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Robust Analysis of Linear Models

Joseph W. McKean

Abstract. This paper presents three lectures on a robust analysis of linear
models. One of the main goals of these lectures is to show that this analy-
sis, similar to the traditional least squares-based analysis, offers the user a
unified methodology for inference procedures in general linear models. This
discussion is facilitated throughout by the simple geometry underlying the
analysis. The traditional analysis is based on the least squares fit which min-
imizes the Euclidean norm, while the robust analysis is based on a fit which
minimizes another norm. Several examples involving real data sets are used
in the lectures to help motivate the discussion.

Key words and phrases: Asymptotic relative efficiency, breakdown point,
diagnostics, influence function, least squares, linear hypotheses, nonparamet-
rics, norms, rank-based analysis, robustness, Wilcoxon scores.

1. INTRODUCTION The first lecture, Section 2, presents the fitting pro-
cedure and discusses its robustness and efficiency. In
the second lecture, Section 3, we discuss the associated
'F-type test for general linear hypotheses. The prac-
ticality of the robust analysis is illustrated by several

the traditionalF test of hvboth b q examples where the robust analysis leads to different
€ traditionall” test ot linear hypotheses can be use interpretations. The last lecture, Section 4, extends the

to test for the effect in the simple two-sample problem robust analysis to a high breakdown analysis which

as well as to test for interaction between covariates andiS robust in both the response and factor spaces, and
t_reatment_s_ in a complicated analysis of covariance Selye discuss diagnostics for investigating differences be-
ting. Traditional methods are based on the least squareg een fits

(LS) fit of the linear model. The geometry behind this a0 are several classes of robust estimates from

fi'F is quite simple. The LS fit minimizes the Euclidean ,1:-1 we can choose. We selected an estimator which
distance between the response vector and the space dey,s jts roots in traditional nonparametric rank proce-

fined by the linear model. Theé' test is simply the g, re5 for simple location problems. We call this analy-
comparison of this minimum distance and the distance g5 5 rank-based analysis or the Wilcoxon analysis
to the subspace defined by the null hypothesis. (only linear scores are considered in this article). It

In this series of three lectures, we discuss a ro- s gefined in terms of a norm, so geometrically it is

bust analysis of linear models. It is quite analogous to analogous to LS. Furthermore, it generalizes immedi-
the traditional analysis because we simply replace theately to high breakdown estimates. Howev,esti-

Euclidean norm with another norm. Thus the geometry mates can also be used. Hube¥sestimate is similar
remains the same and, hence, the robust analysis oft, the Wilcoxon estimates and the GM estimates (see

fers the user a unified methodology for linear models gimpson, Ruppert and Carroll, 1992) are similar to the
similar to LS. Furthermore, the analysis is robust, not pigh preakdown estimates of Section 4.

sensitive to outliers in the response space and highly Because its objective function is convex, the Wilco-
efficient compared to the LS analysis. xon fit is easy to compute. Computations in this ar-

ticle were obtained at the web siteswv.stat.wmich.
Joseph W. McKean is Professor, Department of Statis- edu/dlab/RGLM and www.stat.wmich.edu/slab/HBR2,
tics, Western Michigan University, Kalamazoo, Michi- which the reader is invited to use; see Crimin, Abebe
gan 49008-5278, USA (e-mail: joe@stat.wmich.edu). and McKean (2003). Minitab also offers tme egr

Traditional procedures for the analysis of linear
models are the most widely used statistical procedures
because they offer the user a unified methodology with
which to attack many diverse problems. For example,
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command to obtain the Wilcoxon fit. Recently, Terpstra 2.1 Norms and Estimating Equations
and McKean (2004) developed packages of R and
SPLUS functions which compute these procedures for
the Wilcoxon and the high breakdown estimates. These
can be downloaded at the sitemw.stat.wmich.edu/
mckean/HMC/Rcode. At the web sitemww.stat.wmich.

