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Sampling for Passive Internet
Measurement: A Review
Nick Duffield

Abstract. Sampling has become an integral part of passive network mea-
surement. This role is driven by the need to control the consumption of
resources in the measurement infrastructure under increasing traffic rates
and the demand for detailed measurements from applications and service
providers. Classical sampling methods play an important role in the current
practice of Internet measurement. The aims of this review are (i) to explain
the classical sampling methodology in the context of the Internet to read-
ers who are not necessarily acquainted with either, (ii) to give an account
of newer applications and sampling methods for passive measurement and
(iii) to identify emerging areas that are ripe for the application of statistical
expertise.
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1. INTRODUCTION AND MOTIVATION

1.1 A Brief History of Internet Measurement

Why measure the Internet? The Internet is a large
distributed system that comprises the network in-
frastructure, the hosts it connects, the traffic (in the
form of packets) generated by the hosts and the proto-
cols that govern the transmission of packets between
hosts across the network. The variability of the un-
derlying traffic demands and the complexity of their
interactions present a challenge for service providers,
who must ensure that network resources are matched
adequately with demands. The aim of network mea-
surement is to provide the data for network control,
enabling the service provider to characterize the state
of the network, the demands of traffic and its consump-
tion of network resources, and the performance experi-
enced by traffic on the network. Measurement systems
monitor the system response to reconfiguration to de-
termine if corrective actions are required. Actions op-
erate over a range of time scales, from the deployment
of new network infrastructure over a period of months,
through tracing network attacks over minutes or hours,
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to control of traffic flows in close to real time, for ex-
ample.

Too little data or too much? Internet service
providers have in one sense too little data at their
disposal, while in another sense they have too much.
Too little, because it is not always possible to di-
rectly measure quantities of interest, these being only
components in aggregate measurements. For example,
troubleshooting packet loss requires knowing network
performance on individual links, while in practice it
may only be feasible to measure performance between
two hosts, that is, the composite performance along a
path that comprises several links.

A recent response to the problem of “too little data”
was to develop tomographic methods for inferring
individual components from collections of aggregate
measurements. When troubleshooting loss, correlat-
ing performance measures along intersecting network
paths reveals the performance on the intersection of
those paths. Network tomography is reviewed in an-
other paper in this issue; see also [1] and [16].

The “too much data” problem is that the volumes
collected are truly enormous. A large service provider
may collect data from tens of thousands of network in-
terfaces. A single high speed network interface could
in principle generate hundreds of gigabytes of (un-
sampled) flow statistics per day if fully utilized, while
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the whole network might generate several gigabytes of
simple network management protocol (SNMP) statis-
tics per day. (See Section 3.1 for a description of flow
and SNMP statistics.) Furthermore, the rate of data col-
lection is growing, due to the requirement for ubiqui-
tous fine grained measurements. As a result, routers
and switches are being equipped with increasingly so-
phisticated measurement capabilities, providing ever
more data to the service providers. Let us see why this
has happened.

Why was comprehensive measurement not built into
the Internet from the start? The current need for mea-
surement capabilities stems from their relative lack of
importance in the original design of the Internet. One
of the strengths of the Internet is that endpoints do not
need visibility into the details of the underlying net-
work that connects them in order to transmit traffic be-
tween one another. Rather, the functionality required
for data to reach one host from another is separated into
layers that interact through standardized interfaces. For
example, the transport layer provides a host with the
appearance of a conduit through which traffic is trans-
ferred to another host: lower layers deal with routing
the traffic through the network and the actual transmis-
sion of the data over physical links. Because of layer-
ing, there are scant mechanisms built into the standard
Internet protocols that enable measurement of the net-
work interior from endpoints: what happens in the in-
terior is the business of the lower layers. (A basic
diagnostic tool,traceroute, is an inspired hack that
coerces the network interior into revealing some link
level detail.)

The original Best Effort service model of the Internet
reinforced the lack of detailed measurement capabil-
ities. Best Effort offered no hard performance guar-
antees to which conformance needs to be measured.
Basic robustness of connectivity—the detection of link
failures and rerouting traffic around them—is a task
of the network layer, and so need not concern the
endpoints. Service is uniform for all traffic so mea-
surement capabilities in routers need not differentiate
among different traffic flows. Today only aggregate
loss and utilization statistics are ubiquitously reported
by router interfaces.

1.2 Data Volumes and the Need for Sampling

New services need differentiated measurements. The
need for detailed measurements stems from the current
movement of services beyond the original Best Effort
model. Increasingly, service providers need to char-
acterize fine scale traffic demands—even down to the

level of individual customers—to better match avail-
able resources to them and so insulate traffic from
the underlying variability of network conditions, for
example, by segmenting resources. Measurement of
the bytes used by each customer, perhaps differenti-
ated by application, supports usage sensitive pricing.
Customers want to verify conformance to agreed net-
work performance targets by their own traffic. Service
providers want to measure individual link performance
to identify congestion and take corrective actions be-
fore performance targets are violated. The demands of
real time applications require that measurement take
place at fine time scales. The fact that detailed mea-
surements are not facilitated in the original Internet
design is reflected by the existence of a large number
of research projects devoted to enhancing its measure-
ment capabilities.

The need for data reduction. For many applications,
measured data must be transmitted to collection points
for storage and analysis. The massive volume of data
has cost ramifications for the collection infrastructure.
First, processing and storage resources on the routers
and switches are comparatively expensive and scarce in
practice; they are already employed in the regular work
of routing and switching packets. Second, the trans-
mission of measured data to the collection points can
consume significant amounts of network bandwidth.
Third, sophisticated and costly computing systems are
required for analysis and storage of the data. These
three factors motivate data reduction. However, there
is an inherent tension between reducing data, on the
one hand, and supplying sufficiently detailed measure-
ments for applications, on the other. This tension is
most evident at the observation point, where resources
are typically the least available.

