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Robust Analysis of Linear Models
Joseph W. McKean

Abstract. This paper presents three lectures on a robust analysis of linear
models. One of the main goals of these lectures is to show that this analy-
sis, similar to the traditional least squares-based analysis, offers the user a
unified methodology for inference procedures in general linear models. This
discussion is facilitated throughout by the simple geometry underlying the
analysis. The traditional analysis is based on the least squares fit which min-
imizes the Euclidean norm, while the robust analysis is based on a fit which
minimizes another norm. Several examples involving real data sets are used
in the lectures to help motivate the discussion.

Key words and phrases: Asymptotic relative efficiency, breakdown point,
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1. INTRODUCTION

Traditional procedures for the analysis of linear
models are the most widely used statistical procedures,
because they offer the user a unified methodology with
which to attack many diverse problems. For example,
the traditionalF test of linear hypotheses can be used
to test for the effect in the simple two-sample problem
as well as to test for interaction between covariates and
treatments in a complicated analysis of covariance set-
ting. Traditional methods are based on the least squares
(LS) fit of the linear model. The geometry behind this
fit is quite simple. The LS fit minimizes the Euclidean
distance between the response vector and the space de-
fined by the linear model. TheF test is simply the
comparison of this minimum distance and the distance
to the subspace defined by the null hypothesis.

In this series of three lectures, we discuss a ro-
bust analysis of linear models. It is quite analogous to
the traditional analysis because we simply replace the
Euclidean norm with another norm. Thus the geometry
remains the same and, hence, the robust analysis of-
fers the user a unified methodology for linear models
similar to LS. Furthermore, the analysis is robust, not
sensitive to outliers in the response space and highly
efficient compared to the LS analysis.

Joseph W. McKean is Professor, Department of Statis-
tics, Western Michigan University, Kalamazoo, Michi-
gan 49008-5278, USA (e-mail: joe@stat.wmich.edu).

The first lecture, Section 2, presents the fitting pro-
cedure and discusses its robustness and efficiency. In
the second lecture, Section 3, we discuss the associated
F -type test for general linear hypotheses. The prac-
ticality of the robust analysis is illustrated by several
examples where the robust analysis leads to different
interpretations. The last lecture, Section 4, extends the
robust analysis to a high breakdown analysis which
is robust in both the response and factor spaces, and
we discuss diagnostics for investigating differences be-
tween fits.

There are several classes of robust estimates from
which we can choose. We selected an estimator which
has its roots in traditional nonparametric rank proce-
dures for simple location problems. We call this analy-
sis a rank-based analysis or the Wilcoxon analysis
(only linear scores are considered in this article). It
is defined in terms of a norm, so geometrically it is
analogous to LS. Furthermore, it generalizes immedi-
ately to high breakdown estimates. However,M esti-
mates can also be used. Huber’sM estimate is similar
to the Wilcoxon estimates and the GM estimates (see
Simpson, Ruppert and Carroll, 1992) are similar to the
high breakdown estimates of Section 4.

Because its objective function is convex, the Wilco-
xon fit is easy to compute. Computations in this ar-
ticle were obtained at the web siteswww.stat.wmich.
edu/slab/RGLM and www.stat.wmich.edu/slab/HBR2,
which the reader is invited to use; see Crimin, Abebe
and McKean (2003). Minitab also offers therregr
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command to obtain the Wilcoxon fit. Recently, Terpstra
and McKean (2004) developed packages of R and
SPLUS functions which compute these procedures for
the Wilcoxon and the high breakdown estimates. These
can be downloaded at the sitewww.stat.wmich.edu/
mckean/HMC/Rcode. At the web sitewww.stat.wmich.
edu/mckean/Statsci/Data the reader can find the data
sets used in this article.

These lectures draw on many references. The mono-
graphs by Hettmansperger and McKean (1998),
Hampel, Ronchetti, Rousseeuw and Stahel (1986),
Huber (1981) and Rousseeuw and Leroy (1987) con-
tain much of the material. A recent discussion was
presented by Hettmansperger, McKean and Sheather
(2000). Chapter 9 of Hollander and Wolfe (1999)
presents a recent discussion of the Wilcoxon analysis
for linear models. For the most part, we have not in-
cluded references in the three lectures, trusting that the
interested reader will consult these monographs and
their included references.

2. ROBUST FIT OF LINEAR MODELS

Suppose the results of an experiment or an observa-
tional study consist ofp explanatory (predictor) vari-
ables,x1, . . . , xp, and a response variableY . Further
suppose that we have collected data forn subjects
in this study. Denote the data for theith subject as
(xi1, . . . , xip, Yi)

′ = (xi , Yi)
′. Let Y be then×1 vector

of responses and and letX be then × p matrix whose
ith row is xi . The predictors may be continuous vari-
ables or dummy variables. Assume thatX has full col-
umn rankp.

