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Consider a Markov chain {Xn}n≥0 with an ergodic probability mea-
sure π . Let � be a function on the state space of the chain, with α-tails
with respect to π , α ∈ (0,2). We find sufficient conditions on the probabil-
ity transition to prove convergence in law of N1/α ∑N

n �(Xn) to an α-stable
law. A “martingale approximation” approach and a “coupling” approach give
two different sets of conditions. We extend these results to continuous time
Markov jump processes Xt , whose skeleton chain satisfies our assumptions.
If waiting times between jumps have finite expectation, we prove convergence
of N−1/α

∫ Nt
0 V (Xs) ds to a stable process. The result is applied to show that

an appropriately scaled limit of solutions of a linear Boltzman equation is a
solution of the fractional diffusion equation.

1. Introduction. Superdiffusive transport of energy is generically observed
in a certain class of one-dimensional systems. This can be seen numerically in
chains of anharmonic oscillators of the Fermi–Pasta–Ulam type and experimen-
tally in carbon nanotubes (see [20] for a physical review). The nature of the sto-
chastic processes describing these emerging macroscopic behaviors is a subject of
a vivid debate in the physical literature and remarkably few mathematical results
are present for deterministic microscopic models.

The macroscopic behavior of the energy in a chain of harmonic oscillators with
the Hamiltonian dynamics perturbed by stochastic terms conserving energy and
momentum has been studied in [2]. The density of energy distribution over spatial
and momentum variables, obtained there in a proper kinetic limit, satisfies a linear
phonon Boltzmann equation,

∂tu(t, x, k) + ω′(k) ∂xu(t, x, k) =
∫

R(k, k′)
(
u(t, x, k′) − u(t, x, k)

)
dk′.(1.1)
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As we have already mentioned, u(t, x, k) is the density at time t of energy of
waves of Fourier’s mode k ∈ [0,1], and the velocity ω′(k) is the derivative of the
dispersion relation of the lattice.

We remark at this point that (1.1) appears also as a limit of scaled wave, or
Schrödinger equations in a random medium with fast oscillating coefficients and
initial data. It is sometimes called, in that context, the radiative transport equation
(see, e.g., [1, 10, 12, 21, 27], or monography [13] for more details on this subject).

Since the kernel R(k, k′) appearing in (1.1) is positive, this equation has an easy
probabilistic interpretation as a forward equation for the evolution of the density of
a Markov process (Y (t),K(t)) on R × [0,1]. In fact, here K(t) is an autonomous
jump process on [0,1] with jump rate R(k, k′), and Y(t) = ∫ t

0 ω′(K(s)) ds is an
additive functional of K(t). Momentum conservation in the microscopic model
imposes a very slow jump rate for small k: R(k, k′) ∼ k2 as k ∼ 0, while velocity
ω′(k) remains of order 1 even for small k. So when K(t) has a small value, it may
stay unchanged for a long time, as does the velocity of Y(t). This is the mechanism
that generates on a macroscopic scale the superdiffusive behavior of Y(t).

The above example has motivated us to study the following general question.
Consider a Markov chain {Xn,n ≥ 0} taking values in a general Polish metric
space (E,d). Suppose that π is a stationary and ergodic probability Borel measure
for this chain. Consider a function � :E → R and SN := ∑N−1

n=0 �(Xn). If � is
centered with respect to π , and possesses a second moment, one expects that the
central limit theorem holds for N−1/2SN , as N → +∞. This, of course, requires
some assumptions about the rate of the decay of correlations of the chain, as well
as hypotheses about its dynamics. If � has an infinite second moment and its
tails satisfy a power law, then one expects, again under some assumption on the
transition probabilities, convergence of the laws of N−1/αSN , for an appropriate α

to the corresponding stable law.
In 1937 W. Doeblin himself looked at this natural question in his seminal arti-

cle [7]. In the final lines of this paper, he observes that the method of dividing the
sum into independent blocks, used in the paper to show the central limit theorem
for countable Markov chains, can be used also in the infinite variance situation.
A more complete proof, along the line of Doeblin’s idea, can be found in an early
paper of Nagaev [24], assuming a strong Doeblin condition.

Starting from the early sixties, another, more analytical approach, has been de-
veloped for proving central limit theorems for Markov chains, based on a martin-
gale approximation of the additive functional. By solving (or by approximating the
solution of) the Poisson equation (I −P)u = � where P is the transition probabil-
ity matrix, one can decompose the sum SN into a martingale plus a negligible term,
thus reducing the problem to a central limit theorem for martingales. This is ex-
ploited by Gordin (see [15]) when P has a spectral gap. In the following decades,
much progress has been achieved using this approach. It has found applications in
stochastic homogenization, random walks in random environments and interact-
ing particle systems (i.e., infinite-dimensional problems, where renewal arguments
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cannot be applied), culminating in the seminal paper of Kipnis and Varadhan [18]
where reversibility of the chain is exploited in an optimal way (see also [5, 6, 14]).
For nonreversible chains there are still open problems (see [22] and the review
paper [25] for a more detailed list).

As far as we know, the martingale approximation approach has not been devel-
oped in the case of convergence to stable laws of functionals of Markov chains,
even though corresponding theorems of martingale convergence have been avail-
able for a while (cf., e.g., [3, 9]). The present article is a first step in this direction.

More precisely, we are concerned with the limiting behavior of functionals
formed over functions � with heavy tails that satisfy a power law decay, that is,
π(� > λ) ∼ c+∗ λ−α and π(� < −λ) ∼ c−∗ λ−α for λ 	 1 with α ∈ (0,2). We
prove sufficient conditions under which the laws of the functionals of the form
N−1/αSN converge weakly to α-stable laws, as N → +∞. Theorem 2.4 is proven
by martingale approximation, under a spectral gap condition.

We also give a proof by a more classical renewal method based on a coupling
technique inspired by [4]. The coupling argument gives a simpler proof but under
more restrictive assumptions on the form of the probability transition (cf. Condi-
tion 2.5). We point out, however, that such hypotheses are of local nature, in the
sense that they involve only the behavior of the process around the singularity. In
particular, the spectral gap condition (which is a global condition) can be relaxed in
this coupling approach, to a moment bound for some regeneration times associated
to the process (cf. Theorem 2.7).

Next, we apply these results to a continuous time Markov jump process {Xt, t ≥
0} whose skeleton chain satisfies the assumptions made in the respective parts of
Theorem 2.4. We prove that if the mean waiting time t (x) has a finite moment with
respect to the invariant measure π and the tails of V (x)t (x) obey the power laws,
as above, then finite-dimensional distributions of the scaled functional of the form
N−1/α

∫ Nt
0 V (Xs) ds converge to the respective finite-dimensional distribution of

a stable process (see Theorem 2.8).
Finally, these results are applied to deal with the limiting behavior of the so-

lution u(t, x, k) of the linear Boltzmann equation (1.1) in the spatial dimension
d = 1. We prove that the long-time, large-scale limit of solutions of such an equa-
tion converges to the solution of the fractional heat equation

∂t ū(t, x) = −(−∂2
x )3/4ū(t, x),

corresponding to a stable process with exponent α = 3/2. Both approaches (i.e.,
martingale approximation and coupling) apply to this example.

Note added to the second version: After completing the first version of the
present paper [16], we have received a preprint by Mellet, Mischler and Mouhot
[23] that contains a completely analytical proof of the convergence of the solution
of a linear Boltzmann equation to a fractional diffusion. The conditions assumed
in [23] imply the same spectral gap condition as in our Theorem 2.4; consequently
the corresponding result in [23] is related to our Theorem 2.8.
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2. Preliminaries and statements of the main results.

2.1. Some preliminaries on stable laws. In this paper we shall consider three
types of stable laws. When α ∈ (0,1), we say that X is distributed according to
a stable law of type I if its characteristic function is of the form EeiξX = eψ(ξ),
where the Lévy exponent equals

ψ(ξ) := α

∫
R

(eiλξ − 1)|λ|−1−αc∗(λ) dλ(2.1)

and

c∗(λ) :=
{

c−∗ , when λ < 0,
c+∗ , when λ > 0,

(2.2)

where c−∗ , c+∗ ≥ 0 and c−∗ + c+∗ > 0. The stable law is of type II if α ∈ (1,2) and
its Lévy exponent equals

ψ(ξ) := α

∫
R

(eiλξ − 1 − iλξ)|λ|−1−αc∗(λ) dλ.(2.3)

Finally, the stable law is of type III is α = 1 and its Lévy exponent equals

ψ(ξ) :=
∫

R

(
eiξλ − 1 − iξλ1[−1,1](λ)

)|λ|−2c∗(λ) dλ.(2.4)

We say that {Z(t), t ≥ 0} is a stable process of type I (resp., II, or III) if Z(0) = 0
and it is a process with independent increments such that Z(1) is distributed ac-
cording to a stable law of type I (resp., II, or III).

