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Threshold Regression for Survival
Analysis: Modeling Event Times by a
Stochastic Process Reaching a Boundary
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Abstract. Many researchers have investigated first hitting times as models
for survival data. First hitting times arise naturally in many types of stochas-
tic processes, ranging from Wiener processes to Markov chains. In a survival
context, the state of the underlying process represents the strength of an item
or the health of an individual. The item fails or the individual experiences a
clinical endpoint when the process reaches an adverse threshold state for the
first time. The time scale can be calendar time or some other operational mea-
sure of degradation or disease progression. In many applications, the process
is latent (i.e., unobservable). Threshold regression refers to first-hitting-time
models with regression structures that accommodate covariate data. The pa-
rameters of the process, threshold state and time scale may depend on the
covariates. This paper reviews aspects of this topic and discusses fruitful av-
enues for future research.
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1. INTRODUCTION

Many types of lifetime, duration or time-to-event
data may be interpreted as first hitting times (FHT’s)
of a boundary or threshold state by sample paths of
a stochastic process, which may be latent or observ-
able. FHT models have a long history of application in
diverse fields, including medicine, environmental sci-
ence, engineering, business, economics and sociology.
FHT models may describe the length of a hospital stay,
the survival time of a transplant patient, the onset time
for a cancer induced by occupational exposure, the fail-
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ure time of an engineering system, the depletion time
of an inventory, the survival time of a new business, the
transition time for a stock price change and the length
of a marriage. Relevant articles, covering theory and
application, appear in both the lifetime data and re-
liability literatures. These FHT models are gradually
becoming widely adopted because of their conceptual
appeal, realism and applicability. Recently, interest in
them has deepened and spread, and exciting new ar-
eas of application are being encountered. The potential
applications require new conceptual viewpoints, the-
oretical advances, analytical techniques and method-
ological extensions to which the discussion returns
later.

To make FHT models truly valuable in applications,
they must be capable of extension to include regres-
sion structures. Regression structures allow the effects
of covariates to explain the inherent dispersion of the
data, thereby taking account of variability and sharpen-
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ing inferences. Regression structures also provide sci-
entific insights into potential causal roles of covariates
in the underlying processes, boundary sets and time
scales. This article reviews aspects of FHT models and
is concerned especially with regression structures for
FHT models, which will be referred to as threshold re-
gression, or TR for short. The word “threshold” refers
to the fact that the FHT is triggered by the underlying
process reaching a threshold state within a boundary
set, as described in more detail in the next section.

2. THE FIRST-HITTING-TIME (FHT) MODEL

A first-hitting-time (FHT) model has two basic com-
ponents: (1) a parent stochastic process {X(t), t ∈ T ,

x ∈ X} with initial value X(0) = x0, where T is the
time space and X is the state space of the process
and (2) a boundary set B, where B ⊂ X. We shall
refer to the boundary set B as a boundary, barrier or
threshold, depending on which is most descriptive or
conventional in the context. The process {X(t)} may
have a variety of properties, such as one or many di-
mensions, the Markov property, continuous or discrete
states, and monotonic sample paths. Whether the sam-
ple path of the parent process is observable or latent
(unobservable) is an important distinguishing charac-
teristic of the FHT model. Latent processes are the
most common by far. The boundary set B may also
have different features as will be illustrated in later ex-
amples.

Taking the initial value X(0) = x0 of the process to
lie outside the boundary set B, the first hitting time
of B is the random variable S defined as

S = inf{t :X(t) ∈ B}.(1)

Thus, the first hitting time is the time when the stochas-
tic process first encounters set B. We refer to the state
first encountered in the boundary set by the process,
that is, X(S) ∈ B, as the threshold state. The bound-
ary set defines a stopping condition for the process
and, therefore, the FHT is usually a stopping time in
the formal sense of that term in stochastic process the-
ory. Note that when the parent process is latent, there is
no direct way of observing the FHT event in the state
space of the process.

In some versions of the FHT model, there is no
guarantee that process {X(t)} will reach the boundary
set B, so P(S < ∞) < 1. We will let S = ∞ denote
the absence of a finite hitting time with P(S = ∞) =
1 − P(S < ∞). The later discussion will show situa-
tions where this condition is plausible and a desirable

model feature. The basic FHT model (1) assumes that
B is fixed in time. In some applications, however, it
varies with time, that is, B(t). This variation may be
deterministic or follow a stochastic process.

An exhaustive review of the first-hitting-time litera-
ture is impossible within the confines of a single article.
Eaton and Whitmore (1977) discuss FHT’s as a gen-
eral model for hospital stay. Aalen and Gjessing (2001)
provide an excellent overview of much of this subject.
Likewise, Lawless (2003) gives a complete and com-
pact summary of theory, models and methods (see Sec-
tion 11.5, pages 518–523). Lee and Whitmore (2004)
also provide an overview of first-hitting-time models
for survival and time-to-event data. We will make nu-
merous references to selected work as we proceed.
There is a huge literature dealing with theoretical and
mathematical aspects of FHT models that we will not
attempt to review or incorporate. We also will not cover
random growth curve models, such as those of Carey
and Koenig (1991) and Lu and Meeker (1993), which
have an FHT interpretation but where the only random-
ness at the level of the individual parent process is con-
fined to a noise factor. The large literature on linear and
nonlinear regression methods for survival data and re-
liability where the underlying models have no central
FHT motivation (such as accelerated failure time and
proportional hazards models) is also not covered.

3. EXAMPLES OF FIRST-HITTING-TIME MODELS

The parent stochastic processes may take many
forms, from Wiener processes to Markov chains. Like-
wise, the nature of the boundary state may vary
widely—for example, a fixed threshold in a Wiener
process or an absorbing state in a Markov chain. As
the preceding description of a first-hitting-time model
is quite abstract, we now list a few basic examples to
illustrate the variety encountered in applications.

