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1. INTRODUCTION

Professor Fan should be congratulated for his review
that convincingly demonstrates the usefulness of non-
parametric techniques to financial econometric prob-
lems. He is mainly concerned with financial models
given by stochastic differential equations, that is, dif-
fusion processes. I will therefore complement his se-
lective review by discussing some important problems
and useful methods for diffusion models that he has
not covered. My concern will mainly, but not solely, be
with parametric techniques. A recent comprehensive
survey of parametric inference for discretely sampled
diffusion models can be found in [19].

2. GAUSSIAN LIKELIHOOD FUNCTIONS

In his brief review of parametric methods, Profes-
sor Fan mentions the Gaussian approximate likelihood
function based on the Euler scheme and states that this
method has some bias when the time between observa-
tions� is large. This is actually a very serious problem.
As an example, consider a model with a linear drift of
the formµ(x) = −β(x − α) (β > 0). The estimator̂βn

of β obtained from the Gaussian approximate likeli-
hood based on the Euler scheme converges to

(1− e−β0�)�−1

as the number of observationsn tends to infinity.
Hereβ0 denotes the true parameter value. The limiting
value of�β̂n is always smaller than one, and the limit
of β̂n is always smaller than�−1. Thus the asymp-
totic bias can be huge if� is large. A simulation study
in [3] demonstrates that also for finite sample sizes an
enormous bias can occur. When�β0 is small so that
(1 − e−β0�)�−1 ≈ β0, the asymptotic bias is negligi-
ble. The problem is, however, that if we use the approx-
imate likelihood function based on the Euler scheme,
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there is no way we can know whether�β0 is small
or large because�β̂n will always tend to be small.
I suspect that the nonparametric methods outlined in
Sections 3.2 and 3.5 might suffer from a similar short-
coming as they are based on the same type of approxi-
mation as the Euler scheme.

A simple solution to this problem is to use an ap-
proximate likelihood function where the transition den-
sity is replaced by a normal distribution with mean
equal to the exact conditional expectationF(x, θ) =
Eθ(X�|X0 = x) and with the variance equal to the ex-
act conditional variance�(x; θ) = Varθ (X�|X0 = x).
Here θ is the (typically multivariate) parameter to
be estimated. This approach is exactly the same as
using quadratic martingale estimating functions; see
[3] and [20]. The estimators obtained from quadratic
martingale estimating functions have the same nice
properties for high frequency observations (small�) as
the estimators based on the Euler likelihood, but they
are consistent for any value of� and can thus be used
whether or not� is small. In most cases there is no ex-
plicit expression for the functionsF(x, θ) and�(x; θ),
so often they must be determined by simulation. This
requires, however, only a modest amount of computa-
tion and is not a problem in practice. If a completely
explicit likelihood is preferred, one can approximate
F(x, θ) and�(x; θ) by expansions of a higher order
than those used in the Euler scheme; see [16].

The nonparametric method in Section 3.5 could
probably be improved in a similar way by using in
(27) and (28) the functionsF(x, θ) and �(x; θ) (or
the higher-order expansions in [16]) instead of the first-
order approximation used in the Euler scheme.

3. MARTINGALE ESTIMATING FUNCTIONS

More generally, martingale estimating functions pro-
vide a simple and versatile technique for estimation
in discretely sampled parametric stochastic differential
equation models that works whether or not� is small.
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An estimator is obtained by solving the equation
n∑

i=1

N∑

j=1

aj

(
X(i−1)�; θ)

· [
fj (Xi�) − Hθ

�fj

(
X(i−1)�

)] = 0,

where H� is the transition operator, and where the
function a has the same dimension as the parameter
θ . First suitable functionsfj are chosen, and then the
weight functionsaj are determined so that an opti-
mal estimating function in the sense of Godambe and
Heyde [9] is obtained; see also [10]. Optimal estimat-
ing functions are approximations to the non-explicit
score function. UsuallyHθ

�fj must be determined
by a modest amount of simulation, but Kessler and
Sørensen [17] demonstrated how completely explicit
estimating functions can be obtained if the functionsfj

are eigenfunctions of the operatorLθ (called the gener-
ator); see also [18] for details on how to explicitly find
the optimal weight functions. A review of the theory of
estimating functions for discretely sampled diffusion-
type models can be found in [1].