2.2. A Markov chain. Let (E,d) be a Polish metric space, E its Borel σ -
algebra. Assume that {Xn,n ≥ 0} is a Markov chain with the state space E and
π—the law of X0—is an invariant and ergodic measure for the chain. Denote by
P the transition operator corresponding to the chain. Since π is invariant it can
be defined, as a positivity preserving linear contraction, on any Lp(π) space for
p ∈ [1,+∞].

CONDITION 2.1. Suppose that � :E → R is Borel measurable such that there
exist α ∈ (0,2) and two constants c+∗ , c−∗ satisfying c+∗ + c−∗ > 0 and

lim
λ→+∞λαπ(� ≥ λ) = c+∗ ,

(2.5)
lim

λ→+∞λαπ(� ≤ −λ) = c−∗ .

Condition (2.5) guarantees that � ∈ Lβ(π) for any β < α.
In the case of α ∈ (1,2), we will always assume that

∫
� dπ = 0. We are in-

terested in the asymptotic behavior of SN := ∑N
n=1 �(Xn). We are looking for
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sufficient conditions on the chain, which guarantee that the laws of N−1/αSN con-
verge to a α-stable law, as N → +∞.

We present two different approaches (by martingale approximation and by cou-
pling) with two separate set of conditions.

2.3. The martingale approach result. We suppose that the chain satisfies:

CONDITION 2.2 (Spectral Gap Condition).

sup
[‖Pf ‖L2(π) :f ⊥ 1,‖f ‖L2(π) = 1

] = a < 1.(2.6)

Since P is also a contraction in L1(π) and L∞(π) we conclude, via the Riesz–
Thorin interpolation theorem, that for any p ∈ [1,+∞),

‖Pf ‖Lp(π) ≤ a1−|2/p−1|‖f ‖Lp(π),(2.7)

for all f ∈ Lp(π), such that
∫

f dπ = 0.
In addition, we assume that the tails of � under the invariant measure do not

differ very much from those with respect to the transition probabilities. Namely,
we suppose:

CONDITION 2.3. There exists a measurable family of Borel measures Q(x,

dy) and a measurable, nonnegative function p(x, y) such that

P(x, dy) = p(x, y)π(dy) + Q(x,dy) for all x ∈ E,(2.8)

C(2) := sup
y∈E

∫
p2(x, y)π(dx) < +∞(2.9)

and

Q(x, |�| ≥ λ) ≤ C

∫
[|�(y)|≥λ]

p(x, y)π(dy) ∀x ∈ E,λ ≥ 0.(2.10)

A simple consequence of (2.8) and the fact that π is invariant is that∫
p(x, y)π(dy) ≤ 1 and

∫
p(y, x)π(dy) ≤ 1 ∀x ∈ E.(2.11)

If α ∈ (1,2) then, in particular, � possesses the first absolute moment.

THEOREM 2.4. We assume here Conditions 2.1–2.3.

(i) Suppose α ∈ (1,2), � is centered. Furthermore, assume that for some
α′ > α, we have

‖P�‖
Lα′

(π)
< +∞.(2.12)

Then the law of N−1/αSN converges weakly, as N → +∞, to a stable law of
type II.
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(ii) If α ∈ (0,1), then the law of N−1/αSN converges weakly, as N → +∞, to
a stable law of type I.

(iii) When α = 1, assume that for some α′ > 1, we have

sup
N≥1

‖P�N‖
Lα′

(π)
< +∞,(2.13)

where �N := �1[|�| ≤ N ]. Let cN := ∫
�N dπ . Then, the law of N−1(SN −

NcN) converges weakly, as N → +∞, to a stable law of type III.

REMARK. A simple calculation shows that in case (iii) cN = (c + o(1)) logN

for some constant c.

2.4. The coupling approach results.

CONDITION 2.5. There exists a measurable function θ :E → [0,1], a proba-
bility q and a transition probability Q1(x, dy), such that

P(x, dy) = θ(x)q(dy) + (
1 − θ(x)

)
Q1(x, dy).

Furthermore, we assume that

θ̄ :=
∫

θ(x)π(dx) > 0(2.14)

and that the tails of distribution of � with respect to Q1(x, dy) are uniformly
lighter than its tails with respect to q ,

lim
λ→∞ sup

x∈E

Q1(x, |�| ≥ λ)

q(|�| ≥ λ)
= 0.(2.15)

Clearly, because of (2.15), the function � satisfies condition (2.5) also with
respect to the measure q , but with different constants.

lim
λ→+∞λαq(� > λ) = c+∗ θ̄−1,

(2.16)
lim

λ→+∞λαq(� < −λ) = c−∗ θ̄−1.

The purpose of Condition 2.5 is that it permits to define a Markov chain
{(Xn, δn), n ≥ 0} on E × {0,1} such that

P(δn+1 = 0|Xn = x, δn = ε) = θ(x),

P(δn+1 = 1|Xn = x, δn = ε) = 1 − θ(x),
(2.17)

P(Xn+1 ∈ A|δn+1 = 0,Xn = x, δn = ε) = q(A),

P(Xn+1 ∈ A|δn+1 = 1,Xn = x, δn = ε) = Q1(x,A)
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for n ≥ 0. We call this Markov chain the basic coupling. It is clear that the marginal
chain {Xn,n ≥ 0} has probability transition P . The dynamics of {(Xn, δn), n ≥ 0}
are easy to understand. When Xn = x, we choose Xn+1 according to the distribu-
tion q(dy) with probability θ(x), and according to the distribution Q1(x, dy) with
probability 1 − θ(x).

Let κn be the nth zero in the sequence {δn, n ≥ 0}. In a more precise way, define
κ0 := 0, and for i ≥ 1,

κi := inf{n > κi−1, δn = 0}.
Notice that the sequence {κi+1 − κi, i ≥ 1} is i.i.d., and E(κi+1 − κi) = θ̄−1. We
call the sequence {κn,n ≥ 1} the regeneration times.

Observe that, for any i ≥ 1, the distribution of Xκi
is given by q(dy). In partic-

ular, Xκi
is independent of {X0, . . . ,Xκi−1}. Therefore, the blocks

{(Xκi
, δκi

), . . . , (Xκi+1−1, δκi+1−1)}
are independent. The dynamics for each one of these blocks is easy to understand.
Start a Markov chain {X1

n, n ≥ 0} with initial distribution q(dy) and transition
probability Q1(x, dy). At each step n, we stop the chain with probability θ(X1

n).
We call the corresponding stopping time κ1. Each one of the blocks, except for
the first one, has a distribution {(X1

0,0), (X1
1,1), . . . , (X1

κ1−1,1)}. The first block

is constructed in the same way, but starts from X1
0 = X0 instead of with the law

q(dy). Now we are ready to state:

CONDITION 2.6.
∞∑

n=1

n1+α sup
x

P(κ1 ≥ n|X0 = x) < +∞.

THEOREM 2.7. Suppose that α ∈ (1,2) and � is centered under π , or α ∈
(0,1). Then under Conditions 2.1, 2.5 and 2.6, the law of N−1/αSN converges to
an α-stable law.

2.5. An additive functional of a continuous time jump process. Suppose
that {τn, n ≥ 0} is a sequence of i.i.d. random variables, independent of F :=
σ(X0,X1, . . .) and such that τ0 has exponential distribution with parameter 1. Sup-
pose that t :E → (0,+∞) is a measurable function such that t (x) ≥ t∗ > 0, x ∈ E.
Let

tN :=
N∑

n=0

t (Xn)τn.(2.18)

One can define a compound Poisson process Xt = Xn, t ∈ [tN , tN+1). It is Markov-
ian; see, for example, Section 2 of Appendix 1, pages 314–321, of [17] with the



STABLE LIMIT LAWS FOR MARKOV CHAINS 2277

generator

Lf (x) = t−1(x)

∫
[f (y) − f (x)]P(x, dy), f ∈ Bb(E).(2.19)

Here Bb(E) is the space of bounded and Borel measurable functions on E. Let

t̄ :=
∫

t dπ < +∞.(2.20)

Suppose V :E → R is measurable and �(x) := V (x)t (x) satisfies condition (2.5).
We shall be concerned with the limit of the scaled processes,

YN(t) := 1

N1/α

∫ Nt

0
V (X(s)) ds, t ≥ 0,(2.21)

as N → +∞. Then t̄−1t (x)π(dx) is an ergodic, invariant probability measure for
{Xt, t ≥ 0}. Our result can be formulated as follows.

THEOREM 2.8. (i) Suppose that α ∈ (1,2) and that the assumptions of either
part (i) Theorem 2.4, or of Theorem 2.7, hold. Then, the convergence of finite-
dimensional distributions takes place to a stable process of type II.

