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PROPORTIONAL FAIRNESS AND ITS RELATIONSHIP WITH
MULTI-CLASS QUEUEING NETWORKS

BY N. S. WALTON1

University of Cambridge

We consider multi-class single-server queueing networks that have a
product form stationary distribution. A new limit result proves a sequence
of such networks converges weakly to a stochastic flow level model. The
stochastic flow level model found is insensitive. A large deviation principle
for the stationary distribution of these multi-class queueing networks is also
found. Its rate function has a dual form that coincides with proportional fair-
ness. We then give the first rigorous proof that the stationary throughput of a
multi-class single-server queueing network converges to a proportionally fair
allocation.

This work combines classical queueing networks with more recent work
on stochastic flow level models and proportional fairness. One could view
these seemingly different models as the same system described at different
levels of granularity: a microscopic, queueing level description; a macro-
scopic, flow level description and a teleological, optimization description.

1. Introduction. In this paper we form descriptions of multi-class single-
server queueing networks at different levels of granularity. Similar descriptions
of electrical networks have been well studied and provide a good analogue of the
results proven in this paper.

One could form a Markov chain model of electrons in an electrical network.
At this first level, one explicitly describes the location of particles. Transitions
within the network occur rapidly, so perhaps it is more natural to consider results
like Ohm’s law and Kirchhoff’s law which are concerned with the current flowing
through the network. At this second level, one considers the average flow of parti-
cles through the network. An electrical network also minimizes energy dissipation,
as described by Thomson’s principle (primal) and Dirichlet’s principle (dual). At
this third and final level, one considers the network to be acting as an optimizer.
For further discussion see Kelly [14], Section 2, and Doyle and Snell [7], Section 1.

Just as we consider electrons, current and energy minimization in an electrical
network, respectively, in a model of a packet switched network we consider pack-
ets, bandwidth and utility optimization. Following Shah and Wischik [24], we will
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use the terms microscopic, macroscopic and teleological to refer to these differ-
ent descriptions of our network. Microscopic refers to a detailed description of a
network’s state though gives little insight into overall dependence. Macroscopic
refers to an averaged view of the original network. Teleological considers a fur-
ther abstracted view where the network can be seen to be acting globally as an
optimizer.

In this paper our microscopic model will be product form single-server multi-
class queueing networks [11]; our macroscopic model will be a specific stochastic
flow level model [2, 3, 8, 18, 19, 21] and our teleological model will be the pro-
portionally fair optimization problem [15, 25]. The main results of this paper are
concerned with forming rigorous connections between these different models.

The first result of this paper is concerned with connecting our microscopic
model to our macroscopic model. Stochastic flow level models for an intuitive
model of document transfer across a packet switched network. Despite this no rig-
orous convergence proof has been constructed to justify a stochastic flow level
model as the limit of a packet switching network. In Theorem 3.1 we construct a
proof to address this issue. We view a sequence of multi-class queueing networks
as a simplistic model of document transfer across a packet switching network,
and we prove weak convergence in the Skorohod topology of these networks
to a specific stochastic flow level model. We call the resulting stochastic flow
level model the spinning network. The spinning network was first considered by
Massoulié [21], Section 3.4, and formed the first insensitive stochastic flow level
model. Insensitivity results on this model are given by Proutière [21] and Bonald
and Proutière [3].

The second result of this paper is concerned with connecting both our micro-
scopic and macroscopic models to our teleological model. In particular, in Theo-
rems 6.1 and 7.2, we give the first rigorous proofs of a mathematical relationship
between multi-class networks of single-server queues and proportional fairness.
An argument justifying such a relationship has been made by Schweitzer [23],
Kelly [13] and Massoulié and Roberts [19]. This noteworthy argument, presented
in Section 5, considers the constraints that a queueing network may impose on
transfer rates. Here we take a different approach and provide a rigorous proof us-
ing large deviations and convex duality. The use of large deviations is motivated
by the relationship between balanced fairness and proportional fairness found by
Massoulié [17]. In addition, Pittel [20] has considered the large deviations of multi-
class queueing networks but does not derive proportional fairness.

To prove Theorem 6.1 we consider a large deviations principle for the stationary
distribution of a multi-class single-server queueing network and find a rate func-
tion β(·). Applying the Contraction Principle, we gain a new rate function α(·),
expressed as a convex optimization problem. In primal form, α(·) is interpreted as
minimizing entropy subject to constraints. We find that the dual form of α(·) is,
up to a constant, the proportionally fair optimization problem. These arguments
give Theorem 6.1. With this we are able to prove Theorem 7.2. Theorem 7.2 states
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FIG. 1. Structure of the paper’s results.

that the stationary throughput of a closed multi-class queueing network converges
to a proportionally fair allocation as the number of customers (or packets) is in-
creased in proportion to some fixed vector. Proportionally fair optimization occurs
because the states of the queueing network collapse to a set of entropy minimiz-
ing states with proportionally fair throughput. These results are analogous to the
heavy-traffic notion of state space collapse [4, 16, 24]. These results emphasize a
large deviations duality between network state and network flow. Please see Fig-
ure 1 for a diagram of the structure of these results and the sections that they are
contained in.

In addition, the multi-class queueing networks considered in this paper are
known to be quasi-reversible and thus have a product form equilibrium distrib-
ution [11]. The equivalence between reversibility and insensitivity is well studied
[3, 21, 22, 26]. Our macroscopic model, the spinning network, inherits the re-
versibility property from these multi-class queueing networks and thus, as has been
observed by Massoulié, the spinning network is insensitive. Thus for multi-class
queueing networks we find at each different level of granularity a different feature
of the system can be observed: product form at the microscopic level; insensitivity
at the macroscopic level and proportional fairness at the teleological level.

Observations on insensitivity and the product form stationary behavior of pro-
portional fairness have previously been made. By considering balanced fairness,
the connection between insensitivity and proportional fairness has been given by
Massoulié [17]. Also, motivated by diffusion approximation behavior in queueing
networks, Kang, Kelly, Lee and Williams [9, 10, 16] considered heavy-traffic ap-
proximations of stochastic flow level models operating under proportional fairness
and found them to have a product form stationary distribution.

A final observation is that the multi-class queueing networks considered here
have no prescribed optimization structure. Thus it is surprising to see that asymp-
totically these networks are implicitly solving a utility optimization problem.

1.1. Organization. The sections of the paper are structured as follows. In the
next subsection we introduce notation, define proportionally fair bandwidth alloca-
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tions and the proportionally fair optimization problem. In Section 2 we define the
multi-class queueing networks considered in this paper and state results on their
stationary distribution. In Section 3 we introduce stochastic flow level models,
define the spinning network and state Theorem 3.1. In Section 4 we discuss the re-
versibility, insensitivity, stability and stationary behavior of the spinning network.
In Section 5 we present the argument given by Schweitzer [23], Kelly [13] and
Massoulié and Roberts [19] relating proportional fairness and multi-class queueing
networks. In Section 6 we consider the large deviations behavior of the multi-class
single-server queueing networks presented in Section 2 and prove Theorem 6.1. In
Section 7 we discuss the collapse in state space brought about by large deviations
principle Theorem 6.1 and prove convergence of stationary throughput in Theo-
rem 7.2. In the Appendix we give the proof of Theorem 3.1 and prove additional
lemmas and propositions from within the text.

1.2. Notation: Network structure and proportional fairness. We let a finite set
J index the set of queues in a network. Let J = |J |. A route through the network
is a nonempty set of queues. Let I ⊂ 2J be the set of routes. Let I = |I|. For each
route i = {j i

1, . . . , j
i
ki
} ∈ I , we associate an order (j i

1, . . . , j
i
ki
). Also we define the

set of queue-route incidences, K := {(j, i) : i ∈ I, j ∈ J , j ∈ i} and let K = |K|.
We will view our multi-class queueing network model as transferring a number
of documents across the different routes of the network. In Sections 2, 3, 4 and
Appendix A.1, the vector n = (ni : i ∈ I) ∈ Z

I+ will be used to refer to the number
of documents in transfer across the routes of the network. When referring to large
deviations characteristics, in Sections 6 and 7, n = (ni : i ∈ I) ∈ R

I+ will be used to
refer to the proportion of documents in transfer across routes. We will consider the
documents in our multi-class queueing network to be transferred by packets which
will traverse the network. Each document on each route will have only one packet
in transfer across the network at any point in time. Thus, given our description
of n, the total number (or proportion) of packets in transfer across route i will
be ni . We also consider the vector m = (mji : (j, i) ∈ K) ∈ R

K+ . In Sections 2, 3, 4
and Appendix A.1, mji ∈ Z+ will be used to refer to the number of packets in
transfer across route i that are at queue j . Similarly in Sections 6 and 7, mji ∈ R+
will be used to refer to the proportion of the packets in transfer, that are on route i

and in queue j . Because each packet in transfer will correspond to a document we
have that

ni = ∑
j : j∈i

mji ∀i ∈ I.

