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Comment: Fisher Lecture: Dimension
Reduction in Regression
Bing Li

This paper puts dimension reduction into the histori-
cal context of sufficiency, efficiency and principal com-
ponent analysis, and opens up an avenue toward effi-
cient dimension reduction via maximum likelihood es-
timation of inverse regression. I congratulate Professor
Cook for this insightful and groundbreaking work. My
discussion will focus on two points that explore and
extend Cook’s ideas. The first is about the relationship
between the principal component analysis of the pre-
dictor and the regression of the response on the pre-
dictor; the second explores various ways of extending
Cook’s inverse regression to characterize and estimate
variance components.

1. PCA OF X AND REGRESSION OF Y

In his paper Professor Cook has told an intriguing
and fascinating history of the opposing views regard-
ing the relationship between the principal component
analysis of X and the regression of Y on X. On the one
hand, it is often the case in practice that the first few
principal components of X tend to have higher cor-
relations with Y than the other principal components
of X, but on the other hand there seems no logical rea-
son to believe that the direction along which X varies
the most should somehow have a relation with Y . In
this section I ask, and attempt to answer, the follow-
ing question: is it possible for the first principal com-
ponent of X to have higher correlation with Y (than
the other principal components of X) even if nature is
“neutral” in assigning a relation between X and Y and
“arbitrary” in assigning a covariance matrix to X?

To pursue this curiosity let us consider the follow-
ing situation. Let R

p×p
+ be the collection of all p

by p positive definite matrices, and let F be a dis-
tribution over R

p×p
+ that is in some sense uniform.

Suppose nature randomly selects a covariance matrix
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� according to F , and generates X from N(0,�).
Furthermore, suppose that nature selects a linear re-
lation between X and Y completely independently
of the way it selected �; that is, Y = βT X + ε,
where β is a random vector in R

p , β ⊥⊥ (�,X),
and ε ⊥⊥ (X,β,�) (here ⊥⊥ indicates independence).
Let v1, . . . , vp be the eigenvectors of the random
matrix �, arranged so that their eigenvalues satisfy
λ(v1) ≥ · · · ≥ λ(vp). Let ρi(β,�) be the correla-
tion coefficient between vT

i X and Y , conditioning on
β and �. Thus ρ1(β,�), . . . , ρp(β,�) are random
variables depending on β and �. The question is:
does |ρ1(β,�)| in any sense tend to be larger than
|ρ2(β,�)|, . . . , |ρp(β,�)|?

To make the situation as simple as possible we take
p = 2. We consider two ways of generating � “uni-
formly” over R

2×2+ . Let λ1, λ2 be i.i.d. U(0, c), where
c is a large number, say c = 1000. Let A be a random
rotation matrix, say

A =
(

cos θ sin θ

− sin θ cos θ

)
,

where θ ∼ U(0,2π) and θ ⊥⊥ (λ1, λ2). Let

� = A[diag(λ1, λ2)]AT .

Intuitively, we first create a horizontal (or vertical) el-
lipse with arbitrary lengths of axes and then rotate it
to an arbitrary angle θ . Since c is large this provides a
reasonable approximation to a uniformly distributed �

over R
2×2+ . Let X, β and Y be generated according

to the procedure described in the last paragraph, with
β ∼ N(0, Ip). For simplicity, we take ε = 0 because it
has no bearing on the problem. We compute the prob-
ability

P {ρ1(β,�) > ρ2(β,�)}(1)

by simulation, as follows. First, generate an i.i.d. sam-
ple (�1, β1), . . . , (�n,βn). For each (βi,�i), gener-
ate an i.i.d. sample (Xi1, Yi1), . . . , (Xim,Yim). Using
this sample we estimate ρ1(βi,�i) and ρ2(βi,�i) by
the method of moments. Denote these estimates by
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ρ̂i1, ρ̂i2. Finally, we use the relative frequency of the
cases ρ̂i1 > ρ̂i2 among the sample (�1, β1), . . . , (�n,βn)

to estimate the probability (1). Taking m = n = 200,
this probability is estimated to be 0.65, larger than one
half.

