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Chess, Chance and Conspiracy
Mark R. Segal

Abstract. Chess and chance are seemingly strange bedfellows. Luck and/or
randomness have no apparent role in move selection when the game is played
at the highest levels. However, when competition is at the ultimate level,
that of the World Chess Championship (WCC), chess and conspiracy are not
strange bedfellows, there being a long and colorful history of accusations
levied between participants. One such accusation, frequently repeated, was
that all the games in the 1985 WCC (Karpov vs Kasparov) were fixed and
prearranged move by move. That this claim was advanced by a former World
Champion, Bobby Fischer, argues that it ought be investigated. That the only
published, concrete basis for this claim consists of an observed run of partic-
ular moves, allows this investigation to be performed using probabilistic and
statistical methods. In particular, we employ imbedded finite Markov chains
to evaluate run statistic distributions. Further, we demonstrate how both chess
computers and game data bases can be brought to bear on the problem.

Key words and phrases: Chess, data bases, distribution theory, Markov
chains, run statistics, streaks.

Chess is a game of luck. If you have a good
opponent you have bad luck, and if you have
a bad opponent you have good luck (Jacob
Segal, age 7).

1. INTRODUCTION

Chess and chance are seemingly strange bedfel-
lows. Many would contend that chess is the most log-
ical/rational of all games, although such claims often
get a rise from Go players. In any event, luck and/or
randomness have no role in move selection when the
game is played at the highest levels. However, when
competition is at the ultimate level, that of the World
Chess Championship (WCC), chess and conspiracy
are not strange bedfellows. There is a long and col-
orful history of accusations, levied between partici-
pants, instances of which are showcased below. One
such accusation, frequently repeated, was that all the
games in the 1985 WCC were fixed and prearranged
move by move. That this claim was advanced by a
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former World Champion, Robert (Bobby) Fischer, ar-
gues that it be investigated. Now, the logic that Fis-
cher’s chess playing credentials warrant such an in-
vestigation has been questioned (an Editor, Mark van
der Laan, personal communications) in view of wide-
spread perceptions concerning his diminished faculties
(e.g., Krauthammer, 2005). However, it is worth noting
that there are adherents to his allegations among the
chess-playing community, including one former World
Champion (Spassky, 1999) and one former women’s
World Champion (Z. Polgár in Polgár and Shutzman,
1997). Since the only published, concrete basis for Fis-
cher’s claim consists of an observed run of particular
moves, we pursue such an investigation using proba-
bilistic and statistical methods.

The paper is organized as follows. In the next sub-
section we provide a very brief history of the World
Chess Championship post World War II. This provides
context to the 1985 match. Conspiracy elements sur-
rounding the 1978 match are highlighted to indicate
the climate in which these contests are conducted. Sec-
tion 2 focuses on Fischer’s claim regarding move runs
and several approaches for evaluating the significance
thereof. In particular, we employ imbeddings in finite
Markov chains that are especially suited for this pur-
pose. Section 3 describes further analytic possibilities
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for run assessment that are afforded by use of powerful,
chess-playing software, while Section 4 does likewise
with respect to game data bases. Concluding discussion
is presented in Section 5.

For the most part, only a very rudimentary under-
standing of chess is required for this paper. Rather than
give definitions of pieces, legal moves and other rules,
we defer such to the many expository treatments avail-
able both in print and online.

1.1 World Chess Championship: History and
Controversy

Prior to 1948, the World Chess Championship was
arranged at the behest of the reigning World Cham-
pion. This formulation allowed the Champion to select
substandard opponents and avoid leading adversaries.
However, the confluence of the death of the titleholder,
World War II and the emergence of an international
governing body, Fédération Internationale des Échecs
(FIDE), led to the abandonment of such matches by
invitation. In 1948, FIDE invited six leading players
to participate in a round-robin tournament for the ti-
tle of World Champion. Subsequently, up until 1990,
the WCC was organized to run on a three-year cycle.
The cycle started with the world’s best chess players
being seeded into one or more interzonal tournaments.
The top finishers in the interzonal tournaments quali-
fied for a series of elimination (“candidates”) matches.
The player who emerged victorious from the candi-
dates matches met the reigning World Champion in a
title match.