1. Bernoulli process and negative binomial first hit-
ting time. The number of trials S required to reach the
mth success in a Bernoulli process {Bt, t = 1,2, . . .}
has a negative binomial distribution with parame-
ters m and p, where p is the success probability on
each trial. To give this setup our standard representa-
tion, we consider a parent process {Xt, t = 0,1,2, . . .}
with initial value X0 = x0 = m and let Xt = x0 −
Bt, t = 1,2, . . . , where {Bt } is the preceding Bernoulli
process. The first hitting time is the first Bernoulli trial
t = S for which Xt equals 0. The number of rocket
launches required to get m satellites in orbit is a simple
example of this FHT model.
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2. Poisson process and Erlang first hitting time. The
time S until the occurrence of the mth event in a
Poisson process {N(t), t ≥ 0} with rate parameter λ

has an Erlang distribution with parameters m and λ.
Again, to give this setup our standard representation,
we consider a parent process {X(t), t ≥ 0} with ini-
tial value X(0) = x0 = m and let X(t) = x0 − N(t),
where {N(t), t ≥ 0} is the preceding Poisson process.
The first hitting time is the earliest time t = S when
X(t) = 0. This FHT model is illustrated by the time to
failure of an engineering system consisting of m com-
ponents in parallel, having identical and independent
exponential lifetimes, that are placed in service succes-
sively as failures occur.

3. Wiener process and inverse Gaussian first hitting
time. Consider a Wiener process {X(t), t ≥ 0} with
mean parameter µ, variance parameter σ 2, and ini-
tial value X(0) = x0 > 0. The time S required for the
process to reach the zero level for the first time has
an inverse Gaussian distribution if the process mean
parameter µ is negative so the process tends to drift
toward the zero level. Lancaster (1972) describes the
duration of an industrial strike using this model. In
this context, {X(t)} represents the distance between
the positions of management and labor at time t af-
ter the start of the strike. The initial separation of the
parties is X(0) = x0 > 0. The strike ends when the
process first encounters the zero level where the parties
agree and settle. In addition to Lancaster (1972), re-
fer to applications described in Whitmore and Neufeldt
(1970), Whitmore (1975, 1979, 1983, 1986, 1995),
Doksum and Hóyland (1992), Doksum and Normand
(1995), Lu (1995), Whitmore and Schenkelberg (1997)
and Horrocks and Thompson (2004), to name a few.
Onar and Padgett (2000) and Padgett and Tomlinson
(2004) extend the Wiener diffusion model to an accel-
erated testing context. Pettit and Young (1999) set the
model in a Bayesian context. As illustrated later, the
inverse Gaussian distribution has a closed-form prob-
ability density function (p.d.f.) and a computationally
simple cumulative distribution function (c.d.f.). Their
formulas vary slightly depending on whether the parent
process is defined as rising or falling to hit the relevant
boundary.

4. Gamma process and inverse gamma first hitting
time. Consider a parent process {X(t), t ≥ 0} with ini-
tial value X(0) = x0 > 0. Let X(t) = x0 − Z(t) where
{Z(t), t ≥ 0} is a gamma process with scale parame-
ter β , shape parameter α and Z(0) = 0. The first hitting
time of the zero level in the parent process (X = 0) has
an inverse gamma c.d.f., defined by the identity P(S >

t) = P(Z(t) < x0). The identity follows from the fact
that a gamma process has monotonic (nondecreasing)
sample paths. The availability of computational rou-
tines for the gamma c.d.f. allows the c.d.f. of S to
be computed readily. Singpurwalla (1995) and Law-
less and Crowder (2004) consider the gamma process
as a model for degradation. Park and Padgett (2005)
consider both geometric Brownian motion and gamma
processes in an accelerated degradation model.

5. Ornstein–Uhlenbeck process and Ricciardi–Sato
first hitting time. The Ornstein–Uhlenbeck (OU) pro-
cess is a variant of a Wiener process that is mean-
reverting in that it tends to drift back toward a fixed
equilibrium level and thus has a property of home-
ostasis. Aalen and Gjessing (2004) propose the first-
hitting-time distribution for such a process as a survival
model and derive pertinent results. They point out that
the form of the FHT distribution is found in Ricciardi
and Sato (1988), who have studied it extensively.

6. Markov chain and absorbing state first hitting
time. Markov chains {Xt, t = 0,1,2, . . .} are an im-
portant type of parent process. The state space X con-
sists of the possible states of the chain. The time space
T is the transition steps for the chain. The first hit-
ting time is the minimum number of steps required to
move from an initial state X0 = x0 to a set of boundary
states B. The FHT distribution depends on the tran-
sition matrix of the chain in a precise mathematical
manner. As a case example, a Markov chain can model
product brand switching in the field of consumer be-
havior. An FHT of interest might be the number of pur-
chases that will be made in the product category before
a consumer who currently uses brand x0 will switch to
another brand, say, b. In this case, B is the singleton
set {b}.

7. Semi-Markov processes and their first hitting
times. All of the preceding examples are special cases
of Markov processes. A semi-Markov process {X(t),

t ≥ 0} extends the Markov chain model by includ-
ing the random time that the process resides in each
state. Although the Markov property is generally lost
by this extension, the model remains of great practical
value. In a semi-Markov model, the first hitting time
represents the time that the process resides in the ini-
tial and subsequent states before it first enters one of
the states that define set B. There are many important
examples of this multistate model, some more com-
plicated than others. The two-stage clonal conversion
model for cancer provides a case example. This is a
chemical carcinogenesis model that, in its basic form,
postulates a pool of (stem) cells that are susceptible to
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malignant transformation. The cells proceed through
an initiation stage and then through malignant con-
version according to a two-stage Markov process with
fixed transition rates. Once a malignant cell is gener-
ated, a second statistical model describes progression
through stages of active cancer to death (homeostasis,
angiogenesis, metastasis, death). The model has been
elaborated in a series of works by Moolgavkar, Lue-
beck and Anderson (1998) and Luebeck et al. (1999),
and others. The model has been applied, for example,
in a study of lung cancer risk posed to Chinese tin min-
ers by arsenic, radon and tobacco exposure (Hazelton
et al., 2001).