(ii) In case α ∈ (0,1), we suppose that the assumptions of either part (ii) of
Theorem 2.4, or of Theorem 2.7 hold. Then the finite distributions of processes
{YN(t), t ≥ 0} converge, as N → +∞, to the respective distributions of a stable
process of type I.

(iii) When α = 1 and the assumptions of part (iii) of Theorem 2.4 hold, the finite
distributions of processes {YN(t) − cN t, t ≥ 0} converge, as N → +∞, to the
respective distributions of a stable process of type III. Here cN := ∫

|�|≤N � dπ .

3. An application: Superdiffusion of energy in a lattice dynamics. In [2]
it is proven that the Wigner distribution associated with the energy of a system of
interacting oscillators with momentum and energy conserving noise converges, in
an appropriate kinetic limit, to the solution u(t, x, k) of the linear kinetic equation{

∂tu(t, x, k) + ω′(k) ∂xu(t, x, k) = Lu(t, x, k),

u(0, x, k) = u0(x, k),
(3.1)

where (t, x, k) ∈ [0,+∞)× R
d × T

d and the initial condition u0(·, ·) is a function
of class C1,0(Rd × T

d). Here T is the one-dimensional circle, understood as the
interval [−1/2,1/2] with identified endpoints, and T

d is the d-dimensional torus.
The function ω(k) is the dispersion relation of the lattice and it is assumed that
ω(−k) = ω(k) and ω(k) ∼ |k| for |k| ∼ 0 (acoustic dispersion). The scattering
operator L, acting in (3.1) on variable k, is usually an integral operator that is a
generator of a certain jump process.

In the case of d = 1, the scattering operator is given by

Lf (k) =
∫

T

R(k, k′)[f (k′) − f (k)]dk′(3.2)
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with the scattering kernel,

R(k, k′) = 4
3 [2 sin2(2πk) sin2(πk′)

(3.3)
+ 2 sin2(2πk′) sin2(πk) − sin2(2πk) sin2(2πk′)].

We shall assume that the dispersion relation is given by a function ω : T →
[0,+∞), that satisfies ω ∈ C1(T \ {0}) and

cl|sin(πk)| ≤ ω(k) ≤ cu|sin(πk)|, k ∈ T,(3.4)

for some 0 < cl ≤ cu < +∞ while

lim
k→±0

ω′(k) = ±cω.(3.5)

In the case of a simple one-dimensional lattice, we have ω(k) = c|sin(πk)|.
The total scattering cross section is given by

R(k) =
∫

T

R(k, k′) dk′ = 4

3
sin2(πk)

(
1 + 2 cos2(πk)

)
.(3.6)

We define t (k) := R(k)−1 since these are the expected waiting times of the scat-
tering process.

Let {Xn,n ≥ 0} be a Markov chain on T whose transition probability equals

P(k, dk′) := t (k)R(k, k′) dk′.

Suppose that {τn, n ≥ 0} is an i.i.d. sequence of random variables such that τ0
is exponentially distributed with intensity 1. Let tn := t (Xn)τn, n ≥ 0. One can
represent then the solution of (3.1) with the formula

u(t, x, k) = Eu0(x(t), k(t)),(3.7)

where

x(t) = x +
∫ t

0
ω′(k(s)) ds,

k(t) = Xn, t ∈ [tn, tn+1),

and k(0) = X0 = k. We shall be concerned in determining the weak limit of the
finite-dimensional distribution of the scaled process {N−1/αx(Nt), t ≥ 0}, as N →
+∞, for an appropriate scaling exponent α.

It is straightforward to verify that

π(dk) = t−1(k)

R̄
dk = R(k)

R̄
dk,(3.8)

where R̄ := ∫
T

R(k)dk is a stationary and reversible measure for the chain. Then
P(k, dk′) = p(k, k′)π(dk′) where

p(k, k′) = R̄t (k)R(k, k′)t (k′)



STABLE LIMIT LAWS FOR MARKOV CHAINS 2279

and after straightforward calculations, we obtain

p(k, k′) = 6[cos2(πk) + cos2(πk′) − 2 cos2(πk) cos2(πk′)]
× [(

1 + 2 cos2(πk)
)(

1 + 2 cos2(πk′)
)]−1

= 6{[|cos(πk)| − |cos(πk′)|]2(3.9)

+ 2|cos(πk) cos(πk′)|[1 − |cos(πk) cos(πk′)|]}
× [(

1 + 2 cos2(πk)
)(

1 + 2 cos2(πk′)
)]−1

.

We apply Theorem 2.8 and probabilistic representation (3.7) to describe the as-
ymptotic behavior for long times and large spatial scales of solutions of the kinetic
equation (3.1). The result is contained in the following.

THEOREM 3.1. The finite-dimensional distributions of scaled processes
{N−2/3x(Nt), t ≥ 0} converge weakly to those of a stable process of type II. In
addition, for any t > 0, x ∈ R, we have

lim
N→+∞

∫
T

|u(Nt,N2/3x, k) − ū(t, x)|2 dk = 0,(3.10)

where u(t, x, k) satisfies (3.1) with the initial condition u0(N
−2/3x, k), such that

u0 is compactly supported, and ū(t, x) is the solution of⎧⎨
⎩

∂t ū(t, x) = −(−∂2
x )3/4ū(t, x),

ū(0, x) =
∫

T

u0(x, k) dk.
(3.11)

PROOF. We start verifying the hypotheses of Theorem 2.8 by finding the tails
of

�(k) = ω′(k)t (k)(3.12)

under measure π . Since ω′(k) is both bounded and bounded away from zero, the
tails of �(k) under π are the same as those of t (k). Note that

π
(
k : t (k) ≥ λ

) = CRλ−3/2(
1 + O(1)

)
for λ 	 1,(3.13)

and some CR > 0. This verifies (2.5) with α = 3/2. Since the density of π with
respect to the Lebesgue measure is even and � is odd, it has a null π -average. �

Verification of hypotheses of part (i) of Theorem 2.4. Note that we can decom-
pose P(k, dk′) as in (2.8) with p(k, k′) given by (3.9) and Q(k, dk′) ≡ 0. Since
p(k, k′) is bounded, Condition 2.3 and (2.12) are obviously satisfied. Operator P

is a contraction on L2(π), and by the Hilbert–Schmidt theorem (see, e.g., Theo-
rem 4, page 247 of [19]) is symmetric and compact. In consequence, its spectrum
is contained in [−1,1] and is discrete, except for a possible accumulation point
at 0.
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LEMMA 3.2. Point 1 is a simple eigenvalue of both P and P 2.

PROOF. Suppose

Pf = f.(3.14)

We claim that f is either everywhere positive, or everywhere negative. Let f +, f −
be the positive and negative parts of f . Suppose also that f + is nonzero on a
set of positive π measure. Then f = f + − f − and Pf = Pf + − Pf −. Thus
f + = (Pf )+ ≤ Pf +. Yet∫

f + dπ ≤
∫

Pf + dπ =
∫

f + dπ,

thus Pf + = f +. Likewise, Pf − = f −. Since for each k we have p(k, k′) > 0,
except for a set of k′ of measure π zero, we conclude that f + > 0 π a.e., hence
f − ≡ 0.

Now we know that P 1 = 1. We claim that any other f �≡ 0 that satisfies (3.14)
belongs to span{1}. Otherwise f − c1 for some c would suffer change of sign.
But this contradicts our conclusion reached above so the lemma holds for P . The
argument for P 2 is analogous.

As a corollary of the above lemma we conclude that condition 2.2 holds. Apply-
ing part (i) of Theorem 2.8 to N−2/3 ∫ Nt

0 ω′(k(s)) ds, we conclude that its finite-
dimensional distributions converge in law to an α-stable Lévy process for α = 3/2.

We use the above result to prove (3.10). To abbreviate the notation denote
YN(t) := x +N−2/3 ∫ Nt

0 ω′(k(s)) ds. Using probabilistic representation for a solu-
tion of (3.1), we can write

u(Nt,N3/2x, k) = Eku0(YN(t), k(Nt))
(3.15)

= ∑
η∈Z

∫
R

û0(ξ, η)Ek exp{iξYN(t) + iηk(Nt)}dξ.

Here û0(ξ, η) is the Fourier transform of u(x, k), and Ek is the expectation with
respect to the path measure corresponding to the momentum process {k(t), t ≥ 0}
that satisfies k(0) = k. Since the dynamics of the momentum process are reversible
with respect to the normalized Lebesgue measure m on the torus and 0 is a simple
eigenvalue for the generator L, we have ‖P tf ‖L2(m) → 0, as t → +∞, provided∫
T

f dk = 0. Suppose that {aN,N ≥ 1} is an increasing sequence of positive num-
bers tending to infinity and such that aNN−3/2 → 0. A simple calculation shows
that for any ξ, η ∈ R and eξ (x) := eixξ , we have∣∣Ek[eξ (YN(t))eη(k(Nt))] − Ek

[
eξ

(
YN(t − taN/N)

)
eη(k(Nt))

]∣∣ → 0
(3.16)

as N → +∞.
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Using Markov property we can write that the second term under the absolute value
in the formula above equals

Ek

[
eξ

(
YN(t − taN/N)

)
P aN teη

(
k
(
(N − aN)t

))]
.

