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Abstract. A fundamental problem of Internet traffic engineering is band-
width estimation: determining the bandwidth (bits per second) required to
carry traffic with a specific bit rate (bits per second) offered to an Internet link
and satisfy quality-of-service requirements. The traffic is packets of varying
sizes that arrive for transmission on the link. Packets can queue up and are
dropped if the queue size (bits) is bigger than the size of the buffer (bits)
for the queue. For the predominant traffic on the Internet, best-effort traffic,
quality metrics are the packet loss (fraction of lost packets), a queueing de-
lay (seconds) and the delay probability (probability of a packet exceeding
the delay). This article presents an introduction to bandwidth estimation and
a solution to the problem of best-effort traffic for the case where the qual-
ity criteria specify negligible packet loss. The solution is a simple statistical
model: (1) a formula for the bandwidth as a function of the delay, the delay
probability, the traffic bit rate and the mean number of active host-pair con-
nections of the traffic and (2) a random error term. The model is built and
validated using queueing theory and extensive empirical study; it is valid for
traffic with 64 host-pair connections or more, which is about 1 megabit/s
of traffic. The model provides for Internet best-effort traffic what the Erlang
delay formula provides for queueing systems with Poisson arrivals and i.i.d.
exponential service times.

Key words and phrases: Queueing, Erlang delay formula, nonlinear time
series, long-range dependence, QoS, statistical multiplexing, Internet traffic,
capacity planning.

1. INTRODUCTION: CONTENTS OF THE PAPER

The Internet is a worldwide computer network.
At any given moment, a vast number of pairs of hosts
are transferring files to one other. Each transferred file
is broken up into packets that are sent along a path
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across the Internet that consists of links and nodes.
The first node is the sending host: a packet exits the
host and travels along a link (fiber, wire, cable or air)
to a first router node, then over a link to a second router
node and so forth until the last router sends the packet
to a receiving host node over a final link.

The packet traffic arriving for transmission on an
Internet link is a stream: a sequence of packets with
arrival times (seconds) and sizes (bytes or bits). The
packets come from pairs of hosts using the link for
their transfers; that is, the link lies on the path from
one host to another for each of a collection of pairs of
hosts. When a packet arrives for transmission on a link,
it enters a buffer (bits) where it must wait if there are
other packets waiting for transmission or if a packet is
in service, that is, in the process of moving out of the
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buffer onto the link. If the buffer is full, the packet is
dropped.

A link has a bandwidth (bits per second), the rate
at which the bits of a packet are put on the link. Over
an interval of time during which the traffic is station-
ary, the packets arrive for transmission at a certain
rate—the traffic bit rate (bits per second), which is
defined formally to be the mean of the packet sizes
(bits) divided by the mean packet interarrival time (sec-
onds); this is approximately the mean number of arriv-
ing bits over the interval divided by the interval length
(seconds). Over the interval there is a mean simultane-
ous active connection load, which is the mean number
of source–destination pairs of hosts actively sending
packets over the link. The utilization of the link is the
traffic bit rate divided by the bandwidth; it measures
the traffic rate relative to the capacity of the link.

This article presents results on a fundamental prob-
lem of engineering the Internet. What link bandwidth
is needed to accommodate traffic with a certain bit rate
and ensure that the transmission on the link maintains
quality-of-service (QoS) criteria? The QoS bandwidth
must be found for every link set up on the Internet,
from the low-bandwidth links connected to the com-
puters of home users to the high-bandwidth links of a
major Internet service provider. Our approach to solv-
ing the bandwidth estimation problem is to use queue-
ing theory and queueing simulations to build a model
for the QoS bandwidth. The traffic inputs are live
streams from measurements of live links and synthetic
streams from statistical models for traffic streams.

Section 2 describes transmission control protocol/
Internet protocol (TCP/IP) transmission technology,
which governs almost all computer networking today;
for example, the networks of Internet service providers,
universities, companies and homes. Section 2 also de-
scribes the buffer queueing process and its effect on the
QoS of file transfer.

Section 3 formulates the particular version of the
bandwidth estimation problem that is addressed here,
discusses why the statistical properties of the packet
streams are so critical to bandwidth estimation and out-
lines how we use queueing simulations to study the
problem. We study best-effort Internet traffic streams
because they are the predominant type of traffic on
Internet links today. The QoS criteria for best-effort
streams are the packet loss (fraction of lost packets),
the queueing delay (seconds) and the delay probabil-
ity (probability of a packet exceeding the delay). We
suppose that the link packet loss is negligible and find
the QoS bandwidth required for a packet stream of a

certain load that satisfies the delay and the delay prob-
ability.

Section 4 describes fractional sum–difference (FSD)
time series models, which are used to generate the syn-
thetic streams for the queueing simulations. The FSD
models—a new class of non-Gaussian, long-range de-
pendent time series models—provide excellent fits to
packet size time series and to packet interarrival time
series. The validation of the FSD models is critical to
this study. The validity of our solution to the bandwidth
estimation problem depends on having traffic inputs to
the queueing that reproduce the statistical properties of
best-effort traffic. Of course, the live data have these
properties, but we need assurance that the synthetic
data do as well.

Section 5 describes the live packet arrivals and sizes,
and the synthetic packet arrivals and sizes that are gen-
erated by the FSD models. Section 6 gives the details
of the simulations and the resulting delay data: values
of the QoS bandwidth, delay, delay probability, mean
number of active host-pair connections of the traffic
and traffic bit rate.

Model building, based on the simulation delay data
and on queueing theory, begins in Section 7. To do the
model building and diagnostics, we exploit the struc-
ture of the delay data—utilizations for all combinations
of delay and delay probability for each stream, live
or synthetic. We develop an initial model that relates,
for each stream, the QoS utilization (bit rate divided
by the QoS bandwidth) to the delay and delay proba-
bility. We find a transformation for the utilization for
which the functional dependence on the delay and de-
lay probability does not change with the stream. There
is also an additive stream coefficient that varies across
streams, characterizing the statistical properties of each
stream. This stream-coefficient delay model cannot be
used for bandwidth estimation because the stream co-
efficient is not known in practice.

Next we add two variables to the model that mea-
sure the statistical properties of the streams and that
can be specified or measured in practice—the traffic bit
rate and the number of simultaneous active host-pair
connections on the link—and drop the stream coeffi-
cients. In effect we have modeled the coefficients. The
result is the best-effort delay model: a best-effort delay
formula for the utilization as a function of (1) the de-
lay, (2) the delay probability, (3) the traffic bit rate and
(4) the mean number of active host-pair connections of
the traffic, plus a random error term.

Section 8 presents a method for bandwidth estima-
tion that starts with the value from the best-effort delay
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formula and then uses the error distribution of the best-
effort delay model to find a tolerance interval whose
minimum value provides a conservative estimate with
a low probability of being too small.

Section 9 discusses previous work on bandwidth es-
timation and how it differs from the work here. Sec-
tion 10 is an extended abstract. Readers who seek just
results can proceed to this section; those not famil-
iar with Internet engineering technology might want to
read Sections 2 and 3 first.

The following notation is used throughout the arti-
cle:

Packet stream

v arrival numbers (number):v = 1 is the first
packet,v = 2 is the second packet, etc.

av arrival times (seconds)
tv interarrival times (seconds):tv = av+1 − av

qv sizes (bytes or bits).

Traffic load

c mean number of simultaneous active connec-
tions (number)

τ traffic bit rate (bits per second)
γp connection packet rate (packets per second

per connection)
γb connection bit rate (bits per second per con-

nection).

Bandwidth

β bandwidth (bits per second)
u utilization (fraction)τ/β.

Queueing

δ packet delay (seconds)
ω delay probability (fraction).

2. INTERNET TECHNOLOGY

The Internet is a computer network over which
a pair of host computers can transfer one or more files
(Stevens, 1994). Consider the downloading of a Web
page, which is often made up of more than one file.
One host—the client—sends a request file to start the
downloading of the page. Another host—the server—
receives the request file and sends back a first response
file. This process continues until all of the response
files necessary to display the page are sent. The client
passes the received response files to a browser such as
Netscape, which then displays the page on the screen.
This section gives information about some of the Inter-
net engineering protocols involved in such file transfer.

2.1 Packet Communications

When a file is sent, it is broken up into packets whose
sizes are 1460 bytes or less. The packets are sent from
the source host to the destination host, where they are
reassembled to form the original file. They travel along
a path across the Internet that consists of transmission
links and routers. The source computer is connected
to a first router by a transmission link, the first router
is connected to a second router by another transmis-
sion link and so forth. A router has input links and
output links. When it receives a packet from one of
its input links, it reads the destination address on the
packet, determines which of the routers connected to it
by output links gets the packet and sends out the packet
over the output link connected to that router. The flight
across the Internet ends when a final router receives the
packet on one of its input links and sends the packet to
the destination computer over one of its output links.

The two hosts establish a connection to carry out one
or more file transfers. The connection consists of soft-
ware running on the two computers that manage the
sending and receiving of packets. The software exe-
cutes an Internet transport protocol, a detailed prescrip-
tion for how the sending and receiving should work.
The two major transport protocols are the user data-
gram protocol (UDP) and the transmission control pro-
tocol (TCP). UDP just sends the packets out. With TCP,
the two hosts exchange control packets that manage the
connection. TCP opens the connection, closes it, re-
transmits packets not received by the destination and
controls the rate at which packets are sent based on
the amount of retransmission that occurs. The transport
software adds a header to each packet that contains in-
formation about the file transfer. The header is 20 bytes
for TCP and 8 bytes for UDP.

Software running on the two hosts implements an-
other network protocol, the Internet protocol (IP) that
manages the involvement of the two hosts in rout-
ing a packet across the Internet. The software adds
a 20-byte IP header to the packet with information
needed for the routing such as the source host IP ad-
dress and the destination host IP address. IP epito-
mizes the conceptual framework that underlies Internet
packet transmission technology. The networks that
make up the Internet—for example, the networks of
Internet service providers, universities, companies and
homes—are often referred to as IP networks, although
today it is unnecessary because almost all computer
networking is IP, a public-domain technology that
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defeated all other contenders, including the propri-
etary systems of big computer and communications
companies.