Suppose we have decided to model the response vec-
tor Y as a linear model given by

Y = 1α + Xcβ + ε,(2.1)

whereβ is ap×1 vector of regression coefficients,α is
an intercept parameter andε is ann × 1 vector of ran-
dom errors. The matrixXc is the centered design ma-
trix; that is,xcij = xij − xj , wherexj = n−1 ∑n

i=1 xij .
Let Vc be the column space of the matrixXc. Assume
that the errorsε1, ε2, . . . , εn are i.i.d. with c.d.f.F(x),
p.d.f.f (x) and (for LS) varianceσ 2.

The vectorXcβ lies in Vc. Hence, given a norm
on R

n, a simple way to estimate it is to find a vec-
tor in Vc which lies closest toY. Onceβ is estimated,
α can be estimated by an appropriate location estimator
of the residualsYi − x′

ci β̂.

2.1 Norms and Estimating Equations

Let us first review the LS estimator ofβ which uti-
lizes the Euclidean norm. The LS estimate is given
by β̂LS = Argminβ∈Rp ‖Y − Xcβ‖2, where‖ · ‖2

LS is
the squared Euclidean norm; that is,‖v‖2

LS = ∑n
i=1 v2

i ,
v ∈ R

n. Differentiating the right-hand side with respect
to β and setting the resulting equations to0, we see
that the LS estimator solves the estimating equations
(normal equations)X′

c(Y − Xcβ) = 0, with the solu-
tion β̂LS = (X′

cXc)
−1X′

cY. The estimate ofα is the
arithmetic average of the residuals which, because the
x ’s are centered, iŝαLS = Y . Under regularity condi-
tions, the large sample distribution for these estimates
is given by:(

α̂LS

β̂LS

)
has an approximate

(2.2)

N

((
α

β

)
, σ 2

[
1/n 0′

0 (X′
cXc)

−1

])
distribution.

The Wilcoxon estimator utilizes the norm

‖v‖W =
n∑

i=1

a(R(vi))vi

(2.3)

=
n∑

i=1

a(i)v(i), v ∈ R
n,

whereR(vi) denotes the rank ofvi amongv1, . . . , vn,
a(i) = ϕ(i/(n + 1)) andϕ(u) = √

12[u − (1/2)]. The
second representation is based on the relationship be-
tween ranks and order statistics. The functionϕ(u) is
the score function. Essentially any nondecreasing func-
tion on(0,1) can be used, but in this paper we use only
this linear score function. The Wilcoxon estimate of
β is a vectorβ̂W such that̂βW = Argminβ∈Rp ‖Y −
Xcβ‖W. Note that the geometry of the Wilcoxon es-
timate is similar to the geometry of the LS estimate;
only the norm has been changed. To determine the es-
timating equations of the Wilcoxon estimate, using the
second expression in (2.3) it is easy to obtain the par-
tial derivatives and to show that the Wilcoxon estimate
solves the estimating equationsX′

ca(Y − Xcβ) = 0,
wherea(Y − Xcβ) denotes the vector withith compo-
nenta[R(Yi − x′

ciβ)]. The solution cannot be obtained
in closed form, but there are several algorithms avail-
able to obtain the solution, as discussed in Section 1.
As our estimate ofα, we use the median of the residu-
als given bŷαS = med1≤i≤n{Yi − x′

ci β̂W}. Under reg-
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ularity conditions, the large sample distribution of the
Wilcoxon estimator is given by:(

α̂W

β̂W

)
has an approximate

(2.4)

N

((
α

β

)
,

[
τ2
S /n 0′

0 τ2(X′
cXc)

−1

])
distribution,

whereτ andτS are the scale parameters

τ =
(√

12
∫

f 2(t) dt

)−1

and

(2.5)
τS = (2f (0))−1.

Estimates of the scale parametersτ andτS were dis-
cussed by Hettmansperger and McKean (1998).

Because the variances of the LS and Wilcoxon esti-
mators differ only in the constant of proportionality (σ 2

for LS andτ2 for the Wilcoxon), it is easy to obtain as-
ymptotic confidence intervals for the regression coef-
ficients based on the Wilcoxon estimator. They are the
same as the usual LS confidence intervals except that
τ̂ replaceŝσ ; that is, an asymptotic(1−α)100% confi-
dence interval for the parameterβj , for j = 1, . . . , p, is

β̂W,j ± tα/2,n−(p+1)τ̂
√

(X′
cXc)

−1
jj ,

wheretα/2,n−(p+1) denotes theα/2 upper critical point
of a t distribution withn − (p + 1) degrees of freedom
and(X′

cXc)
−1
jj is thej th diagonal entry of(X′

cXc)
−1.