4. LATENT FIRST HITTING TIMES AND
COMPETING RISKS

Most duration data are gathered under conditions of
competing risks in which two or more causes are com-
peting to determine the observed duration. The out-
come becomes associated with both a time and mode of
occurrence. For example, a medical first-hitting-time
model that describes the time of a subject’s death may
recognize explicitly that multiple causes are compet-
ing to produce death. Both the time and cause of death
are recorded for each subject. Refer to Kalbfleisch and
Prentice (1980, 2002) and Crowder (2001), for exam-
ple, for detailed technical discussions of this topic.

FHT models accommodate the competing risk as-
pect in a natural fashion. In an FHT model with
competing risks, the boundary set B is partitioned
into mutually exclusive and exhaustive subsets, say
B1, . . . ,BC , associated with FHT causes c = 1, . . . ,C.
Let D denote the observed cause. Then realization
D = d associated with the observed FHT outcome S

would be defined as

D = d if X(S) ∈ Bd .(2)

The concept of a latent FHT offers an interesting
vehicle for discussing competing risks. In this frame-
work, an individual is imagined to have latent FHT’s
S1, . . . , SC for the C competing causes. The FHT Sc is
defined as in (1) with Bc replacing B. The observed
cause d and observed FHT Sd are then given by

Sd = min{Sc, c = 1, . . . ,C}.(3)

In other words, the observed FHT time and mode are
those of the smallest latent FHT.

As a practical matter, latent FHT’s, other than the
smallest, are generally unobservable, although there
may be exceptions. For example, an engineering sys-
tem may consist of C components and fail whenever

one of its components fails. If the system is repairable,
then the failure times of all C components may even-
tually be observed because repair allows the system to
continue functioning. It is questionable, however, if a
repaired system really continues on the same stochas-
tic trajectory as before the repair. Nevertheless, latent
FHT’s have value as notional measures of survival in-
crements that might be realized in an idealized world
where selected causes of failure are removed. In terms
of the definition in (3), an investigator might look at
the impact on the observed FHT if some boundary
subsets Bc, associated with selected causes, are re-
moved from the model formulation. This removal, in
effect, eliminates the associated latent FHT’s from (3).
This exercise therefore simulates the elimination of
some causes of death (in medicine) or failure (in en-
gineering). An FHT model offers a clear conceptual
structure for the status of an individual with respect
to modes of failure other than the one observed. This
structure is captured by the “distance” that the thresh-
old state X(Sd) lies from the boundary set Bc for any
cause c that differs from the observed cause d . The dif-
ference Sc − Sd for c �= d reflects the same distance on
the survival time scale. FHT models offer the possibil-
ity of inferences about this distance.

To illustrate an FHT competing risks model by a con-
crete medical example, consider a multidimensional
Wiener process of C dimensions with a boundary Bc

in each dimension. Each of the C dimensions defines
a different cause of death c ∈ {1,2, . . . ,C}. In such
a model, one may make inferences about secondary
medical conditions that are not the primary cause of
death. For example, in studies of occupational expo-
sure to diesel exhaust, workers may be found to have
increased risks of death from lung disease, cardiovas-
cular disease and other causes. It is desirable in such
a context to have an FHT model that is capable of
considering different causes of death simultaneously.
A worker dying of lung cancer (the primary cause of
death) may have advanced cardiovascular disease, both
of which are aggravated by exposure to an occupa-
tional hazard such as diesel exhaust. Then, an inves-
tigator’s interest may lie in making inferences about
the worker’s cardiovascular disease status at the time
of death from lung cancer. We note that if the under-
lying multidimensional Wiener process is correlated,
then the latent survival times for different causes of
death will be dependent.

5. CURE RATES

We mentioned at the outset that some FHT models
may offer a positive probability of no FHT taking place
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in finite time. Thus, for example, a medical treatment
may offer a cure, some animals in a population may
be immune to infection, some stock prices may never
reach $100, and some marriages may never end in di-
vorce. The fact that P(S = ∞) > 0 in some FHT mod-
els is closely related to competing risks. Generally, if
the FHT model takes account of all competing risks,
then eventual failure from some cause is assured. If,
however, the FHT model takes account of only one or
a few competing risks, then there is a positive probabil-
ity that the FHT will be infinite to accommodate those
individuals who are not susceptible to the limited array
of causes of failure that are considered in the model. To
illustrate the natural way in which FHT models take ac-
count of a cure rate, consider a Wiener diffusion model
with a fixed boundary at zero (the time axis). If the
drift of the process is away from the boundary, that is,
µ > 0, then a finite FHT is not assured and, in particu-
lar, P(S < ∞) = exp(−2x0µ/σ 2). Likewise, a gamma
process with a cure rate might be defined as

X(t) =
{

x0, with probability 1 − p,
x0 − Z(t), with probability p.

(4)

Here the parameter p is a susceptibility fraction, with
0 ≤ p ≤ 1. As an example of this last model, a subject
may have a malignant or benign form of a disease with
probabilities p and 1 − p, respectively. The malignant
form progresses monotonically toward a medical end-
point (e.g., death).

6. COVARIATES AND LINK FUNCTIONS FOR
THRESHOLD REGRESSION

The parent process {X(t)} and boundary set B of the
FHT model will both generally have parameters that
depend on covariates that vary across individuals. To
illustrate, consider the Wiener process model in Ex-
ample 3. The Wiener process has mean parameter µ

and variance parameter σ 2 and the boundary set has
parameter x0, the initial process level. In threshold re-
gression, these parameters will be connected to linear
combinations of covariates using suitable regression
link functions, as illustrated below for some parame-
ter, say θ ,

gθ (θi) = ziβ.(5)

Here gθ is the link function, the parameter θi is
the value of the parameter θ for individual i, zi =
(1, zi1, . . . , zik) is the covariate vector of individual i

(with a leading unit to include an intercept term) and β

is the associated vector of regression coefficients. The

mathematical form of the link function must be suited
to the application. Generally, it will be chosen to map
the parameter space into the real line. For example, a
variance parameter such as σ 2 may employ a logarith-
mic link function, that is, ln(σ 2) = zβ . Likewise, the
list of covariates and their mathematical forms in the
regression function zβ must be chosen appropriately,
as is the case in a conventional regression analysis.