Data reduction is preferably carried out online in a
single pass through the traffic stream to avoid buffering
and reprocessing. Three methods are commonly em-
ployed:

• Aggregation. The combination of several data into
a single composite, the components of which are
then discarded. Aggregation is commonly additive,
for example, finding the total traffic from a set of
sources or over a time interval. Aggregates are used
to provide a compact data summary when it is ac-
ceptable to lose visibility of the aggregate’s compo-
nents.

• Filtering. Selection of data based on the data values;
unselected data are discarded. For example, traffic
from a given source is selected. Filtering is useful to
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drill down to a subset of traffic of interest, once that
subset has been identified.

• Sampling. Random or pseudorandom selection of
data; unselected data are discarded. For example,
simple random sampling of packets. (There is over-
lap between filtering and sampling: implementations
of sampling may be filters by the above definitions,
albeit with an exceedingly complex selection rule.)

The key property that distinguishes the three meth-
ods is that filtering and aggregation require knowing
the traffic features of interest in advance, whereas only
sampling allows the retention of arbitrary detail while
at the same time reducing data volumes.

Away from the observation points—at the collec-
tion point or at intermediate points in the collection
infrastructure—the constraints for data reduction may
relax somewhat, allowing more working storage and
even the possibility of performing multiple passes
through batches of data. This opens the door to em-
ploying other reduction methods in addition to aggre-
gation, filtering and sampling.

1.3 Challenges in Sampling and Analyzing
Sampled Network Data

There are a number of statistical challenges in sam-
pling and analyzing network measurements:

• The majority of available data already have been
sampled during collection. For the reasons described
in the previous section, raw unsampled data are in-
creasingly difficult to come by, so it is natural to ask,
What does the sampled data tell us about the original
network traffic? One of the recurring themes of this
review is how to infer original traffic characteristics
from sampled measurements.

• Implementations of sample designs may be limited
by technology and resources. Technological con-
straints may limit the ability to use the sample de-
sign that is ideal from the purely statistical point of
view. Equipment vendors may implement different
realizations that approximate the ideal. What are the
ramifications for statistical analysis and how do the
results of analysis depend on the implementation de-
tails?

Measurements themselves travel from the obser-
vation point (e.g., a router in the network) through
a number of subsystems to the eventual data repos-
itory, possibly with some preprocessing or aggrega-
tion on the way. Each stage in the journey presents
an opportunity for sampling. At which stage is sam-
pling best performed?

• The best choice of sample design depends on traf-
fic characteristics. Experimental studies show that
network traffic exhibits dependence and rate fluctu-
ations over multiple time scales, leading to heavy-
tailed distributions for some traffic statistics. Sample
design needs to take account of such behavior, for
example, to control estimation variance.

• The best choice of sample design depends on the sta-
tistics needed by applications. There is no general
agreement on which set of traffic statistics is most
useful for network management. Whereas it is pos-
sible to optimize the sample design with respect to
estimation of a given set of statistics, the design may
be suboptimal for another set of statistics that could
play an important role for some future application.
For this reason, analyzing the trade-offs between sta-
tistical efficiency and flexibility is an important task
for sample design.

1.4 Summary and Outline

This paper reviews the current practice and proposals
for collecting sampled traffic measurements, together
with the technological factors that constrain the man-
ner is which collection is performed, and their interplay
with the requirements of applications that use the mea-
surements.

Section 2 describes the information available in
packets and its uses for managing networks. A sum-
mary of protocols used to transmit data across the Inter-
net is provided in the Appendix. Section 3 describes the
two main technologies for collection of detailed pas-
sive measurements: packet monitoring, which reports
in individual packets, and flow monitoring, which re-
ports on temporal aggregates of flows of related pack-
ets.

Section 4 describes the classical sample designs
(simple random, systematic and stratified; count and
time based) that have been employed for traffic sam-
pling. Some experimental work that compares their
relative effectiveness in packet sampling is discussed,
along with limitations that arise from traffic burstiness.
Section 5 describes the statistical ramifications of em-
ploying estimated usage from sampled packet and flow
measurements. Measurements may be omitted delib-
erately through sampling or accidentally due to loss
in the measurement infrastructure that recovers and
processes the measurements. Different techniques to
account for these omissions during estimation are de-
scribed.

Sampling flow records presents a challenge, because
a small proportion of flows contain a large propor-
tion of the traffic. Usage estimates based on sampled
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flow records are therefore very sensitive to omissions
of records of large flows. Section 6 discusses sampling
methods that aim to reliably capture the usage of longer
flows: the first method by correlated sampling of the
packet stream during flow formation and the second
method by sampling the completed flow records with
probability proportional to size. A third approach, uni-
form sampling of the packet stream prior to forma-
tion of flow records, reduces the consumption of router
resources during measurement. Usage-based billing is
the application most sensitive to sampling variability
in usage estimates. This section concludes with a dis-
cussion of how billing and sampling can be coupled to
ameliorate the worst impact of sampling variability.

Sampling trades off the opposing goals of control-
ling estimation accuracy and sample volumes. Offered
traffic loads vary systematically over daily and weekly
periods, and in response to network reconfiguration.
In practice it is necessary to adapt sampling rates to
these variations so as to maintain the desired trade
off. Section 7 discusses four recent proposals for dy-
namic adaptation in the collection of sampled packet
and flow statistics. Application level flow statistics, in-
cluding the frequency and lengths of flows, have been
used in a number of measurement-based applications.
Section 8 outlines some methods by which these statis-
tics can be recovered from the flow records generated
from a sampled packet stream, as currently collected
by some routers.

The ability to sample all of a subset of packet that
shares some common property or sample the same
packet at multiple points, enables a new set of power-
ful measurement-based applications, including passive
performance measurement and route troubleshooting.
This ability can be realized through hash-based sam-
pling, in which packet selection depends on a hash of
the packet content. This is described in Section 9. Al-
though hashing is deterministic, selection appears al-
most random if a strong hash function is used and if
there is sufficient variability among the content of dif-
ferent packets.