Finite sample studies show that the use oft-critical val-
ues yields empirical confidences close to the nominal
1− α.

EXAMPLE 2.1 (Water wheel experiment). This
data set was discussed by Abebe et al. (2001). For
the experiment, mice are placed in a wheel that is
partially submerged in water. If they keep the wheel
moving, they will avoid the water. The response (Y )
is the number of wheel revolutions per minute. There
are two groups: a placebo group and a treated group,
where the mice are under the influence of a drug. Both
groups contain 10 mice each. The predictor in this case
is the dummy variablexi which is 0 if theith mouse is

FIG. 1. Comparison dot plots of the treatment groups in the water
wheel experiment.

from the placebo group and is 1 if it is from the treated
group. Assume a simple linear model

Yi = α + xiβ + εi, i = 1,2, . . . ,20.

The slope parameterβ is the shift in locations be-
tween the two groups. The Mann–Whitney–Wilcoxon
is the traditional nonparametric analysis of this prob-
lem. In this case the estimate of the shift in locations
is given by the Hodges–Lehmann estimate, which is
the median of all 10× 10= 100 differences between
the treated and placebo responses. By writing out the
Wilcoxon estimating equations for this model, we see
that the Wilcoxon regression estimate ofβ is indeed
this Hodges–Lehmann estimator. So the Wilcoxon re-
gression analysis generalizes the traditional nonpara-
metrics analysis.

A comparison dot plot of the data is given in Fig-
ure 1. We see immediately that there is one gross out-
lier in the treated group; however, there seems to be
little or no effect due to the treatment.

Table 1 contains the Wilcoxon and LS estimates
of slope and approximate 95% confidence intervals
along witht ratios (estimate divided by standard error)
and the associatedp value for a two-sided test. The
Wilcoxon analysis reflects the comparison dot plot.
Based on its estimate and confidence interval, there
does not appear to be a treatment effect. The LS es-
timate, on the other hand, has been unduly affected by
the outlier. Its estimate of shift is far from reality. At
the 5% level it is not significant; however, itsp value
of 0.28 belies the dot plots. In a discovery setting where
large significance levels are often employed, the LS
p value might allow further tests on this drug.

TABLE 1
Summaries of the LS and Wilcoxon fits for the water wheel data; the p values correspond to two-sided tests

Analysis Estimate Confidence interval t Ratio p Value Scale (τ̂ or σ̂ )

Wilcoxon 0.50 (−1.23,2.24) 0.60 0.55 1.85
LS 3.11 (−2.71,8.93) 1.12 0.28 6.19
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2.2 Efficiency and Robustness

Both the LS and Wilcoxon estimators have asymp-
totic distributions centered around the trueβ, so we can
compare their asymptotic relative efficiencies (AREs)
in terms of their asymptotic variances. Hence, forj =
1, . . . , p, the ARE between̂βLS,j andβ̂W,j is

e(β̂W,j , β̂LS,j ) = σ 2

τ2 .(2.6)

If the error distribution is normal with varianceσ 2,
then τ2 = σ 2/(3/π). Hence, the ARE in this case is
3/π = 0.955. Thus under normal errors, the Wilcoxon
estimator is 95% as efficient as LS procedures. Thus
there is only a 5% loss in efficiency if the Wilcoxon
estimator is used and the error distribution is actually
normal. On the other hand, if the true distribution has
tails heavier than the normal, then this efficiency is usu-
ally much larger than 1. As an example of such a distri-
bution, consider the contaminated normal distribution.
Suppose(1 − ε)100% of the time we sample from a
standard normal distribution, whileε100% of the time
we sample from the normal distribution with mean 0
and standard deviationσc. The scale parametersσ and
τ are easily calculated. Forσc = 3, Table 2 displays
the efficiencies between the Wilcoxon and LS estima-
tors for different values ofε. Even at 1% contamina-
tion, the Wilcoxon is more efficient than the LS.

For a given data set we call the estimate of the ARE
theempirical measure of efficiency or precision for that
data set, that is,

ê(W,LS) = σ̂ 2

τ̂2 .(2.7)

In Example 2.1,̂e(W,LS) = (6.19/1.85)2 = 11.57,
so that the Wilcoxon analysis is estimated to be
11.57 times as efficient as the LS analysis for these
data.