Let ẽη(k) := eη(k) − ēη, where ēη := ∫
T

eη(k) dk. By the Cauchy–Schwarz in-
equality, we obtain∣∣Ek

[
eξ

(
YN(t − taN/N)

)
P aN teη

(
k
(
(N − aN)t

))]
− Ekeξ

(
YN(t − taN/N)

)
ēη

∣∣(3.17)

≤ {
Ek

∣∣P aN t ẽη

(
k((N − aN)t)

)∣∣2}1/2
.

The right-hand side of (3.17) tends to 0 in the L2 sense with respect to k ∈ T, as
N → +∞.

From (3.17) we conclude that∣∣∣∣∑
η∈Z

∫
R

∫
T

û0(ξ, η)Ek

[
eξ

(
YN(t − taN/N)

)

× P aN teη

(
k
(
(N − aN)t

))]
dξ dk(3.18)

− ∑
η∈Z

∫
R

∫
T

û0(ξ, η)Ekeξ

(
YN(t − taN/N)

)
ēη dξ dk

∣∣∣∣ → 0

as N → +∞. Combining this with (3.16), we complete the proof of the theorem.
�

Verification of hypotheses of Theorem 2.7. Here we show the convergence of
N−3/2x(Nt) by using the coupling approach of Section 4. Define the functions

q0(k) := sin2(2πk) = 4[sin2(πk) − sin4(πk)],
q1(k) := 4

3 sin4(πk),

which are densities with respect to the Lebesgue measure in T. A simple com-
putation shows that R(k, k′) = 2−4[q0(k)q1(k

′) + q1(k)q0(k
′)], and therefore,

R(k) = 2−4[q0(k) + q1(k)]. The transition probability P(k, dk′) can be written
as

P(k, dk′) = q1(k)

q0(k) + q1(k)
q0(k

′) dk′ + q0(k)

q0(k) + q1(k)
q1(k

′) dk′.

In particular, in the notation of Section 4, this model satisfies Condition 2.5
with q(dk′) = q0(k

′) dk′, θ = q1/(q0 + q1) and Q1(k, dk′) = q1(k
′) dk′. Notice

that the behavior around 0 of π and q is the same. Hence, q(�(k) ≥ λ) ∼ cλ−3/2

for λ 	 1. We conclude, therefore, that the function �(k), given by (3.12),
satisfies (2.16). Observe furthermore that Q1 does not depend on k and that
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Q1(k
′, t (k) ≥ λ) ∼ cλ−5/2 for λ 	 1. Due to this last observation, condition (2.15)

is satisfied.
We are only left to check Condition 2.6. But this one is also simple, once we

observe that the sequence {δn, n ≥ 0} is a Markov chain with transition probabili-
ties

P(δn+1 = 1|δn = 0) = P(δn+1 = 0|δn = 1)

=
∫ 1/2

−1/2

q0(k)q1(k) dk

q0(k) + q1(k)
,

P (δn+1 = 1|δn = 1) =
∫ 1/2

−1/2

q2
1 (k) dk

q0(k) + q1(k)
,

P (δn+1 = 0|δn = 0) =
∫ 1/2

−1/2

q2
0 (k) dk

q0(k) + q1(k)
.

We conclude that the regeneration time κ1 satisfies E[exp{γ κ1}] < +∞ for γ small
enough. Condition 2.6 is therefore a consequence of the fact that the transition
probability function Q1(k, dk′) does not depend on k; therefore, we can write

P[κ1 ≥ n|K0 = k] = (
1 − θ(k)

)
P[κ1 ≥ n − 1].

4. Proof of Theorem 2.7 by coupling. Because of its simplicity, we present
first the proof of Theorem 2.7 using a basic coupling argument. Let us define

ϕi =
κi+1−1∑
j=κi

�(Xj ),

M(N) = sup{i ≥ 0;κi ≤ N}.
Note that M(N) < +∞ a.s. An alternative way of defining M(N) is demanding
the inequality κM(N) ≤ N < κM(N)+1 to be satisfied. Then, we have

SN =
M(N)∑
i=0

ϕi + RN,(4.1)

where

RN :=
N∑

j=κM(N)+1

�(Xj).

In (4.1) we have decomposed SN into a random sum of i.i.d. random variables,
{ϕi, i ≥ 1}, and two boundary terms: ϕ0 and RN . Notice also that κN − κ1 is a sum
of i.i.d. random variables. Consequently, the law of large numbers gives

κN

N
→ κ̄ = E(κ2 − κ1) and

M(N)

N
→ κ̄−1 = θ̄ ,(4.2)
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a.s., as N → +∞.
Observe also that when α ∈ (1,2) and � is centered, random variable ϕ1 is also

centered. Indeed, by the ergodic theorem we have that a.s.

0 = lim
N→+∞

SN

N
= lim

N→+∞
1

M(N)

κM(N)∑
i=1

ϕi × M(N)

N
= Eϕ1θ̄ ,

which proves that

Eϕ1 = 0.(4.3)

The idea now is that under Conditions 2.5 and 2.6, the random variable ϕi is
equal to �(Xκi

) plus a term with lighter tails. Before stating this result, we need a
simple lemma.

LEMMA 4.1. Let ζ be a random variable such that

lim
x→∞xα

P(ζ > x) = c+, lim
x→∞xα

P(ζ < −x) = c−.

Let ξ be such that limx→∞ P(|ξ | > x)/P(|ζ | > x) = 0. Then

lim
x→∞xα

P(ζ + ξ > x) = c+, lim
x→∞xα

P(ζ + ξ < −x) = c−.(4.4)

PROOF. Without loss of generality, we just consider the first limit, the second
one follows considering −ζ , −ξ . We will prove that the lim infx→∞ of the previ-
ous expression is bigger than c+ and the lim sup is smaller than c+. We start with
the upper bound: for any ε > 0 there exists x0 so that for x ≥ x0, we have

xα
P(ζ + ξ > x) ≤ xα

P
(
ζ > (1 − ε)x

) + xα
P(ξ > εx)

≤ c+ + ε

(1 − 2ε)α
+ P(|ξ | > εx)

P(|ζ | > εx)
× c+ + c−

(ε/2)α
.

Now take above the upper limit, as x → +∞, to get

lim sup
x→+∞

xα
P(ζ + ξ > x) ≤ c+ + ε

(1 − 2ε)α
.

Since ε is arbitrary, we have proved the upper bound. The lower bound is very
similar:

P(ζ + ξ > x) = P(ζ + ξ > x, ξ > −εx) + P(ζ + ξ > x, ξ ≤ −εx)

≥ P
(
ζ > (1 + ε)x, ξ > −εx

)
≥ P

(
ζ > (1 + ε)x

) − P
(
ζ > (1 + ε)x, ξ ≤ −εx

)
≥ P

(
ζ > (1 + ε)x

) − P(ξ < −εx).
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Starting from this last expression, the same computations done for the upper
bound show that

lim inf
x→+∞xα

P(ζ + ξ > x) ≥ c+
(1 + 2ε)α

.

Since ε > 0 is arbitrary, the lemma is proved for the first expression in (4.4).
The second case can be done in the same fashion. �

LEMMA 4.2. Let � satisfy (2.5) with constants c+∗ , c−∗ together with Condi-
tions 2.5 and 2.6. Then the law of each ϕi satisfies

lim
λ→+∞λα

P(ϕi > λ) = c+∗ θ̄−1,

(4.5)
lim

λ→+∞λα
P(ϕi < −λ) = c−∗ θ̄−1.

PROOF. The idea of the proof is simple. Random variable ϕi is the sum of a
random variable with an α-tail, �(Xκi

), and a finite (but random) number of ran-
dom variables with lighter tails (�(Xκi+1), . . . ,�(Xκi+1−1)). By Condition 2.6,
the random number can be efficiently controlled. To simplify the notation, assume
that X0 is distributed according to q , so the first block is also distributed like the
other ones. Then

P

(
κ1−1∑
j=1

�(Xj) ≥ t

)
=

∞∑
n=1

P

(
n−1∑
j=1

�(Xj) ≥ t, κ1 = n

)

(4.6)

≤
∞∑

n=1

n−1∑
j=1

P
(
�(Xj) ≥ t/(n − 1), κ1 = n

)
.

The probability under the sum appearing in the last expression can be estimated by

P
(
�(Xj) ≥ t/(n − 1), δp = 1,∀p ≤ j

)
(4.7)

= E
[
Q1

(
Xj−1,� ≥ t/(n − 1)

)
, δp = 1,∀p ≤ j

]
.