2.2 Link Bandwidth

The links along the path between the source and the
destination hosts each have a bandwidthβ in bits per
second. The bandwidth refers to the speed at which the
bits of a packet are put on the link by a computer or
router. For the link connecting a home computer to a
first router,β might be 56 kilobits/s if the computer
uses an internal modem or 1.5 megabits/s if there is
a broadband connection, a cable or DSL link. The link
connecting a university computer to a first router might
be 10 megabits/s, 100 megabits/s or 1 gigabit/s. The
links on the core network of a major Internet service
provider have a wide range of bandwidths; typical val-
ues range from 45 megabits/s to 10 gigabits/s. For a
40-byte packet, which is 320 bits, it takes 5.714 ms
to put the packet on a 56-kilobit/s link and takes
0.032 µs to put it on a 10-gigabits/s link, which is
about 180,000 times faster. Once a bit is put on the
link, it travels down the link at the speed of light.

2.3 Active Connections, Statistical Multiplexing
and Measures of Traffic Loads

At any given moment, an Internet link has a number
of simultaneous active connections; this is the number
of pairs of computers connected with one another that
are sending packets over the link. The packets of the
different connections are intermingled on the link; for
example, if there are three active connections, the ar-
rival order of 10 consecutive packets by connection
number might be 1, 1, 2, 3, 1, 1, 3, 3, 2 and 3. The inter-
mingling is referred to as statistical multiplexing. On a
link that connects a local network with about 500 users
there might be 300 active connections during a peak
period. On the core link of an Internet service provider
there might be 60,000 active connections.

During an interval of time when the traffic is station-
ary, there are a mean number of active connectionsc

and a traffic bit rateτ in bits per second. Letµ(t) in
seconds be the mean packet interarrival time and let
µ(q) in bits be the mean packet size. Then the packet
arrival rate per connection isγp = c−1µ−1

(t) packets/s
per connection. The bit rate per connection isγb =
µ(q)c

−1µ−1
(t) = τc−1 bits/s per connection. The vari-

ablesγp andγb measure the average host-to-host speed
of Internet connections (e.g., the rate at which the file
of a page is downloaded) for the pairs of hosts that use
the link.

The bit rate of all traffic on the link isτ = cγb. Of
course,τ ≤ β because bits cannot be put on the link
at a rate faster than the bandwidth. A larger traffic
bit rate τ requires a larger bandwidthβ. Let us re-
turn to the path across the Internet for the Web page
download discussed earlier. Starting from the link that
connects the client computer to the Internet and pro-
ceeding though the links,τ tends to increase and,
therefore, so doesβ. We start with a low-bandwidth
link, say 1.5 megabits/s, then move to a link at the edge
of a service provider network, say 156 megabits/s,
and then move to the core links of the provider, say
10 gigabits/s. As we continue further, we move from
the core to the service provider edge to a link con-
nected to the destination computer, soτ and β tend
to decrease.

2.4 Queueing, Best-Effort Traffic and QoS

A packet arriving for transmission on a link is pre-
sented with a queueing mechanism. The service time
for a packet is the time it takes to put the packet on
the link, which is the packet size divided by the band-
width β. If there are any packets whose transmission is
not completed, then the packet must wait until these
packets are fully transmitted before its transmission
can begin. This is the queueing delay. The packets
waiting for transmission are stored in a buffer, a region
in the memory of the computer or router. The buffer
has a size. If a packet arrives and the buffer is full,
then the packet is dropped. As we will see, the arrival
process for packets on a link is long-range dependent:
at low loads, the traffic is very bursty, but as the load
increases, the burstiness dissipates. For a fixedτ andβ,
bursty traffic results in a much larger queue-height dis-
tribution than traffic with Poisson arrivals.

The predominant protocol for managing file trans-
fers, TCP, changes the rate at which it sends packets
with file contents. TCP increases the rate when all goes
well, but reduces the rate when a destination computer
indicates that a packet has not been received; the as-
sumption is that congestion somewhere on the path
has led to a buffer overflow and the rate reduction is
needed to help relieve the congestion. In other words,
TCP is closed loop because there is feedback; UDP
is not aware of dropped packets and does not respond
to them.

When traffic is sent across the Internet using TCP or
UDP and this queueing mechanism, with no attempt to
add additional protocol features to improve QoS, then
the traffic is referred to as best effort. The IP networks
are a best-effort system because the standard protocols
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make an effort to get packets to their destination, but
packets can be delayed, lost, or delivered out of order.
Queueing delay and packet drops degrade the QoS of
best-effort traffic. For example, for Web page transfers,
the result is a longer wait by the user, partly because
the packets sit in the queue and partly because TCP
reduces its sending rate when retransmission occurs.
Best-effort traffic contrasts with priority traffic, which
when it arrives at a router, goes in front of best-effort
packets. Packets for voice traffic over the Internet are
often given priority.

3. THE BANDWIDTH ESTIMATION PROBLEM:
FORMULATION AND STREAM

STATISTICAL PROPERTIES

3.1 Formulation

Poor QoS that results from delays and drops on an
Internet link can be improved by increasing the link
bandwidthβ. The service time decreases, so if the traf-
fic rateτ remains fixed, the queueing delay distribution
decreases, and delay and loss are reduced. Loss and de-
lay are also affected by the buffer size; the larger the
buffer size, the fewer the drops, but then the queueing
delay has the potential to increase because the maxi-
mum queueing delay is the buffer size divided byβ.

The bandwidth estimation problem is to chooseβ to
satisfy QoS criteria. The resulting value ofβ is the QoS
bandwidth. The QoS utilization is the value ofu = τ/β

that corresponds to the QoS bandwidth. When a local
network, such as a company or university, purchases
bandwidth from an Internet service provider, a decision
onβ must be made. When an Internet service provider
designs its network, it must chooseβ for each of its
links. The decision must be based on the traffic load
and QoS criteria.

Here we address the bandwidth estimation problem
specifically for links with best-effort traffic. We take
the QoS criteria to be delay and loss. For delay we
use two metrics: a delayδ and the delay probabilityω,
the probability that a packet exceeds the delay. For loss
we suppose that the decision has been made to choose
a buffer size large enough that drops will be negligi-
ble. This is, for example, consistent with the current
practice of service providers on their core links Iyer,
Bhattacharyya, Taft and Diot (2003). Of course, a large
buffer size allows the possibility of a large delay, but
setting QoS values forδ andω allows us to control de-
lay probabilistically. The alternative is to use the buffer
size as a hard limit on delay, but because dropped pack-
ets are an extreme remedy that causes more serious

degradations of QoS, it is preferable to separate loss
and delay control, using the softer probabilistic control
for delay. Stipulating that packet loss is negligible on
the link means that for a connection that uses the link,
another link is the loss bottleneck; that is, if packets of
the connection are dropped, it will be on another link. It
also means that TCP feedback can be ignored in study-
ing the bandwidth estimation problem.

3.2 Packet Stream Statistical Properties

A packet stream consists of a sequence of arriving
packets, each with a size. Letv be the arrival number:
v = 1 is the first packet,v = 2 is the second packet and
so forth. Letav be the arrival times, lettv = av+1 − av

be the interarrival times and letqv be the size of the
packet arriving at timeav . The statistical properties of
the packet stream can be described by the statistical
properties oftv andqv as time series inv.

The QoS bandwidth for a packet stream depends
critically on the statistical properties oftv and qv .
Directly, the bandwidth depends on the queue-length
time process, but the queue-length time process de-
pends critically on the stream statistical properties.
Here we consider best-effort traffic. It has persis-
tent, long-range dependenttv andqv (Ribeiro, Riedi,
Crouse and Baraniuk, 1999; Gao and Rubin, 2001;
Cao, Cleveland, Lin and Sun, 2001). Persistent, long-
range dependenttv and qv have dramatically larger
queue-size distributions than those for independent
tv andqv (Konstantopoulos and Lin, 1996; Erramilli,
Narayan and Willinger, 1996; Cao, Cleveland, Lin and
Sun, 2001). The long-range dependent traffic is burstier
than the independent traffic, so the QoS utilization is
smaller because more headroom is needed to allow for
the bursts. This finding demonstrates quite clearly the
impact of the statistical properties, but a corollary of
the finding is that the results here are limited to best-
effort traffic streams (or any other streams with similar
statistical properties). Results for other types of traf-
fic with quite different statistical properties (e.g., links
carrying voice traffic using current Internet protocols)
are different.

Best-effort traffic is not homogeneous. As the traffic
connection loadc increases, the arrivals tend toward
Poisson and the sizes tend toward independent (Cao,
Cleveland, Lin and Sun, 2003; Cao and Ramanan,
2002). The reason for this is the increased statistical
multiplexing of packets from different connections; the
intermingling of the packets of different connections is
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a randomization process that breaks down the corre-
lation of the streams. In other words, the long-range
dependence dissipates. This means that in our band-
width estimation study, we can expect a changing es-
timation mechanism asc increases. In particular, we
expect multiplexing gains, that is, greater utilization
due to the reduction in dependence. Because of the
change in properties withc, we must be sure to study
streams with a wide range of values ofc.

4. FSD TIME SERIES MODELS FOR PACKET
ARRIVALS AND SIZES

This section presents FSD time series models, a new
class of non-Gaussian, long-range dependent models
(Cao, Cleveland, Lin and Sun, 2003; Cao, Cleveland
and Sun, 2004). The two independent packet-stream
time series—the interarrivalstv and the sizesqv—are
each modeled by an FSD model, and the models are
used to generate synthetic best-effort traffic streams for
the queueing simulations in our study.