Previous work that has considered regression struc-
tures for FHT models includes Whitmore (1983),
Whitmore, Crowder and Lawless (1998), Lee,
DeGruttola and Schoenfeld (2000) and Lee et al.
(2004). To illustrate one of these applications, Lee, De-
Gruttola and Schoenfeld (2000) use a bivariate Wiener
diffusion process as the basis of a threshold regres-
sion model for the study of progression to death in
AIDS, with CD4 cell count serving as a marker process
(marker processes are discussed in a later section). The
initial health status and mean parameter of the parent
process are made to depend on baseline covariates and
treatment variables through log-linear and identity link
functions, respectively. The mean and variance para-
meters of the marker process are also given a regres-
sion structure, with identity and log-linear link func-
tions. Finally, the correlation parameter for the parent
and marker processes uses a correlation transform as a
link function.

Threshold regression raises some new issues for es-
timation and inference in FHT models. Where FHT
models are estimated only from censored survival data,
parameter estimators may exhibit significant multi-
collinearity, especially with highly parameterized re-
gression functions. This fact does not reflect any
deficiency of the FHT model but, rather, reflects the
limited information content of sample data in a rich
modeling context. Reparameterization of the model
can assist with computational problems that may arise
from this multicollinearity but generally the condi-
tion is not sufficiently severe to prevent estimates from
being computed. The impact is primarily felt in the in-
terpretability of the estimation results. As with conven-
tional regression, where regression effects are highly
collinear, it will be difficult to attribute the effect to a
particular model component. For example, in thresh-
old regression based on censored inverse Gaussian sur-
vival data, estimates of covariate effects of the initial
value x0 and mean parameter µ may be collinear be-
cause the mean survival time depends on their ra-
tio x0/|µ|. Thus, the high correlation of their sampling
errors can only be mitigated by having fine details for
the dispersion pattern of the survival data. Censoring
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or small sample sizes may mask those fine details and
thus make estimation more difficult.

7. RUNNING TIME VERSUS CALENDAR TIME

In many applications of threshold regression, the
natural time scale of the parent process is not calen-
dar or clock time. For example, a mechanical compo-
nent may wear according to the amount of its usage
or liver disease may progress according to an individ-
ual’s cumulative consumption of alcohol. Mathemati-
cal research on different time scales has been carried
out by many researchers. Cox and Oakes (1984, Sec-
tion 1.2, pages 3–4) pointed out that “often the ‘scale’
for measuring time is clock time, although other pos-
sibilities certainly arise, such as the use of operating
time of a system, mileage of a car, or some mea-
sure of cumulative load encountered.” These accumu-
lation measures are increasing with calendar time and
thus are alternative progression scales for the stochastic
process. Such measures are given a variety of names,
depending on the context, such as operational time,
disease progression, or running time. We shall mainly
use the last name here. If r(t) denotes the transforma-
tion of calendar time t to running time r , with r(0) = 0,
and {X(r)} is the parent process defined in terms of
running time r , then the resulting process expressed
in terms of calendar time is the subordinated process
X∗(t) = X[r(t)], where the asterisk identifies the sub-
ordinated process. Adaptations of FHT models to run-
ning time scales may be done in a variety of ways,
as we describe below. The variety includes both ran-
dom and nonrandom transformations. We note that r(t)

must be a monotonic transformation but its monotonic-
ity need not be strictly increasing. Interesting effects
arise, for example, where r(t) is a function with jump
discontinuities.

1. Some applications require a monotonic mathemati-
cal transformation of the time scale. In these cases,
r(t) is a deterministic function of calendar time t .
A typical example from an engineering applica-
tion is the strictly monotonic transformation r =
1 − exp(−λtγ ) with λ > 0 and γ > 0. See, for ex-
ample, Carey and Koenig (1991), Whitmore (1995)
and Whitmore and Schenkelberg (1997). The math-
ematical transformation may depend on covariates,
as in Bagdonavičius and Nikulin (2001), where the
running time scale forms part of an accelerated life
model.

2. Running time may also enter an FHT model using a
stochastic process for subordination. In this context,

the parent process {X(r)} is directed by a second
stochastic process {R(t)} having monotonic sample
paths. In this context, we refer to {R(t)} as the di-
recting process and the subordinated process takes
the form {X∗(t)} = {X[R(t)]}. Unlike a monotonic
mathematical transformation, subordination with a
stochastic process gives the transformation random
properties that can greatly enrich the model. Lee
and Whitmore (1993) examine the connection be-
tween subordinated stochastic processes and run-
ning time. As a specific example of a subordinated
process, one can consider a Poisson parent process
that is directed by a gamma process (which has
monotonic sample paths). The result is a cluster-
ing Poisson process (Hougaard, Lee and Whitmore,
1997) in which an FHT can be triggered by the oc-
currence of a cluster of Poisson events.

3. The running time scale may be a combination of dif-
ferent accumulation measures. For example, Oakes
(1995) and Kordonsky and Gertsbakh (1997) look at
multiple running time scales in survival data analy-
sis. Duchesne and Lawless (2000) and Duchesne
and Rosenthal (2003) describe various advances in
running time models for survival data. The concept
of collapsible time within the context of accelerated
failure time models is central to this earlier work.
The basic idea appears in various forms. For exam-
ple, a composite running time might be defined by

r(t) =
J∑

j=1

αj rj (t),(6)

where the rj (t) are different accumulation measures
that can advance degradation or disease progres-
sion and the αj are positive parameters that weight
the contributions of the different measures. One of
the measures, say r1(t), may be calendar time it-
self so r1(t) = t . One αj parameter will need to
be set to unity to give a well-defined scale. Typi-
cally, in this setup, composite running time has a
fixed mathematical form for any given individual
case but individuals will have different scales be-
cause the rj (t) vary randomly among individuals.
As a simple example of a composite running time,
consider the mechanical aging of a motor vehicle
which may be related to both the passage of calen-
dar time r1(t) = t and accumulated mileage r2(t).
In this case, (6) has two components, as follows:
r(t) = t + αr2(t). Notice α1 is set to 1 and α2 = α.