An alternative way of generating uniform � is as
follows. Generate (λ1, λ2) as before. Then, generate α

from U(−√
λ1λ2,

√
λ1λ2), and define

� =
(

λ1 α

α λ2

)
.

Under this alternative scheme we recalculated the
probability (1) to be 0.735, again larger than one half.

I have tried several distributions for β and values
of c, and the probability (1) is invariably greater than
one half. Thus it seems reasonable to make the follow-
ing conjecture [we will abbreviate the random variable
ρi(β,�) by ρi].

CONJECTURE 1.1. Suppose � is a random ma-
trix uniformly distributed over R

p×p
+ , and suppose

X ∼ N(0,�) and Y = βT X + ε with β ⊥⊥ (X,�),
ε ⊥⊥ (X,β,�) and ε ∼ N(0, σ 2). Then, for any i ∈
{2, . . . , p},

P(|ρ1| = max{|ρ1|, . . . , |ρp|})
(2)

> P(|ρi | = max{|ρ1|, . . . , |ρp|}).
This conjecture, if true, does seem to suggest that,

if nature selects an arbitrary covariance matrix for X

and an arbitrary linear relation between X and Y , then
the first principal component of X tends to have the
largest correlation with Y among all principal compo-
nents of X.

To see why this conjecture should hold, imagine the
extreme case where support of X is concentrated on
a line. In this case the only way for Y to be corre-
lated with X is to be correlated with its first princi-
pal component. Intuitively, this tendency should still
hold when the distribution of X is not concentrated on
a line but has elongated elliptical contours. Now, if na-
ture draws � from a uniform distribution, there is a
nonzero probability that the distribution of X has elon-
gated contours, in which case the projection of X onto
the longest axis of the ellipsoid tends to have largest
correlation with Y (among its projections onto other
axes), even if β is drawn independently from �. In
the cases where X does not have elongated contours,
|ρ1| would not stand out as the largest, but then nei-
ther would the other ρi’s. Thus, on average, something
like (2) should hold.

The above example also shows that the tendency (2)
is a modest one. When p = 2 the probability (1) is
around 65% ∼ 75%, only modestly larger than 50%.
Similarly, when p is larger than 2 I do not expect this
probability to be drastically larger than 1/p [which
is the probability in (1) when ρ1, . . . , ρp are sym-
metric]. Thus there should still be a substantial gain
in performing dimension reduction of X in reference
to Y .

2. INVERSE REGRESSION FOR PRINCIPAL
VARIANCE COMPONENT

What is interesting about Cook’s inverse regression
model [model (2) in Cook’s paper] is that the parame-
ter 
 automatically provides sufficient dimension re-
duction for the forward model, in the sense that Y ⊥⊥
X|
T X. The same idea can be used to construct an in-
verse regression model where the conditional variance
var(X|y), rather than the conditional mean E(X|y),
depends on y. Such models would be useful in the clas-
sification problems where the several groups involved
differ in their dispersions but not so much in their lo-
cations. See, for example, Cook and Yin (2001) for a
breast cancer data set whose behavior roughly fits this
description.

Consider the inverse regression model

X = σ 2(
νy

T + Ip)ε,(3)

where ν(·) :�Y → R
d×d , d < p and 
 is a p × d semi-

orthogonal matrix.

THEOREM 2.1. If Y ⊥⊥ ε and if model (3) holds,
then Y ⊥⊥ X|
T X.

PROOF. Let 
0 be a p × (p − d) semiorthogonal
matrix such that 
T

0 
 = 0. Relation (3) implies the
equalities


T X = σ 2(νy + Id)
T ε,
(4)


T
0 X = σ 2
T

0 ε.