There are a number of known properties oftv andqv

that have to be accommodated by the FSD models.
First, these two time series are long-range dependent.
This is associated with the important discovery of
long-range dependence of packet arrival counts and
of packet byte counts in successive equal-length inter-
vals of time, such as 10 ms (Leland, Taqqu, Willinger
and Wilson, 1994; Paxson and Floyd, 1995). Second,
tv and qv are non-Gaussian. Complex non-Gaussian
behavior was demonstrated clearly in important work
that showed that highly nonlinear multiplicative mul-
tifractal models can account for the statistical proper-
ties of tv andqv (Riedi, Crouse, Ribeiro and Baraniuk,
1999; Gao and Rubin, 2001). These nonparametric
models utilize many coefficients and a complex cas-
cade structure to explain these properties. Third, the
statistical properties of the two time series change as
c increases (Cao, Cleveland, Lin and Sun, 2003). The
arrivals tend toward Poisson and the sizes tend toward
independent; there are always long-range dependent
components present in the series, but the contributions
of the components to the variances of the series go to
zero.

4.1 Solving the Non-Gaussian Challenge

The challenge in modelingtv andqv is their com-
bined non-Gaussian and long-range dependent prop-
erties, a difficult combination that does not, without
a simplifying approach, allow parsimonious character-
ization. We discovered that monotone nonlinear trans-
formations of the interarrivals and sizes are very well

fitted by parsimonious Gaussian time series, that is,
a very simple class of fractional autoregressive inte-
grated moving average (ARIMA) models (Hosking,
1981) with a small number of parameters. In other
words, the transformations and the Gaussian mod-
els account for the complex multifractal properties of
tv andqv in a simple way.

4.2 The FSD Model Class

Supposexv for v = 1,2, . . . is a stationary time
series with marginal cumulative distribution func-
tion F(x;φ), whereφ is a vector of unknown para-
meters. Letx∗

v = H(xv;φ) be a transformation ofxv

such that the marginal distribution ofx∗
v is normal

with mean 0 and variance 1. We haveH(xv;φ) =
G−1(F (x;φ)), whereG(z) is the cumulative distribu-
tion function of a normal random variable with mean 0
and variance 1. Next we supposex∗

v is a Gaussian time
series and callx∗

v the Gaussian image ofxv .
Supposex∗

v has the form

x∗
v = √

1− θsv + √
θnv,

wheresv andnv are independent of one another and
each has mean 0 and variance 1,nv is Gaussian white
noise, that is, an independent time series andsv is a
Gaussian fractional ARIMA (Hosking, 1981)

(I − B)dsv = εv + εv−1,

whereBsv = sv−1, 0 < d < 0.5 and εv is Gaussian
white noise with mean 0 and variance

σ 2
ε = (1− d)
2(1− d)

2
(1− 2d)
.

The above time seriesxv is a fractional sum-dif-
ference (FSD) time series. Its Gaussian image,x∗

v ,
has two components:

√
1− θsv is the long-range-

dependent (lrd) component, which has variance 1− θ ,
and

√
θ is the white-noise component, which has vari-

anceθ .
Let px∗(f ) be the power spectrum of thex∗

v . Then

px∗(f ) = (1− θ)σ 2
ε

4cos2(πf )

(4sin2(πf ))d
+ θ

for 0 ≤ f ≤ 0.5. As f → 0.5, px∗(f ) decreases
monotonically toθ . As f → 0, px∗(f ) goes to infinity
like sin−2d(πf ) ∼ f −2d , one outcome of long-range
dependence. For nonnegative integer lagsk, let rx∗(k),
rs(k) andrn(k) be the autocovariance functions ofx∗

v ,
sv andnv , respectively. Because the three series have
variance 1, the autocovariance functions are also the
autocorrelation functions.rs(k) is positive and falls off
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like k2d−1 as k increases, another outcome of long-
range dependence. Fork > 0, rn(k) = 0 and

rx∗(k) = (1− θ)rs(k).

As θ → 1, x∗
v goes to white noise:px∗(f ) → 1 and

rx∗(k) → 0 for k > 0. The changes in the autocovari-
ance function and power spectrum are instructive. As
θ gets closer to 1, the rise ofpx∗(f ) nearf = 0 is al-
ways to orderf −2d and the rate of decay ofrx∗(k) for
largek is alwaysk2d−1, but the ascent ofpx∗(f ) at the
origin begins closer and closer tof = 0 and therx∗(k)

get uniformly smaller by the multiplicative factor 1−θ .

4.3 Marginal Distributions of qv and tv

We model the marginal distribution oftv by a
Weibull with shapeλ and scaleα, a family with two
unknown parameters. Estimates ofλ are almost always
less than 1. The Weibull provides an excellent approxi-
mation of the sample marginal distribution of thetv ex-
cept that the smallest 3–5% of the sample distribution
is truncated to a nearly constant value due to certain
network transmission properties.

The marginal distribution ofqv is modeled as fol-
lows. While packets less than 40 bytes can occur, it
is sufficiently rare that we ignore this and suppose
40≤ qv ≤ 1500. First, we provide forA atoms at sizes
φ

(s)
1 , . . . , φ

(s)
A such as 40, 512, 576 and 1500 bytes,

which are commonly occurring sizes; the atom prob-
abilities areφ

(a)
1 , . . . , φ

(a)
A . For the remaining sizes,

we divided the interval [40, 1500] bytes intoC inter-
vals usingC − 1 distinct breakpointsφ(b)

1 , . . . , φ
(b)
C−1

with values that are greater than 40 bytes and less than
1500 bytes. For each of theC intervals, the size distrib-
ution is uniformly distributed (excluding the atoms) in
the interval; the total probabilities for the intervals are
φ

(i)
1 , . . . , φ

(i)
C . Typically, with just three atoms at 40,

576 and 1500 bytes, and with just two breakpoints at
50 and 200 bytes, we get an excellent approximation
of the marginal distribution.

4.4 Gaussian Images of qv and tv

The transformed time seriest∗v andq∗
v appear to be

quite close to Gaussian processes. Some small amount
of non-Gaussian behavior is still present, but it is mi-
nor. The autocorrelation structure of these Gaussian
images is very well fitted by the FSD autocorrelation
structure.

The parameters of the FSD model are the following:

• qv marginal distribution:A atom probabilitiesφ(a)
j

atA sizesφ(s)
j ; C−1 breakpointsφ(b)

j andC interval
probabilitiesφ(i)

j

• tv marginal distribution: shapeλ and scaleα
• q∗

v time dependence: fractional difference coeffi-
cientd(q) and white-noise varianceθ(q)

• t∗v time dependence: fractional difference coeffi-
cientd(t) and white-noise varianceθ(t).

We found that thed(q) andd(t) do not depend onc; this
is based on empirical study and supported by theory.
The estimated values are 0.410 and 0.411, respectively.
We take the value of each of these two parameters to
be 0.41. We found that asc increases, estimates ofλ,
θ(q) andθ(t) all tend toward 1. This means thetv tend
to independent exponentials (a Poisson process) and
the qv tend toward independence. In other words, the
statistical models account for the change intv andqv ,
and the increase inc that was discussed earlier. We es-
timated these three parameters andα by partial like-
lihood methods withd(q) andd(t) fixed to 0.41. The
marginal distribution ofqv on a given link does not
change withc, but it does change from link to link. To
generate traffic, we must specify the atom and interval
probabilities. This provides a mean packet sizeµ(q),
which is measured in bits per packet.

5. PACKET-STREAM DATA: LIVE AND SYNTHETIC

We use packet-stream data, that is, values of packet
arrivals and sizes, to study the bandwidth estimation
problem. They are used as input traffic for queueing
simulations. There are two types of streams: live and
synthetic. The live streams are from packet traces, that
is, data collection from live Internet links. The syn-
thetic streams are generated by the FSD models.

5.1 Live Packet Streams

A commonly used measurement framework for em-
pirical Internet studies results in packet traces (Claffy,
Braun and Polyzos, 1995; Paxson, 1997; Cáceres et al.,
2000). The arrival time of each packet on a link is
recorded and the contents of the headers are captured.
The vast majority of packets are transported by TCP,
so this means most headers have 40 bytes, 20 for TCP
and 20 for IP. The live packet traffic is measured by this
mechanism over an interval. Time stamps provide live
interarrival timestv , and headers contain information
that provides live sizesqv , so for each trace there is a
stream of live arrivals and sizes.

The live stream data base used in this presentation
consists of 349 streams, 90 s or 5 min in duration, from
six Internet links that we name BELL, NZIX, AIX1,
AIX2, MFN1 and MFN2. The measured streams have
negligible delay on the link input router. The mean
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number of simultaneous active connectionsc ranges
from 49 connections to 18,976 connections. The traffic
bit rateτ ranges from 1.00 to 348 megabits/s.

Link BELL is a 100-megabit/s link in Murray
Hill, New Jersey that connects a Bell Labs local
network of about 3000 hosts to the rest of the Inter-
net. The transmission is half-duplex, so both direc-
tions (in and out) are multiplexed and carried on the
same link, and a stream comprises the multiplexing
of both directions, but to keep the variablec com-
mensurate for all six links, the two directions for
each connection are counted as two. In this presenta-
tion we use 195 BELL traces, each 5 min in length.
Link NZIX is the 100-megabit/s New Zealand In-
ternet exchange hosted by the ITS department at the
University of Waikato, Hamilton, New Zealand, that
served as a peering point among a number of ma-
jor New Zealand Internet service providers at the
time of data collection (NZIX trace data available
at http://wand.cs.waikato.ac.nz/wand/wits/nzix/2). All
arriving packets from the input–output ports on the
switch are mirrored, multiplexed and sent to a port
where they are measured. Because all connections
have two directions at the exchange, like BELL, each
connection counts as two. In this presentation we
use 84 NZIX traces, each 5 min in length. Links
AIX1 and AIX2 are two separate 622-megabit/s OC12
packet-over-sonet links, each carrying one direction of
traffic between NASA Ames and the MAE-West In-
ternet exchange. In this presentation we use 23 AIX1
and 23 AIX2 traces, each 90 s in length. The AIX1 and
AIX2 streams were collected as part of a project at the
National Laboratory for Applied Network Research,
where the data are collected in blocks of 90 s (available
athttp://pma.nlanr.net/PMA). Links MFN1 and MFN2
are two separate 2.5-gigabit/s OC48 packet-over-sonet
links on the network of the service provider MFN; each
link carries one direction of traffic between San Jose,
California and Seattle, Washington. In this presenta-
tion we use 12 MFN1 and 12 MFN2 traces, each 5 min
in length.