Let us first review the LS estimator @f which uti-
lizes the Euclidean norm. The LS estimate is given
by BLs = Argmingers Y — X.BII%, where| - |75 is
the squared Euclidean norm; that|ig||g = 31 v2,
edu/mckean/Statsci/Data the reader can find the data Y € R". Differentiating the right-hand side with respect
sets used in this article to B and setting the resulting equations@pwe see

These lectures draw .on many references. The mono_that the LS estimator solves the estimating equations
graphs by Hettmansperger and McKean (1998), ,En ormal e_qu;?;;(ns%( 12)?’(Y_ _ﬁ‘}ﬂ ) :t'o’ V\;'th tf::e s?rllu-
Hampel, Ronchetti, Rousseeuw and Stahel (1986), lon 'BLS._ (K Xe) XY € estimate ot IS the
Huber (1981) and Rousseeuw and Leroy (1987) Con_anthmetlc average of the residuals whlch,_becausg the
tain much of the material. A recent discussion was * > &€ centered, ifiLs = Y _Und_er regularity Cor.]d"
presented by Hettmansperger, McKean and Sheathe}'on.s’ the large sample distribution for these estimates
(2000). Chapter 9 of Hollander and Wolfe (1999) Is given by:
presents a recent discussion of the Wilcoxon analysis aLs h _
for linear models. For the most part, we have not in- ALS) as an approximate
cluded references in the three lectures, trusting that the(2.2)
interested reader will consult these monographs and N((“) o2 [1/” o ]) distribution.

their included references. B 0 (XXt
2. ROBUST FIT OF LINEAR MODELS The Wilcoxon estimator utilizes the norm

. n

. Suppose the re_sults of an experiment oran obsgrva— IVlw = ZG(R(Ui))Ui

tional study consist op explanatory (predictor) vari- P

ables,x1, ..., x,, and a response variable. Further ~ (2.3) .

suppose that we have collected data ;fzosu_bjects — Za(i)v(i), veR",

in this study. Denote the data for thiéh subject as i1

(xi1, ..., Xip, ¥)) = (X;, ¥;)'. LetY be then x 1 vector
of responses and and ¥tbe then x p matrix whose
ith row isx;. The predictors may be continuous vari-

ables or dummy variables. Assume tbahas full col- L . \
y tween ranks and order statistics. The functigin) is

umn rankp. : . .
. the score function. Essentially any nondecreasing func-
Suppose we have decided to model the response vec-. L
tor Y as a linear model given by tion on (0, 1) can be used, but in this paper we use only
this linear score function. The Wilcoxon estimate of
(2.1) Y =1a+X.B +e, B is a vectorB, such thatg,, = Argmingcrr |Y —
X:Bllw. Note that the geometry of the Wilcoxon es-
wherep is ap x 1 vector of regression coefficientsjs timate is similar to the geometry of the LS estimate;
an intercept parameter ards ann x 1 vector of ran-  only the norm has been changed. To determine the es-

dom errors. The matriX. is the centered design ma- timating equations of the Wilcoxon estimate, using the

whereR (v;) denotes the rank af; amonguy, ..., vy,
a(i) =i /(n+1) ande(u) = v12[u — (1/2)]. The
second representation is based on the relationship be-

trix; that is, x.;; = x;; — x;, wherex; =n=1Y""_, x;;. second expression in (2.3) it is easy to obtain the par-
Let V. be the column space of the matdXx. Assume tial derivatives and to show that the Wilcoxon estimate
that the errorg, ¢o, ..., &, are i.i.d. with c.d.f.F (x), solves the estimating equatiodga(Y — X.8) =0,
p.d.f. £(x) and (for LS) variance 2. wherea(Y — X.8) denotes the vector wititth compo-

The vectorX.g lies in V.. Hence, given a norm nenta[R(Y; — X; $)]. The solution cannot be obtained
on R", a simple way to estimate it is to find a vec- in closed form, but there are several algorithms avail-
tor in V. which lies closest t&Y. Oncef is estimated, able to obtain the solution, as discussed in Section 1.
« can be estimated by an appropriate location estimatorAs our estimate oft, we use the median of the residu-
of the residualy; — x., 8. als given by@s = medi<;<,(Y; — X.. Bw}. Under reg-
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Placebo

ularity conditions, the large sample distribution of the
Wilcoxon estimator is given by:

Treated

o .
(AW) has an approximate
w

(2.4) 2 Ll . . .
a t$/n o o
N((ﬂ) ) |: 0 TZ(X/CXC)_1:|> distribution, 0.0 6.0 12.0 18.0 24.0 30.0

FiG. 1. Comparison dot plotsof thetreatment groupsin the water
wheel experiment.

