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1. INTRODUCTION there is no way we can know whetha&p is small

Professor Fan should be congratulated for his review o large becauses, will alway_s tend to be small. i
that convincingly demonstrates the usefulness of non-! Suspect that the nonparametric methods outlined in
parametric techniques to financial econometric prob- Sect_lons 3.2 and 3.5 might suffer from a similar short—_
lems. He is mainly concerned with financial models cOming as they are based on the same type of approxi-
given by stochastic differential equations, that is, dif- Mation as the Euler scheme.
fusion processes. | will therefore complement his se- A simple solution to this problem is to use an ap-
lective review by discussing some important problems proximate likelihood function where the transition den-
and useful methods for diffusion models that he has sity is replaced by a normal distribution with mean
not covered. My concern will mainly, but not solely, be equal to the exact conditional expectatiéiix, §) =
with parametric techniques. A recent comprehensive Eq4(X 2| Xo = x) and with the variance equal to the ex-
survey of parametric inference for discretely sampled act conditional varianc® (x; 6) = Varg (X a|Xo = x).
diffusion models can be found in [19]. Here 6 is the (typically multivariate) parameter to
be estimated. This approach is exactly the same as
using quadratic martingale estimating functions; see

In his brief review of parametric methods, Profes- [3] and [20]. The estimators obtained from quadratic
sor Fan mentions the Gaussian approximate likelihoodmartingale estimating functions have the same nice
function based on the Euler scheme and states that thigroperties for high frequency observations (smglas
method has some bias when the time between observathe estimators based on the Euler likelihood, but they
tionsA is large. This is actually a very serious problem. are consistent for any value af and can thus be used
AsS an example, consider a model with a linear dA”ft of whether or notA is small. In most cases there is no ex-
the formpu(x) = —f(x —«) (8 > 0). The estimatof,  pjicit expression for the functiong(x, 8) and® (x; 6),
of f obtained from the Gaussian approximate likeli- g4 often they must be determined by simulation. This
hood based on the Euler scheme converges to requires, however, only a modest amount of computa-

(1— e PoAya~? tion and is not a problem in practice. If a completely

as the number of observations tends to infinity. explicit likelihood is preferred, one can approximate

Here o denotes the true parameter value. The limiting F(x,0) and ®(x; 6) by expansions OT a higher order
value of A, is always smaller than one, and the limit than those used in the Euler scheme; see [16].

of B, is always smaller tham~1. Thus the asymp- The nonparametric method in Section 3.5 could
totic bias can be huge i is large. A simulation study ~ Probably be improved in a similar way by using in
in [3] demonstrates that also for finite sample sizes an(27) and (28) the functiong'(x, 0) and ®(x; ) (or
enormous bias can occur. Whegg is small so that  the higher-order expansions in [16]) instead of the first-
(1 — e Po2)A~1 =~ gy, the asymptotic bias is negligi- order approximation used in the Euler scheme.

ble. The problem is, however, that if we use the approx-

imate likelihood function based on the Euler scheme, 3. MARTINGALE ESTIMATING EUNCTIONS

2. GAUSSIAN LIKELIHOOD FUNCTIONS
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An estimator is obtained by solving the equation 4. NON-MARKOVIAN OBSERVATIONS
n N ¥ 0 There are several situations in which observations
22 aj(Xi-vas0) from a diffusion process are non-Markovian. Most

i=lj=1 prominently this happens if a function of lower di-

[ fi(Xia) — Hgfj(X(,-_l)A)] =0, mension of a multivariate diffusion is observed. An
example is the stochastic volatility model that plays an

where Hp is the transition operator, and where the . L ! )
function ¢ has the same dimension as the parameter'mportant role as a model of financial time series since