The statistical properties of streams, as we have
stated, depend on the connection loadc, so it is im-
portant that the time interval of a live stream be small
enough thatc does not vary appreciably over the in-
terval. For any link, there is diurnal variation, that is,
c changes with the time of day due to changes in the
number of users. We chose 5 min to be the upper
bound of the length of each stream to ensure station-
arity. The BELL, NXIZ, MFN1 and MFN2 streams are
5 min; the AIX1 and AIX2 traces are 90 s because the

sampling plan at these sites consisted of noncontiguous
90-s intervals.

5.2 Synthetic Packet Streams

The synthetic streams are arrivals and sizes gener-
ated by the FSD models fortv andqv . Each of the live
streams is fitted by two FSD models, one for thetv and
one for theqv , and a synthetic stream of 5 min is gen-
erated by the models. The generatedtv are independent
of the generatedqv , which is what we found in the live
data. The result is 349 synthetic streams that match the
statistical properties collectively of the live streams.

6. QUEUEING SIMULATION

We study the bandwidth estimation problem through
queueing simulation with an infinite buffer and a first-
in–first-out (FIFO) queueing discipline. The inputs to
the queues are the arrivals and sizes of the 349 live and
349 synthetic packet streams described in Section 5.

For each live or synthetic stream, we carry out
25 runs, each with a number of simulations. For each
run we pick a delayδ and a delay probabilityω. Sim-
ulations are carried out to find the QoS bandwidthβ,
the bandwidth that results in delay probabilityω for
the delayδ. This also yields a QoS utilizationu = τ/β.
We use five delays (0.001, 0.005, 0.010, 0.050 and
0.100 s) and five delay probabilities (0.001, 0.005,
0.01, 0.02 and 0.05), employing all 25 combinations
of the two delay criteria. For each simulation of a col-
lection, δ is fixed a priori. We measure the queueing
delay at the arrival times of the packets, which deter-
mines the simulated queueing delay process. From the
simulated process we find the delay probability for the
chosenδ. We repeat the simulation, changing the trial
QoS bandwidth, until the attained delay probability ap-
proximately matches the chosen delay probabilityω.
The optimization is easy becauseω decreases as the
trial QoS bandwidth increases for fixedδ.

In the optimization we do not allow the utilization
to go above 0.97; in other words, if the true QoS uti-
lization is above 0.97, we set it to 0.97. The reason is
that we use the logit scale log(u/(1− u)) in the model-
ing, and above about 0.97 the scale becomes very sen-
sitive to model misspecification and the accuracy of the
simulation, even though the utilizations above 0.97 for
practical purposes are nearly equal. Similarly, we limit
the lower range of the utilizations to 0.05.

The result of the 25 runs for each of the 349 live and
349 synthetic streams is 25 measurements, one per run,
of each of five variables: QoS utilizationu, delayδ, de-
lay probabilityω, mean number of active connectionsc
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and bit rateτ . The first three variables vary from run to
run; the last two variables are the same for the 25 runs
for a stream because they measure the stream statistical
properties. By design, the range ofδ is 0.001–0.100 s
and the range ofω is 0.001–0.05. The range of the
QoS utilizations is 0.05–0.97. The two additional vari-
ablesτ andc, which measure the statistical properties
of the streams, are constant across the 25 runs for each
stream. Variablec ranges from 49 to 18,976 connec-
tions andτ ranges from 1.00 to 348 megabits/s.

7. MODEL BUILDING: A BANDWIDTH FORMULA
PLUS RANDOM ERROR

This section describes the process of building the
best-effort delay model, which is the best-effort delay
formula plus random error. The model describes the
dependence of the utilizationu on the delayδ, the de-
lay probabilityω, the traffic bit rateτ and the expected
number of active connectionsc. The modeling process
involves both theory and empirical study, and estab-
lishes a basis for the model.

The theoretical basis is queueing theory. The empir-
ical basis is the delay data from the queueing simula-
tions, the measurements of the five variables described
in Section 6. The following notation is used for the val-
ues of these five variables for either the live delay data
or the synthetic delay data. Theδj for j = 1–5 are the
five values of the delay in increasing order and theωk

for k = 1–5 are the five values of the delay probability
in increasing order. The variableuijk is the QoS uti-
lization for delayδj , delay probabilityωk and streami,
wherei = 1–349. For streami, τi is the traffic bit rate
andci is the mean number of active connections.

7.1 Strategy: Initial Modeling of Dependence
on δ and ω

The structure of the data provides an opportunity for
careful initial study of the dependence of theuijk on
δj andωk . We have 25 measurements of each of these
variables for each streami, and for these measurements
bothτi andci are constant. We start our model building
by exploiting this opportunity.

We consider modeling each stream separately, but
hope to get model consistency across streams that al-
lows simplification. If such simplicity occurs, it is
likely to require a monotone transformation of theuijk

because they vary between 0 and 1. So we begin, con-
ceptually, with a model of the form

f (uijk) = gi(δj ,ωk) + εijk.

Theεijk are a sample from a distribution with mean 0,
f is a monotone function ofu, andgi is a function of
δ andω. We want to choosef to makegi as simple as
possible, that is, to vary as little as possible withi.

7.2 Conditional Dependence of u on δ

We start our exploration of the data by taking
f (u) = u and suppose that a logical scale forδ is the
log. In all cases we use log base 2 and indicate this
by writing log2 in our formulas. We do not necessar-
ily believe that this identity function forf is the right
transformation, but it is helpful to study the data ini-
tially on the untransformed utilization scale.

Our first step is to explore the conditional depen-
dence ofuijk on log2(δj ) givenωk and the streami by
trellis display (Becker, Cleveland and Shyu, 1996). For
each combination of the delay probabilityωk and the
streami, we graphuijk against log2(δj ). We did this
once for all 349 live streams and once for all 349 syn-
thetic streams. Figure 1 illustrates this by a trellis dis-
play for 16 of the live streams. The 16 streams were
chosen to nearly cover the range of values of theτi .
Let τ(v) for v = 1–349 be the values ordered from
smallest to largest, and takeτ(v) to be the quantile of
the empirical distribution of the values of orderv/349.
Then we chose the 16 streams whose ranksv yield or-
ders closest to the 16 equally spaced orders from 0.05
to 0.95. On the figure, there are 80 panels divided into
10 columns and 8 rows. On each paneluijk is graphed
against log2(δj ) for one value ofωk and one stream.
The strip labels at the top of each panel give the value
of ωk and the rank of the stream. There are five points
per panel, one for each value of log2(δj ).

Figure 1 shows a number of overall effects ofτ , δ

andω on u. For each pair of values ofω andτ , there
is an increase inu with δ, a strong main effect in the
data. In addition, there is an increase withτ for fixed
δ and ω, another strong main effect. There is also a
main effect forω, but smaller in magnitude than for the
other two variables. The dependence ofu on log2(δ)

is nonlinear, and changes substantially with the value
of τ ; asτ increases, the overall slope inu as a function
of log2(δ) first increases and then decreases. In other
words, there is an interaction between log2(δ) andτ .
Such an interaction complicates the dependence, so we
search further for a transformationf of u that removes
the interaction. This pattern occurs when all of the live
streams or all of the synthetic streams are plotted in the
same way.

There is an interaction between log2(δ) andτ in part
because whenu is close to 1, there is little room for
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FIG. 1. Utilization u graphed against log delay log2(δ) given the delay probability ω and the stream i.
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change as a function of log2(δ). For this reason, we
tried expanding the scale at 1 by taking the function
f (u) = log2(1 − u). This did not achieve appreciably
greater simplicity because nonlinearity and an interac-
tion are still strongly present, but the interaction cause
is behavior for smaller values ofτ .

The nature of the remaining interaction forf (u) =
log2(1 − u) suggests that a logit transformation might
do better:

f (u) = logit2(u) = log2

(
u

1− u

)
.

Figure 2 plots logit2(uijk) against log2(δj ) using
the same streams and method as Figure 1. The logit
function greatly simplifies the dependence. The depen-
dence on log2(δ) is linear. There does not appear to be
any remaining interaction among the three variables:
log2(δ), τ andω. To help show this, 16 lines with dif-
ferent intercepts but the same linear coefficient have
been drawn on the panels. The method of fitting is de-
scribed shortly. The lines provide an excellent fit.

7.3 Theory: The Classical Erlang Delay Formula

The packet arrivalsaj are not Poisson, although they
do tend toward Poisson asc andτ increase. The packet
sizes, and therefore the service times, are not indepen-
dent exponential; they have a bounded discrete distrib-
ution and are long-range dependent, although they tend
to independence asc and τ increase. Still, we use,
as a suggestive case, the results for Poisson arrivals
and i.i.d. exponential service times to provide guidance
for our model building. Erlang showed that for such
a model the following equation holds (Cooper, 1972):

ω = ue−(1−u)βδ.

Substituting forβ = τ/u and taking the negative log of
both sides we have

− log2(ω) = − log2(u) + log2(e)
1− u

u
δτ.(1)

Becauseω, which ranges from 0.001 to 0.05, is small
in the majority of our simulations compared withu, we
have, approximately,

− log2(ω) = log2(e)
1− u

u
δτ.

Taking logs of both sides and rearranging we have

logit2(u) = log2(log2(e)) + log2(τ )
(2)

+ log2(δ) − log2(− log2(ω)).

So certain aspects of the simplicity of this classical
Erlang delay formula occur also in the pattern for our

much more statistically complex packet streams. In
both cases logit2(u) is additive in functions ofτ , δ

andω, and the dependence is linear in log2(δ).

7.4 Conditional Dependence of u on ω

The approximate Erlang delay formula suggests that
we try the term− log2(− log2(ω)), the negative com-
plementary log ofω, in the model. In addition, as
we see in Section 9, certain asymptotic results sug-
gest this term as well. We studied the dependence of
logit2(u) on− log2(− log2(1−ω)) for all synthetic and
live streams using trellis display in the same way that
we studied the dependence on log2(δ). Figure 3 is a
trellis plot using the same 16 live streams as in Fig-
ure 2. On each panel, logit2(uijk) is graphed against
− log2(− log2(ωk)) for one value ofδj and one stream.