We define the number (or proportion) of packets at a queue to be

mj := ∑
i : j∈i

mji ∀j ∈ J .
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For each n ∈ Z
I+ we define S(n) = {m ∈ Z

K+ :
∑

j : j∈i mji = ni ∀i ∈ I}, the set of
queue states achievable given the number of documents in transfer.

With each queue j ∈ J we associate a service capacity Cj . A bandwidth al-
location is a vector �(n) = (�i(n) : i ∈ I) ∈ R

I+ for each n ∈ Z
I+. A bandwidth

allocation is said to be feasible, if ∀n ∈ Z
I+∑

i : j∈i

�i(n) ≤ Cj ∀j ∈ J .

A bandwidth allocation corresponds to the rate documents are transferred across
their route given the number of documents in transfer. Bandwidth allocations form
an abstraction of the stationary transfer rate achieved by rate control algorithms
used, for example, in the internet.

A bandwidth allocation �PF(n) is proportionally fair [15] if ∀n ∈ R
I+,

�PF
i (n) = 0 when ni = 0 and �PF(n) solves

maximize
∑
i∈I

ni log�i,(1.1)

subject to
∑

i : j∈i

�i ≤ Cj ∀j ∈ J ,(1.2)

over �i ≥ 0 ∀i ∈ I.(1.3)

For all vectors x ∈ R
d we define �x� := (�x1�, . . . , �xd�), the lower integer

part of each component. Unless stated otherwise ‖x‖ = maxd ′ |xd ′ |, the supremum
norm. Finally, we will define that for each m ∈ Z

K+(
mj

mji : i � j

)
= mj !∏

i : j∈i (mji !) .

2. A microscopic queueing model. In this section we introduce our micro-
scopic model. The queueing networks considered here are exactly the networks
with fixed service capacity described in Sections 3.1 and 3.4 of Kelly [11]. We in-
terpret these multi-class queueing networks as a Markov chain model of document
transfer across a packet switching network. This interpretation has previously been
considered by Massoulié and Roberts [19] and Bonald and Proutière [3]. Doc-
uments wishing to be transferred across a network are broken into a number of
packets. The document’s packets are then sent across the network one by one, so
that a new packet is sent into the network once the packet in the network has com-
pleted its route. We define our queueing model in the next three paragraphs and
call it an open multi-class queueing network with spinning.

We consider a network of queues indexed by the set J queues process packets.
Each packet moves along a fixed route from the set I . Each queue j ∈ J may
store an infinite number of packets and has a fixed service capacity Cj ∈ (0,∞).
Each packet at a queue has a position in that queue, for example, if there are mj



2306 N. S. WALTON

packets at queue j then these packets are stored in positions k = 1, . . . ,mj . The
total service capacity of a queue is then divided between the different packets at
the queue. Each queue operates under a service discipline that cannot discriminate
between the routes used by its packets. More explicitly there exists a function
γj (k,mj ) that gives the proportion of service devoted to the packet in position k

in queue j when there are mj packets at queue j . As γj represents a proportion

mj∑
k=1

γj (k,mj ) = 1 ∀mj > 0.(2.1)

Similarly when joining a queue a packet may only chose its position as a function
of the number of packets at that queue. These service disciplines are described in
Kelly [11], pages 58–60, and, for example, include first in first out, last come first
served, processor sharing, and symmetric queues.

Documents for transfer on route i ∈ I arrive as a Poisson process of rate νi .
Each route i document consists of a discrete number of packets. This number is
independent, finite mean and with distribution equal to random variable Xi . We
let μi = (EXi)

−1 and let ρi = νi

μi
for all i ∈ I . Each packet has an independent,

exponentially distributed mean 1 service requirement at each queue.
Consider route i ∈ I with route order (j i

1, . . . , j
i
ki
). If we wish to transfer a

document across route i, a packet is sent along route i. It will first join queue j i
1.

For k = 1, . . . , ki − 1 on departing queue j i
k a packet will join queue j i

k+1. When a
packet leaves its final queue j (i) = j i

ki
, a new packet is sent along route i until all

packets in the document are transferred.
Equivalently, one could think of each document being transferred by a single

packet which repeats its route with some probability. This probability only depends
on the number of repetitions of its route the packet has made so far. This interpre-
tation motivates the use of the word “spinning.” These models are equivalent to the
networks with fixed service capacity considered in Kelly [11], Section 3.1. All the
results above and all the proportional fairness results in Sections 6 and 7 apply to
this case.

We could explicitly describe the state of this network by recording the position
of each packet at each queue, the route used by these packets, the number of rep-
etitions such packets have made on their route and the total number of repetitions
these packets must make. As noted in [11], the stochastic process recording this
information is a Markov chain. We will not be interested in this explicit descrip-
tion. We will be interested in simpler quantities, namely the number of documents
in transfer across routes, the number of packets in transfer on each route at each
queue and the throughput of packets of each route at each queue. In general, the
processes associated with these quantities will not be Markov.

We now consider the stationary distribution of this model. The following result
is a direct consequence of the Theorem 3.1 of Kelly [11].
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PROPOSITION 2.1. An open multi-class queueing network with spinning is
ergodic if and only if ∑

i : j∈i

ρi < Cj ∀j ∈ J .(2.2)

When ergodic, M = (Mji : (j, i) ∈ K), the number of packets in transfer across
each route at each queue, has stationary distribution,

P(M = m) = B−1
∏
j∈J

((
mj

mji : i � j

) ∏
i : j∈i

(
ρi

Cj

)mji
)

(2.3)

for each m ∈ Z
K+ , where

B := ∏
j∈J

(
Cj

Cj − ∑
i�j ρi

)
.(2.4)

PROOF. Allow the state of a packet to be given by the packet’s route, the
packet’s position in its current queue, the total number of repetitions the packet
makes of its route and the number of repetitions currently made. From this we have
a Markov chain of the form described in Section 3.1 of [11]. Applying Theorem 3.1
of [11] to find the stationary distribution and summing over the correct states gains
the result. �

The next two corollaries are an immediate consequence of this result.

COROLLARY 2.1. N = (Ni : i ∈ I) the number of documents in transfer has
stationary distribution

P(N = n) = Bn

B

∏
i∈I

ρ
ni

i ∀n ∈ Z
I+,(2.5)

where we define

Bn := ∑
m∈S(n)

∏
j∈J

((
mj

mji : i � j

) ∏
i : j∈i

(
1

Cj

)mji
)

∀n ∈ Z
I+.(2.6)

A closed multi-class queueing network behaves as an open multi-class queueing
network except that document arrivals and departures are forbidden (see [11]). So,
the network behaves as if there is a fixed number of infinitely large documents in
transfer. We assume throughout this paper:

ASSUMPTION 1. Consider the Markov chain description of a closed queueing
network that records the position of each packet at each queue and each packet’s
route [11], Section 3.4. Given the number of packets on each route, consider the
set of all possible states of the Markov chain. We assume this set of states is irre-
ducible.
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This assumption excludes reducibility issues which can only occur in closed
queueing networks where a queue serves a single deterministically chosen packet.
It is worth noting that if Assumption 1 is broken then there need not be a unique
stationary distribution or a unique stationary throughput for the closed queueing
network.

COROLLARY 2.2. For a closed multi-class queueing network with n ∈ Z
I+

documents in transfer across routes, the number of packets in transfer of each
route at each queue has stationary distribution

Pn(M = m) = B−1
n

∏
j∈J

((
mj

mji : i � j

) ∏
i : j∈i

(
1

Cj

)mji
)

(2.7)

for each m ∈ Z
K+ , where Bn is defined by (2.6).

Finally we can characterize the stationary throughput of these closed multi-class
queueing networks.

COROLLARY 2.3. For a closed multi-class queueing network with n ∈ Z
I+

documents in transfer across routes and with ni > 0, the stationary throughput of
route i packets at queue j ∈ i is

�SN
i (n) := Bn−ei

Bn

,

where Bn is defined by (2.6) and ei is the ith unit vector in R
I+.

PROOF. The probability the network is in state m ∈ Z
K+ is given by (2.7).

Given the network is in state m, by Corollary 3.4 of [11], the probability in queue
j the packet position k ∈ {1, . . . ,mj } is traversing route i is mji

mj
. The throughput of

the packet in position k of queue j is γj (k,mj )Cj . Thus the stationary throughput
of the network is

∑
m∈S(n) :

mj>0

mj∑
k=1

γj (k,mj )Cj

mji

mj

1

Bn

∏
l∈J

((
ml

mlr : r � l

) ∏
r : l∈r

(
1

Cl

)mlr
)

= ∑
m∈S(n) :

mj>0

Cj

mji

mj

1

Bn

∏
l∈J

((
ml

mlr : r � l

) ∏
r : l∈r

(
1

Cl

)mlr
)

= ∑
m′∈S(n−ei)

1

Bn

∏
l∈J

((
m′

l

m′
lr : r � l

) ∏
r : l∈r

(
1

Cl

)m′
lr
)

= Bn−ei

Bn

.
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We used (2.1) in the first inequality; in the second we cancelled terms and substi-
tuted m′

lr = mlr − 1 if (l, r) = (j, i) and m′
lr = mlr otherwise. �

We will define �SN
i (n) as a bandwidth allocation in the next section.