6. First suitable functiong; are chosen, and then the 't 1S well known that a simple one-dimensional diffu-
weight functionsa; are determined so that an opti- SION often cannot capture all the salient features of such
mal estimating function in the sense of Godambe anddata. Another example is given by the sums of diffu-
Heyde [9] is obtained; see also [10]. Optimal estimat- Sions proposed by Bibby, Skovgaard and Sgrensen [2]
ing functions are approximations to the non-explicit @ models of phenomena with more than one time
score function. UsuallyHg f; must be determined scale. Other situations where diffusion data are non-
by a modest amount of simulation, but Kessler and Markovian are in the presence of measurement error, or
Sarensen [17] demonstrated how completely explicit when only integrals of the diffusion over time-intervals
estimating functions can be obtained if the functighs  are observed; see [4]. The latter is, for instance, the
are eigenfunctions of the operatby (called the gener-  case when climate data from ice cores are analyzed by
ator); see also [18] for details on how to explicitly find means of a diffusion model. When the data are non-
the optimal weight functions. A review of the theory of Markovian, it is usually not possible to find a tractable
estimating functions for discretely sampled diffusion- martingale estimating function, but an alternative is
type models can be found in [1]. provided by the prediction-based estimating functions

For martingale estimating functions large sample nroposed in [21], which can be interpreted as approxi-
results concerning estimators can be obtained via mar-mations to martingale estimating functions.

tingale limit theory. Under weak conditions, estima- Asymptotic results for estimators based on non-
tors are consistent, and optimal estimating functions ;. ovian data are usually based on the assump-
tend to \évlorlfthw?l.l Whenhtthhe tfunctlog$j are qhostgn ¢ tion that the underlying diffusion process is strongly
reasonably, that 1S, such that a good approximation 0mixing. The condition ensuring exponentj@mixing

the score function can be obtained. At low sampling cited in Section 2.2 is not easy to check for concrete
frequencies the estimators are, however, usually notdiffusion models. A condition on the drift and diffusion

efficient. The behavior of the estimators at high sam- i hat . d that impli
pling frequencies can be investigated by considering coefficient that is easy to verify and that implies expo-

an asymptotic scenario where the time between ob-Nential p-mixing anda-mixing was given by Genon-
servationsA, is assumed to go to zero, as the sam- Catalot, Jeantheau and Laredo [6].

ple sizen tends to infinity, sufficiently slowly that the

time horizon over which observations are mada,,, 5. NONPARAMETRIC METHODS

tends to infinity. It is well known that in this situation
estimators of parameters appearing in the diffusion co-
efficient may converge at a suboptimal ratg,/zA,,.

The reason is that there is a lot of information about the
diffusion coefficient in the fine structure of diffusion

Let me conclude by drawing attention to some rel-
atively early work on nonparametric methods for dis-
cretely sampled diffusion models. Wavelet methods for
estimating the diffusion coefficient of a time-dependent

trajectories, which some estimators do not capture.mOdel were proposed by Genon-Catalot, Laredo and

Recently Sgrensen [22] has given conditions ensuring?icard [7]- The first estimator of the diffusion coef-
that a martingale estimating function provides estima- ficiént mentioned in Section 3.2 was first proposed
tors that are rate-optimal (rate/J/n ) and efficient in by Florens-Zmirou [5]. She considered a high fre-
the high-frequency asymptotic scenario. Optimal mar- quency asymptotic scenario with fixed time span, that
tingale estimating functions satisfy these conditions. iS, WithnA, constant, and proved that the asymptotic
Quadratic martingale estimating functions are always distribution of her estimator is a mixture of normal
rate-optimal, and if they are obtained from Gaussian distributions where the mixing distribution is the dis-
approximate likelihood functions they are efficient too. tribution of the local time of the diffusion. If a data-
These results are closely related to the theory of smalldependent normalization of the estimator is used, an
A-optimality developed in [13] and [14]. asymptotic normal distribution is obtained. In a series
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of important papers, Marc Hoffmann has studied opti- [10] HevDE, C. C. (1997)Quasi-Likelihood and Its Application.

mal rates of convergence of nonparametric estimators

of the drift and diffusion coefficient under the three [11]
asymptotic scenarios usually considered for diffusion
models including optimal estimators; see [8, 11, 12]. [12]
Other estimators of the diffusion coefficient were pro-
posed by Soulier [23] and Jacod [15].
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