This period, which notably coincided with the Cold
War, was marked by the dominance of Soviet players.
From 1948 up to 1972 there were nine WCCs, each
featuring a Soviet champion and challenger. However,
in 1972, following a stunning surge through the in-
terzonal tournament and candidates matches that in-
cluded an unprecedented run of 19 consecutive wins,
an American, Robert (Bobby) Fischer, emerged as the
challenger to titleholder Boris Spassky. Fischer won
convincingly, but forfeited the title to Anatoly Karpov
in 1975.

Karpov’s challenger in the 1978 WCC was Victor
Korchnoi. Previously, in 1976, Korchnoi had defected
from the Soviet Union and sought political asylum in
the Netherlands. The USSR Chess Federation put pres-
sure on FIDE to exclude Korchnoi from the candi-
dates matches. FIDE did not buckle and, as fate would
have it, Korchnoi defeated three Soviet players on his
way to the title match with Karpov. Shortly before the

final candidates match, Korchnoi was injured in a se-
rious car accident. Then, during the WCC itself, a re-
markable series of claims and counterclaims was ex-
changed, that showcases the tensions and controversies
surrounding chess at this level. These included (i) Kar-
pov demanding the dismantling of Korchnoi’s chair to
search for “extraneous objects or prohibited devices,”
(ii) Korchnoi wearing mirrored sunglasses to neutralize
Karpov’s habit of staring at his opponent, (iii) Korch-
noi accusing Karpov of receiving move advice encoded
by the color of the yogurts that he was given during the
game, (iv) Karpov employing a parapsychologist, Dr.
Zukhar, who sat in the audience, fixedly staring at Ko-
rchnoi, purportedly to disturb/hypnotize—this led to
intense bickering with regard to Zukhar’s seating po-
sition and Korchnoi placing his own hypnotist and two
Ananda Marga sect members in the audience.

Ultimately, Karpov (barely) prevailed. He decisively
beat Korchnoi in the subsequent 1981 WCC. Karpov’s
next challenger for the 1984 WCC was Gary Kasparov,
a mere 21-year-old, who had dominated his three can-
didates matches en route to qualifying. Rules for the
1984 WCC were that the winner would be the first
player to achieve six victories, there being no limit on
the total number of games played. Karpov started con-
vincingly, leading 4–0 after 9 games and 5–0 after 27.
However, Kasparov won the 32nd game and, following
another long string of draws, won both the 47th and
48th games. While Karpov still led 5–3, he had lost
10 kg (22 lbs), been hospitalized several times and was
on the verge of collapse, his condition compounded by
alleged frequent use of stimulants. Amid great contro-
versy, the president of FIDE canceled the match, cit-
ing the failing health of the players due to the record
breaking length and duration (6 months) of the con-
test. Provisions were made for a rematch to be held in
6 months time, with a fixed number (24) of games, Kar-
pov retaining his title in the event of a tie. Kasparov
won the 1985 rematch, becoming the youngest ever
World Champion. He successfully, albeit narrowly, de-
fended his title in three subsequent (1986, 1987, 1990)
WCC matches against Karpov. It is this body of Kar-
pov vs Kasparov games, and accusations surrounding
them, that is the subject of our further analysis.

2. KARPOV–KASPAROV 1985: MOVE RUNS

Fischer has frequently claimed that all games of the
1985 WCC match between Karpov and Kasparov were
rigged and prearranged move by move (Fischer, 1996;
Polgár and Shutzman, 1997). Notably, at his first press
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FIG. 1. Karpov vs Kasparov key position, prior to White’s 21st
move: 21. N × e6.

conference following his recent release to Iceland from
immigration detention in Japan, Fischer repeated this
allegation (ESPN Sportscenter, March 25, 2005). One
element of this accusation, indeed the only concrete
piece of evidence proffered, concerns the fourth game
and the position following Black’s 20th move as de-
picted in Figure 1.

Fischer (1996) asserts:

Starting on move 21, White makes no less
than 18 consecutive moves on the light
squares. Incredible!

Kasparov and Karpov played a total of 144 games that
totaled 5540 moves over the course of their 5 WCCs—
we will investigate this incredibility in terms of runs.

Consider n i.i.d. Bernoulli trials with success prob-
ability p. Let Nn,k be the number of nonoverlapping
success runs of length k and let Ln be the length of
the longest success run. Although our primary inter-
est is in probabilities such as Pr(Ln > k), we will
sometimes obtain these by exploiting the equivalence
{Ln < k} ⇔ {Nn,k = 0}. The exact probability distrib-
utions for these events have been historically difficult
to compute. Godbole (1990a) established the formula

Pr(Nn,k = x)

= ∑
�(n−kx)/k�≤y≤n−kx

qypn−y

(
y + x

x

)
(1)

· ∑
0≤j≤�(n−kx−y)/k�

(−1)j
(

y + 1
j

)(
n − kx − jk

y

)
.