Simple random sampling is easy to implement and
the sampling operation itself requires virtually no
additional storage. Relaxing these requirements some-
what opens new possibilities for data reduction, espe-
cially at the collector where resource constraints are
less stringent than at the collector. Section 10 describes
recent approaches for forming compact approximate
representations of streams of objects. One focus is on
employing data structures that construct compact rep-
resentations of the dominant traffic components with a

prescribed accuracy and in one pass through the data.
In data squashing, a full set of data records is replaced
by a weighted set of elements of the same form, al-
though the most compact representations require more
than one pass through the data.

Packet sampling methods for routers and other de-
vices are currently being standardized within the In-
ternet Engineering Task Force. Some vendors already
support packet sampling operations. Should distinct
sampling designs be different standard sampling op-
erations or can they be regarded as just different im-
plementations of a single standard sampling function?
These matters are discussed in Section 11. Section 12
concludes with a look to future challenges for data re-
duction in passive measurement.

2. INFORMATION IN TRAFFIC AND THE USES
OF MEASUREMENT

2.1 Internet Protocols and their Functions

Data are transmitted between hosts across the In-
ternet in packets constructed according to a layered
set of protocols that specify the packet layout and the
function of the packet content; this is described more
fully in the Appendix. Each protocol is represented in
the packet through content that comprises the payload
(which comprises the data to be mediated by the proto-
col) and the protocol header (which comprises control
information). The content of one protocol may form
the payload of a lower layer protocol; this is called en-
capsulation.

In passive packet measurement we are primarily in-
terested in the information contained in the protocol
headers. Network protocol headers are used by routers
to forward the packet toward its destination. Most
often the network protocol used is the Internet proto-
col (IP) [82], although encapsulation by the connec-
tion oriented multi protocol label switching (MPLS)
[4] is becoming more common. The network protocol
encapsulates the transport protocol used by end-hosts
to control end-to-end transmission and to direct packets
toward the intended application at the end-host. Cur-
rently, two transport protocols predominate: the user
datagram protocol (UDP) [81] and the transmission
control protocol (TCP) [83]. The transport protocols
encapsulate the data to be transmitted, which may it-
self be generated through application level protocols
such as the hypertext transfer protocol (HTTP) [6, 43]
used for Web transfers.
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2.2 The Information in Protocol Headers

Packet protocol headers are of central interest in net-
work management for three reasons:

• Protocol headers determine packet treatment by the
network. For example, the packet’s routing and its
priority relative to other packets. The ability to mea-
sure the rates of traffic classified according to header
fields is necessary to understand patterns of use of
network resources by traffic and how they respond
to changes in network configuration.

• Attribution of packet origin. The IP header contains
the source and destination IP address of the packet.
In combination with routing, topology and other in-
formation, the addresses can be used to attribute
the host or administrative entity responsible for the
packet’s presence. Some network attacks obscure
their origin by forging the IP source address of at-
tacking packets; this is known asspoofing. Methods
that alleviate the problem of identifying the origin
of a spoofed attack by measuring packetpaths are
discussed in Section 9.

• Characterization of applications. UDP and TCP
protocol headers include a port number field that is
used to direct the packet to the intended application
at its destination; see [87]. The values used are stan-
dardized or conventional for some applications, and
so the responsible application can often be inferred
by inspection of the packet’s port numbers. For ex-
ample, some networks block access to the Internet
by file sharing applications, based on port numbers
used by the applications. (On the other hand, con-
ventions on port usage may be ignored precisely to
evade such characterization.) Security applications
can identify packets involved in a network attack
by matching header fields to known signatures of
known attacks. For example, the Slammer worm is
characterized by packets of a certain length that em-
ploy a specific port [74]. The state of some protocols,
for example TCP, may be tracked through observa-
tion of flags set in their headers.

The actual application data communicated in pack-
ets by the host are usually not of interest for network
management since, in most cases, the functioning of
the network is not correlated with the values the data
take. However there are some exceptions, including
(i) data contained in packets of routing protocol, which
are useful for understanding the routing state of the net-
work, and (ii) URLs contained in the payload of certain
HTTP packets, which are useful for determining the us-
age of content resources at Web servers.

2.3 Applications of Usage Measurements

Many network management applications employ
measured traffic usage, in packets or bytes, that is
differentiated according to header fields into classes
at some granularity that depends on the application
requirements. A selection was described by Cáceres
et al. [8] and in the review by Grossglauser and
Rexford [49]. Here are some examples:

• Service development. Service providers track the
growth of new applications (as identified by
TCP/UDP port numbers) and identify potential new
customers that use them (from packet IP addresses
not administered in their network).

• Heavy hitters. Determining the dominant compo-
nents within a class of traffic, for example, the most
popular websites, based on the IP destination ad-
dress of HTTP requests.

• Security applications. Detecting usage indicative of
network intrusions, including changes of patterns
of usage of specific protocols and TCP/UDP ports,
and most active hosts and networks involved; see
[86] and [94] for applications of sampling methods
to these topics.

• Network engineering. A service provider determines
the intensities of traffic between sets of source and
destination addresses that is carried over a congested
link. This information could be used to examine the
feasibility of rerouting portions of the traffic away
from the congested link; see [39, 40].

• Chargeback. A corporate intranet apportions its
costs to constituent organizations, based on us-
age that originates in the organizations’ IP address
ranges.

• Customer billing. A service provider charges cus-
tomers, as identified by IP address, for byte usage.
The rate of charge may depend on application type
(as identified by TCP/UDP port numbers). Charg-
ing based on remote address (e.g., whether on or off
the provider’s network) also has been proposed (see,
e.g., [68]). Information on some commercial exam-
ples of the use of flow records for billing purposes
can be found in [13]. The use of packet samples for
billing is proposed for InMon’s sFlow [55].