When j ≥ n/2 we can use (2.15) to bound the expression on the right-hand side of
(4.7) from above by

nαg(t/n)

tα
P[δp = 1,∀p ≤ j ] ≤ nαg(t/n)

tα
P[κ1 ≥ n/2].(4.8)

Here g(x) is a bounded function that goes to 0, as x → ∞. On the other hand,
when j < n/2, we rewrite the probability appearing under the sum on the right-
hand side of (4.6) using the Markov property. It equals

E
[
E[κ̃1 = n − j |X̃0 = Xj ],�(Xj ) ≥ t/(n − 1), δ0 = · · · = δj = 1

]
.
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Here {X̃n, n ≥ 0} is another copy of the Markov chain {Xn,n ≥ 0}, and κ̃1 is the
respective stopping time defined in correspondence to κ1. We can estimate this
expression by

P[�(Xj) ≥ t/(n − 1)] sup
x

P[κ1 ≥ n − j |X0 = x]

≤ nαg(t/n)

tα
sup
x

P[κ1 ≥ n/2|X0 = x].
Summarizing, we have shown that the utmost left-hand side of (4.6) can be esti-
mated by

∞∑
n=1

g(t/n)n1+α

tα
sup
x

Px(κ1 ≥ n/2).

We conclude that this expression is o(t−α) by invoking Lebesgue dominated con-
vergence theorem and Condition 2.6. The negative tails are treated in the same way.
Therefore, ϕ0 −�(X0) has lighter tails than �(X0) itself. By Lemma 4.1, the sum
of a random variable satisfying condition (2.16) and a random variable with lighter
tails also satisfies condition (2.16) for the same constants c+θ̄−1, c−θ̄−1.

At this point we are only left to recall the classical limit theorem for i.i.d. ran-
dom variables. It follows that there exist

N−1/αSN =
( M(N)

N

)1/α 1

M(N)1/α

M(N)∑
i=0

ϕi + 1

N1/α

N∑
j=κM(N)+1

�(Xj)

=
( M(N)

Nθ̄

)1/α 1

M(N)1/α

M(N)∑
i=0

θ̄1/αϕi + 1

N1/α

N∑
j=κM(N)+1

�(Xj).

Recall (4.2), and notice that by (4.5),

lim
λ→+∞λα

P(θ̄1/αϕi > λ) = c+∗ ,

lim
λ→+∞λα

P(θ̄1/αϕi < −λ) = c−∗ .

Let C∗ := (c−∗ + c+∗ )θ̄−1. By virtue of the stable limit theorem for i.i.d. ran-
dom variables (see, e.g., [8], Theorem 7.7, page 153), we know that for cN :=
NE[ϕ1, |ϕ1| ≤ (C∗N)1/α] such that the laws of N−1/α(

∑N
i=0 θ̄1/αϕi − cN) con-

verge to an α-stable law. When α < 1 constants cN ∼ cN1/α and they can be
discarded. Observe, however, that since Eϕ1 = 0, cf. (4.3), for α ∈ (1,2), we have

cN = −NE[ϕ1, |ϕ1| > (C∗N)1/α] = N

∫ +∞
(C∗N)1/α

[
P[ϕ1 < −λ] − P[ϕ1 > λ]]dλ

= θ̄−1N

∫ +∞
(C∗N)1/α

(c−∗ c+∗ )
dλ

λα
= C

(
1 + o(1)

)
N1/α
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for some constant C. The constants cN can again be discarded. We conclude there-
fore that the laws of

KN := N−1/α

(
N∑

i=0

θ̄1/αϕi

)

weakly converge to some α-stable law ν∗. Since LN := θ̄−1/αN−1M(N) con-
verges a.s. to 1, the joint law of (KN, LN) converges to ν∗ ⊗ δ1, as N → +∞. Ac-
cording to the Skorochod representation theorem there exists a probability space

and random variables (K̄N, L̄N) such that (K̄N, L̄N)
d= (KN, LN) for each N and

(K̄N, L̄N) → (Y∗,1) a.s. The above in particular implies that K̄N L̄N
converges a.s.

to Y∗. Since K̄N L̄N

d= KN LN
, we conclude the convergence of the laws of KN LN

to ν∗. �

5. Proof of Theorem 2.4 by martingale approximation. Below we formu-
late a stable limits law that shall be crucial during the course of the proof of the
theorems.

Suppose that {Zn,n ≥ 1} is a stationary sequence that is adapted with respect
to the filtration {Gn, n ≥ 0} and such that for any f bounded and measurable, the
sequence {E[f (Zn)|Gn−1], n ≥ 1} is also stationary. We assume furthermore that
there exist α ∈ (0,2) and c+∗ , c−∗ ≥ 0 such that c+∗ + c−∗ > 0 and

P[Z1 > λ] = λ−α(
c+∗ + o(1)

)
,

(5.1)
P[Z1 < −λ] = λ−α(

c−∗ + o(1)
)

as λ → +∞.

In addition, for any g ∈ C∞
0 (R \ {0}), we have

lim
N→+∞ E

∣∣∣∣∣
[Nt]∑
n=1

E

[
g

(
Zn

N1/α

)∣∣∣∣Gn−1

]
− αt

∫
R

g(λ)
c∗(λ) dλ

|λ|1+α

∣∣∣∣∣ = 0(5.2)

and

lim
N→+∞NE

{
E

[
g

(
Z1

N1/α

)∣∣∣∣G0

]}2

= 0.(5.3)

Here c∗(·) appearing in (5.2) is given by (2.2). Let MN := ∑N
n=1 Zn, N ≥ 1 and

M0 := 0.
When α = 1 we shall also consider an array {Z(N)

n :n ≥ 1}, N ≥ 1 of sta-
tionary sequences adapted with respect to the filtration {Gn :n ≥ 0}. Assume fur-
thermore that for each N ≥ 1 and any f bounded and measurable sequence,
{E[f (Z

(N)
n )|Gn−1] :n ≥ 1} is stationary. We suppose that there exist nonnegative

c+∗ , c−∗ such that c+∗ + c−∗ > 0 and

lim
λ→+∞ sup

N≥1

[∣∣λP
[
Z

(N)
1 > λ

] − c+∗
∣∣ + ∣∣λP

[
Z

(N)
1 < −λ

] − c−∗
∣∣] = 0.(5.4)
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Let

M̃N :=
N∑

n=1

{
Z(N)

n − E
[
Z(N)

n 1
[∣∣Z(N)

n

∣∣ ≤ N
]∣∣Gn−1

]}
, N ≥ 1,

and M̃0 := 0. The following result has been shown in Section 4 of [9].

THEOREM 5.1. (i) Suppose that α ∈ (1,2), conditions (5.1)–(5.3) hold, and

E[Zn|Gn−1] = 0 for n ≥ 1.(5.5)

Then N−1/αM[N ·] ⇒ Z(·), as N → +∞, weakly in D[0,+∞), where {Z(t), t ≥
0} is an α-stable process of type II.

(ii) Suppose that α ∈ (0,1) and conditions (5.1)–(5.3) hold. Then N−1/α ×
M[N ·] ⇒ Z(·), as N → +∞, weakly in D[0,+∞), where {Z(t), t ≥ 0} is an α-
stable process of type I.

(iii) For α = 1, assume (5.2) and (5.3) with Z
(N)
n replacing Zn and (5.4).

Then N−1M̃[N ·] ⇒ Z(·), as N → +∞, weakly in D[0,+∞) to a Lévy process
{Z(t), t ≥ 0} of type III.

Proof of part (i) of Theorem 2.4. Let χ ∈ Lβ(π), β ∈ (1, α) be the unique,
zero-mean solution of the equation

χ − Pχ = �.(5.6)

Since � ∈ Lβ(π) for β ∈ (0, α) is of zero mean, the solution to (5.6) ex-
ists in Lβ(π) and is given by χ = ∑

n≥0 P n� . This follows from the fact that
‖P n�‖Lβ ≤ a(2/β−1)n‖�‖Lβ , n ≥ 0 [see (2.7)], so the series defining χ geomet-
rically converges. Uniqueness is a consequence of (2.7). Indeed, if χ1 was another
zero-mean solution to (5.6), then

‖χ − χ1‖Lβ = ‖P(χ − χ1)‖Lβ ≤ a1−|2/β−1|‖χ − χ1‖Lβ ,

which clearly is possible only when χ − χ1 = 0 (recall that a < 1). Note also
that from (2.12) it follows that in fact Pχ = (I − P)−1(P�) ∈ Lα′

(π). Thus in
particular,

π(|Pχ | > λ) ≤
‖Pχ‖α′

Lα′
(π)

λα′ ,(5.7)

and consequently χ satisfies the same tail condition as � [cf. (2.5)].
Then by using (5.6), we can write

SN =
N∑

n=1

�(Xn) =
N∑

n=1

Zn + Pχ(X0) − Pχ(XN)(5.8)

with Zn = χ(Xn) − Pχ(Xn−1).
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In what follows, we denote by C∞
0 (R \ {0}) the space of all C∞ functions that

are compactly supported in R \ {0}. According to part (i) of Theorem 5.1, we only
need to demonstrate the following.