wheret andtg are the scale parameters

1
A 2
t= ( 12[ f (t)dt) and from the placebo group and is 1 if it is from the treated
(2.5) group. Assume a simple linear model

s =2f(0) %
| s=(2f(0)) ' Yi=a+x;B+e, i=12,...,20
Estimates of the scale parameterand s were dis- The slope parametes is the shift in locations be-

" Bacause the variances of the LS and Wicoxon est- 1667 the to groups. The Mann-Whitney-Wioxon

) . . ) is the traditional nonparametric analysis of this prob-
mators d|ffe2r onlylnthg constant prropomonah'tyz( lem. In this case the estimate of the shift in locations
for LS andz~ for the Wilcoxon), it is easy to obtain as- is given by the Hodges—Lehmann estimate, which is
ymptotic confidence intervals for the regression coef- the median of all 10< 10 = 100 differences b’etween
ficients based on the Wilcoxon estimator. They are the 4 treated and placebo responses. By writing out the
same as the usual LS confidence intervals except thatysicoxon estimating equations for this model, we see

Treplaces; thatis, an asymptoti€l —)100% confi- - that the Wilcoxon regression estimate fis indeed
dence interval for the parametgy, for j =1,..., p,iS  this Hodges—Lehmann estimator. So the Wilcoxon re-

~ N 1 gression analysis generalizes the traditional nonpara-
Pw,j £ taj2.n-(p+0 T (XcXe) i metrics analysis.
wheret, 2., (p+1) denotes the:/2 upper critical point A comparison dot plot of the data is given in Fig-
of ar distribution withn — (p + 1) degrees of freedom  ure 1. We see immediately that there is one gross out-
and (X’ X.)71 is the jth diagonal entry ofX’.X,)~1 lier in the treated group; however, there seems to be
c ]J] c .

Finite sample studies show that the use-ofitical val- littlé or no effect due to the treatment.

ues yields empirical confidences close to the nominal Table 1 contains t_he Wilcoxon anq LS estimates
1— . of slope and approximate 95% confidence intervals

along witht ratios (estimate divided by standard error)

ExAMPLE 2.1 (Water wheel experiment). This and the associated value for a two-sided test. The
data set was discussed by Abebe et al. (2001). ForWilcoxon analysis reflects the comparison dot plot.
the experiment, mice are placed in a wheel that is Based on its estimate and confidence interval, there
partially submerged in water. If they keep the wheel does not appear to be a treatment effect. The LS es-
moving, they will avoid the water. The respongé) ( timate, on the other hand, has been unduly affected by
is the number of wheel revolutions per minute. There the outlier. Its estimate of shift is far from reality. At
are two groups: a placebo group and a treated groupthe 5% level it is not significant; however, itsvalue
where the mice are under the influence of a drug. Both 0f 0.28 belies the dot plots. In a discovery setting where
groups contain 10 mice each. The predictor in this caselarge significance levels are often employed, the LS
is the dummy variable; which is 0 if theith mouse is P value might allow further tests on this drug.

TABLE 1
Summaries of the LS and W Icoxon fits for the water wheel data; the p values correspond to two-sided tests

Analysis Estimate Confidenceinterval t Ratio p Value Scale (7 or @)

Wilcoxon 0.50 (=1.23,2.24) 0.60 0.55 1.85
LS 3.11 (—2.71,8.93 112 0.28 6.19
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2.2 Efficiency and Robustness B asBs=p+ (X.X.)"1X’e. If we assume that
n~1X.X. — X, then we have the asymptotic represen-
tation/n(BLs—B) = T~1(1//n)X.e+o0,(1) for the

LS estimator. For convenience, consider the simple lin-
ear model. Then this representation reduces to

Both the LS and Wilcoxon estimators have asymp-
totic distributions centered around the tieso we can
compare their asymptotic relative efficiencies (ARES)
in terms of their asymptotic variances. Hence, fet

1,..., p, the ARE betweerf.s ; andBw. ; is ~ 1
o (2.8) Vn(Bs—B) =c;2ﬁ 3 xeii +0p(D),
o~ ~ o =
(2.6) e(Bw.j Ps.)) = —. =t

Wherecf is the scalar (simple linear case) in plac&of

If the error distribution is normal with variance?, Now suppose we add a poifat*, £*) to the data set.
thent2 = 02/(3/7). Hence, the ARE in this case is Think of it as an outlier. How does this point affect the
3/m =0.955. Thus under normal errors, the Wilcoxon LS estimate? LeB, denote the LS fit for the original
estimator is 95% as efficient as LS procedures. Thusdata and lef,+1 denote the LS fit when the outlier is
there is only a 5% loss in efficiency if the Wilcoxon added. Using the representation (2.8) and a few steps
estimator is used and the error distribution is actually of algebra, we get

normal. On the other hand, if the true distribution has ~ ~

tails heavier than the normal, then this efficiency is usu- (2 g) Prsr=Bn . 2 .