3. Limit to a macroscopic model. For an electrical network at the macro-
scopic level, we considered the current through the network and not the explicit
behavior of individual electrons. Similarly for a packet switched network, we may
wish to consider the rate documents are transferred through the network and not
the explicit location of packets. Stochastic flow level models provide such a model
of document transfer as they do not explicitly consider packets. In this section
we justify how a series of multi-class queueing networks with spinning converges
in the Skorohod topology to a stochastic flow level model. Thus we limit from a
model where documents are transferred by sending discrete packets to a model
where documents are transferred at a dynamic, elastic rate.

A key quantity in this analysis will be the stationary throughput of a closed
multi-class queueing network.

DEFINITION 1 (Spinning allocation). For all n ∈ Z
I+, the spinning allocation,

denoted �SN(n) = (�SN
i (n) : i ∈ I), is the stationary throughput of packets on

each route of a closed multi-class queueing network with n documents in transfer.
More explicitly from Corollary 2.3 we know that, ∀i ∈ I and n ∈ Z

I+

�SN
i (n) =

⎧⎨
⎩

Bn−ei

Bn

, if ni > 0,

0, otherwise,
(3.1)

where Bn is defined by (2.6).

Under the name “The store-forward allocation,” the spinning allocation is cited
by Proutière [21] as the first insensitive bandwidth allocation. The definition of this
bandwidth allocation from multi-class queueing networks is due to Massoulié [21],
Section 3.4. Our macroscopic model of interest will be the following.

DEFINITION 2 (Stochastic flow level model). A stochastic flow level model
operating under bandwidth allocation �(·) is a continuous-time Markov chain on
Z

I+ with rates

q(n,n′) =
⎧⎨
⎩

νi, if n′ = n + ei ,
μi�i(n), if n′ = n − ei and ni > 0,
0, otherwise,

(3.2)

ei is the ith unit vector in Z
I+.
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DEFINITION 3 (Spinning network). The spinning network is the stochastic
flow level model operating under the spinning allocation.

Stochastic flow level models were first considered by Roberts and Massoulié
[18]. This model can be interpreted as follows. Documents wishing to be trans-
ferred across route i arrive as a Poisson process of rate νi . These documents
are assumed to have a size that is independent and exponentially distributed with
mean μ−1

i . If currently the number of documents in transfer across routes is given
by vector n ∈ Z

I+, then each document on route i is transferred at rate �i(n)
ni

. Doc-
uments are then processed at this rate until there is a change in the network’s state,
either by a document transfer being completed and thus leaving the network, or by
a document arrival occurring. Thanks to the memoryless property of our process
we need not record residual document sizes when an arrival or departure event
occurs.

We now introduce the sequence of multi-class queueing networks which we
will limit to form our macroscopic model. Consider a sequence of open multi-
class queueing networks with spinning, {(M(c)(t) : t ∈ R+)}c∈N. These networks
have the same routing structure and document arrival processes as described in the
last section. In this section, we assume for simplicity that each queue is proces-
sor sharing. Thus M(c) is a Markov chain. We increase the rate at which packets
are transferred through the network. In the cth network each queue j operates at
service rate cCj . We also increase the size of documents, so as not to increase the
rate that documents are transferred through the network. We assume route i docu-
ments are geometrically distributed with parameter μi/c. We also let N(c) be the
stochastic process for the number of documents of each route in transfer, that is,
∀i ∈ I , ∀t ∈ R+

N
(c)
i (t) = ∑

j : j∈i

M
(c)
ji (t).

Let us consider intuitively how these networks limit as c → ∞. Note transi-
tions of packets between queues occur at times of order O(1

c
). Thus the number

of packets sent by a route i document in transfer per unit time is O(c). The prob-
ability that a packet sent is the final packet is μi

c
, so the time until this document

is transferred is μi

c
O(c) = O(1). Thus there is a separation of time scales be-

tween document transfer and packet transfer. Between arrival and departure times
the network behaves as a closed queueing network. By the ergodic theorem, for
large c, this closed queueing network will behave close to its stationary distrib-
ution. Thus between arrival and departure times documents experience a transfer
rate determined by the stationary throughput of a closed queueing network. Noting
Definition 1 and Corollary 2.3, we have defined this transfer rate to be the spinning
allocation. Also, the increased rate of packet transfer and the geometric number of
packets in a document suggests an exponential distribution limit for the size of
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documents. Thus it seems plausible that a stochastic flow level model would be
the limit of these queueing networks and that ∀n ∈ Z

I+, the rate of transfer, would
be determined by the spinning allocation.

We will prove this assertion is correct. The formal statement of this convergence
result is the following theorem. For our multi-class queueing network the theorem
rigorises the separation of times scales assumption in Massoulié and Roberts [18,
19]. Here we define the Skorohod topology with any norm on R

I .

THEOREM 3.1. For each c ∈ N, take an open multi-class queueing network
with spinning M(c) as described above. We assume queues are processor sharing.
Let N(∞) denote the number of documents in transfer in the spinning network,
(3.1) and (3.2). If

N(c)(0) ⇒ N(∞)(0) as c → ∞,

then, in the Skorohod topology on interval [0,1],
N(c) ⇒ N(∞) as c → ∞.

Due to its technical nature this result is proven in the Appendix. The proof uses a
coupling argument. The key idea in this proof is to let the internal behavior of each
queueing network between arrival and departure times be governed by the same
process while allowing the number of packets sent before a departure to converge
almost surely.

REMARK 1. One could use a similar model of a multi-class queueing network
with spinning where the number of packets sent is not geometrically distributed
and perform this limit. In this way one would model the transfer of documents
of any positive distribution. Over c ∈ N and these different document size distri-
butions, the stationary distribution of N(c) will be unchanged provided the mean
document size is scaled so that μ(c) = (cμi : i ∈ I).

REMARK 2. The processor sharing assumption is not needed in Theorem 3.1.
In general only Assumption 1 will be needed. We can prove Theorem 3.1 when
queues are not processor sharing by replacing M(c) with the explicit Markov chain
description of the queueing network outlined in Section 2.

4. A macroscopic stochastic flow level model. In the last section we intro-
duced stochastic flow level models and justified how one such model, the spinning
network, formed a macroscopic model of the queueing networks considered in
Section 2. Now we will discuss some properties of the spinning network. In par-
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ticular, we show its stationary distribution to be insensitive to different document
size distributions. Though we first note:

LEMMA 4.1. The spinning allocation is a feasible bandwidth allocation.

PROOF. For processor sharing queues, �SN
i (n) = En[Mji

Mj
Cj I[Mj > 0]], so

∑
i : j∈i

�SN
i (n) = ∑

i : j∈i

En

[
Mji

Mj

Cj I[Mj > 0]
]

= CjPn(Mj > 0) ≤ Cj .
�

We can extend the definition of a stochastic flow level model so that the sizes of
incoming documents are independent and of any positive distribution. Information
on residual document sizes would be needed for such processes to be Markov.
Given this extension, a stochastic flow level model with mean document sizes
given by (μ−1

i : i ∈ I) is insensitive if the stationary distribution for the number
of documents in transfer is the same as all other stochastic flow level models with
the same mean document sizes.

The stationary distribution of an open multi-class queueing network with spin-
ning (2.3) depends on the distribution of the number of packets in a document
only through mean document size (μ−1

i : i ∈ I). In this sense an open multi-class
queueing network with spinning is insensitive. By the same scaling in Theorem 3.1
we could increase the network’s service capacity and limit the discrete document
size distribution to approximate continuous document size distributions. Under
this scaling the stationary distribution (2.3) still depends on the distribution of the
number of packets in a document only through parameters (μi : i ∈ I). Thus given
Theorem 3.1, it is reasonable to think that its limit, the spinning network, would
be insensitive.

Bonald and Proutière [3, 21] found that key results on the insensitivity of sto-
chastic flow level models are a consequence of existing results on the insensitivity
and reversibility of Whittle networks [22, 26].

PROPOSITION 4.1 (Bonald and Proutière [3]). An ergodic stochastic flow level
model operating under bandwidth allocation �(·) is insensitive if and only if it is
reversible, that is, there exists function � : ZI → R+ with �(0) = 1, �(n) = 0
∀n /∈ Z

I+ and

�i(n) = �(n − ei)

�(n)
∀n ∈ Z

I+, i ∈ I,

moreover,

π(n) = �(n)
∏
i∈I

ρ
ni

i ,(4.1)

forms an invariant measure for the number of documents in transfer.
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We now find the stationary distribution of the spinning network and show it
to be insensitive; this fact has been observed by Proutière [21] and Bonald and
Proutière [3].

PROPOSITION 4.2. The spinning network is reversible and insensitive to doc-
ument size distributions. The spinning network is ergodic if and only if∑

i : j∈i

ρi < Cj ∀j ∈ J .(4.2)

The spinning network has the same stationary distribution as the number of doc-
uments in transfer in an open multi-class queueing network with spinning, that is
distribution, (2.5).