For martingale estimating functions large sample
results concerning estimators can be obtained via mar-
tingale limit theory. Under weak conditions, estima-
tors are consistent, and optimal estimating functions
tend to work well when the functionsfj are chosen
reasonably, that is, such that a good approximation to
the score function can be obtained. At low sampling
frequencies the estimators are, however, usually not
efficient. The behavior of the estimators at high sam-
pling frequencies can be investigated by considering
an asymptotic scenario where the time between ob-
servations�n is assumed to go to zero, as the sam-
ple sizen tends to infinity, sufficiently slowly that the
time horizon over which observations are made,n�n,
tends to infinity. It is well known that in this situation
estimators of parameters appearing in the diffusion co-
efficient may converge at a suboptimal rate, 1/

√
n�n.

The reason is that there is a lot of information about the
diffusion coefficient in the fine structure of diffusion
trajectories, which some estimators do not capture.
Recently Sørensen [22] has given conditions ensuring
that a martingale estimating function provides estima-
tors that are rate-optimal (rate 1/

√
n ) and efficient in

the high-frequency asymptotic scenario. Optimal mar-
tingale estimating functions satisfy these conditions.
Quadratic martingale estimating functions are always
rate-optimal, and if they are obtained from Gaussian
approximate likelihood functions they are efficient too.
These results are closely related to the theory of small
�-optimality developed in [13] and [14].

4. NON-MARKOVIAN OBSERVATIONS

There are several situations in which observations
from a diffusion process are non-Markovian. Most
prominently this happens if a function of lower di-
mension of a multivariate diffusion is observed. An
example is the stochastic volatility model that plays an
important role as a model of financial time series since
it is well known that a simple one-dimensional diffu-
sion often cannot capture all the salient features of such
data. Another example is given by the sums of diffu-
sions proposed by Bibby, Skovgaard and Sørensen [2]
as models of phenomena with more than one time
scale. Other situations where diffusion data are non-
Markovian are in the presence of measurement error, or
when only integrals of the diffusion over time-intervals
are observed; see [4]. The latter is, for instance, the
case when climate data from ice cores are analyzed by
means of a diffusion model. When the data are non-
Markovian, it is usually not possible to find a tractable
martingale estimating function, but an alternative is
provided by the prediction-based estimating functions
proposed in [21], which can be interpreted as approxi-
mations to martingale estimating functions.

Asymptotic results for estimators based on non-
Markovian data are usually based on the assump-
tion that the underlying diffusion process is strongly
mixing. The condition ensuring exponentialρ-mixing
cited in Section 2.2 is not easy to check for concrete
diffusion models. A condition on the drift and diffusion
coefficient that is easy to verify and that implies expo-
nentialρ-mixing andα-mixing was given by Genon-
Catalot, Jeantheau and Larédo [6].

5. NONPARAMETRIC METHODS

Let me conclude by drawing attention to some rel-
atively early work on nonparametric methods for dis-
cretely sampled diffusion models. Wavelet methods for
estimating the diffusion coefficient of a time-dependent
model were proposed by Genon-Catalot, Larédo and
Picard [7]. The first estimator of the diffusion coef-
ficient mentioned in Section 3.2 was first proposed
by Florens-Zmirou [5]. She considered a high fre-
quency asymptotic scenario with fixed time span, that
is, with n�n constant, and proved that the asymptotic
distribution of her estimator is a mixture of normal
distributions where the mixing distribution is the dis-
tribution of the local time of the diffusion. If a data-
dependent normalization of the estimator is used, an
asymptotic normal distribution is obtained. In a series
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of important papers, Marc Hoffmann has studied opti-
mal rates of convergence of nonparametric estimators
of the drift and diffusion coefficient under the three
asymptotic scenarios usually considered for diffusion
models including optimal estimators; see [8, 11, 12].
Other estimators of the diffusion coefficient were pro-
posed by Soulier [23] and Jacod [15].
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