—— =C(, X &,
ally much larger than 1. As an example of such a distri- 1/n !

bution, consider the contaminated normal distribution. \yhich is the relative change in the LS estimator due to
Suppose(l — €)100% of the time we sample from a  the outlier. Ife* is an outlier, then, based on the model,
standard normal distribution, whilel00% of the time  this |eads to an outlier in thE space. Ifx* is an out-
we sample from the normal distribution with mean 0 |igr we say we have an outlier in thespace. Notice
and standard deviation.. The scale parametessand  hat the LS estimator is seriously affected by outliers

T are easily calculated. Fer. = 3, Table 2 displays jn gjther space. In fact, the change in the LS estimator
the efficiencies between the Wilcoxon and LS estima- s ynbounded in both spaces. Because of this unbound-
tors for different values oé. Even at 1% contamina- edness, we say that the LS estimator isnobtist. The

tion, the Wilcoxon is more efficient than the LS. LS influence function predicts the poor LS analysis of
For a given data set we call the estimate of the ARE Example 2.1.

theempirical measure of efficiency or precision for that

, The derivation of (2.9) can be made rigorous; see,
data set, that is,

for example, Hettmansperger and McKean (1998). The
52 resulting analogue is called thefluence function of
(2.7) eW,LS) = = the estimator. In terms of the multiple regression model
T
the influence function of the LS estimator at the point
(X, ¢) is given by IRB| g: X, &) = T Lex.

In the same way, the influence function can be devel-
oped for the Wilcoxon estimator based on its asymp-
totic representation,/n(By — B) = T X1/ /n) -

2.3 Influence Functions X.@[F(e)]+0,(1), wheregp[ F (¢)] denotes the vector
whoseith component is[F (g;)]. Recall thatF (¢) is

. . . ._the c.d.f. of the random errors and thdi) is the lin-
sures the change in the estimator when an outlier IS a1 score function/I2[u — (1/2)] which is defined on
added to the data. First consider the LS estimator. “ /

Using model (2.1), we can write the LS estimate of 0,1). He_nce., unlike the LS asymptotic representation,
the contribution of the random errors to the represen-

tation for the Wilcoxon estimator is bounded. This car-

In Example 2.1,6(W, LS) = (6.19/1.852 = 1157,

so that the Wilcoxon analysis is estimated to be
11.57 times as efficient as the LS analysis for these
data.

Briefly, the influence function of an estimator mea-

TABLE 2

Efficiencies of the WHlcoxon and LS methods for the rnes 9ver tothe 'r_]ﬂuence f“f‘c"‘?“ m/\/’ WDICh for the
contaminated normal distribution multiple regression model is given by (y: X, &) =
X 1o[F(e)Ix.
€ 0.00 0.01 0.03 0.05 0.10 0.15

Thus the influence function ¢, is bounded in the
e(W,LS) 0.955 1.009 1.108 1.196 1.373 1.497 Y space. So the Wilcoxon estimator is less sensitive to
outliers in theY space, as verified in Example 2.1, but
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note that it is not bounded in thespace. In Section 4 Suppose we have a norin- || for fitting models.
we will discuss a generalization of the Wilcoxon esti- Then based on geometry, a simple test procedure can
mator which is bounded in both spaces. be described. Lefj be the full model fit based on

the norm; that is;j, = Argmin|lY — g, n € Vg.
Then the distance betweéhand the subspacgr is
An additional robustness concept will prove helpful. d(Y, Vr) = ||Y — ¢||. Likewise, we next fit the re-
Briefly, the proportion of bad data which an estimator duced model and lef(Y, Vg) denote the distance be-
can tolerate before becoming completely meaninglesstweenY and the reduced model spakg. Because we

2.4 Breakdown Point

is called thefinite sample breakdown point of the esti- are minimizing over a smaller subspadgy, Vi) >
mator. If this converges to a limit as— oo, we call d(Y, Vg). An intuitive test statistic is the reduction in
the limit thebreakdown point of the estimator. distances, passing from the reduced to the full model,