PROOF. Insensitivity and the reversible property are an immediate conse-
quence of Proposition 4.1 and Definition 1. By Proposition 4.1

π(n) := Bn

∏
i∈I

ρ
ni

i ∀n ∈ Z
I+,

is an invariant measure. The sum of π(·) over all states is finite if and only if the
stability condition (4.2) holds. When finite this sum equals B given by (2.4) thus
giving stationary distribution (2.5). �

5. Relating multi-class queueing networks to proportional fairness. In
1979, Schweitzer [23] studied approximations of closed multi-class queueing net-
works and considered how asymptotic conditions on such networks might satisfy
the Kuhn–Tucker conditions for proportionally fair optimization. In 1989, Kelly
[13] studied approximations of closed queueing networks and by an analogous
analysis considered a similar optimization formulation. In 1999, Massoulié and
Roberts [19] studied a fluid-type queueing model and used these same Kuhn–
Tucker conditions to deduce proportional fairness. To develop intuition and to
motivate Sections 6 and 7, we present the argument used in these three papers.

As given in Section 2, consider a closed multi-class queueing network with ni

documents in transfer on each route i ∈ I . Let qj be the mean sojourn time of a
packet at queue j ; let m̄ji be the mean number of route i packets in transfer at
queue j , and let �i be the mean sending rate of route i packets into the network.
By Little’s law,

�iqj = m̄ji ∀(j, i) ∈ K.(5.1)

Summing over j ∈ i and rearranging gives

ni

�i

− ∑
j∈i

qj = 0 ∀i ∈ I.(5.2)
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Since queues are stable we know∑
i : j∈i

�i ≤ Cj ∀j ∈ J .(5.3)

One can imagine if equality (5.3) is strict then qj ≈ 0. Thus approximately

qj

(
Cj − ∑

i : j∈i

�i

)
= 0 ∀j ∈ J .(5.4)

Also

qj ≥ 0 ∀j ∈ J and �i ≥ 0 ∀i ∈ I.(5.5)

Interpreting (qj : j ∈ J ) as Lagrange multipliers, (5.2)–(5.5) are precisely the
Kuhn–Tucker conditions for the proportionally fair optimization problem

max
�∈R

I+

∑
i∈I

ni log�i subject to
∑

i : j∈i

�i ≤ Cj ∀j ∈ J .

So from this one can deduce that �i = �PF
i (n) ∀i ∈ I .

To make this argument we assumed that the sojourn times of packets did not
depend on the route used and that complementary slackness condition (5.4) held.
Neither of these conditions need be true in general. In fact, from Corollary 2.3,
know that �i = �SN

i (n), the spinning allocation. In general �SN
i (n) �= �PF

i (n).
Even so it is reasonable to assume �SN

i (n) ≈ �PF
i (n).

In the following two sections we rigorously prove a relationship between multi-
class queueing networks and proportional fairness. We consider a multi-class net-
work of single-server queues, as described in Section 2. We let the number of
documents in transfer get large but in proportion to some fixed vector n ∈ R

I+.
We show that these multi-class queueing networks asymptotically allocate service
across routes as a proportionally fair optimizer. For example, we will prove that
for all i ∈ I

�SN
i (�hn�)−−−→

h→∞ �PF
i (n).

6. Limit to a teleological description. In the Introduction we noted how
minimizing energy dissipation gave an optimization description of an electrical
network. In this section we wish to justify how proportional fairness provides an
optimization description for the open multi-class queueing networks discussed in
Section 2.

To do this we allow the number of documents in transfer to be large and in
proportion to some fixed vector. The main result in this section is Theorem 6.1
where we prove a large deviation principle for stochastic models with stationary
distribution (2.5). This stationary distribution includes the number of documents
in transfer for all open multi-class queueing networks discussed in Section 2 and
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the spinning network with any finite mean document size distribution. This large
deviations approach for queueing networks is similar to that given by Pittel [20],
although Pittel does not consider a relationship with proportional fairness in his
analysis. In addition, as we consider the large deviations of an insensitive stochas-
tic flow level model this approach is also similar to that taken by Massoulié [17]
for balanced fairness. The large deviation rate function found in Theorem 6.1 is

αρ(n) = max
�∈R

I+

∑
i : ni>0

ni log
�i

ρi

subject to
∑

i : j∈i

�i ≤ Cj ∀j ∈ J .(6.1)

When optimizing the above expression we can express the ρi terms as additive
constants. Thus the argument maximizing this optimization problem is the propor-
tionally fair allocation �PF(n). From this we see that these queueing models are
related to proportionally fair optimization.

To prove Theorem 6.1, first we prove a large deviation principle for the station-
ary distribution (2.3). Stirling’s formula finds a rate function βρ(·). Applying the
contraction mapping principle gives the large deviation principle for the number
of documents in transfer and finds αρ(·) expressed as the primal of a convex opti-
mization problem. We calculate the dual of this optimization problem and find it
to be of the form of (6.1).

We start by finding rate function βρ(·).

LEMMA 6.1. Suppose M is a random variable in Z
K+ with distribution (2.3).

If we take a vector m ∈ R
K+ and take {d(h)}h∈N a sequence of vectors in R

K such
that hm + d(h) ∈ Z

K+ and suph |d(h)| < ∞ then

lim
h→∞

1

h
log P

(
M = hm + d(h)) = −βρ(m),

where we define

βρ(m) := ∑
(j,i)∈K :

mj>0

mji log
mjiCj

mjρi

.(6.2)

PROOF. For all j ∈ J , define d
(h)
j = ∑

i : j∈i d
(h)
ji . By Stirling’s formula,

lim
h→∞

1

h
log P

(
M = hm + d(h))

= lim
h→∞

1

h

[∑
j∈J

log
(
hmj + d

(h)
j

)! − ∑
(j,i)∈K

log
(
hmji + d

(h)
ji

)!

+ ∑
(j,i)∈K

(
hmji + d

(h)
ji

)
log

ρi

Cj

]
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= lim
h→∞

1

h

[ ∑
j∈J :
mj>0

((
hmj + d

(h)
j

)
log

(
hmj + d

(h)
j

) − (
hmj + d

(h)
j

))

− ∑
(j,i)∈K :
mji>0

((
hmji + d

(h)
ji

)
log

(
hmji + d

(h)
ji

) − (
hmji + d

(h)
ji

))

+ ∑
(j,i)∈K

(
hmji + d

(h)
ji

)
log

ρi

Cj

]

= − lim
h→∞

∑
(j,i)∈K :
mji>0

mji log
(mji + d

(h)
ji /h)Cj

(mj + d
(h)
j /h)ρi

= −βρ(m).

�

REMARK 3. The Kullback–Leibler divergence or relative entropy of distribu-
tions p and q on I is

D(p||q) = ∑
i∈I

pi log
(

pi

qi

)
.

In our definition of βρ(·), if we define for each j ∈ J , pj = (
mji

mj
: i � j) and

qj = (
ρi∑

r�j ρr
: i � j), then

βρ(m) = ∑
j : mj>0

mjD(pj ||qj ) + ∑
j : mj>0

mj log
(

Cj∑
r : j∈r ρr

)
.

So βρ(·) is a linear combination of Kullback–Leibler divergences. Normally we
consider proportional fairness to maximize utility subject to constraints on flows.
The duality given in Theorem 6.1 motivates us instead to view proportional fair-
ness as minimizing entropy subject to constraints on packets.

Note that, since x logx is a continuous function, βρ(·) is a continuous function.
We define x logx := 0 when x = 0. Note also Lemma 6.1 applies for d(h) = hm −
�hm�. From this lemma the following result is reasonable.

PROPOSITION 6.1. If M is a random variable in Z
K+ with distribution (2.3),

then, as h → ∞, {M
h

}h∈N obeys a large deviation principle on R
K+ with good rate

function βρ(·). That is for all D ⊂ R
K+ Borel measurable

− inf
m∈D◦ βρ(m) ≤ lim inf

h→∞ log P

(
M

h
∈ D

)
≤ lim sup

h→∞
log P

(
M

h
∈ D

)

≤ − inf
m∈D̄

βρ(m),

where D◦ is the interior of D and D̄ is the closure of D.
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A proof of this proposition can be found in the Appendix. To prove the main
theorem of this section we require two lemmas.

LEMMA 6.2. For all � ∈ (0,∞)I ,

inf
m∈R

K+
β�(m) =

⎧⎨
⎩

0, if
∑

i : j∈i

�i ≤ Cj ,∀j ∈ J ,

−∞, otherwise.

LEMMA 6.3. For all � ∈ (0,∞)I , β�(·) is a convex function.

For proofs of Lemmas 6.2 and 6.3 see the Appendix. We now prove the main
theorem of this section. We use the contraction principle (see [6], page 126). Recall
that distribution (2.5) is the stationary distribution for the number of documents in
transfer for all open multi-class queueing networks discussed in Section 2 and the
spinning network. The following theorem expresses an important duality between
network state and network flow.