Figure 3 shows that the guidance from the Erlang
formula is on target: logit2(u) is linear in
− log2(− log2(ω)) and the slope remains constant
across streams and across different values ofδ. To
help show this, lines with the same linear coefficient
but different intercepts have been drawn on the pan-
els. The lines provide an excellent fit except for the
errant points for high utilizations observed earlier. The
method of fitting is described shortly. This pattern oc-
curs when all of the live streams or all of the synthetic
streams are plotted in the same way.

A stream-coefficient delay model. The empirical
findings in Figures 2 and 3 and the guidance from the
Erlang delay formula led to a very simple model that
fits the data,

logit2(uijk) = µi + oδ log2(δj )
(3)

+ oω

(− log2(− log2(ωk))
) + εijk,

where theεijk are realizations of an error random vari-
able with mean 0 and median absolute deviationm(ε).
Theµi are stream coefficients, which change with the
packet streami and characterize the statistical proper-
ties of the stream.

We fitted the stream-coefficient delay model of (3)
twice: once to the 349 live streams and once to the
349 synthetic streams. In other words, we estimated the
coefficientsµi , oδ andoω twice. Data exploration sug-
gests that the error distribution has longer tails than the
normal, so we used the bisquare method of robust esti-
mation (Mosteller and Tukey, 1977). The estimates of
oδ andoω are

Live: ôδ = 0.411, ôω = 0.868;
Synthetic: ôδ = 0.436, ôω = 0.907.
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FIG. 2. Logit utilization logit2(u) graphed against log delay log2(δ) given the delay probability ω and the stream i.
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FIG. 3. Logit utilization logit2(u) graphed against the negative complementary log of the delay probability − log2(− log2(ω)) given the
delay δ and the stream i.
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The two sets of estimates are very close in the sense
that the fitted equation is very close, that is, results in
very similar fitted QoS utilizations. For the 16 streams
shown in Figures 2 and 3 the lines are drawn using the
formula in (3) with the bisquare parameter estimates
ôδ , ôω andµ̂i .

Because of the long-tailed error distribution, we use
the median absolute deviationm(ε) as a measure of the
spread. The estimates from the residuals of the two fits
are

Live: m̂(ε) = 0.210;
Synthetic: m̂(ε) = 0.187.

The estimates are very small compared with the varia-
tion in logit2(u). In other words, the stream-coefficient
delay model provides a very close fit to the logit2(uijk).
Of course, this was evident from Figures 2 and 3 be-
cause the fitted lines are quite close to the data.

7.5 Strategy: Incorporating Dependence on
τ and c for Practical Estimation

The coefficientµi in the stream-coefficient delay
model of (3) varies with the packet stream and reflects
how the changing statistical properties of the streams
affect the QoS utilization. Part of the simplicity of the
model is that a single number characterizes how the
statistical properties of a stream affect the QoS band-
width. However, the model cannot be used as a practi-
cal matter for bandwidth estimation because it requires
a value ofµ, which would not typically be known.
If we knew the traffic characteristics in detail for the
link, for example, if we had FSD parameters, we could
generate traffic and run simulations to determineµ and
therefore the bandwidth. This might be possible in cer-
tain cases, but in general is not feasible.

What we must do is start with (3) and find readily
available variables that measure stream statistical prop-
erties and can replaceµ in the stream-coefficient delay
model. We carry out this task in the remainder of this
section. Two variables replaceµ: the bit rateτ and the
mean number of active connectionsc, with their values
of τi and ci for each of our packet streams. We use
both theory and empirical study, as we did for the
stream-coefficient delay model, to carry out the model
building.

7.6 Theory: Fast-Forward Invariance, Rate Gains
and Multiplexing Gains

Figures 2 and 3 show that the QoS utilizationu in-
creases withτ . There are two causes: rate gains and
multiplexing gains. Becausec is positively correlated

with τ , u increases withc as well. However,τ andc

measure different aspects of the load, which is impor-
tant to the modeling. The bit rateτ is equal tocγb,
where γb, the connection bit rate in bits/s per con-
nection, measures the end-to-end speed of transfers,
and c measures the amount of multiplexing. An in-
crease in either increasesτ .

First we introduce fast forwarding. Consider a gen-
eralized packet stream with bit rateτ input to a queue
without any assumptions about the statistical proper-
ties. The packet sizes can be any sequence of positive
random variables and the interarrivals can be any point
process. Suppose we are operating at the QoS utiliza-
tion u = τ/β for QoS delay criteriaδ andω. Now for
h > 1 we speed up the traffic by dividing all inter-
arrival times tv by h. The packet stream has a rate
change: the statistical properties of thetv change only
by a multiplicative constant. A rate increase ofh in-
creasesγb by the factorh but not c. The bit rateτ

changes tohτ . Suppose we also multiply the band-
width β by h, so that the utilizationu is constant. Then
the delay process of the rate-changed packet stream is
the delay process for the original packet stream divided
by h. That is, if we carried out a simulation with a live
or synthetic packet stream and repeated the simulation
with the rate change, then the delay of each packet in
the second simulation would be the delay in the first di-
vided byh. The traffic bit rate, the bandwidth and the
delay process are speeded up by the factorh, but the
variation of the packet stream and the queueing other-
wise remain the same. If we changed our delay criter-
ion from δ to δ/h, then the QoS utilizationu would
be the same, which means the QoS bandwidth ishβ.
It is as if we videotaped the queueing mechanism in
the first simulation and then produced the second by
watching the tape on fast forward with the clock on
the tape player running faster by the factorh as well.
We call this phenomenon fast-forward invariance.

Let us now reduce some of the speedup of the fast
forwarding. We divide thetv by h, which increasesγb

by the factorh, but we holdδ fixed and do not decrease
by the factor 1/h. What is the new QoSu that satisfies
the delay criteriaδ andω? Sinceu satisfies the criteria
for delayδ/h, we have room for more delay, sou can
increase. In other words, a rate increase results in uti-
lization gains for the sameδ. This is the rate gain.

Now suppose we holdτ fixed but increasec by the
factor h > 1. This means thatγb must be reduced by
the factor 1/h. Now the statistical properties change in
other ways due to the increased multiplexing. As we
saw in Section 4, thetv tend toward Poisson and the
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FIG. 4. Dot plot of median log connection bit rate log2(γb) for
six Internet links.

qv tend toward independence. The dissipation of the
long-range dependence of the packet streams, as well
as the tendency of the marginal distribution oftv to-
ward exponential, tends to decrease the queueing delay
distribution and thereby increase the QoS utilization.
In other words, there are statistical multiplexing gains.

These theoretical considerations lead us to two im-
portant conclusions about modeling. First, we want to
be sure that whatever model results, it must obey the
principle of fast-forward invariance. Second, it is un-
likely to be enough to model with justτ . If γb were
constant across the Internet,τ and c would measure
exactly the same thing for our purposes and we would
have no need forc beyondτ , but if γb changes sub-
stantially, as seems likely, then we will needc as well.
Figure 4 shows the six medians from the 349 values of
log2(γb) for our live streams broken up into six groups
by the link. The range of the medians is about 4 log
base 2 bits/s per connection, which means that the me-
dians ofγb change by a factor of 16. One link, NZIX,
is appreciably slower than the others.

7.7 Modeling with τ and c

We begin by modeling just withτ to see if this can
explain the observed utilizations withoutc. The ap-
proximate Erlang delay formula in (2) suggests that the
dependence of the stream coefficients onτ is linear in
log2(τ ). This means the model for logit2(uijk) is

logit2(uijk) = o + oτ log2(τi) + oδ log2(δj )
(4)

+ oω

(− log2(− log2(ωk))
) + ψijk,

where theψijk are realizations of an error random vari-
able with mean 0. In our initial explorations for the fit
and the residuals we discovered that the spread of the
residuals increased with increasingδj . So we model

FIG. 5. Dot plot of link median residuals from the first fit to the
logit utilization using only the bit rate τ to characterize stream sta-
tistical properties.

the median absolute deviation of theψijk by mδj
(ψ),

allowing it to change withδj .
We fitted the model to the live data and to the syn-

thetic data using the bisquare and also accommodating
the changing value ofmδj

(ψ). Figure 5 shows dot plots
of the six medians of the residuals for the six links.
There is a clear link effect, mimicking the behavior
in Figure 4: The two links with the largest and small-
est residual medians are the two with the largest and
smallest median connection bit rates. The behavior of
these extremes is what we would expect. For example,
NZIX has the smallest medianγb, so its bit rate under-
predicts the utilization because a stream at NZIX with
a certainτ has more than average multiplexing than
streams at other links with the sameτ , which means
the favorable statistical properties push the utilization
higher than expected under the model. The same plot
for the synthetic streams shows the same effect.

In addition, there is another inadequacy of this first
model. Becauseγb is changing, we want the model
to obey the principle of fast-forward invariance, but
it does not because the estimates ofoτ and oδ are
not equal.

We enlarge the bandwidth model by adding the vari-
able log2(c). Because log2(τ ) is used in the initial
model, adding log2(c) is equivalent to addingγb. In
doing this we want an equation that obeys fast-forward
invariance: If we holdc fixed, multiply τ by h and
divide δ by h, then we do not want a change in the
QoS utilization. This is achieved by the best-effort de-
lay model

logit2(uijk) = o + oc log2(ci) + oτδ log2(τiδj )
(5)

+ oω

(− log2(− log2(ωk))
) + ψijk,
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where theψijk are error variables with mean 0 and me-
dian absolute deviationmδj

(ψ). Fast-forward invari-
ance is achieved by enteringτ andδ as a product.