For example, consider a sample of sizr the one-  that is, RD.; = d(Y, Vg) — d(Y, VF), where RD
sample location problem. If we move one sample item denotes reduction in distance. Small values of,RD
to infinity, then the sample mean moves toward infinity indicate Ho, while large values indicat#l;. Hence, the
also, that is, the finite sample breakdown of the samplecorresponding test is
mean is ¥n which converges to 0 as — oo. So the
sample mean has breakdown point 0. Next consider the rejectHp in favor of Hy if RD |, > c,
sample median. We have to move half of the data to in-
finity to move the sample median to infinity. Hence, the
breakdown point of the sample median j21For the
location model, this is the highest breakdown possible.

It is clear from their influence functions that the
breakdown point of either the LS or the Wilcoxon re-
gression estimator is 0. We need only move onvalue
to infinity to make both estimators meaningless. In Sec-
tion 4, we generalize the Wilcoxon estimates to obtain
high breakdown estimators.

wherec must be determined. The reduction in distance
is standardized by an estimate of scale or variance.
Suppose the Euclidean norm is used. If the reduction
in (squared) Euclidean distances is standardized by
&2, the usual estimate @f?, then the test statistic for
the hypotheses (3.1) is given Wy s = [RD.s/q1/5%.
As discussed in Section 3.2, under the null hypothe-
Sis Fi s has an approximaté& distribution withg and
n — (p + 1) degrees of freedom. The usual approx-
imate « rejection rule is rejeciHp in favor of Hj if
Fils > Fy 4.n—p-1. If the underlying error distribution
is normal, thenF s is the likelihood ratio test statistic
In this section, we consider robust tests of general and this rejection rule has exact level
linear hypotheses. As in the previous sections, the Suppose the Wilcoxon norif |\w [(2.3)] is chosen.
Wilcoxon procedure is suggested from a simple geo- | gt Y r.w denote the Wilcoxon full model fit as dis-
metric point of view. As before, let the responses fol- cyssed in Section 2 and denote the Wilcoxon distance

low the linear model (2.1). Our hypotheses of interest petweenvy andY by dw(Y, Ve) = |IY — Y rwllw.
are collections of independent, linear constraints on thegimjlarly, the reduced model fit is given by ’

regression parameters. More precisely, a general linear _
hypothesis and its alternative are given by Yw,r = Arg mi/n 1Y —nllw.
NEVR

3. LINEAR HYPOTHESES

3.1 Hyo:AB =0 versus Hi:A 0, o .
(3.1) 0:AB L:AB# Let dw(Y, Vg) = |IY — Yg wllw denote the distance

whereA is ag x p specified matrix of full row ranlg. betweenVg andY. The Wilcoxon test statistic (reduc-

The rows ofA form the linear constraints. tion in distance) is Ry = dw(Y, Vg) — dw(Y, VF).

Note that RQy is a reduction in scale, not variance.

The appropriate standardization (see Section 3.2) is by
In hypotheses testing we consider model (2.1) to be an estimate of. The usual test statistic is of the form

the full model. Let Vy (F for full) denote the column RDw/q

space oi. For the hypotheses (3.1), tresluced model (3.2) Fw =—7

is the full model subject tcHp: Vg = {v e Vv = 2

XB andAp = 0}, where ther stands for reduced. Re- An approximate levek test is rejectHy in favor of Hy

call thatVy is a subspace dfy of dimensionp — g. if Fw> Fygn—p-1.

3.1 Geometry of the Testing
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TABLE 3
Summary of analysis for plank data

Source Strain  Gender Age SxG SxA GxA SxGxA Scae

Fs 7.74* 2.63 0.92 1.61 1.28 2.81 0.17 1.10
avy, 12.23* 5.27* 112 011 1.80 21* 0.33 0.70

ExampLE 3.1 (Plank balance). Abebeetal. (2001) Table 3 summarizes the LS and Wilcoxon tests for
reported the results of a three-way layout obtained the main effects and interactions hypotheses for this
from a neurological experiment, where the response ofdata set. Note that the analyses do differ. The only sig-
interest is the log time required for a mouse to exit nificant effect of the LS analysis is mouse strain. On the
a narrow elevated wooden plank. The experimentersother hand, the Wilcoxon analysis indicates that gender
were interested in assessing the effects and associateglays a role as does age also, due to its interaction with
interactions of three factors: mouse strain (S) with lev- gender. Abebe et al. (2001) showed that the usual cell
els Tg+ and Tg-; gender (G) with levels female and mean profile plot clearly indicates the interaction be-
male; and age (A) with levels aged, middle and young. tween gender and age, while the Wilcoxon Studentized

Let ¥;;x; denote the response for thé repetition of  residual plot clearly shows numerous outliers. Practical
theith level of S, thejth level of G and théth level interpretations based on the Wilcoxon and LS analysis
of A. As a full model, consider the cell mean model would be quite different.