THEOREM 6.1. If N is a random variable in Z
I+ with distribution (2.5) then as

h → ∞, {N
h
}h∈N obeys a large deviation principle on R

I+ with good rate function

αρ(n) := min
m∈R

K+

∑
(j,i)∈K :

mj>0

mji log
mjiCj

mjρi

subject to

(6.3) ∑
j : j∈i

mji = ni ∀i ∈ I

= max
�∈R

I+

∑
i∈I

ni log
�i

ρi

subject to
∑

i : j∈i

�i ≤ Cj ∀j ∈ J .(6.4)

That is for all A ⊂ R
I+ Borel measurable, we have that

− inf
n∈A◦ αρ(n) ≤ lim inf

h→∞ log P

(
N

h
∈ A

)
≤ lim sup

h→∞
log P

(
N

h
∈ A

)
≤ − inf

n∈Ā
αρ(n),

where A◦ is the interior of A and Ā is the closure of A.

PROOF. Apply the contraction principle to Proposition 6.1 using continuous
map f : RK+ → R

I+ such that f (m) = (
∑

j : j∈i mji : i ∈ I). This gives that {N
h
}h∈N

obeys a large deviation principle with good rate function

αρ(n) = min
m∈R

K+

∑
(j,i)∈K :

mj>0

mji log
mjiCj

mjρi

subject to
∑

j : j∈i

mji = ni ∀i ∈ I.
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By Lemma 6.3, this is a convex optimization problem. Let us calculate its dual
formulation. Taking Lagrange multipliers λ ∈ R

I , its Lagrangian is

L(m,λ) = ∑
(j,i)∈K :

mj>0,ni>0

mji log
mjiCj

mjρi

+ ∑
i : ni>0

λi

(
ni − ∑

j : j∈i

mji

)

= ∑
(j,i)∈K :

mj>0,ni>0

mji log
mjiCj

mjρieλi
+ ∑

i : ni>0

λini.

By Lemma 6.2,

min
m∈R

K+
L(m,λ) =

⎧⎨
⎩

∑
i : ni>0

niλi, if
∑

i : j∈i

ρie
λi ≤ Cj ,∀j ∈ J ,

−∞, otherwise.
Thus we find dual

αρ(n) = max
λ∈RI

∑
i : ni>0

niλi subject to
∑

i : j∈i

ρie
λi ≤ Cj .

Substituting �i = ρie
λi gives

αρ(n) = max
�∈R

I+

∑
i : ni>0

ni log
�i

ρi

subject to
∑

i : j∈i

�i ≤ Cj ∀j ∈ J .
�

7. Teleological description. In Section 6 we saw that a proportionally fair
rate function determined the large deviations behavior of the stationary distribu-
tion of an open multi-class queueing network. In this section we discuss what this
means for the behavior of packets and for the rate of document transfer in these
networks. The queueing networks defined in Section 2 have no prescribed opti-
mization structure. Even so, as the number of documents gets large, a network will
be restricted to its most probable states, and because of this the network behaves
as an optimizer. This notion of a queueing network collapsing to its most probable
states is analogous to the heavy-traffic notion of state space collapse [4, 16, 24].

As in Section 6, we study the limit as the number of documents in transfer gets
large but in proportion to some fixed vector. In this section, we characterize the
solutions to the primal problem (6.3). In Theorem 7.1 show that the state of packets
in an open multi-class queueing network with spinning converges in probability
to the set of solutions of the primal problem. In Corollary 7.1, we show that at
each queue the number of packets in transfer on each route converges in L1 to a
proportionally fair proportion of the number of packets at the queue. Finally in
Theorem 7.2, we show that the stationary rate documents are transferred through
these queueing networks converges to a proportionally fair allocation. We define

β(m) := ∑
(j,i)∈K :

mj>0

mji log
mjiCj

mj

∀m ∈ R
K+ .
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We now characterize the solutions to the primal problem (6.3).

PROPOSITION 7.1. Given n ∈ R
I+ and m∗ ∈ R

K+ such that for all i ∈ I ,∑
j∈i m

∗
ji = ni then m∗ solves primal problem

min
m∈R

K+
β(m) subject to

∑
j∈i

mji = ni ∀i ∈ I,(7.1)

if ∀(j, i) ∈ K
m∗

jiCj = m∗
j�

PF
i (n).(7.2)

PROOF. Suppose m∗ minimizes (7.1). We show (7.2) holds for some fixed
(j, i) ∈ K. If m∗

j = 0 then m∗
ji = 0 thus (7.2) holds. Now assume that m∗

j > 0, by
the strong duality of primal (6.3) and dual (6.4) we have∑

r : nr>0

nr log�PF
r (n)

= min
m∈R

K+

∑
(l,r)∈K :

ml>0,nr>0

mlr log
mlr

ml

Cl + ∑
r : nr>0

log�PF
r (n)

(
nr − ∑

l : l∈r

mlr

)

and also m∗ minimizes this Lagrangian problem. The above expression gives

min
m∈R

K+

∑
l : ml>0

ml

∑
r : l∈r,

nr>0

mlr

ml

log
mlrCl

ml�PF
r (n)

= 0.

By Lemma A.5, if m∗
j > 0 then ∀i � j , m∗

jiCj = m∗
j�

PF
i (n), so (7.2) holds.

Now we prove the converse. If (7.2) holds then ∀j ∈ J such that m∗
j > 0

m∗
jiCj

m∗
j

= �PF
i (n),

therefore,

β(m∗) = ∑
r∈I

∑
l : l∈r

m∗
lr log�PF

r (n) = ∑
r : nr>0

nr log�PF
r (n).

�

We define ∀n ∈ R
I+,

M(n) =
{
m ∈ R

K+ :mjiCj = mj�
PF
i (n) ∀(j, i) ∈ K,

∑
j : j∈i

mji = ni ∀i ∈ I
}
.

In heavy-traffic literature M(n) would be thought of as an invariant manifold.
Note that if a network of processor sharing queues were in state m∗ ∈ M(n), then
the transfer rate allocated to route i packets would be �PF

i (n). Since rare events
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occur in the most likely way, one may expect, as the number of documents in
transfer gets large, that the state of the queues in the network will be close to
M(n). Thus the rate of document transfer will be close to a proportionally fair
allocation. We use this intuition to prove the next theorem but first we will require
a lemma. Lemma 7.1 shows that the rate decay in probability is larger away from
the manifold M(n).

LEMMA 7.1. For all ε > 0, ∃f (ε) > 0 and δ(ε) > 0 such that ∀δ < δ(ε)

∑
i : ni>0

ni log
�PF

i (n)

ρi

+ f (ε) ≤ β∗
ε,δ.

Where we define ∀ε ≥ 0 and δ ≥ 0

β∗
ε,δ := min

m∈R
K+

βρ(m) subject to max
i∈I

∣∣∣∣∑
j∈i

mji − ni

∣∣∣∣ ≤ δ

and

inf
m′∈M(n)

‖m − m′‖ ≥ ε.

See the Appendix for a proof of this result. We could interpret the following
result as a state space collapse result [4, 16]; the result shows that the state of the
queueing network converges in probability to the invariant manifold. Recall that
all open queueing networks in Section 2 have stationary distribution (2.3).

THEOREM 7.1. Let M be any stochastic process on R
K+ with stationary dis-

tribution (2.3) and let Ni = ∑
j∈i Mji , ∀i ∈ I then ∀n ∈ R

I+ and ε > 0

P

(
inf

m′∈M(n)

∥∥∥∥M

h
− m′

∥∥∥∥ ≥ ε
∣∣∣N = �hn�

)
−−−→
h→∞ 0.

PROOF. For all n ∈ R
I+ and ∀δ > 0, one has that eventually in h,

P

(
inf

m′∈M(n)

∥∥∥∥M

h
− m′

∥∥∥∥ ≥ ε
∣∣∣N = �hn�

)

= B

B�hn�
∏

i∈I ρ
�hni�
i

P

(
inf

m′∈M(n)

∥∥∥∥M

h
− m′

∥∥∥∥ ≥ ε,N = �hn�
)

≤ B

B�hn�
∏

i∈I ρ
�hni�
i

P

(
inf

m′∈M(n)

∥∥∥∥M

h
− m′

∥∥∥∥ ≥ ε,

∥∥∥∥N

h
− n

∥∥∥∥ ≤ δ

)
(7.3)

≤ B

B�hn�
∏

i∈I ρ
�hni�
i

exp
{
−hβ∗

ε,δ + h
f (ε)

2

}

≤ B

B�hn�
∏

i∈I ρ
�hni�
i

exp
{
−h

∑
i : ni>0

ni log
�PF

i (n)

ρi

− h
f (ε)

2

}
.
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We used Proposition 6.1 for the second inequality and Lemma 7.1 for the final
inequality. Taking any m∗ ∈ M(n), there exists a sequence m(h) with hm(h) ∈
Z

K+ ,
∑

j : j∈i hm
(h)
ji = �hni� ∀i ∈ I and |hm

(h)
ji − hm∗

ji | ≤ 2 ∀(j, i) ∈ K. So by
Lemma 6.1 one has

lim
h→∞

1

h
log P

(
M = hm(h)) = −βρ(m∗) = − ∑

i : ni>0

ni log
�PF

i (n)

ρi

.