We fitted the enlarged (5) to the live streams and
to the synthetic streams using the bisquare because
our exploration showed that the error distribution has
longer tails than normal. The estimation included a nor-
malization to adjust for themδj

(ψ). The bisquare esti-
mates ofo, oc, oτδ andoω are

Live: ô = −8.933, ôc = 0.420,

ôτδ = 0.444, ôω = 0.893;
Synthetic: ô = −8.227, ôc = 0.353,

ôτδ = 0.457, ôω = 0.952.

The two sets of estimates are very close in the sense
that the fitted equations are close. The estimates of
mδj

(ψ), the median absolute deviationsm̂δj
(ψ), of the

residuals are

Delay: 1 ms, 5 ms, 10 ms,

50 ms, 100 ms;
Live: 0.211, 0.312, 0.372,

0.406, 0.484;
Synthetic: 0.169, 0.322, 0.356,

0.380, 0.457.

Again, the two sets of estimates are close.
It is important to consider whether the added vari-

ablec contributes in a significant way to the variability
in logit2(uijk) and does not depend fully on the single
link NZIX. We used the partial standardized residual
plot in Figure 6 to explore this. The standardized resid-
uals of regressing the logit utilization, logit2(u), on the
predictor variables except log2(c) are graphed against
the standardized residuals from regressing log2(c) on
the same variables. The partial regressions are fitted us-
ing the final bisquare weights from the full model fit,
and the standardization is a division of the residuals by
the estimateŝmδj

(ψ). Figure 6 shows that log2(c) has
explanatory power for each link separately and not just
across links. We can also see from the plot that there is
a remaining small link effect, but a minor one. This is
also demonstrated in Figure 7, which is the same plot
as Figure 5, but for the enlarged model. The horizontal
scales on the two plots have been made the same to fa-
cilitate comparison. The major link effect is no longer
present in the enlarged model. The result is the same
for the same visual display for the synthetic data.

7.8 Alternative Forms of the Best-Effort
Bandwidth Formula

The best-effort delay formula of the best-effort delay
model in (5) is

logit2(uijk) = o + oc log2(ci) + oτδ log2(τiδj )
(6)

+ oω

(− log2(− log2(ωk))
)
.

Sinceτ = cγb, the formula can be rewritten

logit2(u) = o + (oc + oτδ) log2(c)

+ oτδ log2(γbδ)(7)

+ oω

(− log2(− log2(ω))
)
.

In this form we see the action of the amount of multi-
plexing of connections as measured byc and the end-
to-end connection speed as measured byγb. An in-
crease in either results in an increase in the utilization
of a link.

7.9 Modeling the Error Distribution

As we have discussed, our study of the residuals
from the fit of the best-effort delay model showed
that the scale of the residual error distribution in-
creases with the delay. The study also showed that
log2(mεj

(ψ)) is linearly related to log2(δ). From the
least squares estimates for the live data, the estimate of
the intercept of the regression line is−0.481, the es-
timate of the linear coefficient of the line is 0.166 and
the estimate of the standard error is 0.189. (Results are
similar for the synthetic data.)

We also found that when we normalized the residuals
by the estimateŝmδj

(ψ), the resulting distribution of
values is very well approximated by a constant times a
t distribution with 15 degrees of freedom. Because the
normalized residuals have a median absolute deviation
of 1 andt15 has a median absolute deviation of 0.691,
the constant is 0.691−1. We use this modeling of the
error distribution for the bandwidth prediction in Sec-
tion 8.

8. BANDWIDTH ESTIMATION

The best-effort delay model in (5) can be used to es-
timate the bandwidth required to meet QoS criteria on
delay for best-effort Internet traffic. We describe here a
conservative procedure in the sense that the estimated
bandwidth is unlikely to be too small. In doing this we
use the coefficient estimates from the live delay data.
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FIG. 6. A partial residual plot for the explanatory variable log2(c) for the best-effort delay model given each of the six Internet links.
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FIG. 7. Dot plot of link median residuals for the best-effort delay
model.

First, we estimate the expected logit utilization
� = logit2(u) by

�̂ = −8.933+ 0.420 log2(c) + 0.444 log2(τδ)

+ 0.893
(− log2(− log2(ω))

)
.

On the utilization scale this is

û = 2�̂

1+ 2�̂
.

Next we compute a predicted median absolute devia-
tion from the above linear regression:

m̂δ(ψ) = 2−0.481+0.166 log2 δ.

Let t15(p) be the quantile of probabilityp of a t dis-
tribution with 15 degrees of freedom. Then the lower
limit of a 100(1− p)% tolerance interval for� is

�̂(p) = �̂ − m̂δ(ψ)t15(p)/0.691.

Forp = 0.05, t15(p) = 1.75, so the lower 95% limit is

�̂(0.05) = �̂ − 2.53m̂δ(ψ).

The lower 95% limit on the utilization scale is

û(0.05) = 2�̂(0.05)

1+ 2�̂(0.05)
.

This process is illustrated in Figure 8. For the figure,
γb was taken to be 214 bits/s per connection. On each
panel the values ofτ and ω are fixed to the values
shown in the strip labels at the tops of the panels, and
û and û(0.05) are both graphed against log2(δ) for
δ varying from 0.001 to 0.1 s.

9. OTHER WORK ON BANDWIDTH ESTIMATION
AND COMPARISON WITH THE RESULTS HERE

Bandwidth estimation has received much attention
in the literature. The work focuses on queueing be-
cause the issue driving estimation is queueing. Some
work is fundamentally empirical in nature in that it uses
live streams as inputs to queueing simulations or syn-
thetic streams from models that have been built with
live streams, although theory can be invoked as well.
Other work is fundamentally theoretical in nature in
that the goal is to derive properties of queues math-
ematically, although live data are sometimes used to
provide values of parameters so that numerical results
can be calculated. Most of this work uses derivations
of the delay exceedance probability as a function of
an input source to derive the required bandwidth for
a given QoS requirement. The delay exceedance prob-
ability is equivalent to our delay probability, where the
buffer size is related to the delay by a simple multipli-
cation of the link bandwidth. Since exact calculations
of the delay probability are only feasible in special
cases, these methods seek an approximate analysis, for
example, using asymptotic methods, stochastic bounds
or, in some cases, simulations. There has been by far
much more theoretical than empirical work.

The statistical properties of the traffic stream, which
have an immense impact on the queueing, receive at-
tention to varying degrees. Investigators who carry out
empirical studies with live streams do so as a guaran-
tee of recreating the properties. Those who carry out
studies with synthetic traffic from models must argue
for the validity of the models. Much of the theoretical
work takes the form of assuming certain stream proper-
ties and then deriving the consequences, so the problem
is solved for any traffic that might have these proper-
ties. Sometimes, though, the problem is minimized by
deriving asymptotic results under general conditions.

9.1 Empirical Study

Our study here falls in the empirical category, but
with substantial guidance from theory. To estimate ex-
ceedance probabilities, we run simulations of an in-
finite buffer, FIFO queue with fixed utilization using
live packet streams or synthetic streams from the FSD
model as the input source.

The tradition for using live Internet streams in a
queueing simulation began early in the study of Inter-
net traffic. In a very important study it was shown that
long-range dependent traffic results in much greater
queue-length distributions (Erramilli, Narayan and
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FIG. 8. The QoS utilization from the best-effort delay model graphed against log delay given the bit rate and the delay probability. The bit
connection rate γb is taken to be 214 bits/s per connection. The upper curve on each panel estimates the expected values and the lower curve
gives the minimum values of 95% tolerance intervals.
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Willinger, 1996) than Poisson traffic. This was an im-
portant result because it showed that the long-range
dependence of the traffic would have a large impact
on Internet engineering. In other studies, queueing
simulations of both live and altered live traffic are
used to study the effect of dependence properties and
multiplexing on performance using the average queue
length as the performance metric (Erramilli, Narayan,
Neidhardt and Saniee, 2000; Cao, Cleveland, Lin and
Sun, 2001).

In Mandjes and Boots (2004), queueing simulations
of multiplexed on-off sources are used to study the in-
fluence of on and off time distributions on the shape of
the loss curve and on performance. To improve the ac-
curacy of the delay probabilities based on simulations,
techniques such as importance sampling are also con-
sidered (Boots and Mandjes, 2002).

One study (Fraleigh, Tobagi and Diot, 2003) first
used live streams (Internet backbone traffic) to validate
a traffic model: an extension of fractional Brownian
motion (FBM) known as a two-scale FBM process.
They did not model the packet process, but rather
modeled bit rates as a continuous function. Then they
derived approximations of the delay exceedance prob-
ability from the model, which served as the basis for
their bandwidth estimation. Parameters in the two-
scale FBM model that appear in the formula are related
to the bit rateτ using the data. This is similar to our
process here where we relate the stream coefficients to
c andτ . Fraleigh, Tobagi and Diot also used queueing
simulations to determine delay exceedance probabili-
ties as a method of validation. We compare their results
and ours at the end of this section.

9.2 Mathematical Theory: Effective Bandwidth

A very large number of publications have been writ-
ten in an area of bandwidth estimation that is referred
to as effective bandwidth. The effective bandwidth of
an input source provides a measure of its resource us-
age for a given QoS requirement, which should lie
somewhere between the mean rate and the peak rate.
Let A(t) be the total workload (e.g., bytes) generated
by a source in the interval[0, t]. The mathematical de-
finition of the effective bandwidth of the source (Kelly,
1996) is

α(s, t) = 1

st
logE

[
esA(t)], 0< s, t < ∞,(8)

for some space parameters and time parametert . For
the purpose of bandwidth estimation, the appropriate
choice of parameters depends on the traffic character-
istics of the source and the QoS requirements, as well

as the properties of the traffic with which the source
is multiplexed. Subsequently we discuss the effective
bandwidth approach to bandwidth estimation based on
approximating the delay probability in the asymptotic
regime of many sources.