2.3 Influence Functions

Briefly, the influence function of an estimator mea-
sures the change in the estimator when an outlier is
added to the data. First consider the LS estimator.
Using model (2.1), we can write the LS estimate of

TABLE 2
Efficiencies of the Wilcoxon and LS methods for the

contaminated normal distribution

ε 0.00 0.01 0.03 0.05 0.10 0.15

e(W,LS) 0.955 1.009 1.108 1.196 1.373 1.497

β as β̂LS = β + (X′
cXc)

−1X′
cε. If we assume that

n−1X′
cXc → �, then we have the asymptotic represen-

tation
√

n(β̂LS−β) = �−1(1/
√

n )X′
cε+op(1) for the

LS estimator. For convenience, consider the simple lin-
ear model. Then this representation reduces to

√
n(β̂LS − β) = c−2

x

1√
n

n∑
i=1

xciεi + op(1),(2.8)

wherec2
x is the scalar (simple linear case) in place of�.

Now suppose we add a point(x∗, ε∗) to the data set.
Think of it as an outlier. How does this point affect the
LS estimate? Let̂βn denote the LS fit for the original
data and let̂βn+1 denote the LS fit when the outlier is
added. Using the representation (2.8) and a few steps
of algebra, we get

β̂n+1 − β̂n

1/n
=̇ c−2

x x∗ε∗,(2.9)

which is the relative change in the LS estimator due to
the outlier. Ifε∗ is an outlier, then, based on the model,
this leads to an outlier in theY space. Ifx∗ is an out-
lier, we say we have an outlier in thex space. Notice
that the LS estimator is seriously affected by outliers
in either space. In fact, the change in the LS estimator
is unbounded in both spaces. Because of this unbound-
edness, we say that the LS estimator is notrobust. The
LS influence function predicts the poor LS analysis of
Example 2.1.

The derivation of (2.9) can be made rigorous; see,
for example, Hettmansperger and McKean (1998). The
resulting analogue is called theinfluence function of
the estimator. In terms of the multiple regression model
the influence function of the LS estimator at the point
(x′, ε) is given by IF(β̂LS;x, ε) = �−1εx.

In the same way, the influence function can be devel-
oped for the Wilcoxon estimator based on its asymp-
totic representation,

√
n(β̂W − β) = τ�−1(1/

√
n ) ·

X′
cϕ[F(ε)]+op(1), whereϕ[F(ε)] denotes the vector

whoseith component isϕ[F(εi)]. Recall thatF(t) is
the c.d.f. of the random errors and thatϕ(u) is the lin-
ear score function

√
12[u− (1/2)] which is defined on

(0,1). Hence, unlike the LS asymptotic representation,
the contribution of the random errors to the represen-
tation for the Wilcoxon estimator is bounded. This car-
ries over to the influence function of̂βW, which for the
multiple regression model is given by IF(β̂W;x, ε) =
τ�−1ϕ[F(ε)]x.

Thus the influence function of̂βW is bounded in the
Y space. So the Wilcoxon estimator is less sensitive to
outliers in theY space, as verified in Example 2.1, but
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note that it is not bounded in thex space. In Section 4
we will discuss a generalization of the Wilcoxon esti-
mator which is bounded in both spaces.

2.4 Breakdown Point

An additional robustness concept will prove helpful.
Briefly, the proportion of bad data which an estimator
can tolerate before becoming completely meaningless
is called thefinite sample breakdown point of the esti-
mator. If this converges to a limit asn → ∞, we call
the limit thebreakdown point of the estimator.

For example, consider a sample of sizen for the one-
sample location problem. If we move one sample item
to infinity, then the sample mean moves toward infinity
also, that is, the finite sample breakdown of the sample
mean is 1/n which converges to 0 asn → ∞. So the
sample mean has breakdown point 0. Next consider the
sample median. We have to move half of the data to in-
finity to move the sample median to infinity. Hence, the
breakdown point of the sample median is 1/2. For the
location model, this is the highest breakdown possible.

It is clear from their influence functions that the
breakdown point of either the LS or the Wilcoxon re-
gression estimator is 0. We need only move onex value
to infinity to make both estimators meaningless. In Sec-
tion 4, we generalize the Wilcoxon estimates to obtain
high breakdown estimators.

3. LINEAR HYPOTHESES

In this section, we consider robust tests of general
linear hypotheses. As in the previous sections, the
Wilcoxon procedure is suggested from a simple geo-
metric point of view. As before, let the responses fol-
low the linear model (2.1). Our hypotheses of interest
are collections of independent, linear constraints on the
regression parameters. More precisely, a general linear
hypothesis and its alternative are given by

H0 : Aβ = 0 versus H1 : Aβ 	= 0,(3.1)

whereA is aq × p specified matrix of full row rankq.
The rows ofA form the linear constraints.