While (1) offers computational advantages when con-
trasted with previously established combinatorially
derived alternatives (see, e.g., Philippou and Makri,
1986), it is nonetheless problematic for evaluating the
probability of observing a run of length k = 18 in a
series of length n = 5540. However, Feller (1968), ex-
ploiting the theory of recurrent events, provides an ap-
proximation that is highly accurate even for moder-
ate n,

Pr(Ln < k) ≈ 1 − pθ

k + 1 − kθ
· 1

θn+1 ,(2)

where θ solves θ = 1 + qpkθk+1 and q = 1 − p. Ap-
plying (2) to the Karpov–Kasparov collection gives

Pr(L5540 ≥ 18) ≈ 0.0105.

Now, this p-value is not incredibly incredible, espe-
cially since it does not accommodate Fischer’s im-
plicit search for other (run) patterns—presumably a
run of moves to dark squares would also have reg-
istered. On the other hand, it allows runs to strad-
dle different games and this does not reflect Fischer’s
likely ascertainment process. Rather, runs would be de-
tected within games and, accordingly, individual games
should constitute the units of analysis.

So, focusing on the key game, we are interested
in Pr(L63 ≥ 18), which can be evaluated using either
(1) or (2). These give (with agreement to six decimal
places)

Pr(L63 ≥ 18) = 0.0000896.(3)

If this p-value is adjusted for multiplicity (number of
games = 144) via Bonferroni correction, we obtain
an (adjusted) p-value (0.013) that again does not im-
press as being overly incredible. However, not only
is such Bonferroni correction conservative, but it also
does not reflect the length structure of the game collec-
tion. At the cost of obtaining p-values for the max-
imal run within each game, we could seek to re-
dress these concerns using, say, step-down Bonferroni
(Dudoit, Shaffer and Boldrick, 2003) or false discov-
ery rates (Storey, Taylor and Siegmund, 2004). But
there is a far more fundamental concern that affects
the computation of these individual p-values. The re-
sults given in (1) and (2) require that the underlying
sequence of Bernoulli trials is i.i.d. Here the corre-
sponding ith random variable can be designated as
Xi ≡ I {White’s movei → light square} and identically
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distributed equates to pi = Pr(Xi = 1) = p ∀ i. All the
above p-value calculations have been based on the
seemingly natural specification pi = 0.5. We next fur-
ther scrutinize this specification.

The prescription pi = 0.5 derives from the fact that
32 of the 64 squares on the chessboard are light. In-
deed, the symmetries and piece and pawn moves are
such that, prior to White’s first move, there are equal
numbers of moves to light and dark squares. However,
that situation does not necessarily persist. For exam-
ple, following Fischer’s generally preferred first move,
1. e4, we have p2 ≥ 2/3. In studying hitting streaks
in baseball, Albright (1993) employed so-called sit-
uational covariates to capture variation in underlying
probabilities of getting a hit for a given at bat. These in-
cluded such features as home field and day/night game.
We could attempt an analogous approach here. Rel-
evant covariates would include presence of opposite-
colored bishops, presence of knights, nature of the
pawn structure and even advent of a time control,
the latter often inducing repetitions. However, select-
ing, characterizing and quantifying such positional co-
variates seems problematic, especially considering the
availability of a simple proxy.

The proxy is based on the set of legal moves. Af-
ter all, 18 consecutive light square moves in checkers
would be truly incredible, since checkers is played ex-
clusively on dark squares. Define

pi = #{legal movesi → light square}
#{legal movesi}

.(4)

Results that follow are not affected by how possible
ambiguities surrounding castling are handled. Here, we
exclude castling throughout. At the onset of the run we
have p21 = 33/43. Using this value in either (1) or (2)
gives

Pr(L63 ≥ 18|p = p21) = 0.096.

While again this is not remarkable, even prior to mul-
tiplicity adjustment, we have imposed p21 throughout
the game. Inspection of Figure 2, which plots pi vs i,
reveals this to be an extreme choice. What is needed
is a method for evaluating runs with varying success
probabilities.