The accuracy requirements of these applications are
quite different; the list above is (roughly) ordered by
stringency, where customer billing is the most strin-
gent. There are strong legal reasons for not overbilling
customers and it would not be good customer relations.
(Some regulatory environments may prohibit billing on
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estimated usage.) On the other hand, network manage-
ment applications can probably tolerate errors of quite
a few percent in estimating usage by a class of traf-
fic. The ramifications of sampling for the estimation of
network usage are a central theme of this review.

2.4 Other Measurement Applications

Although estimating per class rates from sampled
measurements at a point forms a substantial part of this
review, sampling is also compatible with measurement
or inference of other traffic properties. This review de-
scribes two examples:

• Path measurement. Section 9 describes a method to
measure entire paths of packets through the network.
As well as determining per class usage along paths,
this method enables thepassive measurement of net-
work path performance, route troubleshooting and
network attack tracing.

• Traffic structure. Sampling can present a challenge
to the determination of detailed structural proper-
ties of traffic (such as the duration of traffic flows)
or the composition of application transactions (such
as a Web browsing session) in terms of multiple
application flows. An inference method whereby
sampled measurement are used to infer detailed
structural properties of the original unsampled flows
of traffic is described in Section 8.

Passive measurement has been used to reveal com-
plex temporal properties of network traffic (see,
e.g., [67]). These measurements usually have been per-
formed on special purpose monitors that capture all
traffic on a network link. It remains a challenge to de-
termine the extent to which the perception of these
properties, and changes in them, is compatible with
routine sampled measurement.

3. PASSIVE TRAFFIC MEASUREMENT

3.1 Active and Passive Measurement

Network measurements are commonly divided into
two categories: active and passive. The two types
of measurement generally focus on different aspects
of network behavior. In active measurement, probe
packets are sent between hosts. Since probes can be
launched from any accessible host, active probing is
well suited to end-to-end performance measurement.
End-to-end packet loss can be inferred from gaps in
probe sequence numbers observed at the destination,
while end-to-end delay is determined by comparing
(suitably synchronized) time stamps placed in each

probe by the source and destination. Packet content
is of interest insofar as it influences performance char-
acteristics, such as through differential treatment by
routers of packets based on their IP header fields (e.g.,
the type of service field).

Common active measurement tools such asping
andtraceroute allow users to measure roundtrip
performance from a host without requiring privileged
access to routers in the network interior. (Although
ping andtraceroute do require the destination to
respond to Internet Control Message Protocol (ICMP)
packets, an ability which may be administratively dis-
abled.) Bulk throughput can be estimated using the
treno tool [71], which creates a probe stream that
conforms to the dynamics of TCP.

In passive measurement, routers or other hosts mea-
sure existing traffic passing through or destined to
them. Passivity requires both that the packet content is
unaltered by measurement and that the operation of the
measurement infrastructure introduces at worst negli-
gible disruption to the normal passage of traffic in the
network. For example, a router must not deplete its re-
sources by measurement to the extent that its normal
functions of routing and forwarding packets are im-
paired. Of course, exporting measurements to a col-
lector consumes network resources, causing a least a
small perturbation in the traffic patterns, but measure-
ment traffic ought not to consume more than a fair
share of bandwidth under normal operating conditions.
(On the other hand, during overload conditions, it may
be desirable for measurement traffic to claim more than
its fair share of bandwidth so as to maintain collection
of measurements.) Data reduction before transmission
clearly has a role to play in limiting the measurement
transmission bandwidth.

The rest of this section is devoted to passive mea-
surement. Three forms of passive measurement are
described: SNMP data in Section 3.2, packet monitor-
ing in Sections 3.3 and 3.4, and flow statistics in Sec-
tion 3.5.

3.2 MIBs and SNMP Statistics

Passive network measurements are commonly
collected in three ways: (1) polling management in-
formation base (MIB) data from routers, (2) packet
monitoring and (3) flow monitoring. In the first of
these, routers keep coarse grained statistics in an MIB.
A particular version, MIB-II, is standardized and hence
available across many network elements. However, the
information is only available in a form which is spa-
tially highly aggregated: counters of packets and bytes



478 N. DUFFIELD

transmitted and lost at an interfaces. These quantities
are recovered by polling the routers using SNMP, the
simple network management protocol [9]. (Although
the name refers to the protocol, it commonly connotes
these statistics.) The SNMP statistics are commonly
polled every 5 min, although polling at intervals down
to a few seconds is claimed to not impair router
performance; see [18]. Another standardized MIB,
RMON [98], was designed for remote monitoring. An
RMON agent operating in a network device can be
configured to compute traffic statistics, and recognize
and respond to defined network conditions, for exam-
ple, by capturing packets or raising alarms. This ver-
satility makes RMON complex, and implementations
are limited to low speed interfaces. However, it is not
well suited to the continuous measurement and export
of detailed traffic data. In the remainder of this section,
we describe packet and flow monitoring currently used
for this purpose.

3.3 Packet Monitoring

Packet monitoring entails passively copying a stream
of packets, then selecting, storing, analyzing and/or ex-
porting information on these packets. Until recently
packet monitoring was performed exclusively by spe-
cial purpose hosts installed in the network; see, for ex-
ample, [3, 8, 21] and [42]. A copy of the packet stream
is brought to a monitor in one of three ways: by copy-
ing the physical signal that carries the packets (e.g.,
with an optical splitter) and bringing the signal to an
interface on the monitor; by attaching the monitor to
a shared medium that carries the traffic; by having a
router or switch copy packets to an interface to which
the monitor is attached.