Consider the delay exceedance probability for a
FIFO queue on a link with constant bit rate. In the
asymptotic regime of many sources, we are con-
cerned with how the delay probability decays as
the size of the system increases. Suppose there are
n sources and the traffic generated by then sources
is identical, independent and stationary. The number
of sourcesn grows large at the same time that re-
sources such as the link bandwidthβ and buffer sizes
scale proportionally, so the delayδ stays constant. Let
β = nβ0 for someβ0 and letQn be the queueing de-
lay. Under very general conditions, it can be shown
that (Botvich and Duffield, 1995; Courcoubetis and
Weber, 1996; Simonian and Guibert, 1995; Likhanov
and Mazumdar, 1998; Mandjes and Kim, 2001)

lim
n→∞−n−1 logP(Qn > δ) = I (δ, β0),(9)

where

I (δ, β0) = inf
t>0

sup
s

(
sβ0(δ + t) − stα(s, t)

)
,(10)

and is sometimes referred to as the loss curve in the
literature. Let(s∗, t∗) be an extremizing pair in (10).
Thenα(s∗, t∗) is the effective bandwidth for the sin-
gle source as defined in (8) andnα(s∗, t∗) is the
effective bandwidth for then sources. For a QoS
requirement of a delayδ and a delay probabilityw,
approximating the delay probability P(Qn > δ) us-
ing exp(−nI (δ,β0)) [equation (9)], the bandwidth re-
quired for then sources can be found by solving the
following equation forβ:

s∗β(δ + t∗) − s∗t∗nα(s∗, t∗) = − logw.(11)

This gives

β = s∗t∗

s∗(δ + t∗)
nα(s∗, t∗) − logw

s∗(δ + t∗)
,(12)

which is the effective bandwidth solution to the band-
width estimation problem. If the delayδ → ∞, then
the extremizing value oft∗ approaches∞ and the
bandwidth in (12) reduces to

n lim
t∗→∞α(s∗, t∗),

and we recover the classical effective bandwidth de-
finition of a single source limt∗→∞ α(s∗, t∗) for the
large buffer asymptotic model (Elwalid and Mitra,
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1993; Guerin, Ahmadi and Naghshineh, 1991; Kesidis,
Walrand and Chang, 1993; Chang and Thomas, 1995).
If the delayδ → 0, then the extremizing pairt∗ → 0
and s∗t∗ → s̃ for some s̃, the bandwidth in (12) re-
duces to

n lim
t∗→∞α

(
s̃

t∗
, t∗

)
− logw

s̃

and we recover the effective bandwidth definition
limt∗→∞ α(s̃/t∗, t∗) for the bufferless model (Hui,
1988).

As we can see, the effective bandwidth solution
requires evaluation of the loss curveI (δ, β0) [equa-
tion (10)]. However, an explicit form of the loss curve
is generally not available. One approach is to derive
approximations of the loss curve under buffer asymp-
totic models, that is, the large buffer asymptotic model
(δ → ∞) or the bufferless model (δ → 0), for some
classes of input source arrivals. For example, if the
source arrival process is Markovian, then for some
η > 0 andν (Botvich and Duffield, 1995),

lim
δ→∞ I (δ, β0) − ηδ = ν.

If the source arrival is fractional Brownian motion with
Hurst parameterH , then for someν > 0 (Duffield,
1996)

lim
δ→∞ I (δ, β0)/δ

2−2H = ν.

For an on–off fluid arrival process, it is shown that as
δ → 0 for some constantsη(β0) andν(β0) (Mandjes
and Kim, 2001),

I (δ, β0) ∼ η(β0) + ν(β0)
√

δ + O(δ),

and asδ → ∞ for some constantθ(β0) (Mandjes and
Boots, 2002),

I (δ, β0) ∼ θ(β0)v(δ),

where v(δ) = − logP(residual on period> δ). How-
ever, it is found that bandwidth estimation based on
buffer asymptotic models suffers practical problems.
For the large buffer asymptotic model, the estimated
bandwidth could be overly conservative or optimistic
because it does not take into account the statistical mul-
tiplexing gain (Choudhury, Lucantoni and Whitt, 1994;
Knightly and Shroff, 1999). For the bufferless model,
there is a significant utilization penalty in the estimated
bandwidth (Knightly and Shroff, 1999) since results in-
dicate that there is a significant gain even with a small
buffer (Mandjes and Kim, 2001).

Another approach proposed by Courcoubetis, Siris
and Stamoulis (1999) and Courcoubetis and Siris

(2001) is to numerically evaluate the loss curve
I (δ, β0). First, these authors evaluated the effective
bandwidth functionα(s, t) [equation (8)] empirically
based on measurements of traffic byte counts in fixed
size intervals. Then they obtained the loss curve [equa-
tion (10)] using numeric optimizing procedures with
respect to the space parameters and the time para-
meter t . As examples, they applied this approach to
estimate bandwidth where the input source is a Bell-
core Ethernet WAN stream or streams of incoming IP
traffic over the University of Crete’s wide area link.
Their empirical approach is model-free in the sense
that it does not require a traffic model for the input
source and all evaluations are based on traffic mea-
surements. However, their approach is computation-
ally intensive, not only because the effective bandwidth
functionα(s, t) has to be evaluated for all time parame-
ters t , but also because the minimization with respect
to t is nonconvex (unlike the maximization in the space
parameters) and thus difficult to perform numerically
(Gibbens and Teh, 1999; Kontovasilis, Wittevrongel,
Bruneel, Van Houdt and Blondia, 2002).

In the effective bandwidth approach, one typically
approximates the buffer exceedance probability based
on its logarithmic asymptote. For example, in the as-
ymptotic regime of many sources, using (9), one can
approximate

P(Qn > δ) ≈ exp(−nI (δ,β0)).(13)

An improved approximation can be found by incorpo-
rating a prefactor, that is,

P(Qn > δ) ≈ K(n, δ,β0)exp(−nI (δ,β0)).

Using the Bahadur–Rao theorem, such approximation
has been obtained for the delay exceedance probabil-
ity in the infinite buffer case as well as the cell loss
ratio in the finite buffer case that has the same logarith-
mic asymptote but a different prefactor (Likhanov and
Mazumdar, 1998).

9.3 Theory: Other Service Disciplines

Some authors have investigated service disciplines
other than FIFO, such as general processor shar-
ing (Zhang, Towsley and Kurose, 1994) and priority
queueing (Berger and Whitt, 1998). Although TCP is
the most dominant protocol in today’s Internet, we do
not consider the effect of the TCP feedback control
mechanism since the link we sought for estimating
a bandwidth is not a bottleneck link. To account for
the TCP feedback control, other authors have studied
characteristics of bandwidth sharing for elastic traf-
fic and investigated the bandwidth estimation prob-
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lem for such traffic (de Veciana, Konstantopoulos
and Lee, 2001; Ben Fred, Bonald, Proutiere, Régnié
and Roberts, 2001). Again other authors have con-
sidered regulated input traffic such as that from a
leaky bucket (Elwalid, Mitra and Wentworth, 1995;
Lo Presti, Zhang, Kurose and Towsley, 1999; Kesidis
and Konstantopoulos, 2000; Chang, Chiu and Song,
2001).

9.4 Theory: Direct Approximations of the
Delay Probability

Besides approximating the delay exceedance proba-
bility using the effective bandwidth approach, some au-
thors have considered direct approximations for some
special classes of input traffic models. For example,
for a Markov modulated fluid source, the delay prob-
ability can be more accurately expressed as a single
exponential with a prefactorK determined from the
loss probability in a bufferless multiplexer as estimated
by Chernoff’s theorem (Elwalid, Heyman, Lakshman,
Mitra and Weiss, 1995). For an aggregate Markov
modulated fluid source, the delay probabilities can be
approximated by a sum of exponentials (Shroff and
Schwartz, 1998). For a Gaussian process, a tight lower
bound of the delay probability can be obtained using
maximum-variance based approaches (Norros, 1994;
Knightly, 1997; Choe and Shroff, 1998; Fraleigh,
Tobagi and Diot, 2003). These expressions can be used
in place of (13) to derive the required bandwidth for a
QoS requirement. Readers are referred to Knightly and
Shroff (1999) for a nice overview and comparison of
these approaches as well as the aforementioned effec-
tive bandwidth approach for bandwidth estimation.

9.5 Theory: Queueing Distributions

We now discuss implications of our stream-coeffi-
cient delay formula and best-effort delay formula, and
their relationship to some previous work. The stream-
coefficient delay model in (3) implies that for each
streami,

w ≈ P(Qi > δ)

≈ exp
(
− log2· 2µi/ow

(
u

1− u

)−1/ow

δoδ/ow

)

for stream coefficientµi and regression coefficients
ow, oδ . This suggests that the tail distribution of queue-
ing delay is Weibull with shape parameteroδo

−1
w . The

Weibull form is consistent with the FBM traffic model
(and also the two-scale FBM model), but there the
shape parameter is 2− 2H . Notice thatoδo

−1
w from

our analysis is 0.52 for the real data and 0.42 for the
synthetic data, which is quite different from the shape
parameter computed from 2−2H = 0.18. If the bit rate
per connectionγb is a fixed constant, the best-effort de-
lay formula in (5) implies that for some constanto′,

w ≈ PP(Qi > δ)

≈ exp
(
− log2· 2o′/owτ

(oc+oτδ)/ow

i

·
(

u

1− u

)−1/ow

δoδ/ow

)
.

If oc + oτδ = ow and the traffic bit rateτi is a multi-
ple of τ (i.e., τi = niτ ), then the above approximation
is consistent with the effective bandwidth result with
many sources of asymptotics [equation (9)]. In our em-
pirical analysis we foundoτδ + oc andow to be quite
close; the ratio(oτδ + oc)o

−1
w is 0.97 for real data and

0.85 for synthetic data. One of the reasons that this ra-
tio is not 1 is possibly because (9) is an asymptotic
formula.

9.6 Comparison of the Results Presented Here
with Other Work

The work presented in this article resulted in a sim-
ple formula for bandwidth estimation. At the same
time, validation has been extensive, permeating all ar-
eas of the work. Validation is carried out in two ways:
empirically and theoretically.

The large number of papers in the area of effec-
tive bandwidth and other theoretical work cited above
have yielded much insight. This work has posited traf-
fic stream models and investigated the resulting math-
ematical properties. However, for best-effort Internet
traffic there has been no extensive study to deter-
mine whether some posited model accurately describes
the stream statistical properties nor has there been
extensive work in the form of empirical queueing sim-
ulations to determine whether queueing results for
best-effort traffic fit the theory. Consequently, the sim-
ple best-effort delay formula, which is not readily
derivable without a hint of the final results, was not
discovered.