Fu and Koutras (1994) provided just such a method-
ology. They showed that the distributions of a variety
of run statistics can be readily evaluated in the non-
identically distributed case by appropriate imbedding

FIG. 2. Probabilities of White making a legal move to a light square. The 18 move run is indicated by the dashed vertical lines.
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in a finite Markov chain. We briefly recapitulate the
relevant definitions and results. For given n, let �n =
{0,1, . . . , n} be an index set and let � = {a1, . . . , am}
be a finite state space. A nonnegative, integer-valued
random variable Zn can be imbedded into a finite
Markov chain if:

(a) there exists a finite Markov chain {Yi : i ∈ �n =
{0, . . . , n}} defined on �,

(b) there exists a finite partition {Cx, x = 0,1, . . . , l}
on �, and

(c) for every x = 0,1, . . . , l, we have Pr(Zn = x) =
Pr(Yn ∈ Cx).

If Zn can be imbedded into a finite Markov chain
then, simply as a consequence of the definition and
Chapman–Kolmogorov equations, we have (Theo-
rem 2.1, Fu and Koutras, 1994)

Pr(Zn = x) = π0

(
n∏

i=1

�i

)
U ′(Cx),(5)

where �i is the m × m transition probability matrix
of the Markov chain, π0 is the initial distribution and

U(Cx) = ∑
r : ar∈Cx

er for er a 1×m unit vector having
1 at the r th coordinate and 0 elsewhere.

The art in utilizing imbedded Markov chains for
evaluating run statistic distributions lies in eliciting
suitable � and �i . For our run statistic of interest, Nn,k

(recall equivalence to Ln), Fu and Koutras established
Pr(Nn,k = 0) = π∗

0 (
∏n

i=1 �∗
i )U

∗′
, where

�∗
i

(k+1)×(k+1)

=




qi pi 0 0 . . . 0
qi 0 pi 0 . . . 0
qi 0 0 pi . . . 0
...

...
...

...
. . .

...

qi 0 0 0 . . . pi

0 0 0 0 . . . 1




and π∗
0 = (1,0, . . . ,0) and U∗ = (1, . . . ,1,0) are 1 ×

(k + 1) vectors. For the key Karpov–Kasparov game
use of this imbedding, with pi as per (4) and Figure 2,
gives

Pr(L63 ≥ 18|pi) = 0.0065.(6)

The densities (smoothed histograms) for L63 under pi

and pi = p = 0.5 are presented in Figure 3. The shift in

FIG. 3. Smoothed histograms of Pr(L63 = k). Tail areas to the right of the dashed line at k = 18 correspond to the p-value reported in (3)
and (6).
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mass corresponding to (appropriate) use of legal moves
is evident and underscores the difference between the
p-values (3) and (6). We note that computation via
imbedded Markov chains is exceedingly fast and easy.

Since (6) is our final p-value proffered for Karpov
and Kasparov’s 18-move run of light square moves,
we provide some context with regard to magnitude
by citing Short and Wasserman’s (1989) appraisal of
the p-value they computed in assessing the “streak-
of-streaks”—Joe DiMaggio’s 56-game hitting streak.
They reported one p-value of 0.0000486 and comment
that “the paucity of this probability is not overwhelm-
ing.” Accordingly, we would not characterize the p-
value in (6) as incredible.

3. CHESS PROGRAMS: FRITZ

In baseball, the batters objective is to hit, the 1919
Chicago Black Sox excepted. In basketball, where
streak shooting has also been statistically evaluated
(Larkey, Smith and Kadane, 1989; Tversky and
Gilovich, 1989a, b), the objective is to make the bucket,
with 1978–1979 Boston College (among others) ex-
cepted. In chess, if the objective was to move to light
squares, there would be a lot more sacrifice of dark
square bishops. So, to infer anything about “signal” or
“suspicion” in the moves that constitute the run sin-
gled out by Fischer, it is necessary to judge the quality
of these moves. If, conditioning on successive positions
within the streak, the best move happens to be to a light
square, then what is the message/implication? Is it in-
credible if the World Champion makes 18 good moves
in a row? Was the quality of moves played during the
run notably different than the quality of moves chosen
outside the run? Of course, judging quality is tricky—
Fischer, Karpov and Kasparov are all former World
Champions and regarded among the greatest players of
all time—it would be presumptuous for mere mortals
to second guess their evaluations.