Packet monitors have to cope with some formi-
dable demands on their resources, particularly on the
processing bandwidth needed to work at the full line
rate of increasingly high speed links. Restricting data
capture to some initial number of bytes of the packet is
a common way to control data bandwidth at the mon-
itor. This is a reasonable solution, since the IP header
and other protocol header information is located at or
near the start of the packet. Even so, widespread con-
tinuous collection, transmission and storage of unre-
duced packets has been infeasible for a number of years
due to the immense volumes of data relative to the ca-
pacity of systems to collect them; see [2] for an early
reference and [72] for a recent one. Collection of full
packet header traces is feasible only for limited dura-
tions. Instead, for applications that require continuous
monitoring over an extended period, it is common to

perform analysis at or near the monitor by forming
flow records (see Section 3.5 below) or other aggre-
gate statistics (see [3]), or a more general stream query-
ing functionality (see [21]). Collection of packet IP and
transport headers is commonly performed usingtcp-
dump [57] or its variantwindump [99]. Depending on
the traffic load and processing power at the measure-
ment host, these tools may also be able to capture parts
of the packet payload.

3.4 Embedded Packet Monitoring
in Network Elements

Deployment of packet monitors is limited by equip-
ment availability and administrative costs. A more re-
cent approach to packet monitoring was to embed
the passive measurement functionality within network
elements such as routers and switches. Once packet
monitoring capabilities become available in network
elements, packet measurement can become ubiquitous
in the network. However, little or no capabilities for
measurement analysis are expected to be available
in routers and switches, because they generally lack
the additional computational resources for this pur-
pose. Instead, some form of data reduction is required,
both in the selection of information from packets and
in the selection of packets to be reported on. Some
packet sampling capabilities are becoming available in
routers, for example, sampling in InMon’s sFlow [80].

Packet selection capabilities for network elements
are currently being standardized by the Packet Sam-
pling (PSAMP) Working Group of the Internet Engi-
neering Task Force (IETF); see [53]. The aim of this
work is to define a set of packet selection capabilities
which are simple enough to be ubiquitously deployed,
yet rich enough to support the needs of measurement-
based network management applications. Although
specific selection operations are yet to be finalized, it is
likely that this will include filtering and various forms
of sampling.

3.5 Flow Records

A flow of traffic is a set of packets with a common
property, known as the flow key, observed within a pe-
riod of time. Many routers construct and export sum-
mary statistics on packet flows that pass through them.
Ideally, a flow record can be thought of as summarizing
a set of packets that arises in the network through some
higher level transaction, for example, a remote terminal
session or a Web-page download. In practice, the set of
packets that are included in a flow depends on the algo-
rithm used by the router to assign packets to flows. The
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flow key is usually specified by fields from the packet
header, such as the IP source and destination address
and TCP/UDP port numbers. Flows in which the key
is specified by individual values of these fields are of-
ten calledraw flows, as opposed toaggregate flows in
which the key is specified by a range of these quanti-
ties.

Flow statistics are created as follows. When a packet
arrives at the router, the router determines if the flow is
active, that is, if statistics are currently being collected
for the packet’s key. If not, it instantiates a new set of
statistics for the key. The statistics include counters for
packets and bytes that are updated according to each
packet matching the key. When the router judges that
the flow is terminated, the flow’s statistics are exported
in a flow record and the associated memory is released
for use by new flows. A router commonly terminates
a flow if one of the following criteria is met: (i) inac-
tive flow or interpacket timeout, that is, the time since
the last packet observed for the flow exceeds some
threshold; (ii) protocol level information, for example,
a TCP FIN packet that terminates a TCP connection;
(iii) memory management, that is, termination to re-
lease memory for new flows; (iv) active flow timeout,
that is, to prevent data staleness, flows are terminated
after a given elapsed time since the arrival of the first
packet of the flow.

Flow definition schemes have been developed in re-
search environments (see, e.g., [3] and [14]) and are
being standardized by the IP Flow Information Ex-
port (IPFIX) [54] Working Group of the IETF. Exam-
ples of flow definitions employed as part of network
management and accounting systems can be found in
Cisco’s NetFlow [12], QoSient’s Argus [84], River-
stone’s LFAP [88] and XACCT’s Crane [101]. A flow
record typically includes the properties that make up
a flow’s defining key, the arrival times of the first and
last packets, and the number of packets and bytes in the
flow.

Flow records yield considerable compression of in-
formation, since a flow is summarized in a fixed length
record, regardless of the number of packets in the flow.
The trade-off is loss of detail of the timing of pack-
ets within the flow. The compression factor depends on
the composition of traffic: it is greater for long flows
and smaller for short flows. For traffic mixes observed
in backbone traffic, byte compression factors for IP and
transport headers versus NetFlow records of 25 or more
are commonly attainable.

4. SELECTION OPERATIONS FOR SAMPLING

In this section we describe how classical sampling
methods are currently applied to the sampling from
streams of packets or flows. At a formal level it makes
no difference whether we sample packets or flows; we
use the term “object” to denote either. We examine how
the choice of sampling design is influenced by both
the technological setting and the underlying statistical
properties of the objects to be sampled. We also report
on studies that compare the accuracy of some of the
sampling methods.

Sample designs for packet sampling were catego-
rized initially by Amer and Cassel [2] and employed
in subsequent work; see [15,103]. We employ this cat-
egorization in parts and also codify definitions to some
measurement terminology in common use. Although
the term “sampling” is widely used, we often use the
wider term “selection” because some of the methods
described here do not entail sampling except in a de-
generate sense. Rather, we wish to include methods
that are deterministic in the sense that the selection
decision for an object is determined exactly by its
content, that is, with no randomness. In the terminol-
ogy emerging in the PSAMP Working Group of the
IETF [53], such deterministic selection operations are
called filters; all other selection operations are called
sampling operations. This is intuitive in the sense that
if the selection of an object is not determined entirely
by its content, there must be some form of sampling
taking place.