PROPOSITION 5.2. For any g ∈ C∞
0 (R \ {0}), equalities (5.2) and (5.3) hold.

More explicitly, we have

E

[
g

(
Zn

N1/α

)∣∣∣∣Gn−1

]
=

∫
g
(
N−1/α[χ(y) − Pχ(Xn−1)])P(Xn−1, dy)

and using the stationarity of π , we can bound the left-hand side of (5.2) by

E

∣∣∣∣∣
[Nt]∑
n=1

∫ [
g
(
N−1/α[χ(y) − Pχ(Xn−1)]) − g

(
χ(y)

N1/α

)]
P(Xn−1, dy)

∣∣∣∣∣
+ E

∣∣∣∣∣
[Nt]∑
n=1

∫
g

(
χ(y)

N1/α

)
P(Xn−1, dy) − [Nt]

∫
g

(
χ(y)

N1/α

)
π(dy)

∣∣∣∣∣(5.9)

+
∣∣∣∣[Nt]

∫
g

(
χ(y)

N1/α

)
π(dy) − αt

∫
R

g(λ)
c∗(λ) dλ

|λ|1+α

∣∣∣∣,
so (5.2) is a consequence of the following three lemmas, each taking care of the
respective term of (5.9):

LEMMA 5.3.

lim
N→∞N

∫ ∫ ∣∣g(
N−1/α[χ(y) − Pχ(x)])

(5.10)
− g(N−1/αχ(y))

∣∣P(x, dy)π(dx) = 0.

LEMMA 5.4.

E

∣∣∣∣∣
N∑

n=1

E[g(N−1/αχ(Xn))|Gn−1] − N

∫
g(N−1/αχ(y))π(dy)

∣∣∣∣∣ = 0.(5.11)

LEMMA 5.5.

lim
N→∞

∣∣∣∣N
∫

g(N−1/αχ(y))π(dy) − α

∫
R

g(λ)
c∗(λ) dλ

|λ|1+α

∣∣∣∣ = 0,(5.12)

where c∗(·) is given by (2.2).
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Proof of Lemma 5.3. Suppose that suppg ⊂ [−M,M] \ [−m,m] for some
0 < m < M < +∞ and θ > 0. Denote

AN,θ = {(x, y) : |χ(y) − θPχ(x)| > N1/αm}.
The left-hand side of (5.10) can be bounded from above by

N1−1/α
∫ 1

0
dθ

∫ ∫ ∣∣g′(N−1/α[χ(y) − θPχ(x)])Pχ(x)
∣∣P(x, dy)π(dx)

≤ CN1−1/α
∫ 1

0
dθ

∫ ∫
AN,θ

|Pχ(x)|P(x, dy)π(dx)

≤ CN1−1/α
∫ 1

0
dθ

(∫ ∫
AN,θ

P (x, dy)π(dx)

)1−1/α′
‖Pχ‖

Lα′ .

From the tail behavior of χ and of Pχ , [see (5.7) and the remark below that esti-
mates], it is easy to see that for any θ ∈ (0,1),∫ ∫

AN,θ

P (x, dy)π(dx) ≤ P[|χ(X1)| ≥ (mN1/α)/2]

+ P[θ |Pχ(X0)| ≥ (mN1/α)/2]
≤ C[(Nmα)−1 + (Nmα)−α′/α]
= C

N

(
1 + o(1)

)
as N 	 1. Since α′ > α we obtain (5.10).

Proof of Lemma 5.4. To simplify the notation we assume that suppg ⊂ [m,M]
for 0 < m < M < +∞. Denote BN,λ = {y :χ(y) ≥ N1/αλ}. We can rewrite the
left-hand side of (5.11) as

E

∣∣∣∣∣
∫ ∞

0
g′(λ)

N∑
n=1

GN(Xn−1, λ) dλ

∣∣∣∣∣,(5.13)

where

GN(x,λ) = P(x,BN,λ) − π(BN,λ).

Notice that
∫

GN(y,λ)π(dy) = 0 and∫
G2

N(y,λ)π(dy) =
∫

P 2(y,BN,λ)π(dy) − π2(BN,λ)

≤ 2
∫ (∫

BN,λ

p(y, x)π(dx)

)2

π(dy)(5.14)

+ 2
∫

Q2(y,BN,λ)π(dy) − π2(BN,λ).
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To estimate the first term on the utmost right-hand side, we use the Cauchy–
Schwarz inequality, while for the second one we apply condition (2.10). For λ ≥ m,
we can bound the expression on the right-hand side of (5.14) by

1

2
π(BN,m)

∫ ∫
BN,m

p2(x, y)π(dx)π(dy) + Cπ2(BN,m)

(5.15)

≤ 1

N
o(1) as N → ∞,

by virtue of (2.9) and the remark after (5.7). Thus we have shown that

N sup
λ≥m

∫
G2

N(y,λ)π(dy) → 0(5.16)

as N → ∞. We will show now that (5.16) and the spectral gap together imply that

sup
λ≥m

E

∣∣∣∣∣
N∑

n=1

GN(Xn−1, λ)

∣∣∣∣∣
2

→ 0(5.17)

as N → ∞. Since suppg′ ⊂ [m,M] expression in (5.13) can be then estimated by

sup
λ≥m

E

∣∣∣∣∣
N∑

n=1

GN(Xn−1, λ)

∣∣∣∣∣ ×
∫ ∞

0
|g′(λ)|dλ → 0

as N → +∞ and the conclusion of the lemma follows.
To prove (5.17) let uN(·, λ) = (I − P)−1GN(·, λ). By the spectral gap condi-

tion (2.7), we have∫
u2

N(y,λ)π(dy) ≤ 1

1 − a2

∫
G2

N(y,λ)π(dy).(5.18)

We can then rewrite

N∑
n=1

GN(Xn−1, λ) = uN(X0) − uN(XN) +
N−1∑
n=1

Un,

where Un = uN(Xn) − PuN(Xn−1), n ≥ 1 is a stationary sequence of martingale
differences with respect to the natural filtration corresponding to {Xn,n ≥ 0}. Con-
sequently,

E

∣∣∣∣∣
N∑

n=1

GN(Xn−1, λ)

∣∣∣∣∣
2

≤ CN

∫
u2

N(y,λ)π(dy) → 0

and (5.17) follows from (5.16) and (5.18).
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Proof of Lemma 5.5. To avoid long notation, we again assume that suppg ⊂
[m,M] for 0 < m < M < +∞. The proof in the case of g ⊂ [−M,−m] is virtually
the same. Note that

N

∫
g

(
χ(y)

N1/α

)
π(dy)

= N

∫ ∫ +∞
0

N−1/αg′
(

λ

N1/α

)
1[0,χ(y)](λ)π(dy) dλ

= N

∫ +∞
0

N−1/αg′
(

λ

N1/α

)
π(χ > λ)dλ

= N

∫ +∞
0

g′(λ)π(χ ≥ N1/αλ) dλ.

Thanks to (2.5) the last expression tends, however, as N → +∞, to∫ +∞
0

g′(λ)
c+∗ dλ

λα
= α

∫
R

g(λ)
c∗(λ) dλ

|λ|α+1 .

Proof of Proposition 5.2. We have already shown (5.2), so only (5.3) requires
a proof. To simplify the notation we assume Q ≡ 0. Suppose that suppg ⊂ [m,M]
for some 0 < m < M . We can write

E

[
g

(
Z1

N1/α

)∣∣∣∣G0

]

=
∫

g(N−1/α�(y))p(X0, y)π(dy)

(5.19)

+ N−1/α
∫ ∫ 1

0
h(X0, y)g′(N−1/α(

�(y) + θh(X0, y)
))

× p(X0, y)π(dy) dθ,

where h(x, y) := Pχ(y) − Pχ(x). Denote by K1 and K2 the first and the second
terms appearing on the right-hand side above. By Cauchy–Schwarz inequality,

EK2
2 ≤ ‖g′‖2∞

N2/α

[
E

(∫
|Pχ(y)|p(X0, y)π(dy)

)2

+ E

(∫
|Pχ(X0)|p(X0, y)π(dy)

)2]
(5.20)

≤
2‖g′‖2∞‖Pχ‖2

L2(π)

N2/α
.

Hence limN→+∞ NEK2
2 = 0.

