, that by the choice of the sub-subsegments

for each point x2
l ∈ U2 ∩ [x2

Y+Z+1+Rj−1
, x2

Y+Z+Rj
], we have maxT −1

1 (x2
l ) −

minT −1
1 (x2

l ) ≤ F , and that since we are mapping gaps not larger than M to
gaps of size between 1 and M , no distance was expanded or contracted by
more than M (whenever two points are mapped to different images). Finally,
define T1(s(zj +x1

L1
)) := x2

Y+Z+1+Rj
. Again, by the choice of Z, this mapping

did not contract the gap of W by more than M (and, of course, we did not ex-
pand it since we mapped to a short gap). Continuing this procedure until j = X

completes the construction of the map T1 :W → U2 ∩ [0, x2
S], as required. �
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