4.1 Model for Objects under Measurement

We start with a description of the objects to be mea-
sured and their attributes. The stream of objects passes
an observation point at which they are sampled. The
stream is modeled as a (marked) point process that
comprises the sequence of pairs{(ti , ci) : i = 1,2, . . . }.
Objects are indexed by the counti of their order of ar-
rival at the observation point andti is the time of obser-
vation of objecti, so thatti ≤ ti+1. The markci is the
content of objecti and takes its value in some setC.
We can regardC as a set{0,1}� of binary vectors of
some length�. It is the entirety of the object under
measurement, for example, header plus payload for a
packet. Our two examples of objects are packets and
flow records. Generally, these objects can have vari-
able length; in each case� is taken to be the maximum
possible number of bits that can be occupied by the ob-
ject.
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4.2 Selection and Triggers

Describing a given selection method entails specify-
ing the rule by which the countsi of selected objects
are derived from the full observed stream of objects.
The structure of the rules used in practice often makes
it convenient to use a two-step specification. The first
step is to specify a set of triggers. A trigger is an event
or time at which some type of packet selection is ini-
tiated (the trigger is said to “fire”). In the second step,
when a trigger fires, a number of the objects are then
selected from the stream according to a specified rule
over some period of time. No further objects are se-
lected until the next trigger fires.

We consider two types of triggers: count driven and
time driven. Count-driven triggers form an increas-
ing sequence of counts{in :n = 0,1,2, . . . }, denoting
the object at which each trigger fires. Likewise, time-
driven triggers form an increasing sequence of times
{τn :n = 0,1,2, . . . }. In the simplest cases, the objects
selected are those at which the count-based triggers
fire. An example of a time-driven trigger is one in
which the triggers form a Poisson process, each trigger
initiating selection of the first object (if any) that is ob-
served before the next trigger fires. In a more complex
example, triggers fire upon observation of an object
with a specified content (see Section 4.3 on filtering),
after which any objects observed in the nextt seconds
are selected. Triggers and selection of this type are con-
figurable in RMON probes [98].

Ideally, the model of the trigger process is suf-
ficiently flexible to allow response to specified pat-
terns of multiple packets arriving in an interval. In
practice, two technological requirements can constrain
such temporal dependence of triggers and packet selec-
tion. First, some network control applications require
measurements to be transmitted to them as soon as pos-
sible after the measurement is made. For this reason
we usually assume that triggers are adapted to the ob-
ject stream in the sense that the selection decision for a
given object cannot be contingent on future objects in
the stream. More formally, we want to be able to deter-
mine whether triggern has already fired by arrival of
objecti (i.e.,in ≤ i), from inspection ofi, the firsti ob-
jects {(tj , cj ) : 1 ≤ j ≤ i}, and possibly some random
variable whose distribution depends only on the first
i objects. The second requirement is that dependence
on the past does not require use of large amounts of
storage. A simple example that fulfills this requirement
is independent sampling. In general, any influence of
the past on the current sampling decision should be
through some small number of variables that are eas-
ily stored.

4.3 Filtering

Filtering is the selection of the objects based only on
their content. The objecti is selected if its contentci

lies in a specified subset of the content setC. Most
commonly, filters are specified as mask/match opera-
tions. These are specified by two memberscmask and
cmatch of the content setC, which is regarded as a set
of binary strings of a fixed length. The maskcmask is
applied to the contentci by taking their bitwise logi-
cal AND. The object is selected if the result is equal
to cmatch.

Objects with variable format present challenges for
filtering, since a given field of interest may not have
a constant offset from the start of the object. A spe-
cific example concerns IP packets with options. The
header of an IP packet with options is longer than in a
packet without options. Fields in the IP payload, such
as TCP/UDP port numbers, occur at a greater offset
from the start of the packet. Applying a fixed length
mask/match to the whole packet under the expecta-
tion that IP options are not present results in misalign-
ment of the mask with its intended target in a packet
with options. One approach in this case is to parse
the packet for the desired fields and apply the relevant
mask/match to each field separately. The packet is then
selected if it passes each constituent filter. However,
such parsing increases the computational cost for fil-
tering.

4.4 Uniform Sampling

This section reviews classical sampling methods—
systematic, simple random and stratified sampling—
and their common applications in passive Internet mea-
surement.

4.4.1 Systematic sampling. In count-based system-
atic sampling, the triggers arein = nN + i0, the oc-
currence of objects with integer periodN > 0. In the
simplest case, the objectin is selected. More gener-
ally, M ≤ N objectsin, . . . , in+M−1 are selected. An
example is the capture of subsets of successive packets;
see [59] for specification of a commercial implemen-
tation. Sampling of consecutive packets may be use-
ful for understanding the detailed dynamical behavior
of packet streams. In time-based systematic sampling,
triggers fire at timesτn = nT + τ0. Selection takes
place after each trigger has fired, for example, selec-
tion of the next arriving object or all objects arriving
within a timet of the trigger.

Systematic sampling is very straightforward to im-
plement: Set a counter to the sampling period, decre-
ment on each packet, select a packet on reaching zero,



SAMPLING FOR PASSIVE INTERNET MEASUREMENT 481

then reset the counter and repeat. However, systematic
sampling is vulnerable to bias if the objects being sam-
pled exhibit a period which is rationally related to the
sampling period, since samples are taken only at a dis-
crete set of phases within the period. Potential sources
of periodicity are timers in protocols and periodically
scheduled applications. A further drawback is that peri-
odic sampling is to some extent predictable and, hence,
open to deliberate manipulation or evasion; see [77]
and [78] for further discussion.