Thus ∃h′ such that ∀h > h′

P
(
M = hm(h)) ≥ exp

{
−h

∑
i : ni>0

ni log
�PF

i (n)

ρi

− h
f (ε)

4

}
.(7.4)

Hence one has that, eventually in h,

P

(
inf

m′∈M(n)

∥∥∥∥M

h
− m′

∥∥∥∥ ≥ ε
∣∣∣N = �hn�

)

≤ B

B�hn�
∏

i∈I ρ
�hni�
i

× exp
{
−h

∑
i : ni>0

ni log
�PF

i (n)

ρi

− h
f (ε)

2

}

≤ B

B�hn�
∏

i∈I ρ
�hni�
i

P
(
M = hm(h))e−hf (ε)/4

= P
(
M = hm(h)|N = �hn�)e−hf (ε)/4 −−−→

h→∞ 0.

We used (7.3) for the first inequality and (7.4) for the second inequality. �

REMARK 4. Pittel [20] proves Theorem 7.1 under the assumption that the
manifold M(n) consists of a single point. This assumption meant Pittel did not
require a result like Proposition 7.1. More generally Pittel’s arguments do not make
the primal–dual connection between queueing networks and proportional fairness.
Other networks have a similar primal–dual large deviations connection between
the network state and network flow (e.g., Loss Networks, see Kelly [12]).

We now consider what Theorem 7.1 implies for packets at each queue.

COROLLARY 7.1. ∀n ∈ R
I+ and ∀(j, i) ∈ K

1

h
E[|MjiCj − Mj�

PF
i (n)||N = �hn�]−−−→

h→∞ 0.
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PROOF. Take ε > 0, by Theorem 7.1 and as mjiCj = mj�
PF
i (n) ∀m ∈ M(n)

1

h
E[|MjiCj − Mj�

PF
i (n)||N = �hn�]

= 1

h
E

[
|MjiCj − Mj�

PF
i (n)|I

[
inf

m′∈M(n)

∥∥∥∥M

h
− m′

∥∥∥∥ ≥ ε

]∣∣∣∣N = �hn�
]

+ 1

h
E

[
|MjiCj − Mj�

PF
i (n)|I

[
inf

m′∈M(n)

∥∥∥∥M

h
− m′

∥∥∥∥ < ε

]∣∣∣∣N = �hn�
]

≤ 2
( ∑

i : j∈i

ni

)
CjP

(
sup

m′∈M(n)

∥∥∥∥M

h
− m′

∥∥∥∥ ≥ ε
∣∣∣N = �hn�

)
+ (1 + I )Cjε

−−−→
h→∞ (1 + I )Cjε.

For the first term before the inequality we use that Mji < Mj <
∑

i�j hni and
�PF

i (n) < Cj . For the second term we use that |Mji − hm′
ji | < hε and that m′

satisfies (7.2). Since ε is arbitrary the result holds. �

The following result is the formal statement of (5.1) in Section 5.

LEMMA 7.2. For all (j, i) ∈ K and for all n ∈ Z
I+ with ni > 0,

�SN
i (n)E

[
Mj + 1

Cj

∣∣∣∣N = n − ei

]
= EnMji.(7.5)

PROOF. Since En−ei
[Mj+1

Cj
] is the expected sojourn of a route i packet at

queue j the above result is really a statement of Little’s law. We can show the
result by explicit calculation,

EnMji

�SN
i (n)

= Bn

Bn−ei

1

Bn

∑
m∈S(n) :
mji>0

mji

∏
l∈J

((
ml

mlr : r � l

) ∏
r : l∈r

(
1

Cl

)mlr
)

= 1

Bn−ei

∑
m∈S(n) :
mji>0

mj

Cj

∏
l∈J

((
ml − δl,j

mlr − δlr,j i : r � l

) ∏
r : l∈r

(
1

Cl

)mlr−δlr,j i
)

= 1

Bn−ei

∑
m′∈S(n−ei)

m′
j + 1

Cj

∏
l∈J

((
m′

l

m′
lr : r � l

) ∏
r : l∈r

(
1

Cl

)m′
lr
)

= En−ei

Mj + 1

Cj

.

We define δx,y := 1 for x = y and δx,y := 0 otherwise. Above we canceled terms
and substituted m′

lr = mlr − δlr,j i . �
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Consider any of the multi-class queueing networks considered in Section 2.
Recall from Corollary 2.3 that, given the number of documents in transfer is n, the
stationary rate route i documents are transferred through the network is �SN

i (n),
the spinning allocation. We now prove that this rate converges to a proportionally
fair bandwidth allocation. In this asymptotic sense these queueing networks behave
as a proportionally fair optimizer.

THEOREM 7.2. For all n ∈ R
I+ and ∀i ∈ I

�SN
i (�hn�)−−−→

h→∞ �PF
i (n).

PROOF. If ni = 0 the result is trivially true, so we assume ni > 0. By the
arguments in Theorem 7.1 and Corollary 7.1, one can see that

1

h
E[|MjiCj − Mj�

PF
i (n)||N = �hn� − ei]−−−→

h→∞ 0;
therefore,

1

h
E

[
Mji − Mj

Cj

�PF
i (n)

∣∣∣N = �hn� − ei

]
−−−→
h→∞ 0.

Summing over j ∈ i gives

ni − �PF
i (n)

h
E

[∑
j∈i

Mj

Cj

∣∣∣∣N = �hn� − ei

]
−−−→
h→∞ 0;

substituting expression (7.5) gives

ni − �PF
i (n)

h

( �nih�
�SN

i (�hn�) − ∑
j∈i

1

Cj

)
−−−→
h→∞ 0

and finally rearranging gives the result

�SN
i (�hn�)−−−→

h→∞ �PF
i (n). �

APPENDIX

A.1. Proof of convergence to the spinning network. The proof provided
here gives the first rigorous proof of a packet level model of document transfer
converging weakly to a stochastic flow level model.

In this section and as defined in Section 3, for c ∈ N, let M(c) be the number of
packets in transfer on each route and at each queue in an open multi-class queueing
network with spinning; let N(c) be the number of documents in transfer in this
queueing network and let N(∞) be the spinning network. Finally for c ∈ N ∪ {∞},
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let τ k,(c) be the kth jump of N(c), that is, the time of the kth document arrival or
departure event. We set τ 0,(c) := 0.

To prove Theorem 3.1 we use a coupling argument. We prove under this cou-
pling, as c → ∞, N(c) eventually makes the same jumps as N(∞) and that the
associated jump times converge almost surely. This is sufficient to prove conver-
gence in the Skorohod topology:

LEMMA A.1. For c ∈ N ∪ {∞}, let N(c) : [0,∞) → Z
I+ be a nonexplosive

jump processes with increasing jump times (τ k,(c) :k ∈ Z+). If for all k ∈ Z+

τ k,(c) −−−→
c→∞ τ k,(∞) and N(c)(τ k,(c))−−−→

c→∞ N(∞)(τ k,(∞)),
then in the Skorohod topology on [0,1],

N(c) −−−→
c→∞ N(∞).

For a proof of this result see Billingsley [1], page 137. We now work to form a
coupling so that the first jump and jump time converge. That is, we will prove:

PROPOSITION A.1. Let n0 ∈ Z
I+ and for each c ∈ N take a state m0,(c) ∈

S(n0). There exists a coupling of N(∞) with initial position n0 and M(c) with
initial position m0,(c) such that, almost surely

τ 1,(c) −−−→
c→∞ τ 1,(∞) and N(c)(τ 1,(c))−−−→

c→∞ N(∞)(τ 1,(∞)).
To prove Theorem 3.1 we will apply this result to each jump interval of N(c).

The proof of Proposition A.1 couples each M(c) with a single closed queueing
network. The result is then an application of the renewal theorem.

As described in Section 2, let M̄ be the number of packets in transfer on each
route and at each queue for a closed multi-class queueing network with n0 ∈ Z

I+
documents in transfer and service capacities (Cj : j ∈ J ). For states m ∈ S(n0),
define σm to be the first time M̄ visits state m. Since M̄ is recurrent, almost surely,
σm < ∞. As noted in Section 3, M(c) will behave as a closed queueing network
until the first document arrival or departure time. In particular, we will define

M(c)(t) := M̄
(
ct + σm0,(c)

) ∀t ∈ [
0, τ 1,(c)).(A.1)

The ct term ensures the correct transition rates and the σm0,(c) ensures M(c) has the
correct initial state. We will formally define τ 1,(c) later.

Let Di(t) be the number of route i packets to have been served at the final queue
of route i in closed queueing network M̄ by time t . By Corollary 2.3, we know the
stationary throughput of route i packets at any queue j ∈ i is �SN

i (n0). Thus we
can prove the following renewal lemma and corollary.
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LEMMA A.2. Almost surely, for all η > 0,

sup
t∈[0,η]

∣∣∣∣Di(ct)

c
− �SN

i (n0)t

∣∣∣∣−−−→
c→∞ 0.