A practical case of the last kind of running time is
illustrated in Lee et al. (2004) where railroad work-
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ers are employed in different types of jobs, indexed
by j = 1, . . . , J , which have differential exposures to
diesel exhaust, an occupational risk. The running time
(6) here is defined as a weighted sum of different ex-
posure intervals. The quantity rj (t) is the time spent
by the worker in job type j during time interval [0, t].
The αj are positive weights that determine the rates at
which the running time advances per unit of calendar
time spent in the different job types. One αj is set to
unity as a numeraire, say αJ = 1. The rj (t) also must
satisfy the accounting constraint

∑J
j=1 rj (t) = t . Ob-

serve that (6) is a deterministic transformation for any
given set of exposure intervals rj (t) but that these in-
tervals vary randomly from one worker to another ac-
cording to their individual work histories.

Some processes may be defined in terms of run-
ning time from the outset. For example, in a Bernoulli
process or a Markov chain, the progress parameter rep-
resents the sequence of trials or steps of the processes,
respectively. These parameters may already be seen
as reflecting a kind of running time. The mapping of
calendar time to this running time, as represented by
r(t) = r, is already implicit in the discrete progress pa-
rameter of the process.

The running time scale r(t) is included in the FHT
model in order to make the model a more valid rep-
resentation of reality. With a correct specification of
running time, one would expect health status or com-
ponent strength to decline steadily and predictably
against the scale that measures the accumulating “wear
and tear” of running time. In other words, X(r) would
retain very little or no inherent variability if r(t) could
be chosen carefully. This situation describes an ideal
that is unattainable in most practical applications of
FHT models but is a target of model building.

8. INCORPORATING MARKER PROCESSES IN
THRESHOLD REGRESSION

A marker process refers to an external process that
covaries with the parent process. It assists in tracking
progress of the parent process if the parent process is
latent or only infrequently observed. In this way, the
marker process forms a basis for predictive inference
about the status of the parent process and its progress
toward an FHT. Marker processes may also be of scien-
tific interest in their own right. As markers of the par-
ent process, they offer potential insights into the causal
forces that are generating the movements of the parent
process. Examples of marker processes include CD4

cell count for AIDS, blood pressure for cardiovascular
disease, personal medical cost for health status, input
drive current for a laser, and ambient temperature for
equipment.

The basic analytical framework for a marker process
conceives of a bivariate stochastic process {X(r),Y (r)}
where the parent process {X(r)} is one component
process and the marker process {Y(r)} is the other.
Both are assumed to be one-dimensional for conve-
nience of exposition. They are also both defined on the
running time scale r . We discuss the implications of
this last point shortly. Whitmore, Crowder and Lawless
(1998) look at failure inference based on a bivariate
Wiener model in which failure is governed by the FHT
of a latent degradation process while auxiliary read-
ings are available from a correlated marker process. As
noted earlier, Lee, DeGruttola and Schoenfeld (2000)
apply this bivariate marker model to CD4 cell counts
in the context of AIDS survival.

An application may offer a variety of marker proces-
ses, say, {Yk(r), k = 1, . . . ,K}, that may be of poten-
tial scientific value. They can be studied separately or
combined into a composite marker process. For marker
processes that involve measurements, the following ad-
ditive form for the composite marker might be appro-
priate:

Y(r) = γ0 +
K∑

k=1

γkYk(r).(7)

The concept of a composite marker was first proposed
by Whitmore, Crowder and Lawless (1998) in an en-
gineering context. The aim in constructing the com-
posite marker process is to find that linear combina-
tion of the K candidate markers that has the largest
predictive correlation or association with the parent
process. The γk parameters define the linear combi-
nation and these generally must be estimated. The ap-
proach is reminiscent of regression analysis with the
composite marker serving as a regression function to
predict the parent process {X(r)}. Here γ0 serves as
the intercept term of the regression relationship. If the
composite marker can mimic the parent process per-
fectly, then {X(r)} and {Y(r)} will be perfectly cor-
related. An exact model for the preceding setup is a
(k + 1)-variate Wiener diffusion process in which the
parent process is one component and the k markers
are the remaining components. The conditional process
{X(r)|Y1(r) = y1(r), . . . , YK(r) = yK(r)} then defines
an exact linear regression structure. Where one is deal-
ing with a parent process or marker processes that are
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FIG. 1. This conceptual framework shows the connections be-
tween the parent process (often a latent process), running time (RT)
and an external marker process that is correlated with the parent
process. Time subordination links calendar time (CT) to running
time. The threshold regression structure stands in the background
and is not displayed explicitly in the figure.

not measurement processes, such as Markov chains,
the concept of a composite marker process must be re-
defined in a suitable manner.

The FHT modeling framework has evolved in the
literature to encompass three major components as
shown in Figure 1, namely, an FHT model (parent
process and boundary set) that defines the relevant end-
point, a running time scale and a marker process. The
threshold regression (TR) structure stands in the back-
ground of the schematic in Figure 1 and allows the
parameters of the various components in the figure to
depend on baseline and other covariates. Although the
schematic shows only one marker, it is clear that there
may be many. The framework in Figure 1 has several
noteworthy features. For example, if a marker process
has monotonic sample paths, it may serve either as a
marker or as a running time r(t), as may be deemed ap-
propriate by the investigator. The framework reminds
us that a marker process {Y(r)} should be defined on
the running time scale r when its correlation with the
parent process {X(r)} is being considered. Thus, for
example, if r(t) measures an individual’s cumulative
exposure to a potential carcinogen at time t and the
marker y is a serum measurement for the individual
on a cancer-specific antigen at time t , then the serum
reading y should be recorded as a function of cumula-
tive exposure r . In other words, the progress parameter
of the serum marker process is cumulative exposure r ,
not calendar time t .