4.4.2 Random additive and simple random sam-
pling. The potential problems of systematic sampling
are avoided by suitable use of random additive sam-
pling. Here, the intervals between successive triggers
are independent random variables with a common
distribution. (Periodic sampling is a degenerate case
where the random variable takes a constant value.)
The advantages of random additive sampling for In-
ternet measurement were highlighted by Paxson [77].
It avoids synchronization problems. Choosing the
intervals to be geometrically distributed (for count-
based sampling) or exponentially distributed (for time-
based sampling) avoids predictability. Furthermore,
Wolff’s Poisson arrivals see time averages (PASTA)
property [100] ensures that any empirical mean over
sampled objects is an unbiased estimator of the cor-
responding population mean. For these reasons, ran-
dom additive sampling is recommended in standards
for performance metrics; see [78].

A simple implementation of random additive sam-
pling is to generate, immediately following a given
trigger, the length of the interval until the next trigger.
However, when the interval distribution has unbounded
support—for example, with the exponential or geomet-
ric distribution—some generated intervals will not fit
in storage unless a cutoff is applied. The special case
of geometric random additive sampling with mean in-
tersample countm is equivalent to simple random sam-
pling with probability 1/m. It can be implemented by
making a sampling decision for each object, although
this is computationally more costly than generating
random intersample times.

4.4.3 Uniform stratified random sampling. In strati-
fied random sampling, objects are assigned to strata ac-
cording to an attribute; then a number of elements are
drawn randomly from each stratum. Stratification re-
duces the variance of single packet statistics if the vari-
ance between strata is greater than the variance within
strata. In uniform stratified sampling, the number of el-
ements in each stratum is the same, as is the number se-

lected from each stratum. Thus the marginal selection
probability for each object is identical, but some com-
bination selections are disallowed. Criteria for choos-
ing strata, including optimal selection of stratum width,
were discussed by Cochran [17] and Krishnaiah and
Rao [63].

Uniform stratification based on packet count was ex-
amined by Claffy, Polyzos and Braun [15]. Each group
of N successive packets forms a stratum, then some
numberM < N of each are drawn at random. Note
that this form of sampling is adapted in the sense of
Section 4.2, because, since the size of the stratum is
fixed, the random positions of the selected packets can
be generated in advance for each stratum.

4.5 Comparison of Uniform Packet
Sampling Methods

The relative strengths of the uniform sampling meth-
ods have been investigated by several authors in the
context of packet sampling. Amer and Cassel [2] dis-
cussed the maintenance of estimates of mean and vari-
ance of packet characteristics, such as packet length,
from sampled measurements. Claffy, Polyzos and
Braun [15] used packet traces to compare distributions
of packet lengths and interarrival times of the full traces
with those obtained by sampling their time series. Ac-
curacy was compared using a chi-squared measure of
discrepancy; see also [78, 81]. Time-based sampling
was found to be uniformly less accurate than count-
based sampling. This is due to traffic patterns: It is well
established that Internet traffic is bursty over a range of
time scales (see, e.g., [67]). Consequently there can be
inhomogeneous bursts of many packets with small in-
terarrival times. Time-based sampling methods more
easily miss these than a count-based method, and es-
timators built on them have higher variance. On the
other hand, accuracy among the count-based sampling
methods was very similar. Recent work by Zseby [103]
compared sampling methods in the context of valida-
tion of service level agreements for packet delay.

Although selection probabilities for single packets
are identical for the three methods, selection prob-
abilities for multiple packets are generally not. For
example, back-to-back packets that share a common
property (e.g., a flow key) are never sampled using sys-
tematic sampling. The use of different packet sampling
methods prior to flow formation is discussed further
in Section 6. The ramifications of forming standards
for packets for packet sampling are discussed in Sec-
tion 11.
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4.6 Nonuniform Probability Sampling

Nonuniform probability sampling is a design in
which objects are sampled with a probability that can
depend on their content. This design can be used to
weight sampling probabilities in order, for example,
to boost the chance of sampling objects that are rare
but important. For example, a small number of flow
records are important because they report a large frac-
tion of the traffic; this application is treated in more
detail in Section 6.3.

Assume the content of each objecti contains a quan-
titative fieldxi and that the object is selected with prob-
ability pi . With nonuniformpi , some generalization of
the usual sample mean is required to form an unbi-
ased estimator of the population meanx of x. Sup-
pose that out of a population of sizeN , objects with
sizesx1, . . . , xn are randomly selected. The Horvitz–
Thompson estimatorN−1 ∑n

i=1 xi/pi is an unbiased
estimator ofx when allpi > 0; see [52]. IfN is not
known, it has an unbiased estimator

∑n
i=1 1/p(xi).

Uniform sampling is special case: The expected value
of n/N is the uniform sampling probability. The
Horvitz–Thompson estimator has the useful property
that its variance itself has a relatively simple unbiased
estimator. However, although unbiased, this variance
estimator can have large enough variance to take neg-
ative values, depending on the degree of correlation
in selection of objects. Related variance estimators
that trade off various drawbacks were described by
Thompson and Seber [95].

A particularly attractive form of nonuniform prob-
ability sampling is probability proportional to size
(PPS) sampling. Here it is assumed that some auxiliary
size variableyi is known for allN objects from which
selection takes place. Choosingpi proportional toyi

is attractive because ifxi is roughly proportional toyi ,
then the terms in the Horvitz–Thompson estimator will
be roughly constant, leading to low variance. In the net-
working context, an example is estimating the mean of
the packetsxi from sampling flows from PPS sampling
based on the numbers of bytesyi .

If all objects are already available in a data base,
we could, in principle, sample using probabilitiespi =
yi/

∑N
i=1 yi . This is not suitable for sampling from a

stream of objects if sampling is to be adapted in the
sense of Section 4.2, since object sizes are not known
in advance. Section 6 describes a method for condi-
tionally independent size-dependent sampling of flow
records that is adapted; some nonadapted sampling
methods better suited to sampling from data bases are
listed in Section 7.