Yijki = Wijk + €ijkl, 3.2 Asymptotic Distribution Theory and

(3.3) i=12j=1,2, Relative Efficiency
k=1,2,31=1,...,nji. Algebraically, the reduction in variance form of the
o LS test statistic can be written as
The design is unbalanced, but there are at least two D
replications in each cell. The total sample size is ;—S - (ABLs)/[GZA(X/X)_lA/]_lAﬁLs-
n = 64. The data can be found at the web site discussed o
in Section 1. The reduction in distance form of the Wilcoxon test
Denote the: x 1 vector of responses by = [Y;u], statistic can be written as

where the data are entered so that the substrips RDw S RN
the fastest, followed by, and so on. Denote the 321 =2 = (ABW) [T°AXX)"AT "ABw + 0, (D).

vector of means by. = [u;jx]. Let W be the 64x 12
incidence matrix of cell membership. Then we can It is clear from these representations and the asymp-
write model (3.3) a¥ =Wpu + ¢. totic distributions off 5 and By [(2.2) and (2.4), re-

To illustrate the description of the robust test, we Spectively] that both random variables Rfjo? and
consider the gender main effect hypothesis, that is, theRDw/(z/2) have, under regularity conditions, an as-
average effect of gender is 0. Because of how the dataymptotic x ? distribution withg degrees of freedom un-
were arranged ilY, the associated hypothesis matrix is der the null hypothesis. The approximate distribution
the row vectorA =[111-1-1-1111-1-1-1]. theory for the test statistic s and Fy cited previ-

The null hypothesis can be written & :Apx = 0. The  ously is based on this and the fact that the estimators of
Wilcoxon distance between the vector of resporiées scale used in the denominators of the test statistics are

and the full model spac&y is dw(Y, Vr) = 5828, consistent for their respective parameters. Small sam-
while the distance fronY to the reduced model space ple studies have indicated that the use ddritical val-
isdw (Y, Vg) =60.13. The estimate of is7T = 0.702. ues instead of thg? critical values leads to empirical
Thus the value of the test statistic (3.2) Ky = levels closer to nominat levels.

[(60.13 — 58.28)/1]/(0.702/2) = 5.27. The approxi- The influence functions of these test statistics are dis-

mate p value is 0026. Thus gender seems to have an cussed in Hettmansperger and McKean (1998). Similar
effect on log time for the mouse to exit the plank. Of to their counterparts in estimation, the influence func-
course interaction effects should be considered beforetion for Fy is bounded in the¥ space, but not the
main effects. x space. The influence function fdi s is unbounded
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in both spaces. Hence, the influence functions predict
the behavior of these test statistics in the last example.

Efficiency results for these tests can easily be formu-
lated based on the noncentraf asymptotic distrib-
utions of the test statistics under a sequence of localg
alternatives. The ARE is the ratio of the test statis- :
tics’ noncentrality parameters, which reduces to the'
ratio (2.6); that is, the ARE for the test statistics is
the same as the ARE for the corresponding estima-
tors. In particular, the high efficiency of the Wilcoxon
rank tests in the simple location models extends to the
the Wilcoxon test statistiddy for general linear hy-
potheses. In Example 3.1, the empirical measure of ef-
ficiency [(2.7)] is(1.098/0.70192 = 2.45. Hence the
Wilcoxon analysis is estimated to be 2.5 times more
efficient than the LS analysis on this data set.

Log light intensity

4. HIGH BREAKDOWN ESTIMATORS

Although the Wilcoxon analysis provides an attrac-
tive, robust alternative to the traditional LS analysis,
the analysis is not robust in thespace. In this sec-
tion, we briefly discuss generalizations of the Wilcoxon
analysis which are robust in both theandx spaces
and which have positive breakdown.