We have said that the parent process is generally
latent. This feature definitely is common in medical
applications where inherent health condition cannot
be observed (and, indeed, may be deemed unmea-
surable). Marker processes are surrogates for health
status, especially if they are highly correlated with
the underlying medical condition. These markers may
range from biomedical measurement processes, such
as serum measurements, to more qualitative processes,
such as periodic subjective evaluations of health sta-
tus by a patient or caregiver. In engineering systems,
there will be contexts in which wear and tear, for ex-
ample, can be observed and measured. In many phys-
ical settings, however, only surrogates for the system
condition are available. For example, the drive current
of a laser is a marker for its physical condition but
not perfectly correlated with it. Similar comments can
be made about social and economic systems. The par-
ent processes that define the FHT (e.g., business fail-
ure) may only be imperfectly monitored by a marker
process (e.g., accounting measures of solvency). We
also add that marker processes may be leading, lag-
ging or coincident with respect to the parent process
and their phase will be important in predictive infer-
ence for the parent process and its FHT.

9. DATA STRUCTURES FOR THRESHOLD
REGRESSION MODELS

The data structures of threshold regression studies
vary widely. To be specific, we look at the case in
which longitudinal observations in calendar time are
available for the parent process and the covariate vec-
tor. In this case, the data structure for a single individ-
ual can be summarized as follows:

Time points:
0 = t0 ≤ t1 ≤ · · · ≤ tm,

Failure codes:
f0 = 0, f1 = 0, . . . , fm−1 = 0, fm = 0 or 1,

Readings on parent process:
x0, x1, . . . , xm,

Covariate vectors:
z0, z1, . . . , zm.

(8)

Each individual has observation vectors of the form
(tj , fj , xj , zj ), j = 0,1, . . . ,m, where t0 = 0 ≤ t1 ≤
· · · ≤ tm. Here tj is the time of the j th observation, fj

is an indicator variable for whether the time tj is an
FHT, xj is the state of the process at time tj and zj is
the covariate vector of the j th observation for the indi-
vidual.
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The data structures may have a variety of specialized
features, as illustrated below.

1. The data sets usually consist of a sample of indi-
viduals, i = 1, . . . , n, with individual parent proces-
ses {Xi(t)} and boundary sets B(i). The individual
processes are often assumed to be mutually inde-
pendent.

2. Where there are competing modes of failure, then
the cause of failure d will be recorded for each in-
dividual.

3. The final observation time tm for an individual is
a random stopping time if fm = 1. Thus, tm = S

and xm = X(S) if fm = 1. Here X(S) ∈ B is the
threshold state realized by the individual at the FHT.
If fm = 0, then time tm is a right-censoring time for
the FHT, that is, tm < S. If tm−1 < S ≤ tm, then the
survival time S is interval censored.

4. The data are longitudinal if there is more than one
reading available for some individuals, that is, if
m > 1 for some individuals.

5. If the parent process is latent, then the data set will
have no observations xj , although there may still be
readings on the covariate vectors zj .

6. If the data set consists only of a single time t and
failure indicator f for each individual, then the data
set constitutes censored survival data. With a base-
line covariate vector z0 available, the data provide a
basis for censored survival threshold regression.

7. Let X(tj ) be abbreviated Xj for any individual.
The reading xj on the parent process, for j < m,
is a realization of the conditional random vari-
able Xj |S > tj . The conditioning event is that the
process has reached state xj at time tj without ex-
periencing an FHT.

8. Where {X(t)} is a Markov process (which is the
most common type of model), we have for any in-
dividual that

P(Xj = xj |xj−1, . . . , x0, S > tj )

= P(Xj = xj |Xj−1 = xj−1, S > tj )

for j < m.

In other words, the distribution of the next observa-
tion Xj depends only on the value of the preceding
observation xj−1 and the fact that no FHT has yet
occurred. The sample path by which xj−1 was at-
tained is immaterial.

Our discussion of data structures here has referred only
to calendar time t without reference to running time r .
It also has not taken account of observations that may

be available on relevant marker processes. The discus-
sion in Sections 7 and 8, however, will make it clear
what supplemental data are required when these model
components are part of the threshold regression model.

10. PARAMETER ESTIMATION AND INFERENCE

In applications to date, parameter estimation for
FHT models and threshold regression have been heav-
ily dominated by maximum likelihood methods. The
reason is that the probabilistic specification of the par-
ent stochastic process in FHT models is usually ex-
plicit and, hence, likelihood expressions follow as a
matter of course. The optimization required by this
estimation method may employ a variety of compu-
tational techniques but gradient methods work very
well. Extensions to Bayesian methods have been de-
veloped in some cases. For example, Pettit and Young
(1999) and Shubina (2005a, 2005b) have embedded
the Wiener diffusion FHT model in a Bayesian frame-
work. Lee, DeGruttola and Schoenfeld (2000) have de-
veloped some predictive inference results for this case,
in conjunction with a marker process. Nothing seems
to stand in the way of developing nonparametric and
semiparametric approaches for these models but these
approaches have not yet been taken up in the literature.

Case illustration. To illustrate the nature of infer-
ence for one of the simple threshold regression set-
tings, we now set up the sample log-likelihood function
for censored inverse Gaussian regression for a med-
ical application like that found in Lee et al. (2004).
We consider a latent health status process defined on
a running time scale r . We let the parent process
be a Wiener diffusion process. The FHT for such a
process follows an inverse Gaussian distribution. The
inverse Gaussian distribution depends on the mean and
variance parameters of the underlying Wiener process
(µ and σ 2) and the initial health status level (x0). We let
f (r|µ,σ 2, x0) and F(r|µ,σ 2, x0) denote the probabil-
ity density function (p.d.f.) and cumulative distribution
function (c.d.f.) of the FHT distribution, both defined
in terms of running time r . These functions have simple
computational forms. For the case where the process
begins at x0 > 0 and the boundary is the zero level, the
p.d.f. for the first hitting time is given by

f (r|µ,σ 2, x0) = x0√
2πσ 2r3

exp
[
−(x0 + µr)2

2σ 2r

]

(9)
for −∞ < µ < ∞, σ 2 > 0, x0 > 0.