PROOF. Let Ri,m(t) be the number of route i packets to have been served at
the final queue on route i by the closed queueing network M̄ when it is in state m.
Let γi(m) be the drift of Ri,m. For any Markov chain the process that records the
current state of the Markov chain and the next state is also a Markov chain. So
Ri,m is a renewal process and thus obeys the functional renewal theorem. That is,
almost surely, for all η > 0,

sup
t∈[0,η]

∣∣∣∣Ri,m(ct)

c
− γi(m)t

∣∣∣∣−−−→
c→∞ 0.

For a proof of this see Chen and Yao [5], page 106. By the definition of Di(t) and
Corollary 2.3, we know that

Di(t) = ∑
m∈S(n0)

Ri,m(t) and �SN
i (n0) = ∑

m∈S(n0)

γi(m).

So, almost surely, ∀η > 0

sup
t∈[0,η]

∣∣∣∣Di(ct)

c
− �SN

i (n0)t

∣∣∣∣ ≤ ∑
m∈S(n0)

sup
t∈[0,η]

∣∣∣∣Ri,m(ct)

c
− γi(m)t

∣∣∣∣−−−→
c→∞ 0.

�

COROLLARY A.2. Almost surely,

sup
t∈[0,η]

∣∣∣∣Di(ct + σm0,(c) )

c
− �SN

i (n0)t

∣∣∣∣−−−→
c→∞ 0.

PROOF. As M̄ is recurrent on all states in S(n0), almost surely, σm < ∞ ∀m ∈
S(n0). Thus, by this and Lemma A.2, almost surely,

sup
t∈[0,η]

∣∣∣∣Di(ct + σm0,(c) )

c
− �SN

i (n0)

(
t + σm0,(c)

c
− σm0,(c)

c

)∣∣∣∣
< �SN

i (n0)
σm0,(c)

c
+ sup

t∈[0,η+σ
m0,(c) ]

∣∣∣∣Di(ct)

c
− �SN

i (n0)t

∣∣∣∣−−−→
c→∞ 0.

�

In the open queueing network M(c), we suppose each document in transfer on
route i is geometrically distributed with parameter μi

c
. Thus, if n0

i > 0 and assum-
ing no other document arrival or departures occur, the time until the first route i

document is transferred is

S
(c)
i := inf

{
t :Di

(
ct + σm0,(c)

) = Y
(c)
i

}
,
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where Y
(c)
i is geometrically distributed with parameter μi

c
and (Y

(c)
i : c ∈ N) is

independent of M̄ . Now suppose

Y
(c)
i

c
−−−→
c→∞ Y

(∞)
i almost surely,(A.2)

where Y
(∞)
i is exponentially distributed with parameter μi . This can be con-

structed using the Skorohod representation theorem. Using this and Corollary A.2
we can show that S

(c)
i converges to an exponential distribution.

LEMMA A.3. For each i ∈ I such that ni > 0, almost surely

S
(c)
i −−−→

c→∞ S
(∞)
i ,

where S
(∞)
i is exponentially distributed with parameter μi�

SN
i (n0).

PROOF. Define S
(∞)
i = Y

(∞)
i

�SN
i (n0)

. By Corollary A.2 and (A.2), almost surely,

∀ε > 0 and ∀η >
Y

(∞)
i +2ε

�SN
i (n0)

, ∃c′ such that ∀c > c′,

sup
t∈[0,η]

∣∣∣∣Di(ct + σm0,(c) )

c
− �SN

i (n0)t

∣∣∣∣ < ε,

∣∣∣∣Y
(c)
i

c
− Y

(∞)
i

∣∣∣∣ < ε.

Hence

1

c
Di

(
cY

(∞)
i

�SN
i (n0)

− 2cε

�SN
i (n0)

+ σm0,(c)

)
≤ Y

(∞)
i − ε <

Y
(c)
i

c
,

thus

S
(c)
i = inf

{
t ≥ 0 :Di

(
ct + σm0,(c)

) = Y (c)} >
Y

(∞)
i

�SN
i (n0)

− 2ε

�SN
i (n0)

= S
(∞)
i − 2ε

�SN
i (n0)

.

By a similar argument one can see that

S
(c)
i < S

(∞)
i + 2ε

�SN
i (n0)

.

Thus S
(c)
i → S

(∞)
i as c → ∞, almost surely. �

We may choose (Y
(c)
i : c ∈ N ∪ {∞}) independently for each i ∈ I with ni > 0.

The transfer of a document on route i could be interrupted by an earlier document
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arrival or departure event. Thus letting Ei be independent exponentially distributed
with parameter νi for i ∈ I . We are interested in the time when the first arrival or
departure time occurs, so we consider

τ 1,(c) := min
{
S

(c)
i :ni > 0

} ∧ min{Ei : i ∈ I} ∀c ∈ N ∪ {∞}.
By the last lemma we know that τ 1,(c) → τ 1,(∞), as c → ∞. The term achieving
these minima determines which arrival or departure occurs. So we may define our
coupled process, M(c), up until the first arrival or departure time by (A.1) and by

M(c)(τ 1,(c)) :=
{

M(c)
(
τ 1,(c)−) + eji

0i
, if τ 1,(c) = Ei ,

M(c)
(
τ 1,(c)−) − ej (i)i , if τ 1,(c) = S

(c)
i .

The term eji ∈ R
K+ is the unit vector in the (j, i) ∈ K direction, thus eji

0i
corre-

sponds to the arrival of the first packet in a route i document and −ej (i)i corre-
sponds to the departure of the final packet in a route i document. Also we may
define N(∞) by N(∞)(t) := n0 for t < τ 1,(∞) and by

N(∞)(τ 1,(∞)) :=
{

n0 + ei, if τ 1,(∞) = Ei ,
n0 − ei, if ni > 0 and τ 1,(∞) = S

(∞)
i .

Similarly, ei ∈ R
I+ is the ith unit vector. This defines our coupled process up to the

first document arrival or departure time. We can now prove Proposition A.1.

PROOF OF PROPOSITION A.1. By Lemma A.3 we know that, almost surely,

τ 1,(c) −−−→
c→∞ τ 1,(∞).(A.3)

Also as {S(∞)
i :ni > 0}∪{Ei : i ∈ I} are independent exponentially distributed ran-

dom variables, almost surely, no two terms are equal. Thus due to this and (A.3),
almost surely, eventually as c → ∞,

arg min
[{

S
(c)
i :ni > 0

} ∪ {Ei : i ∈ I}]
= arg min

[{
S

(∞)
i :ni > 0

} ∪ {Ei : i ∈ I}],
and so, almost surely, as c → ∞, N(c)(τ 1,(c)) → N(∞)(τ 1,(∞)). �

Proposition A.1 guarantees convergence up to and including the first document
arrival or departure time. Essentially repeating this argument constructs each in-
terval [τ k,(c), τ k+1,(c)] and proves Theorem 3.1.

PROOF OF THEOREM 3.1. On a single probability space we will inductively
construct N(∞) and M(c) for c ∈ N. On the probability space we will prove that
the following induction hypothesis holds ∀κ ∈ Z+: there exists a coupling of M(c)
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for c ∈ N and N(∞) up to and including the κ th document’s arrival or departure
time such that, almost surely, ∀k ≤ κ ,

τ k,(c) −−−→
c→∞ τ k,(∞) and N(c)(τ k,(c))−−−→

c→∞ N(∞)(τ k,(∞)).(A.4)

Let us prove that the induction hypothesis holds for the case of κ = 0. We
must find a coupling of M(c)(0) and N(∞)(0) so that (A.4) holds. We know
τ 1,(c) → τ 1,(∞) as c → ∞ holds as τ 0,(c) := 0. By assumption N(c)(0) converges
weakly to N(∞)(0), so by the Skorohod representation theorem, we may choose
(N(c)(0) : c ∈ N ∪ {∞}), such that, almost surely,

N(c)(0)−−−→
c→∞ N(∞)(0).

Given N(c) we know the required distribution of M(c)(0), so take f (c) : ZI+ ×
[0,1] → Z

K+ such that for a uniform random variable U ,

P
(
f (c)(n,U) = m

) = P
(
M(c) = m|N(c) = n

) ∀m ∈ Z
K+ , n ∈ Z

I+.

Therefore taking an independent uniform random variable we may define

M(c)(0) = f (c)(N(c)(0),U
) ∀c ∈ N.

Thus M(c)(0) is of the correct distribution and (A.4) holds. This proves the induc-
tion hypothesis is true for κ = 0.

Suppose the induction hypothesis holds for κ − 1. Using Proposition A.1, we
will show the induction hypothesis holds for κ by extending the process M(c) from
time τκ−1,(c) to the next document arrival or departure time τκ,(c).

By the induction hypothesis ∃c′ ∈ N such that ∀c > c′, N(c)(τ κ−1,(c)) =
N(∞)(τ κ−1,(∞)). Define

mκ−1,(c) = M(c)(τκ−1,(c)) ∀c > c′.