Consider the linear model (2.1). We begin with the
simple identity concerning the Wilcoxon norm [(2.3)]:

IViw =

> a(R(i)v;

i=1

D Sy =l veR
Vi j’ .

i=1j=1

Recall that the Wilcoxon estimate g8 minimizes
IY —X:Bllw. Thus all the absolute differences in
residualg (Y; —x.,;8) — (Y; — x’cjﬂ)l receive the same
weight. If we are in a situation, though, where some of
the x.; are more influential than others, we may want
to downweight the contribution of such points. That
is, select weightsw;, i = 1,2,...,n, and choose the

estimator™ given by

n n
B* =Argmin > wiw;|(¥; — ¥
(4.1) i=1/=1
- (Xci - ch)/ﬂ|-
Note that the function being minimized is a convex
function of B. Consider the following example of a
simple regression data set:

J. W. McKEAN

Panel A (Linear Model) Panel B (Quadratic Model)

6.0

|- wil

5.5
55

5.0

Log light intensity
5.0

45
45

4.0
4.0

3.6 4.0 4.4 3.6 4.0 4.4

Log temperature Log temperature

Panel C (Quadratic Model} Panel D (Linear Model)

1.5
8 10

1.0

GR residuals
0.5
CFITS

0.0

-0.5

4.5 5.0 5.5 0 10 20 30 40

GR fit Case

FIG. 2. Plots for Sars data: Panel A, fits of linear model;
Panel B, fits of quadratic model; Panel C, GR residual plot for
quadratic model; Panel D, casewise CFITSfor the linear model.

EXAMPLE 4.1 (Stars data). This data set is drawn
from an astronomy study on the star cluster CYG OB1,
which contains 47 stars; see Rousseeuw and Leroy
(1987) for discussion and the data. The response is the
logarithm of the light intensity of the star, while the in-
dependent variable is the logarithm of the temperature
of the star. The data are shown in Panel A of Figure 2.
Note that four of the stars, called giants, are outliers in
factor space, while the rest of the stars fall in a point
cloud. Panel A shows also the overlay plot of the LS
and Wilcoxon fits. Note that the cluster of four outliers
in the x space has exerted such a strong influence on
the fits that it has drawn the fits toward the cluster. This
behavior is predictable based on the influence functions
of these estimates.

With regard to weights, it seems reasonable to down-
weight points far from the center of the data. The
leverage values; = n=1 4+ x/. (X.X) "%, for i =
1,...,n, measure distance (Mahalanobis) from the
center relative to the scatter matr X.. Leverage
values, though, are based on means and the usual (LS)
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variance—covariance scatter matrix, which are not ro- Define the functiony(¢) by v () =1, r or —1
bust estimators. There are several robust estimatorsaccording as > 1, -1 <t <1 ort < —1. Leto
of location and scatter from which to choose, includ- be estimated by the initial scaling estimate MAD
ing the high breakdowminimum covariance determi- 1.483 medl?,-(o) _ medj{aj@”_ Let Q; = (X; — V.) x
nant (MCD), which is an ellipsoid that covers about V-1(x; —v,) and let
half of the data and yet has minimum determinant.

Although computationally intensive, Rousseeuw and m; = w(i) = min{l, ﬁ}

Van Driessen (1999) presented a fast computational al- i
gorithm for the MCD. Letv, denote the center of the Consider the weights

ellipsoid. LettingV denote the MCD, the robust dis-

tances are given by, = (x; — V.)'V=1(X; — V). We 5 min{l o T min{l i} min{l L}}
define the associated weights by = min{1, ¢/v,;}, Y " e lejl ’ "o 1)
w?erec' is.usgally set at th? 95th,, pe_rcentile of the where the tuning constantsand ¢ are both set at 4.
x“(p) distribution. Note that "good” points generally ¢\ g point of view, it is clear that these weights
have weights 1. The estimatgr [(4.1)] of g obtained 4,y nweight both outlying points in factor space and
with these weights is called a generalized R (GR) s- 4 1ving responses. Note that the initial residual infor-
timator. For the stars data, the resulting GR fit goes maion is a multiplicative factor in the weight func-
through the point cloud as depicted in Panel A of Fig- ion. Hence, a good leverage point will generally have

ure 2. In general, this GR estimate has a bounded in-3 smay| (in absolute value) initial residual which will
fluence function in both th& and thex spaces, and a offset its distance in factor space.