If µ > 0, then the FHT is not certain to occur and
the p.d.f. is improper. Specifically, in this case,
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P(X = ∞) = 1 − exp(−2x0µ/σ 2). The c.d.f. corre-
sponding to (9) is

F(r|µ,σ 2, x0)

= �

[
−(µr + x0)√

σ 2r

]
(10)

+ exp(−2x0µ/σ 2)�

[
µr − x0√

σ 2r

]
,

where �(·) is the c.d.f. of the standard normal distrib-
ution.

The health status process is latent here and, hence,
can be given an arbitrary measurement unit. Thus, one
parameter may be fixed. We set the variance parame-
ter σ 2 to unity. Both parameters µ and x0 are linked
to k regression covariates that are represented by the
row vector z = (1, z1, . . . , zk). The leading 1 in z al-
lows for a constant term in the regression relationship.
An identity function of the form

µ = zβ = β0 + β1z1 + · · · + βkzk

is used to link the parameter µ to the covariates and a
logarithmic function

ln(x0) = zγ = γ0 + γ1z1 + · · · + γkzk

is used to link the parameter x0 to the covariates. Here
β = (β0, β1, . . . , βk)

′ and γ = (γ0, γ1, . . . , γk)
′, where

β0 and γ0 are regression constants. Parameters of the
running time scale, such as α = (α1, . . . , αJ ) in (6),
may also be linked to covariates using link functions of
appropriate form.

We now denote µ and x0 for subject i by µ(i)

and x
(i)
0 . We let r(i) denote the running time for sub-

ject i. Time r(i) is the running time at the moment of
death for a dying subject and a right-censored running
time for the moment of death for a surviving subject.
Hence, each dying subject i contributes probability
density f (r(i)|µ(i), x

(i)
0 ) to the sample likelihood func-

tion, for i = 1, . . . , n1, and each surviving subject i

contributes survival probability F(r(i)|µ(i), x
(i)
0 ) = 1−

F(r(i)|µ(i), x
(i)
0 ) to the sample likelihood function, for

i = n1 + 1, . . . , n1 + n0. The sum n = n1 + n0 is the
total number of subjects. The sample log-likelihood
function to be maximized therefore has the form

lnL(α,β,γ ) =
n1∑
i=1

lnf
(
r(i)|µ(i), x

(i)
0

)
(11)

+
n1+n0∑
i=n1+1

lnF
(
r(i)|µ(i), x

(i)
0

)
.

Numerical gradient methods can be used to find maxi-
mum likelihood estimates for β , γ and α.

11. THRESHOLD REGRESSION FOR
LONGITUDINAL DATA ANALYSIS

Our discussion of data structures in Section 9 has
anticipated that longitudinal data are gathered on the
respective stochastic processes of individuals in some
applications. Using our previous notation, we now let
{Aj } denote the longitudinal observation process, de-
fined on the time points tj , j = 0,1, . . . . If the indi-
vidual survives beyond time tj , then the failure code
fj = 0 and Aj = {S > tj , xj , zj } for j ≤ m. If the indi-
vidual fails in the final interval (tm−1, tm], then fm = 1
and Am = {S ∈ (tm−1, tm], xm ∈ B}. As defined earlier,
S is the stopping time for the longitudinal observation
process. We note that zm is not defined when the indi-
vidual has failed and, hence, is dropped from the ex-
pression for Am. Moreover, the final reading xm for the
parent process lies inside the boundary set B when the
individual has failed.

Longitudinal data of this kind pose an interesting
challenge for first-hitting-time models, as for most
time-to-event models. Lu (1995) considers the prob-
lem for the basic Wiener model where longitudinal ob-
servations are made on the process {X(t)} up to the
hitting or censoring time, as the case may be. She
formulates the likelihood function and computes ex-
act maximum likelihood estimates. The methodology
is somewhat intricate but manageable. Lee, DeGruttola
and Schoenfeld (2000) consider the issue of modeling
longitudinal data for a bivariate Wiener model repre-
senting a latent health status process and a correlated
marker process. These authors mention an interesting
approach to handling longitudinal data which they an-
ticipated would be technically satisfactory and practi-
cal to implement. Their suggested approach, however,
is not elaborated in their article, so we sketch one direc-
tion of development below but leave a full exploration
of the approach as an open research question. We refer
to this method as an uncoupling procedure because it
effectively unlinks the longitudinal observations into a
set of independent conditional observations.

With the preceding notation, the probability of ob-
serving the longitudinal data record of an individual
can be expanded as a product of conditional probabili-
ties as

P(Am,Am−1, . . . ,A1,A0)
(12)

= P(A0)

m∏
j=1

P(Aj |Aj−1, . . . ,A0).

Now we come to the crucial assumption. If it can be
assumed that {Aj , j = 0,1, . . .} is a Markov process
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with initial state A0, then (12) can be simplified as

P(Am,Am−1, . . . ,A1,A0)
(13)

= P(A0)

m∏
j=1

P(Aj |Aj−1).

In other words, the probability of observing Aj de-
pends only on its preceding state Aj−1 and not on the
earlier history of the observation process. The explicit
forms of the probability elements on the right-hand
side of (13) are

P(Aj |Aj−1)

= P(S > tj , xj , zj |S > tj−1, xj−1, zj−1)(14)

if fj = 0, j ≤ m,

P (Am|Am−1)

= P
(
S ∈ (tm−1, tm], xm ∈ B|(15)

S > tm−1, xm−1, zm−1
)

if fm = 1.