Now apply Proposition A.1 with initial state (mκ−1,(c) : c > c′) to give process
Mκ,(c) defined until the first document arrival or departure time τ k,(c) − τ k−1,(c).
We extend M(c) to include t ∈ [τκ−1,(c), τ κ,(c)] by defining

M(c)(t) := Mκ,(c)(t − τκ,(c)) for t ∈ [
τκ−1,(c), τ κ,(c)].

By Proposition A.1 we know (A.4) holds for κ . This completes the induction step.
Thus the induction hypothesis holds for all κ ∈ N. At each induction step we re-
quired a countable collection of independent random variables, thus the coupled
processes M(c) and N(∞) can be constructed on a probability space consisting of
a countable set of independent random variables. Since (A.4) holds for all k ∈ N,
Lemma A.1 gives that, almost surely,

N(c) −−−→
c→∞ N(∞)

in the Skorohod topology on [0,1]. Thus this implies weak convergence. �
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A.2. Proof of Proposition 6.1. To prove Proposition 6.1 we expand on
Lemma 6.1 to make a large deviation principle. The following lemmas will be
used. The proofs of both lemmas are simple calculus arguments.

LEMMA A.4. For m ∈ R
K+ and j ∈ J fixed with mj > 0. Maximizing over

vectors θ = (θi : i � j) > 0 satisfying constraint
∑

i : j∈i ρie
θi = Cj , we have that

max
θ>0

{ ∑
i : j∈i

θimji :
∑

i : j∈i

ρie
θi = Cj

}
= ∑

i : j∈i

mji log
mjiCj

mjρi

.

LEMMA A.5. For fixed parameters � ∈ (0,∞)I and j ∈ J . Maximizing over
probability distributions p = (pi : i � j), we have that

min
p>0

{ ∑
i : j∈i

pi log
piCj

�i

:
∑

i : j∈i

pi = 1
}

= log
Cj∑

i : j∈i �i

and the minimum is attained by pi = �i∑
r : j∈r �r

.

We now prove Proposition 6.1. The result makes use of the upper bound of the
Gärtner–Ellis theorem (see [6], page 44).

PROOF OF PROPOSITION 6.1. First we prove the lower bound. Take O ⊂ R
K+

open, for all m ∈ O ∃h′ such that ∀h > h′, �hm�
h

∈ O . By this and Lemma 6.1 we
have that

lim inf
h→∞

1

h
log P

(
M

h
∈ O

)
≥ sup

m∈O

lim inf
h→∞

1

h
log P(M = �hm�) = − inf

m∈O
βρ(m).

This gives the required lower bound.
Now we prove the upper bound. M has moment generating function

Ee
∑

(j,i)∈K θjiMji

=
⎧⎪⎨
⎪⎩

∏
j∈J

(
Cj − ∑

i : j∈i ρi

Cj − ∑
i : j∈i ρie

θji

)
, if

∑
i : j∈i

ρie
θji < Cj ,∀j ∈ J ,

∞, otherwise.

Thus

F(θ) := lim
h→∞

1

h
log Ee

∑
(j,i)∈K hθjiMji/h

=
⎧⎨
⎩

0, if
∑

i : j∈i

ρie
θji < Cj ,∀j ∈ J ,

∞, otherwise.
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Let F ∗(·) be the Legendre–Fenchel transform of F(·). By Lemma A.4,

F ∗(m) = sup
θ∈RK

{ ∑
(j,i)∈K

θjimji :
∑

i : j∈i

ρie
θji < Cj ,∀j ∈ J

}

= ∑
j∈J

sup
φi>0 :
i�j

{ ∑
i : j∈i

φimji :
∑

i : j∈i

ρie
φi < Cj

}

= ∑
j : mj>0

∑
i : j∈i

mji log
mjiCj

mjρi

= βρ(m),

∀m ∈ R
K+ . Thus the Gärtner–Ellis theorem gives for all closed sets C ⊂ R

K+

lim sup
h→∞

1

h
log P

(
M

h
∈ C

)
≤ − inf

m∈C
βρ(m).

Finally, we prove βρ(·) is a good rate function. βρ(·) is continuous with values
in R+ and so is a rate function. By Lemma A.5, ∀α ≥ 0, ∀m ∈ R

K+ if

mj >
α

logCj − log
∑

i : j∈i ρi

,

then

βρ(m) = ∑
j : mj>0

mj

∑
i : j∈i

mji

mj

log
mjiCj

mjρi

≥ ∑
j : mj>0

mj log
Cj∑

i : j∈i ρi

> α.

Thus

{m ∈ R
K+ :βρ(m) ≤ α} ⊂

{
m ∈ R

K+ : 0 ≤ mj ≤ α

logCj − log
∑

i : j∈i ρi

}
.

So all level sets are compact and hence βρ(·) is a good rate function. �

A.3. Proofs of additional lemmas.

PROOF OF LEMMA 6.2. By Lemma A.5

inf
m∈R

K+
β�(m) = inf

m∈R
K+

∑
j : mj>0

mj

∑
i : j∈i

mji

mj

log
mjiCj

mj�i

= inf
m′∈R

J+

∑
j : m′

j>0

m′
j log

Cj∑
i : j∈i �i

=
⎧⎨
⎩

0, if
∑

i : j∈i

�i ≤ Cj ,

−∞, otherwise. �
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PROOF OF LEMMA 6.3. We first show β�(·) is convex on (0,∞)K . One can
see ∀m ∈ (0,∞)K and ∀(j, i), (l, r) ∈ K that

∂2β�

∂mji ∂mlr

(m) = 1

mji

I[(j, i) = (l, r)] − 1

mj

I[l = r].

So for all vectors a ∈ R
K \ {0} the second partial derivative in direction a is

∂2β�

∂a2 = ∑
(j,i)∈K,

(l,r)∈K

ajialr

∂2β�

∂mji ∂mlr

(m) = ∑
(j,i)∈K

a2
ji

mji

− ∑
j∈J

∑
i : j∈i

∑
r : j∈r

ajiajr

mj

.

We will prove that this expression is positive. Note that for fixed j ∈ J ,

∑
i : j∈i

a2
ji

mj

mji

= ∑
i : j∈i

∑
r : j∈r

1

2

(
a2
ji

mjr

mji

+ a2
jr

mji

mjr

)
.

For all i �= r , a2
jix + a2

jr
1
x

is convex on (0,∞) and has its minimum at x = |ajr

aji
|.

So ∑
i : j∈i

a2
ji

mj

mji

≥ ∑
i : j∈i

∑
r : j∈r

|aji ||ajr | ≥
∑

i : j∈i

∑
r : j∈r

ajiajr ≥ 0.

Dividing by mj and summing over j ∈ J gives that

∂2β�

∂a2 = ∑
j∈J

( ∑
i : j∈i

a2
ji

mji

− ∑
i : j∈i

∑
r : j∈r

ajiajr

mj

)
≥ 0.

This proves β�(·) is convex on (0,∞)K .
Take m,m̄ ∈ R

K+ and two sequences, m(h), m̄(h) ∈ (0,∞)K , that converge to m

and m̄, respectively. By continuity of β�(·), ∀θ ∈ (0,1)

β�

(
θm + (1 − θ)m̄

) = lim
h→∞β�

(
θm(h) + (1 − θ)m̄(h))

≤ lim
h→∞ θβ�

(
m(h)) + (1 − θ)β�

(
m̄(h))

= θβ�(m) + (1 − θ)β�(m̄),

thus β�(·) is convex on R
K+ . �

PROOF OF LEMMA 7.1. It is clear that β∗
ε,δ is nonincreasing in δ. We now

claim that β∗
ε,δ ↗ β∗

ε,0 as δ ↘ 0. If this were not so by compactness of our opti-
mization region, we could choose δk ↘ 0 and mk ∈ R

K+ , with

max
i∈I

∣∣∣∣∑
j∈i

mk
ji − ni

∣∣∣∣ ≤ δk, inf
m′∈M(n)

‖mk − m′‖ ≥ ε, sup
k

βρ(mk) < β∗
ε,0,
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and such that for some m ∈ R
K+ , mk → m as k → ∞. But then by the continuity

of βρ , βρ(m) < β∗
ε,0. This then contradicts the minimality of β∗

ε,0. So, β∗
ε,δ ↗ β∗

ε,0
as δ ↘ 0.

By strong duality of (6.3) and (6.4), β∗
0,0 = ∑

i : ni>0 ni log
�PF

i (n)

ρi
. As βρ is con-

tinuous and M(n) is compact, β∗
ε,0 > β∗

0,0 ∀ε > 0. Take any f (ε) < β∗
ε,0 − β∗

0,0.
By the last paragraph, ∃δ(ε) such that ∀δ < δ(ε), β∗

ε,0 − β∗
ε,δ < 2f (ε). This gives

that β∗
ε,0 − β∗

ε,δ < f (ε) + β∗
ε,0 − β∗

0,0, and hence the result. �
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