By the assumption ε ⊥⊥ Y , conditioning on Y , 
T
0 X

and 
T X are multivariate normal with conditional co-
variance

cov(
T X,
T
0 X|Y = y) = (νy + Id)
T 
0 = 0.

Hence 
T X ⊥⊥ 
T
0 X|Y . Meanwhile, from the second

equality in (4) we see that 
T
0 X ⊥⊥ Y . Hence Y ⊥⊥

X|
T X. �
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FIG. 1. Dimension reduction via model (3). Left panel: X1 versus Y ; right panel: 
̂T X versus Y .

To see how this model can be used in practice, we
consider the following example as an illustration.

EXAMPLE 2.1. We take p = 3 and d = 1, νy = |y|
and 
T = (1,0,0). Assume Y ∼ N(2,1), Y ⊥⊥ ε and
ε ∼ N(0, Ip). Thus we have the inverse regression
model

X =

 1 + |y| 0 0

0 1 0
0 0 1


 ε.

We generate (X1, Y1), . . . , (Xn,Yn), where n = 100,
from model (3), and estimate 
 by a numerical max-
imization of the likelihood, which gives


̂T = (0.964,0.047,0.068).

Figure 1 presents the scatterplots of X1 versus Y (left
panel) and 
̂T X versus Y (right panel). We can see that
they are very much in agreement.

We can further generalize model (3) to accommodate
the situations where both the location and the disper-
sion in the inverse regression model depend on y, by
combining model (3) above and model (2) in Cook’s
paper, as follows:

X = µ + 
1νy + σ 2(
2τy

T
2 + Ip)ε,(5)

where ε ∼ N(0, Ip), ε ⊥⊥ Y , 
1 ∈ R
p×d1 and


2 ∈ R
p×d2 , with d1 + d2 < p, ν(·) :�Y → R

d1 and
τ(·) :�Y → R

d2×d2 . Here, for convenience we again as-
sume that 
1 and 
2 are semiorthogonal matrices. Note
that the column spaces of 
1 and 
2 may or may not be
the same. Similarly to model (2) in Cook’s paper and
model (3) above, relation (5) provides automatically a
sufficient dimension reduction of X.

THEOREM 2.2. If model (5) holds, then Y ⊥⊥
X|(
T

1 X,
T
2 X).

PROOF. Let 
 = (
1,
2), and let 
0 be a ma-
trix such that the matrix (
,
0) has full row rank and

T

0 
 = 0. Multiply both sides of equality (5) on the left
by 
T and 
T

0 , respectively, to obtain


T X = 
T µ + 
T 
1νy + σ 2
T (
2τy

T
2 + Ip)ε,


T
0 X = 
T

0 µ + σ 2
T
0 ε.

Following the same argument as in the proof of Theo-
rem 2.1, we see that 
T X ⊥⊥ 
T

0 X|Y and 
T
0 X ⊥⊥ Y ,

from which it follows that X ⊥⊥ Y |
T X. �

The next example illustrates the use of model (5),
which has both a location and a dispersion component
in the inverse regression.

EXAMPLE 2.2. We take p = 3 and d = 1. Assume
Y ∼ N(3,1), Y ⊥⊥ ε and ε ∼ N(0, Ip). Consider the
inverse regression model

X =

 5y

0
0


 +


 1 + |y| 0 0

0 1 0
0 0 1


 ε.

This is a special case of model (5) with 
1 = 
2 = 
.
As in Example 2.1, we generate n = 100 pairs of obser-
vations from this model and maximize the likelihood
numerically, which gives


̂T = (1.969,0.052,0.010).

We see that this estimate is more accurate than that in
Example 2.1 (the contrast between the first component
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FIG. 2. Dimension reduction via model (5). Left panel: X1 versus Y ; right panel: 
̂T X versus Y .

and the last two components is greater). This is because
it uses the additional information provided by the lo-
cation term. The comparison of the scatterplots of X1

versus Y and 
̂T X versus Y is given in Figure 2.
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