3.1 Geometry of the Testing

In hypotheses testing we consider model (2.1) to be
the full model. Let VF (F for full) denote the column
space ofX. For the hypotheses (3.1), thereduced model
is the full model subject toH0 :VR = {v ∈ VF : v =
Xβ andAβ = 0}, where theR stands for reduced. Re-
call thatVR is a subspace ofVF of dimensionp − q.

Suppose we have a norm‖ · ‖ for fitting models.
Then based on geometry, a simple test procedure can
be described. Let̂ηF be the full model fit based on
the norm; that is,̂ηF = Argmin‖Y − η‖, η ∈ VF .
Then the distance betweenY and the subspaceVF is
d(Y,VF ) = ‖Y − η̂F ‖. Likewise, we next fit the re-
duced model and letd(Y,VR) denote the distance be-
tweenY and the reduced model spaceVR . Because we
are minimizing over a smaller subspace,d(Y,VR) ≥
d(Y,VF ). An intuitive test statistic is the reduction in
distances, passing from the reduced to the full model,
that is, RD‖·‖ = d(Y,VR) − d(Y,VF ), where RD‖·‖
denotes reduction in distance. Small values of RD‖·‖
indicateH0, while large values indicateH1. Hence, the
corresponding test is

rejectH0 in favor ofH1 if RD‖·‖ ≥ c,

wherec must be determined. The reduction in distance
is standardized by an estimate of scale or variance.

Suppose the Euclidean norm is used. If the reduction
in (squared) Euclidean distances is standardized by
σ̂ 2, the usual estimate ofσ 2, then the test statistic for
the hypotheses (3.1) is given byFLS = [RDLS/q]/σ̂ 2.

As discussed in Section 3.2, under the null hypothe-
sisFLS has an approximateF distribution withq and
n − (p + 1) degrees of freedom. The usual approx-
imate α rejection rule is rejectH0 in favor of H1 if
FLS ≥ Fα,q,n−p−1. If the underlying error distribution
is normal, thenFLS is the likelihood ratio test statistic
and this rejection rule has exact levelα.

Suppose the Wilcoxon norm‖ · ‖W [(2.3)] is chosen.
Let ŶF,W denote the Wilcoxon full model fit as dis-
cussed in Section 2 and denote the Wilcoxon distance
betweenVF and Y by dW(Y,VF ) = ‖Y − ŶF,W‖W.
Similarly, the reduced model fit is given by

ŶW,R = Arg min
η∈VR

‖Y − η‖W.

Let dW(Y,VR) = ‖Y − ŶR,W‖W denote the distance
betweenVR andY. The Wilcoxon test statistic (reduc-
tion in distance) is RDW = dW(Y,VR) − dW(Y,VF ).

Note that RDW is a reduction in scale, not variance.
The appropriate standardization (see Section 3.2) is by
an estimate ofτ . The usual test statistic is of the form

FW = RDW/q

τ̂/2
.(3.2)

An approximate levelα test is rejectH0 in favor ofH1

if FW ≥ Fα,q,n−p−1.
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TABLE 3
Summary of analysis for plank data

Source Strain Gender Age S × G S × A G × A S × G × A Scale

FLS 7.74∗ 2.63 0.92 1.61 1.28 2.81 0.17 1.10
FW 12.23∗ 5.27∗ 1.12 0.11 1.80 3.21∗ 0.33 0.70

EXAMPLE 3.1 (Plank balance). Abebe et al. (2001)
reported the results of a three-way layout obtained
from a neurological experiment, where the response of
interest is the log time required for a mouse to exit
a narrow elevated wooden plank. The experimenters
were interested in assessing the effects and associated
interactions of three factors: mouse strain (S) with lev-
els Tg+ and Tg−; gender (G) with levels female and
male; and age (A) with levels aged, middle and young.

Let Yijkl denote the response for thelth repetition of
the ith level of S, thej th level of G and thekth level
of A. As a full model, consider the cell mean model

Yijkl = µijk + εijkl,

i = 1,2, j = 1,2,(3.3)

k = 1,2,3, l = 1, . . . , nijk.

The design is unbalanced, but there are at least two
replications in each cell. The total sample size is
n = 64. The data can be found at the web site discussed
in Section 1.

Denote then × 1 vector of responses byY = [Yijkl],
where the data are entered so that the subscriptl runs
the fastest, followed byk, and so on. Denote the 12× 1
vector of means byµ = [µijk]. Let W be the 64× 12
incidence matrix of cell membership. Then we can
write model (3.3) asY = Wµ + ε.