So, to make such judgments we turn to chess-playing
software. Select programs are now capable of play-
ing competitively against the world’s leading grand-
masters. For example, in October 2002, World Cham-
pion Vladimir Kramnik drew an eight-game match
against the Fritz program; in early 2003, Kasparov
drew a six-game match against the Deep Junior pro-
gram; and in November 2003, Kasparov drew a four-
game match against Fritz. Accordingly, we use Fritz
to evaluate move quality. While we contend that these
results, along with wider tournament performances

and ratings, establish Fritz’s credentials to determine
good moves, it is important to recognize that we are
not claiming infallibility or even superiority of Fritz’s
move assessments. Rather, since comparisons will be
relative—{in run (R)/not in run (R̄)}—all that is re-
quired is that strong moves are consistently recognized
and that the assessments are unbiased with respect to
the move run.

Fritz returns a quantitative score for each move eval-
uated. Here, the more positive the score, the better the
move. We cannot just compare R and R̄ scores directly,
since differing score distributions reflect the decisive-
ness of the move and so, for example, are correlated
with stage of the game. Thus, for our first outcome, we
standardize according to the best move possible and
define �i = scorei −bestscorei , where scorei is Fritz’s
score for the ith move as played and bestscorei is the
score for the best possible move. So, �i ≤ 0 with less
negative values corresponding to better moves. Com-
paring the �s obtained during the run (nR = 18) to
those not in the run (nR̄ = 45) via a two-sample t-
test shows that better moves tended to be played during
the run, but the difference is nonsignificant (p = 0.27).
The same findings hold if we limit nonrun moves to
the nine preceding and nine succeeding the run (to ex-
ert finer control over stage of game), and/or if we work
on a relative scale (�∗

i = �i/bestscorei ), and/or if we
work with ranks instead of scores.

A more sophisticated approach is afforded by em-
ploying the binary outcome that indicates whether the
move played coincided with Fritz’s best move, Yi =
I {�i = 0}, and using logistic regression to attempt to
adjust for putative covariates. This also remedies a con-
cern with t-test appropriateness in view of the under-
lying mixed (discrete with mass at zero, continuous)
distribution of �. As previously, covariate specifica-
tion is challenging: what we propose here is natural but
not exhaustive. Playing the best move when it is obvi-
ous is less incredible than when it is obscure. Accord-
ingly, we adjust for positional complexity which, for
each move, we operationalize as complexity(j, k) =
score(j th best)/score(kth best) for differing choices
of j > k = 1, . . . ,5. Similarly, playing the best move
when the number of possibilities is limited is also less
compelling, so we use possibles = #{legal moves} as
another covariate. We fitted several models of the form
logit(Y ) = βrun+f (possibles, complexity(j, k)), cor-
responding to different specifications for f, j and k.
All gave highly null results with respect to tests for β ,
the parameter of interest.
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Therefore, when considering the quality of moves
played, there is nothing distinctive, let alone incredi-
ble, about the run Fischer isolates. However, in addi-
tion to relying on Fritz’s assessments of move quality,
these analyses could be criticized on the basis of being
underpowered to detect distinguishing attributes of the
run. So, as a final approach, we turn to repositories of
chess games to provide broader context for the run.

4. SEARCHING CHESS GAME DATA BASES

Efron (1971) reexamined Bode’s law “governing”
mean planetary distances to the Sun as an exemplar
of whether an observed sequence of numbers follows
a simple rule. He states that differing analytic ap-
proaches would have been employed had measure-
ments on 50 solar systems been available. So far, our
treatment of the significance of the run has been con-
fined to the key Karpov–Kasparov game in question.
However, unlike the planetary system situation, there
are extensive data bases of chess games that we can
mine so as to appraise the distinctiveness of the run
identified by Fischer. To this end we conducted three
structured searches.

The first was based on the key position itself (1). If
this position had occurred in other high level games,
then the ensuing sequence of moves would be poten-
tially informative with regard to the incredulity of the
run. Not surprisingly, search of an online data base
that comprises more than two million games (www.
chesslab.com/) revealed the position to be unique.