On the other hand,

K1 ≤ ‖g‖∞
∫

p(X0, y)1[|�(y)| > mN1/α/2]π(dy),(5.21)
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and in consequence, by Jensen’s inequality,

(EK2
1 )1/2 ≤ ‖g‖∞

∫
(Ep2(X0, y))1/21[|�(y)| > aN1/α/2]π(dy)

≤ ‖g‖∞
[∫ ∫

p2(x, y)1[|�(y)| > aN1/α/2]π(dx)π(dy)

]1/2

× π1/2[|�| > aN1/α/2].
Thus we have shown that

NEK2
1 ≤ Nπ[|�| > aN1/α/2]

(5.22)
×

∫ ∫
p2(x, y)1[|�(y)| > aN1/α/2]π(dx)π(dy) → 0.

Condition (5.3) is then a consequence of (5.20) and (5.22).

Proof of part (ii) of Theorem 2.4. The proof of this part relies on part (ii) of
Theorem 5.1. The following analogue of Proposition 5.2 can be established.

PROPOSITION 5.6. Suppose that α ∈ (0,1). Then for any g ∈ C∞
0 (R \ {0}),

lim
N→+∞ E

∣∣∣∣∣
[Nt]∑
n=1

E

[
g

(
�(Xn)

N1/α

)∣∣∣∣Gn−1

]
− t

∫
R

g(λ)
C∗(λ) dλ

|λ|1+α

∣∣∣∣∣ = 0(5.23)

and

lim
N→+∞NE

{
E

[
g

(
�(X1)

N1/α

)∣∣∣∣G0

]}2

= 0.(5.24)

PROOF. The proof of this proposition is a simplified version of the argument
used in the proof of Proposition 5.2. The expression in (5.23) can be estimated by

E

∣∣∣∣∣
[Nt]∑
n=1

∫
g

(
�(y)

N1/α

)
P(Xn−1, dy) − [Nt]

∫
g

(
�(y)

N1/α

)
π(dy)

∣∣∣∣∣
(5.25)

+
∣∣∣∣[Nt]

∫
g

(
�(y)

N1/α

)
π(dy) − αt

∫
R

g(λ)
c∗(λ) dλ

|λ|1+α

∣∣∣∣.
The proof that both the terms of the sum above vanish goes along the lines of the
proofs of Lemmas 5.4 and 5.5. We can repeat word by word the argument used
there, replacing this time χ by � . As for the proof of (5.24) it is identical with the
respective part of the proof of (5.3) (the one concerning term K1). �
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Proof of part (iii) of Theorem 2.4. Recall that �N := �1[|�| ≤ N ]. Let χN be
the unique, zero mean solution of the equation

χN − PχN = �N − cN .(5.26)

We can then write,

SN − NcN =
N∑

n=1

(
�(Xn) − cN

) =
N∑

n=1

Z(N)
n + PχN(X0) − PχN(XN)(5.27)

with

Z(N)
n = χN(Xn) − PχN(Xn−1) + �(Xn)1[|�(Xn)| > N ].

We verify first assumptions (5.2), (5.3) and (5.4).
Condition (5.4) is an obvious consequence of the fact that

Z(N)
n = PχN(Xn) − PχN(Xn−1) + �(Xn) − cN(5.28)

and assumption (2.13). To verify the remaining hypotheses, suppose that suppg ⊂
(m,M) and m < 1 < M . Let us fix δ > 0, to be further chosen later on, such
that m < 1 − δ < 1 + δ < M . We can then write g = g1 + g2 + g3 where each
gi ∈ C∞(R), ‖gi‖∞ ≤ ‖g‖∞, and the supports of g1, g2, g3 are correspondingly
contained in (m,1 − δ), (1 − δ,1 + δ), (1 + δ,M). We prove (5.2) and (5.3) for
each of the function gis separately. Note that

E

[
gi

(
Z

(N)
n

N

)∣∣∣∣Gn−1

]
=

∫
gi

(
w(N)(Xn−1, y)

)
P(Xn−1, dy),

where

w(N)(x, y) := N−1�(y)1[|�(y)| > N ] + N−1[χN(y) − PχN(x)].
For i = 1 and i = 3, we essentially estimate in the same way as in parts (i) and
(ii) of the proof of the theorem, respectively. We shall only consider here the case
i = 2.

Note that then w(N)(x, y) = w
(N)
1 (x, y) where

w
(N)
θ (x, y) = N−1[�(y) − cN ] + N−1θRN(x, y)(5.29)

with RN(x, y) := PχN(y) − PχN(x). However,

g2
(
w(N)(Xn−1, y)

) = g2
(
N−1(

�(y) − cN

))
+ N−1RN(Xn−1, y)

∫ 1

0
g′

2
(
w

(N)
θ (Xn−1, y)

)
dθ
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and

E

∣∣∣∣∣
N∑

n=1

∫
g2

(
w(N)(Xn−1, y)

)
P(Xn−1, dy)

∣∣∣∣∣
≤ E

∣∣∣∣∣
N∑

n=1

∫
g2

(
N−1(

�(y) − cN

))
P(Xn−1, dy)

∣∣∣∣∣
+

∫ ∫ ∫ 1

0

∣∣g′
2
(
w

(N)
θ (x, y)

)
RN(x, y)

∣∣P(x, dy)π(dy) dθ.

Denote the first and the second term on the right-hand side by J
(N)
1 and J

(N)
2 ,

respectively. Term J
(N)
1 can be now estimated as in the proof of part (ii) of the

theorem. We conclude then, using the arguments contained in the proofs of Lem-
mas 5.4 and 5.5 that

lim sup
N→+∞

J
(N)
1 ≤ ‖g‖∞

∫ 1+δ

1−δ

dλ

λ2 .

On the other hand, to estimate limN→+∞ J
(N)
2 = 0, since g′

2(w
(N)
θ (x, y)) → 0 in

measure P(x, dy)π(dy) dθ and the passage to the limit under he integral can be
substantiated thanks to (2.13).

Choosing now sufficiently small δ > 0 we can argue that the calculation of the
limit can be reduced to the cases considered for g1 and g3 and that condition (5.2)
can be established for Z

(N)
n . The proof of (5.3) can be repeated from the argument

for part (i) of the theorem.
Finally, we show that

lim
N→+∞

1

N
E

∣∣∣∣∣
N∑

n=1

E
[
Z(N)

n 1
[∣∣Z(N)

n

∣∣ ≤ N
]∣∣Gn−1

]∣∣∣∣∣ = 0.(5.30)

Denote the expression under the limit by L(N). Let � > 1. We can write
L(N) = L

(N)
1 + L

(N)
2 + L

(N)
3 depending on whether |�(Xn)| > �N , |�(Xn)| ∈

(�−1N,�N ], or |�(Xn)| ≤ (�)−1N . Then

L
(N)
1 ≤

N∑
n=1

P
[|�(Xn)| > �N,

∣∣Z(N)
n

∣∣ ≤ N
] = NP

[|�(X1)| > �N,
∣∣Z(N)

1

∣∣ ≤ N
]
.

From formula (5.28) for Z
(N)
n , we conclude that the event under the conditional

probability can take place only when |PχN(Xn)|, or |PχN(Xn−1)| > N(�− 1)/3
for those N , for which cN/N ≤ (� − 1)/3. Using this observation, (2.13) and
Chebyshev’s inequality, one can easily see that

L
(N)
1 ≤ 2N [N(� − 1)/3]−α′‖PχN‖α′

Lα′
(π)

→ 0
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as N → +∞. To deal with L
(N)
2 consider a nonnegative g ∈ C∞(R) such that

‖g‖∞ ≤ 1, [�−1,�] ⊂ suppg ⊂ [�−1
1 ,�1] for some �1 > �. Repeating the fore-

going argument for g2, we conclude that

lim sup
N→+∞

L
(N)
2 ≤ ‖g‖∞

∫ �1

�−1
1

dλ

λ2 ,

which can be made as small as we wish by choosing �1 sufficiently close to 1. As
for L

(N)
3 , note that it equals

L
(N)
3 = 1

N
E

∣∣∣∣∣
N∑

n=1

E
[
M(N)

n 1
[∣∣M(N)

n

∣∣ ≤ N, |�(Xn)| ≤ (�)−1N
]∣∣Gn−1

]∣∣∣∣∣,(5.31)

where

M(N)
n := χN(Xn) − PχN(Xn−1)

(5.32)
= �N(Xn) − cN + PχN(Xn) − PχN(Xn−1).

Thanks to the fact that M
(N)
n are martingale differences, the expression in (5.31)

can be written as L
(N)
3 = −(L

(N)
31 +L

(N)
32 +L

(N)
33 ) where L

(N)
3i correspond to taking

the conditional expectation over the events Ai for i = 1,2,3 given by

A1 := [∣∣M(N)
n

∣∣ > N, |�(Xn)| ≤ (�)−1N
]
,

A2 := [∣∣M(N)
n

∣∣ > N, |�(Xn)| > (�)−1N
]
,

A3 := [∣∣M(N)
n

∣∣ ≤ N, |�(Xn)| > (�)−1N
]
.