To illustrate the description of the robust test, we
consider the gender main effect hypothesis, that is, the
average effect of gender is 0. Because of how the data
were arranged inY, the associated hypothesis matrix is
the row vectorA = [1 1 1−1 −1 −1 1 1 1−1 −1 −1].
The null hypothesis can be written asH0 : Aµ = 0. The
Wilcoxon distance between the vector of responsesY
and the full model spaceVF is dW(Y,VF ) = 58.28,
while the distance fromY to the reduced model space
is dW(Y,VR) = 60.13. The estimate ofτ is τ̂ = 0.702.
Thus the value of the test statistic (3.2) isFW =
[(60.13 − 58.28)/1]/(0.702/2) = 5.27. The approxi-
matep value is 0.026. Thus gender seems to have an
effect on log time for the mouse to exit the plank. Of
course interaction effects should be considered before
main effects.

Table 3 summarizes the LS and Wilcoxon tests for
the main effects and interactions hypotheses for this
data set. Note that the analyses do differ. The only sig-
nificant effect of the LS analysis is mouse strain. On the
other hand, the Wilcoxon analysis indicates that gender
plays a role as does age also, due to its interaction with
gender. Abebe et al. (2001) showed that the usual cell
mean profile plot clearly indicates the interaction be-
tween gender and age, while the Wilcoxon Studentized
residual plot clearly shows numerous outliers. Practical
interpretations based on the Wilcoxon and LS analysis
would be quite different.

3.2 Asymptotic Distribution Theory and
Relative Efficiency

Algebraically, the reduction in variance form of the
LS test statistic can be written as

RDLS

σ 2 = (Aβ̂LS)′[σ 2A(X′X)−1A′]−1Aβ̂LS.

The reduction in distance form of the Wilcoxon test
statistic can be written as

RDW

τ/2
= (Aβ̂W)′[τ2A(X′X)−1A′]−1Aβ̂W + op(1).

It is clear from these representations and the asymp-
totic distributions of̂βLS and β̂W [(2.2) and (2.4), re-
spectively] that both random variables RDLS/σ 2 and
RDW/(τ/2) have, under regularity conditions, an as-
ymptoticχ2 distribution withq degrees of freedom un-
der the null hypothesis. The approximate distribution
theory for the test statisticsFLS andFW cited previ-
ously is based on this and the fact that the estimators of
scale used in the denominators of the test statistics are
consistent for their respective parameters. Small sam-
ple studies have indicated that the use ofF critical val-
ues instead of theχ2 critical values leads to empirical
levels closer to nominalα levels.

The influence functions of these test statistics are dis-
cussed in Hettmansperger and McKean (1998). Similar
to their counterparts in estimation, the influence func-
tion for FW is bounded in theY space, but not the
x space. The influence function forFLS is unbounded
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in both spaces. Hence, the influence functions predict
the behavior of these test statistics in the last example.

Efficiency results for these tests can easily be formu-
lated based on the noncentralχ2 asymptotic distrib-
utions of the test statistics under a sequence of local
alternatives. The ARE is the ratio of the test statis-
tics’ noncentrality parameters, which reduces to the
ratio (2.6); that is, the ARE for the test statistics is
the same as the ARE for the corresponding estima-
tors. In particular, the high efficiency of the Wilcoxon
rank tests in the simple location models extends to the
the Wilcoxon test statisticFW for general linear hy-
potheses. In Example 3.1, the empirical measure of ef-
ficiency [(2.7)] is(1.098/0.7019)2 = 2.45. Hence the
Wilcoxon analysis is estimated to be 2.5 times more
efficient than the LS analysis on this data set.

4. HIGH BREAKDOWN ESTIMATORS

Although the Wilcoxon analysis provides an attrac-
tive, robust alternative to the traditional LS analysis,
the analysis is not robust in thex space. In this sec-
tion, we briefly discuss generalizations of the Wilcoxon
analysis which are robust in both theY andx spaces
and which have positive breakdown.

Consider the linear model (2.1). We begin with the
simple identity concerning the Wilcoxon norm [(2.3)]:

‖v‖W =
n∑

i=1

a(R(vi))vi

=
√

3(n + 1)

2

n∑
i=1

n∑
j=1

|vi − vj |, v ∈ R
n.

Recall that the Wilcoxon estimate ofβ minimizes
‖Y − Xcβ‖W. Thus all the absolute differences in
residuals|(Yi − x′

ciβ) − (Yj − x′
cjβ)| receive the same

weight. If we are in a situation, though, where some of
the xci are more influential than others, we may want
to downweight the contribution of such points. That
is, select weightswi , i = 1,2, . . . , n, and choose the
estimator̂β

∗
given by

β̂
∗ = Argmin

n∑
i=1

n∑
j=1

wiwj

∣∣(Yi − Yj )

(4.1)
− (xci − xcj )

′β
∣∣.