The next search is motivated by an important feature
of the key position: the presence of opposite-colored
bishops. This is arguably the most important attribute
with respect to generating move runs on either light
or dark squares. We used the commercial Chessbase
(www.chessbase.com/) Big 2000 data base which, al-
though not as sizable as Chesslab (1,327,059 games),
possesses more powerful search tools. The following
search parameters were prescribed—for a game to be
selected it must satisfy all requirements at some stage:

1. Opposite-colored bishops
2. No knights or major pieces
3. Three to four pawns
4. Average Elo rating of players ≥ 2500
5. Length of game ≥ 80 moves

In addition to limiting the number of games chosen,
these criteria are motivated by the following consider-
ations. Item 2 eliminates pieces that can move on ei-
ther color squares; item 3 balances complexity; item 4

imposes grandmaster level play. Item 5, which man-
dates relatively long games, is motivated by run statis-
tic asymptotics. In particular, if n, k → ∞ such that
nqpk → λ, then Pr(Nn,k = x) tends to the Poisson
probability e−λλx/x! (Feller, 1968; Godbole, 1990b).
So if p is fixed, k = O(log(n)), thereby bestowing a
premium on examining longer games.

The resulting search of Chessbase Big 2000 yielded
11 games that had, in chronological order, the follow-
ing maximal run lengths: L85 = 21,L109 = 29,L81 =
46,L90 = 10,L92 = 13,L85 = 18,L81 = 17,L86 =
14,L98 = 20,L113 = 9,L94 = 12. Fischer’s identified
Karpov–Kasparov run, with L63 = 18 does not stand
out against this collection. Indeed, if anything is no-
table, it is the third game with L81 = 46: not only was
this game played at the candidates level (Timman vs
Salov, 1988), but, in addition to the cited 46-move run
(played by Black) that attains an appreciably smaller
p-value than the Karpov–Kasparov run (2.24×10−13),
it featured a separate 34-move run (played by White).

For the third and final search we elected to scrutinize
the 827 Chessbase Big 2000 games of Fischer himself.
Search item 1 was retained, the restrictions imposed
by items 2, 3 and 4 were eliminated, and item 5 was re-
laxed to game lengths ≥ 50 moves. This yielded a total
of five games. We focus on one of these, Fischer vs
Reshevsky, 1957, United States Championship. In par-
ticular, the position arising prior to White’s 34th move
is of interest; see Figure 4. From this position Fischer

FIG. 4. Fischer vs Reshevsky key position, prior to White’s 34th
move: 34. Nd4.

www.chesslab.com/
www.chessbase.com/
www.chesslab.com/
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FIG. 5. Probabilities of White making a legal move to a light square. The 13-move run is indicated by the dashed vertical lines.

(White) played 13 consecutive moves to dark squares,
this in the context of a 57-move game with move-by-
move probabilities of moving to a light square as de-
picted in Figure 5.

We follow the same approach in using imbedded
Markov chains to evaluate the significance of this run,
using pi in accordance with (4) and Figure 5, as was
employed in Section 2. This gives

Pr(L57 ≥ 13|pi) = 0.0023.(7)

The punch line is that the p-value in (7) is more ex-
treme than that achieved by the Karpov–Kasparov run
given in (6). Thus, if the latter is “incredible,” what
does this imply about the former? It is of interest to
note how the pi fluctuations in the Fischer–Reshevsky
game, as depicted in Figure 5, are such that the prob-
ability density for Pr(L57 = k) under pi from (4) is
barely distinguishable from that under pi = 0.5, as il-
lustrated by the smoothed histograms in Figure 6.

5. DISCUSSION

In their evaluation of coincidences, Diaconis and
Mosteller (1989) showcased the roles played by mis-
perception, multiplicity and the law of truly large

numbers. These factors have arguably contributed to
Fischer’s overstating the significance of the Karpov–
Kasparov move run. Indeed, misperceptions surround-
ing the significance of runs arising from random
processes are purportedly commonplace; see, for ex-
ample, Scheaffer, Gnanadesikan, Watkins and Witmer
(1996) for pedagogic exercises that illustrate this point.
These misperceptions are compounded when (implicit)
search for an extreme run is performed and multiplic-
ity considerations are ignored; see Albert (2004) for
some examples from baseball. In addition to seemingly
failing to account for these concerns when assessing
run significance, Fischer, in expressing incredulity at
the Karpov–Kasparov move run, has also assumed a
constant “success” probability for each move: pi =
p = 0.5.