positive breakdown. _ The HBR Wilcoxon estimate is then defined as
Due to the downweighting, though, the GR estima- g — Argminy_, jgijm —Y; — (x; —X;)'Bl. Once

tor is less efficient than the Wilcoxon estimator. At the weights are determined, the estimates are obtained
times, the loss in efficiency can be severe. We nextpy minimizing a convex function. Note that for the
discuss weights which can regain some of this effi- stars data, the HBR estimate fits the point cloud for
ciency. To motivate this second choice of weights, sup- the linear model but fits the quadratic model similarly
pose we lacked subject knowledge concerning the stargg the Wilcoxon estimate.

data. Based on the scatter plot, we may decide to fita |n general, the HBR estimator has a 50% breakdown
quadratic model. The plots of the LS, Wilcoxon and point, provided the initial estimates used in forming the
GR fits for the quadratic model are found in Panel B weights have 50% breakdown. Further, its influence
of Figure 2. The quadratic fits based on the LS and function is a bounded function in both theand the
Wilcoxon estimates follow the curvature in the data, x spaces, is continuous everywhere and converges to
while the GR fit misses the curvature. For this case, zero agx*, Y*) get large in any direction. The asymp-
the outliers are good data points, but the GR fit usestotic distribution off g is asymptotically normal. As
weights which downweight this important information. with all high breakdown estimateg,HBR is less effi-

The pattern in the GR residual plot (Panel C) is not ran- cient than the Wilcoxon estimates, but it regains some
dom, but the plot does not indicate how to proceed with of the efficiency loss of the GR estimate.

model selection. This is often true for residual plots
based on high breakdown fits; see McKean, Sheather*
and Hettmansperger (1993).

As do the GR weights, our second class of weights  For a given data set, highly efficient robust estimates
uses the MCD to determine weights in tRespace,  and high breakdown estimates can produce very differ-
but it also uses residual information from thiespace.  ent fits. This can be due to influential points in factor
The residuals are based on a high breakdown ini-space and/or curvature. We present diagnostics which
tial estimate of the regression coefficients. We have indicate, first, whether the HBR and Wilcoxon fits dif-
chosen to use thkeast trim squares (LTS) estimate,  fer and, second, if they do differ, what cases are in-
which is Arg minzf?zl[Y —a — x/ﬂ](zl.), whereh = volved in the discrepancy.

[n/2] + 1 and(i) denotes théth ordered residual; see First, as with the Wilcoxon estimates, estimate the
Rousseeuw and Van Driessen (1999).&gdenote the  intercept by the median of the HBR residuals. Then
residuals from this initial fit. the difference in regression estimates between the HBR

i

i

1 Diagnostics to Differentiate between HBR and
Wilcoxon Fits
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and Wilcoxon estimates is the vectbiy — bugr. in the x space, this analysis is robust and highly ef-
An effective standardization is the estimate of the ficient. As with the LS analysis, the geometry of the
variance—covariance dby. A statistic which mea-  analysis is based on a norm, so it has the same interpre-
sures the total difference in the fits Iofy andbpgr is tation as the LS analysis. For designs with outliers in
TDBETASR = (bw — bugr)’Ay (bw — brgr), where  factor space it can be easily generalized to an analysis
Ay is the limiting Wilcoxon covariance matrix in for- based on a high breakdown estimator which is robust
mula (2.4). Large values of TDBEAS indicate a  in both spaces. Further, simple diagnostic procedures
discrepancy between the fits. A useful cutoff value is exist to explore the differences between the highly ef-
(4(p + 1% /n. ficient and high breakdown estimates. We have pre-
If TDBET AR exceeds its benchmark, then usually sented examples which show that the robust analysis is
we want to determine the individual cases causing thismore effective than the traditional analysis in discov-
discrepancy in the fits. Lefw; = aw + X8y, and  ering alternatives and patterns in the presence of out-
YHBR.; = @HBR + X/BHBR denote the respective fitted liers or underlying error distributions with thick tails.
values for theith case. A statistic which detects the For such data, practical interpretations based on the

observations that are fitted differently is CR{; =  Wilcoxon and LS analysis can be quite different.

(R — YHBR,)/\/n 182 + h,;T2. An effectivebench-

mark for CFITSg; is 2/(p + 1)/n. We should note REFERENCES
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