Note that the function being minimized is a convex
function of β. Consider the following example of a
simple regression data set:

FIG. 2. Plots for Stars data: Panel A, fits of linear model;
Panel B, fits of quadratic model; Panel C, GR residual plot for
quadratic model; Panel D, casewise CFITS for the linear model.

EXAMPLE 4.1 (Stars data). This data set is drawn
from an astronomy study on the star cluster CYG OB1,
which contains 47 stars; see Rousseeuw and Leroy
(1987) for discussion and the data. The response is the
logarithm of the light intensity of the star, while the in-
dependent variable is the logarithm of the temperature
of the star. The data are shown in Panel A of Figure 2.
Note that four of the stars, called giants, are outliers in
factor space, while the rest of the stars fall in a point
cloud. Panel A shows also the overlay plot of the LS
and Wilcoxon fits. Note that the cluster of four outliers
in the x space has exerted such a strong influence on
the fits that it has drawn the fits toward the cluster. This
behavior is predictable based on the influence functions
of these estimates.

With regard to weights, it seems reasonable to down-
weight points far from the center of the data. The
leverage valueshi = n−1 + x′

ci(X
′
cXc)

−1xci , for i =
1, . . . , n, measure distance (Mahalanobis) from the
center relative to the scatter matrixX′

cXc. Leverage
values, though, are based on means and the usual (LS)
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variance–covariance scatter matrix, which are not ro-
bust estimators. There are several robust estimators
of location and scatter from which to choose, includ-
ing the high breakdownminimum covariance determi-
nant (MCD), which is an ellipsoid that covers about
half of the data and yet has minimum determinant.
Although computationally intensive, Rousseeuw and
Van Driessen (1999) presented a fast computational al-
gorithm for the MCD. Letvc denote the center of the
ellipsoid. LettingV denote the MCD, the robust dis-
tances are given byvni = (xi − vc)

′V−1(xi − vc). We
define the associated weights bywi = min{1, c/vni},
where c is usually set at the 95th percentile of the
χ2(p) distribution. Note that “good” points generally
have weights 1. The estimatorβ̂

∗
[(4.1)] of β obtained

with these weights is called a generalized R (GR) es-
timator. For the stars data, the resulting GR fit goes
through the point cloud as depicted in Panel A of Fig-
ure 2. In general, this GR estimate has a bounded in-
fluence function in both theY and thex spaces, and a
positive breakdown.

Due to the downweighting, though, the GR estima-
tor is less efficient than the Wilcoxon estimator. At
times, the loss in efficiency can be severe. We next
discuss weights which can regain some of this effi-
ciency. To motivate this second choice of weights, sup-
pose we lacked subject knowledge concerning the stars
data. Based on the scatter plot, we may decide to fit a
quadratic model. The plots of the LS, Wilcoxon and
GR fits for the quadratic model are found in Panel B
of Figure 2. The quadratic fits based on the LS and
Wilcoxon estimates follow the curvature in the data,
while the GR fit misses the curvature. For this case,
the outliers are good data points, but the GR fit uses
weights which downweight this important information.
The pattern in the GR residual plot (Panel C) is not ran-
dom, but the plot does not indicate how to proceed with
model selection. This is often true for residual plots
based on high breakdown fits; see McKean, Sheather
and Hettmansperger (1993).

As do the GR weights, our second class of weights
uses the MCD to determine weights in thex space,
but it also uses residual information from theY space.
The residuals are based on a high breakdown ini-
tial estimate of the regression coefficients. We have
chosen to use theleast trim squares (LTS) estimate,
which is Argmin

∑h
i=1[Y − α − x′β]2(i), whereh =

[n/2] + 1 and(i) denotes theith ordered residual; see
Rousseeuw and Van Driessen (1999). Letê0 denote the
residuals from this initial fit.

Define the functionψ(t) by ψ(t) = 1, t or −1
according ast ≥ 1, −1 < t < 1 or t ≤ −1. Let σ

be estimated by the initial scaling estimate MAD=
1.483medi | ê (0)

i − medj { ê
(0)
j }|. Let Qi = (xi − vc)

′ ×
V−1(xi − vc) and let

mi = ψ

(
b

Qi

)
= min

{
1,

b

Qi

}
.

Consider the weights

b̂ij = min

{
1,

cσ̂

|̂ei |
σ̂

|̂ej | min
{

1,
b

Q̂i

}
min

{
1,

b

Q̂j

}}
,

where the tuning constantsb and c are both set at 4.
From this point of view, it is clear that these weights
downweight both outlying points in factor space and
outlying responses. Note that the initial residual infor-
mation is a multiplicative factor in the weight func-
tion. Hence, a good leverage point will generally have
a small (in absolute value) initial residual which will
offset its distance in factor space.