To estimate L
(N)
3i , i = 1,2 we note from (5.32) that |M(N)

n | > N only when
�N(Xn) = �(Xn) and |�(Xn)| ≤ N , or PχN(Xn−1), PχN(Xn) are greater than
cN for some c > 0. In the latter two cases we can estimate similarly to L

(N)
1 . In

the first one, however, we end up with the limit

lim sup
N→+∞

1

N
E

N∑
n=1

E
[(|�N(Xn)| + |cN | + |PχN(Xn)| + |PχN(Xn−1)|),

N ≥ |�(Xn)| > �−1N |Gn−1
]

≤ lim sup
N→+∞

N(1 + |cN |/N)π[N ≥ |�| > (�)−1N ]

+ lim sup
N→+∞

∫
(I + P)|PχN |1[N ≥ |�| > (�)−1N ]dπ.

The second term on the utmost right-hand side vanishes thanks to (2.13). The first
one can be estimated as in the proof of Lemma 5.5, and we obtain that it is smaller



2296 M. JARA, T. KOMOROWSKI AND S. OLLA

than C
∫ 1
�−1 λ−2 dλ, which can be made as small as we wish upon choosing �

sufficiently close to 1. We can estimate, therefore,

lim sup
N→+∞

L
(N)
33

≤ lim sup
N→+∞

1

N
E

N∑
n=1

E
[(|�N(Xn)| + |cN |),N ≥ |�(Xn)| > �−1N |Gn−1

]

+ lim sup
N→+∞

1

N
E

N∑
n=1

E
[(|PχN(Xn)| + |PχN(Xn−1)|),

|�(Xn)| > �−1N |Gn−1
]

= lim sup
N→+∞

Nπ[N ≥ |�| > (�)−1N ]

+ lim sup
N→+∞

∫
(I + P)|PχN |1[|�| > (�)−1N ]dπ

≤ C

∫ 1

�−1

dλ

λ2 ,

which again can be made arbitrarily small.

6. Proof of Theorem 2.8. Suppose that we are given a sequence of i.i.d. non-
negative random variables {ρn,n ≥ 0} independent of {Xn,n ≥ 0} and such that
Aα := ∫ +∞

0 ραϕ(dρ) < +∞, where ϕ(·) is the distribuant of ρ0 and α ∈ (0,2). We
consider a slightly more general situation than the one presented in Theorem 2.4
by allowing

SN(t) :=
[Nt]∑
n=0

�(Xn)ρn.(6.1)

Observe that, if π is the law of Xn, observable � satisfies the tail conditions (2.5),
and ρn is independent of Xn, then

λα
P

(
�(X0)ρ0 > λ

) =
∫ ∞

0
λαπ(� > λρ−1)ϕ(dρ) −→

λ→+∞ c+∗ Aα.

Define also

CN :=
∫
|�|≤N

� dπ Eρ0.(6.2)

Consider then the Markov chain {(Xn,ρn), n ≥ 0} on E × R+. This Markov
chain satifies all conditions used in the previous sections, with stationary ergodic
measure given by π(dy) ⊗ ϕ(dρ). Then with the same arguments as used in Sec-
tion 5 we get the following.
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THEOREM 6.1. (i) Under the assumptions of the respective part (i), or (ii)

of Theorem 2.4, we have N−1/αSN(·) f.d.⇒ Z(·), as N → +∞ where {Z(t), t ≥
0} is an α-stable process of type either type I, or II with the parameters of the
corresponding Lévy measure [cf. (2.2)] given by

C∗(λ) :=
{

αAαc−∗ , when λ < 0,
αAαc+∗ , when λ > 0.

(6.3)

Here
f.d.⇒ denotes the convergence in the sense of finite-dimensional distributions.

(ii) In addition, under the assumptions of part (iii) of Theorem 2.4 finite-
dimensional distributions of N−1SN(t) − CNt converge weakly to those of
{Z(t), t ≥ 0}, a stable process of type III. Here CN is given by (6.2).

REMARK. The results of the first part of the above theorem follow under the
conditions of Theorem 2.7, by using the coupling argument of Section 4.

Let us consider now the process YN(t) defined by (2.21). We only show that
one-dimensional distributions of YN(t) converge weakly to the respective distrib-
ution of a suitable stable process {Z(t), t ≥ 0}. The proof of convergence of finite-
dimensional distributions can be done in the same way.

Given t > 0 define n(t) as the positive integer, such that

tn(t) ≤ t < tn(t)+1,

where tN is given by (2.18). Let

s(t) := t/t̄ ,

BN(t) := N−1/α
[Nt]∑
k=0

�(Xk)τk, t ≥ 0,

where, as we recall, �(x) := V (x)t (x), x ∈ E and {τk, k ≥ 0} is a sequence of i.i.d.
variables distributed according to an exponential distribution with parameter 1.
Using the ergodic theorem one can easily conclude that

sN(t) := n(Nt)

N
→ s(t) as N → +∞,(6.4)

a.s. uniformly on intervals of the form [t0, T ] where 0 < t0 < T . We have

YN(t) = 1

N1/α

n(Nt)−1∑
k=0

�(Xk)τk + Nt − tn(Nt)

N1/α
V (Xk).

Note that

1

N1/α

n(Nt)∑
k=0

�(Xk)τk = BN(sN(t)).
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LEMMA 6.2. For any t > 0 and ε > 0 fixed, we have

lim
N→+∞ P[|YN(t) − BN(sN(t))| > ε] = 0.(6.5)

PROOF. Let σ > 0 be arbitrary. We can write that

P[|YN(t) − BN(sN(t))| > ε]
≤ P[|sN(t) − s(t)| > σ ](6.6)

+ P[|sN(t) − s(t)| ≤ σ, |YN(t) − BN(sN(t))| > ε].
The second term on the right-hand side can be estimated from above by

P
[|sN(t) − s(t)| ≤ σ,N−1/α

∣∣�(
Xn(Nt)

)∣∣τn(Nt) > ε
]

≤ P
[
sup

{|�(Xk)|τk :k ∈ [(
s(t) − σ

)
N,

(
s(t) + σ

)
N

]}
> N1/αε

]
.

Using the stationarity of {|�(Xk)|τk, k ≥ 0} the term on the right-hand side equals

P
[
sup{|�(Xk)|τk :k ∈ [0,2σN]} > N1/αε

]
≤ 2σN

∫ +∞
0

e−τπ [|�(x)| ≥ τ−1N1/αε]dτ ≤ Cσ

εα

for some constant C > 0, by virtue of (2.5). From (6.6) we obtain, therefore,

lim sup
N→+∞

P[|YN(t) − BN(sN(t))| > ε] ≤ Cσ

εα

for an arbitrary σ > 0, which in turn implies (6.5). �

It suffices, therefore, to prove that the laws of BN(sN(t)) converge, as N →
+∞, to the law of the respective stable process. According to Skorochod’s em-
bedding theorem, one can find pairs of random elements (B̃N(·), s̃N (t)), N ≥ 1,
with values in D[0,+∞) × [0,+∞), such that the law of each pair is identical
with that of (BN(·), sN(t)), and (B̃N(·), s̃N (t)) converges a.s., as N → +∞, in
the Skorochod topology to (Z(·), s(t)). Here {Z(t), t ≥ 0} is the stable process,
as in Theorem 6.1. According to Proposition 3.5.3 page 119 of [11], the above
means that for each T > 0 there exists a sequence of increasing homeomorphisms
λN : [0, T ] → [0, T ] such that

lim
N→+∞γ (λN) = 0,(6.7)

where

γ (λN) := sup
0<s<t<T

∣∣∣∣log
λN(t) − λN(s)

t − s

∣∣∣∣ = 0

and

sup
t∈[0,T ]

|B̃N ◦ λN(t) − Z(t)| = 0.(6.8)
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As a consequence of (6.7) we have of course that

lim
N→+∞ sup

t∈[0,T ]
|λN(t) − t | = 0.(6.9)

Note that the law of each BN(sN(t)) is identical with that of B̃N(s̃N (t)). We also
have

|B̃N(s̃N(t)) − Z(s(t))| ≤ |B̃N(s̃N (t)) − Z ◦ λ−1
N (s̃N(t))|

+ |Z ◦ λ−1
N (s̃N(t)) − Z(s(t))|.

The right-hand side, however, vanishes a.s., as N → +∞, thanks to (6.8), (6.9)
and the fact that for each fixed s > 0 one has P[Z(s−) = Z(s)] = 1 (see,
e.g., Theorem 11.1, page 59 of [26]). The above allows us to conclude that
|B̃N(s̃N(t)) − Z(s(t))| → 0 a.s., as N → +∞, thus the assertions of Theorem 2.8
follow.
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