The interesting paper cited above that used the two-
scale FBM model surely took great pains to validate the
model (Fraleigh, Tobagi and Diot, 2003). One prob-
lem with this approach—modeling traffic bit flow as
a fluid rather than the packet process as it appears
on the link—is that the Gaussian assumption does not
take hold until the level of aggregation is quite high.
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Consequently, the FBM model is not a good approxi-
mation until the traffic rate is 50 megabits/s and above,
so their bandwidth estimation model is not validated
below 50 megabits/s. By contrast, our best-effort de-
lay model is valid to as low as 1 megabit/s. However,
the ensuing methods used by Fraleigh, Tobagi and Diot
(2003) to find the QoS bandwidth require a series of ap-
proximations and a worst-case empirical method in the
estimation of parameters. There appears to have been
little checking of these approximations. The bandwidth
results appear to us to be inaccurate, possibly aris-
ing from some of the approximations. First, as the bit
rate increases up to 1 gigabit/s, the utilization appears
to stabilize at values less than 1 and substantially so
in some cases. As our theoretical discussion of rate
gains and multiplexing gains demonstrates, the utiliza-
tion must increase to 1 as the bit rate increases. This
is the case for our best-effort delay model. For exam-
ple, the utilization for a delay of 10 ms, a probabil-
ity of 0.01 and a bit rate of 1 gigabit/s is 90% from
Figure 8 of Fraleigh, Tobagi and Diot (2003), but is
98% for our model. In addition, the model in Fraleigh,
Tobagi and Diot (2003) works simply with the bit rate
rather than decomposing into the number of active con-
nections times the bit rate per connection and using
two variables, as is done in the best-effort delay model
here. As we have demonstrated theoretically and em-
pirically, the bit rate is not sufficient to account for
the utilization since a fast network and a network with
a high traffic connection load must be distinguished.

10. RESULTS AND DISCUSSION

10.1 Problem Formulation

Suppose the packet stream—packet arrival times and
sizes—arriving for transmission on an Internet link is
best-effort traffic with bit rateτ bits/s and number of
simultaneous active connectionsc. Suppose the link in-
put buffer is large enough that packet loss is negligible.
Our goal is to estimate the QoS bandwidthβ in bits/s
or, equivalently, the QoS utilizationu = τ/β, that sat-
isfies QoS criteria for the packet queueing delay in the
link input buffer. The criteria are a delayδ in seconds
and the probabilityω that the delay for a packet ex-
ceedsδ.

10.2 Other Work on the Problem

There is a wide literature on the bandwidth esti-
mation problem. Much of it is theoretical, that is,
mathematical results that derive properties of queue-
ing systems. A smaller literature is empirical in nature,

based on simulations with packet stream inputs from
measurements on live links or from models for traffic.
The classical Erlang delay formula provides a simple
formula that can be used to estimate traffic streams that
in theory have Poisson arrivals and i.i.d. exponential
sizes. Best-effort traffic is much more complex: It is
nonlinear, long-range dependent and, to date, has no
simple, validated formula to describe it.

10.3 Principal Result: The Best-Effort Delay Model

The principal result of this paper is a statistical
model that provides a simple, validated formula for the
estimation of bandwidth for best-effort traffic that per-
forms in the same way that the Erlang delay formula
does for the Poisson-exponential case. The model has
been validated through extensive empirical study and
through consistency with certain theoretical properties
of queueing.

The model consists of the best-effort delay formula
plus random variation,

logit2(u) = o + oc log2(c) + oτδ log2(τδ)

+ oω

(− log2(− log2(ω))
) + ψ,

whereψ is a random error variable with mean 0 and
median absolute deviationmδ(ψ) which depends onδ;
log2 is the log base 2; and logit2(u) = log2(u/(1−u)).
The distribution of 0.691ψ/mδ(ψ) is a t distribution
with 15 degrees of freedom. Estimates of the coeffi-
cients of the model are

ô = −8.933, ôc = 0.420,

ôτδ = 0.444, ôω = 0.893.

The expressionmδ(ψ) is modeled as a function ofδ:
log2(mδ(ψ)) is a linear function of log2(δ) plus ran-
dom variation. The estimate of the intercept of the line
is −0.481, the estimate of the linear coefficient of the
line is 0.166 and the estimate of the standard error
is 0.189. The bit rateτ is equal tocγb, whereγb is
the connection bit rate in bits/s per connection. So the
best-effort delay formula can also be written

logit2(u) = o + (oc + oτδ) log2(c) + oτδ log2(γbδ)

+ oω

(− log2(− log2(ω))
)
.

In this form we see the action of the amount of multi-
plexing of connections as measured byc and we see the
end-to-end connection speed as measured byγb. An in-
crease in either results in an increase in the utilization
of a link.
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The best-effort delay model is used to estimate the
bandwidth required to carry best-effort traffic givenδ,
ω, τ andc. The QoS logit utilization is estimated by

�̂ = −8.933+ 0.420 log2(c) + 0.444 log2(τδ)

+ 0.893
(− log2(− log2(ω))

)
,

so the QoS utilization is estimated by

û = 2�̂

1+ 2�̂
.

The corresponding estimated bandwidth isτ/û. For
such an estimate there is a 50% chance of being too
large and a 50% chance of being too small. We could,
however, use a more conservative estimate that pro-
vides a much smaller chance of too little bandwidth.
Let

m̂δ(ψ) = 2−0.481+0.166 log2(δ)

be the estimate ofm(δ). Let t15(p) be the lower 100p%
percentage point of at distribution with 15 degrees of
freedom, wherep is small, say 0.05. Let

�̂(p) = �̂ − m̂(δ)t15(p)/0.691.

Then

û(p) = 2�̂(p)

1+ 2�̂(p)

is a conservative utilization estimate, the lower limit of
a 100p% tolerance interval for the QoS utilization. The
corresponding estimated bandwidth isτ/û(p).

10.4 Methods

The best-effort delay model was built, in part, from
queueing theory. Certain predictor variables were sug-
gested by the Erlang delay formula. Theory prescribes
certain behavior asτ , c or γb increases, resulting in
rate gains, multiplexing gains or fast-forward invari-
ance, and the model was constructed to reproduce the
behavior.

The best-effort delay model was built, in part, from
results of queueing simulations with traffic stream in-
puts of two types: live and synthetic. The live streams
are measurements of packet arrivals and sizes for
349 intervals, 90 s or 5 min in duration, from six Inter-
net links. The synthetic streams are arrivals and sizes
generated by recently developed FSD time series mod-
els for the arrivals and sizes of best-effort traffic. Each
of the live streams was fitted by two FSD models (one
for the interarrivals and one for the sizes) and a syn-
thetic stream of 5 min was generated by the models.

The generated interarrivals are independent of the gen-
erated sizes, which is what we found in the live data.
The result is 349 synthetic streams that match the sta-
tistical properties collectively of the live streams. For
each live or synthetic stream, we carried out 25 runs,
each with a number of simulations. For each run we
picked a delayδ and a delay probabilityω; simulations
were carried out to find the QoS bandwidthβ, which is
the bandwidth that results in delay probabilityω for δ.
This also yields a QoS utilizationu = τ/β. We used
five delays (0.001, 0.005, 0.010, 0.050 and 0.100 s)
and five delay probabilities (0.001, 0.005, 0.01, 0.02
and 0.05), and employed all 25 combinations of the
two delay criteria. The queueing simulation results in
delay data, that is, values of five variables: QoS utiliza-
tion u, delayδ, delay probabilityω, the mean number
of active connections of the trafficc and the traffic bit
rateτ . The delay data were used in the model building.

10.5 Validity and Applicability

Extensive data exploration with visualization tools
(some shown here) demonstrates that the best-effort
delay model fits the simulation delay data. This, of
course, is necessary for the model to be valid. In ad-
dition, validity is supported by the model reproducing
the theoretical queueing properties as just discussed.

The validity of the best-effort delay model depends
on the validity of the traffic streams used as inputs
to the queueing simulation; that is, the packet streams
must reproduce the statistical properties of best-effort
streams. Of course, the live streams of the study do so
because they are best-effort traffic. Extensive valida-
tion has shown that the FSD models used to generate
the packet streams here provide excellent fits to best-
effort packet streams whenc is above about 64 con-
nections, which for a link whereγb is about 214 bits/s
per connection meansτ is above about 1 megabit/s.
For this reason, only traffic streams withτ greater than
this rate are used in the study, and the best-effort delay
model is valid above this rate.

The results are only valid for links with a buffer large
enough that the packet loss is negligible. We have used
open-loop study, which does not provide for the TCP
feedback that occurs when loss is significant. This re-
striction also holds for the other work on bandwidth
estimation cited here.

There is also a practical restriction on applicability.
We have taken the range of our study to include traffic
bit rates as low as about 1 megabit/s. We have done
this simply because we can do so and achieve valid
results, but even for the least stringent of our delay
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criteria (δ = 0.1-s delay andω = 0.05 delay probabil-
ity), the utilizations are low for rates in the range of
1–5 megabits/s. This utilization might well be judged
to be too small to be practical. If so, it might mean
that the negligible packet loss must be sacrificed, which
means that a QoS study at very low traffic bit rates
needs to take account of TCP feedback.

One outcome of the dependence of the bandwidth es-
timation on the traffic statistics is that our solution for
best-effort traffic would not apply to other forms of In-
ternet traffic that do not share the best-effort statistical
properties. One example is voice traffic.

Finally, the best-effort delay model provides an es-
timation of bandwidth in isolation without considering
other network factors. A major factor in network de-
sign is link failures. Redundancy needs to be built into
the system. An estimate of bandwidth from the model
for a link based on the normal link traffic may be re-
duced to provide this redundancy. However, the model
still plays a role because the bandwidth must be chosen
based on link traffic, but now it is traffic in the event of
a failure elsewhere.
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