Even aside from variation in pi , it is clear from
(1) or (2) that Pr(Ln ≥ k) depends heavily on p. This
has again been noted in the baseball context (Casella
and Berger, 1994)—a more successful player (team) is
likely to have a longer hitting (winning) streak than a
less successful player (team). Indeed, Lou (1996) pro-
vided an elegant extension to the imbedded Markov
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FIG. 6. Smoothed histograms of Pr(L57 = k).

chain approach of Fu and Koutras (1994) that allows
for evaluation of joint and conditional distributions of
the number of successes and Ln. Not only does her
framework accommodate varying pi , but it also facil-
itates testing of between-move dependency. However,
application of these methods here is problematic ow-
ing to difficulties in estimating, or even prescribing,
the requisite transition probabilities. Furthermore, the
power curves displayed by Lou (1996) suggest that in
our n = 63 setting we will be hard-pressed to detect
between-move dependencies. Additionally, as noted by
Rubin, McCulloch and Shapiro (1990), there are in-
stances where such conditional analyses are inappro-
priate. These include situations when there is no intrin-
sic interest in the total number of successes, as is the
case here where success corresponds to a move to a
light square.

Alternative approaches to appraising the significance
and/or asserting the existence of runs and streaks have
been advanced. In the sports context, Yang (2004) em-
ploys Bayesian binary segmentation to assess whether
transitions in success probability are evident. Applying
his methodology to the key Karpov–Kasparov game
yields highly null results.

As highlighted by a referee, evaluation of success
runs can be highly dependent on (i) the sample space
employed and (ii) how the success probabilities, pi ,
are framed. Here, we have argued that (i) the appro-
priate unit of analysis is a game, rather than a match
or series of matches, and (ii) allowing variable pi , that
at the least reflects the number of legal moves avail-
able, is essential. The resultant achieved significance
levels were sufficiently null [see (6)] that the above
mentioned multiplicity corrections [for the number of
games in the Karpov–Kasparov match(es)] were not
pursued.

However, in other settings, including two cele-
brated examples briefly described next, these consider-
ations can be less clear-cut. In their evaluations of Joe
DiMaggio’s 56-game hitting streak (baseball), Short
and Wasserstein (1989) performed various probability
calculations that are readily reproduced using either
(1) or (2). What distinguishes the differing calculations
are the alternative sample spaces considered: season,
career, history of baseball. Indeed, dramatically differ-
ent results ensue, with no attempt to arbitrate or rec-
oncile between them. Throughout, they employ con-
stant p based on lifetime batting average. In this case,
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given the rich documentation surrounding baseball, it
might be possible to improve on this imposition. This
could make recourse either to day-of-game batting
average or, more ambitiously, to modeling pi based
on game specific covariates, akin to Albright (1993).
However, as is made clear by the discussants of that ar-
ticle, such modeling is problematic. Furthermore, de-
spite the extensive compilation of historical baseball
statistics, extracting the requisite game level data is, at
best, a laborious undertaking.

Tversky and Gilovich (1989a) contended that the
“hot hand” phenomenon in basketball is a “cognitive il-
lusion” that derives from misconceptions of the laws of
chance. They base this assertion on analyses of data ob-
tained by coding shot attempts from 48 televised NBA
games plus free throw sessions of college players. In an
effort at refutation, Larkey, Smith and Kadane (1989)
took issue with the analyses in large part on the ba-
sis of sample space considerations. They argued that
the unit of analysis should reflect “cognitively man-
ageable chunks,” capturing temporal proximity, which
they operationalize as 20 consecutive shot attempts.
Tversky and Gilovich (1989b) offer a rebuttal that (in
part) further refines sample space considerations by ac-
commodating individual playing times. Here a defini-
tive characterization of sample space seems daunting.
More challenging still is capturing variations in pi ,
despite the widely acknowledged need to do so. This
derives from the need to accommodate the hard-to-
quantify notion of defensive pressure, above and be-
yond facets such as position on the floor and phase of
the game. Further compounding these obstacles is the
absence of usable data bases: the analyses conducted
required the individual investigators to watch and en-
code film, which in and of itself led to dramatic dispu-
tation (Tversky and Gilovich, 1989b).

In our evaluations of the significance of the Karpov–
Kasparov move run, not only have we benefited from
being able to frame the problem (relatively) precisely,
but also from the existence of sophisticated chess-
playing software and game data bases. The latter tool
could be used to assess a run potentially far more re-
markable than the move run, namely, Fischer’s own
aforementioned run of 19 consecutive wins as part of
the 1972 WCC qualifying cycle. This run included two
6–0 shutouts in his two candidates matches. As an
indication of the incredibility of these results and to
ground things in the world of grounders, Time maga-
zine equated the shutouts with pitching “two straight
no-hitters.” Perhaps Fischer’s ascent to World Cham-
pion was part of some conspiracy.
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