If no observations are available on the parent process,
then xj is dropped from the Aj notation, giving
Aj = {S > tj , zj } if fj = 0, j ≤ m, and Am = {S ∈
(tm−1, tm]} if fm = 1. Again, invoking the Markov as-
sumption for the observation process, (14) and (15)
take the revised forms

P(Aj |Aj−1)

= P(S > tj , zj |S > tj−1, zj−1)(16)

if fj = 0 for j ≤ m,

P (Am|Am−1)

= P
(
S ∈ (tm−1, tm]|S > tm−1, zm−1

)
(17)

if fm = 1.

Statement (13) is the theoretical justification for the
uncoupling procedure. Neither this theoretical devel-
opment nor issues of practical implementation of the
procedure were taken up by Lee, DeGruttola and
Schoenfeld (2000). As already noted, the procedure
remains an open topic for future research.

12. MODEL VALIDATION, DIAGNOSTICS
AND REMEDIES

Although procedures for model validation, diagnos-
tics and remedies are not as well developed for thresh-
old regression as for conventional regression models
for survival data, a number of techniques have been
proposed and applied successfully in earlier FHT in-
vestigations. For example, procedures are available for

checking the assumptions of the TR regression model
having a Wiener process and inverse Gaussian FHT,
both with and without associated marker processes.
Lee, DeGruttola and Schoenfeld (2000) present some
procedures for this TR model and demonstrate the
techniques using a medical case application. Lee and
Whitmore (2002) present a larger suite of techniques
for checking assumptions of this model and also dis-
cuss a number of remedies that might be used where
assumptions do not hold. Lee et al. (2004) also dis-
cuss validation for an extension of this same model
in which the calendar time scale is replaced by a job-
exposure disease progression scale. One of the pro-
posed validation procedures relies on the fact that the
inverse Gaussian (IG) distribution is the first-stopping-
time distribution of a Wiener process. Hence, com-
parisons can be made between Kaplan–Meier (KM)
survival curves and the IG survival curves implied by
the model (for different covariate subgroups). Appli-
cations with longitudinal observations on the parent
process or marker measurements offer even more data
for model validation. The previous work also points out
the importance of having subject-matter specialists un-
derstand the model features and compare them with the
fundamental physical processes at play. For example,
the concept of an FHT is one feature whose mecha-
nism is found frequently in nature, is easily understood
by scientists and can be checked against their scientific
understanding of the application context.

13. SOME OPEN RESEARCH PROBLEMS

Many interesting aspects of threshold regression
require further study. We noted earlier that multi-
collinearity of parameter estimates can be a practical
issue. It remains to be seen which parameterizations
of threshold regression models tend to have relatively
independent estimation errors. Multicollinearity within
regression functions will tend to show itself in famil-
iar ways and will likely be dealt with by conventional
remedies.

The Cox proportional hazards regression model is
widely used for survival data analysis. Threshold re-
gression models do not generally possess the propor-
tional hazards feature for different configurations of
covariates. A useful research contribution would be
made by comparing and contrasting the results of Cox
regression and TR in the same context. Some public
sets of survival data that are scientifically important
and have a plausible FHT interpretation might very
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well be reanalyzed to see if the key research conclu-
sions are materially affected when a TR model is used
in place of a more conventional technique.

Both parent and marker processes may be subject
to measurement error. For example, blood pressure is
known to be measured with error. Whitmore (1995),
for example, studied a Wiener diffusion FHT model
with measurement error. The true state of a process
is also often randomly masked. The incorporation of
measurement or masking errors in TR models, where
these extensions are motivated by significant applica-
tions, would represent a useful research extension.

The identification of individual marker processes
and the construction of composite marker processes to
track or mimic a latent parent process are challenging
subjects that need further theoretical work and more
experience with real applications. The challenge will
be especially great where the marker processes and la-
tent processes are from different classes of processes.
A related open research issue concerns the investiga-
tion of whether markers are leading, lagging or coinci-
dent with the parent process.

Nonparametric, semiparametric and other robust es-
timation methods seem to have much to contribute
to the successful application of threshold regression.
Quasi- likelihood methods and generalized estimating
equations may offer feasible approaches. As thresh-
old regression estimation in a general setting involves
parameter estimation for the boundary set, the parent
process and the running time scale, it is conceivable
that a blend of nonparametric and parametric methods
may be effective in some applications. For example,
nonparametric estimation of running time parameters
might be combined with parametric estimation of the
parent process.

Our discussion of the analysis of longitudinal data in
the context of threshold regression has already pointed
out that a full theoretical development and justification
of the uncoupling method remains an open research is-
sue. In the same vein, practical experience with this
method or other methods for handling longitudinal data
in threshold regression will be valuable contributions.

Much remains to be done on model validation and di-
agnostic techniques in the context of threshold regres-
sion. These tools are likely to be developed as thresh-
old regression is applied in a broader range of practical
cases. The earlier work on model validation has been
largely restricted to the Wiener FHT model and thus
extensions to other FHT models need attention. For ex-
ample, comparisons of Kaplan–Meyer (KM) survival
curves with fitted TR survival curves, both defined on

running time scales, will require new methods that take
account of the fact that the running time scale is it-
self fitted by a statistical model. As another example,
TR models assume that particular functions link the
model parameters to the regression covariates. Both the
forms of the link functions and the adequacy of the re-
gression functions must be validated. Whether the cor-
rect directing process has been chosen is also a feature
that must be checked by model validation techniques.
Although model validity is likely to be established
by standard techniques (such as cross-validation), new
techniques and modifications of conventional methods
will surely be needed. In addition to using statisti-
cal methods for model verification, it is desirable to
work closely with subject-matter specialists to ensure
that the FHT models have realistic features and that
the findings emerging from the analysis make practical
sense.

The last sentence of the preceding paragraph hints at
the largest open research question. Threshold regres-
sion will prove itself through beneficial practical appli-
cation. With exploration of fresh application areas will
come ideas for better methods and models for this new
type of regression approach.
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