The HBR Wilcoxon estimate is then defined as
β̂HBR = Argmin

∑
i,j b̂ij |Yi −Yj − (xi − xj )

′β|. Once
the weights are determined, the estimates are obtained
by minimizing a convex function. Note that for the
stars data, the HBR estimate fits the point cloud for
the linear model but fits the quadratic model similarly
to the Wilcoxon estimate.

In general, the HBR estimator has a 50% breakdown
point, provided the initial estimates used in forming the
weights have 50% breakdown. Further, its influence
function is a bounded function in both theY and the
x spaces, is continuous everywhere and converges to
zero as(x∗, Y ∗) get large in any direction. The asymp-
totic distribution of̂βHBR is asymptotically normal. As
with all high breakdown estimates,̂βHBR is less effi-
cient than the Wilcoxon estimates, but it regains some
of the efficiency loss of the GR estimate.

4.1 Diagnostics to Differentiate between HBR and
Wilcoxon Fits

For a given data set, highly efficient robust estimates
and high breakdown estimates can produce very differ-
ent fits. This can be due to influential points in factor
space and/or curvature. We present diagnostics which
indicate, first, whether the HBR and Wilcoxon fits dif-
fer and, second, if they do differ, what cases are in-
volved in the discrepancy.

First, as with the Wilcoxon estimates, estimate the
intercept by the median of the HBR residuals. Then
the difference in regression estimates between the HBR
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and Wilcoxon estimates is the vector̂bW − b̂HBR.
An effective standardization is the estimate of the
variance–covariance of̂bW. A statistic which mea-
sures the total difference in the fits ofb̂W andb̂HBR is
TDBETASR = (̂bW − b̂HBR)′Â−1

W (̂bW − b̂HBR), where
AW is the limiting Wilcoxon covariance matrix in for-
mula (2.4). Large values of TDBETASR indicate a
discrepancy between the fits. A useful cutoff value is
(4(p + 1)2)/n.

If TDBET ASR exceeds its benchmark, then usually
we want to determine the individual cases causing this
discrepancy in the fits. Let̂yW,i = α̂W + x′β̂W and
ŷHBR,i = α̂HBR + x′β̂HBR denote the respective fitted
values for theith case. A statistic which detects the
observations that are fitted differently is CFITSR,i =
(ŷR,i − ŷHBR,i)/

√
n−1τ̂2

S + hc,i τ̂2. An effectivebench-

mark for CFITSR,i is 2
√

(p + 1)/n. We should note
here that the objective of the diagnostic CFITS is not
outlier deletion. Rather the intent is to identify thecrit-
ical few data points for closer study, because these crit-
ical few points often largely determine the outcome
of the analysis or the direction that further analysis
should take. In this regard, the proposed benchmarks
are meant as a heuristic aid, not a boundary to some
formal critical region.

For the simple linear model of the stars data (Ex-
ample 4.1), the diagnostic TDBETASR has the value
109.9, which greatly exceeds the benchmark (0.34)
and, hence, numerically indicates that the fits differ.
Panel D of Figure 2 shows the casewise diagnos-
tic CFITSR,i versus case. In this plot, the four giant
stars clearly stand out from the rest. The plot shows
that the fits for two other stars also differ. These are
the stars between the giant stars and the rest of the
stars as shown in Panel A. For the quadratic model,
TDBETASR = 0.217, which is less than the bench-
mark value of 0.776. McKean, Naranjo and Sheather
(1999) extended these diagnostic procedures to inves-
tigate differences between LS and robust estimates.

5. CONCLUSION

In these three lectures, we have presented a robust
analysis of linear models. As with its counterpart, the
traditional analysis based on LS estimates, this robust
analysis offers the user a unified methodology for the
analysis of linear models. For designs without outliers

in the x space, this analysis is robust and highly ef-
ficient. As with the LS analysis, the geometry of the
analysis is based on a norm, so it has the same interpre-
tation as the LS analysis. For designs with outliers in
factor space it can be easily generalized to an analysis
based on a high breakdown estimator which is robust
in both spaces. Further, simple diagnostic procedures
exist to explore the differences between the highly ef-
ficient and high breakdown estimates. We have pre-
sented examples which show that the robust analysis is
more effective than the traditional analysis in discov-
ering alternatives and patterns in the presence of out-
liers or underlying error distributions with thick tails.
For such data, practical interpretations based on the
Wilcoxon and LS analysis can be quite different.
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