4.7 Emulation of Random Sampling and the
Generation of Pseudorandom Variates

Although pseudorandom number generators with
well understood properties have been developed (see,
e.g., [65]), they may not be the method of choice for
implementations of random sampling in settings where
computational resources are very scarce. For example,
in a router, the budget for computational operations per
packet is very small.

An alternative approach is to use object content to
generate pseudorandom variates. For this reason, some
implementations of random sampling can actually be
regarded as filters, albeit complex ones. The statisti-
cal ramifications of this approach need to be carefully
examined. For example, unexpected dependence in the
content of different objects can lead to dependence in
sampling. If the mechanism by which content trans-
lates to the pseudorandom variates is not sufficiently
complex, it may be possible to subvert sampling with a
stream of appropriately crafted objects. An example in
Section 9 shows how both of these potential problems
can be ameliorated.

Bear in mind the difference between nonuniform
probability sampling and the generation of pseudoran-
dom variates from content. The former is a sample de-
sign where the selection probabilities depend on con-
tent; the latter is an implementation choice to exploit
object content to emulate random choice (e.g., simple
random sampling).

4.8 Aggregation

Section 1.2 listed aggregation as one of the alter-
native methods for data reduction. Although aggre-
gation is not a selection operation, for completeness
we formalize the most common notion of aggregation
employed in Internet measurement. Typically this in-
volves aggregating the byte or packet usage of a set of
objects that share a matching key.

We view the contents of each object as including two
parts(a, c), wherea ∈ A is the field to be aggregated
over andc is an attribute that is to be combined through
addition (e.g., a byte size). Given a set of objects with
contents{(ai, ci)} and a partition ofA into grains{An},
the aggregates take the form(An,

∑
i : ai∈An

ci) for n

such that{i :ai ∈ An} is nonempty. In other words, for
each grainAn present in the set of objects under aggre-
gation, the aggregate records the total of the attribute
valuesci present in all objectsi for whichai ∈ An.

As an example, the aggregate represents the total of
the bytesci reported in IP flow recordsi, broken down
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according to the destination IP routing prefix. Here,
ai is the destination IP address of the flow, and{An}
is the covering of the routeable IP address space ac-
cording to an IP prefix.

5. PACKET SAMPLING AND VARIABILITY IN THE
ESTIMATION OF NETWORK USAGE

This section discusses renormalization of usage esti-
mates from reports on uniformly sampled packets and
how to take into account the effect of loss of reports in
transit.

5.1 Renormalization of Measured Usage with
Target Sampling Rate

We saw in Section 4.6 that each sampled value,
such as a packet or flow length, must be renormal-
ized through division by its selection probability so
as to obtain an unbiased estimator of the original. Let
there beM packets in a given class, of whichm are
selected when sampling independently at ratep. We
form an unbiased estimatêM1 of the total packetsM
in that class bŷM1 = m/p. Bytes are estimated sim-
ilarly. Let the M original packets in the class have
sizesb1, . . . , bM with total B = ∑M

i=1 bi . Then B̂1 =
p−1 ∑′

i=1,...,M bi is an unbiased estimator ofB, where∑′ denotes the random sum over sampled packets only.

5.2 Renormalization of Measured Usage with
Attained Sampling Rate

An alternative renormalization uses theattained
sampling rate, which may be calculated when suffi-
cient information is provided in the measurements.
In InMon’s sFlow [55], routers include the cumu-
lative count of all packets arrived at the observa-
tion point—whether sampled or not—in each sampled
packet report. By subtraction of counts, the collector
can calculate thepool size, that is, the number of pack-
ets that arrived at the observation point between two
given packets for which reports reached the collector.
Let the pool size beN , of whichn packets in all classes
were sampled. The attained sampling rate for all traffic
is n/N . Assuming this rate applies uniformly across all
constituent classes, the estimate of the total packets in
the class of interest is obtained by dividing the num-
ber m of sampled packet in the class by the attained
sampling rate, yieldinĝM2 = mN/n.

Analogous estimates for original bytes can be
formed. In principle the attained sampling rate could
be formed using either packet counts or byte counts.
In practice, the estimate derived from packet counts is

preferable: the estimate derived from byte counts has
higher variance due to the variability of packet sizes.

The attained loss rate between two received packets
is independent of which intervening packets were lost.
Thus renormalization with the attained loss rate is less
sensitive to deviations from independent sampling than
renormalization with the target loss rate, provided that
the deviations affect all traffic classes equally.

5.3 Variance of Usage Estimates from Uniform
Random Sampling

Assuming independent packet selection with prob-
ability p, M̂1 has coefficient of variations1 = ((1 −
p)/(pM))1/2, but M̂2 offers some reduction in vari-
ance. Suppose thatN,M → ∞, with the proportion
of packetsM/N in the class under consideration con-
verging tor . An application of the delta method [91]
shows that the coefficient of variation of̂M2 con-
verges tos1

√
1− r . The byte estimator̂B1 has coef-

ficient of variation((1 − p)
∑M

i=1 b2
i /p)1/2/B. Since

packet sizes are bounded above by the maximum trans-
mission unitbmax of the link at which measurement
takes place, we can usefully bound this error above by√

bmax/(pB).
Since the coefficients of variation are inversely pro-

portional to the square root of the actual usage, larger
contributions to usage are more reliably estimated than
smaller ones. This is useful for applications. For exam-
ple, the relative error in estimating high volume con-
tributions to network usage is smaller than for general
classes. This property was exploited by Jedwab, Phaal
and Pinna [58] to identify heavy hitters through packet
sampled usage. Their scheme assumes that only lim-
ited storage is available for ranking traffic classes by
usage. If instantiating a new class would exceed stor-
age capacity, the ranking information is truncated by
discarding all classes except a certain number of the
highest ranking. The probability of misranking can be
controlled to be small.

Usage-sensitive charging can also benefit from in-
creased estimation accuracy by lengthening the billing
period over which samples are collected; see [55] in the
context of packet sampling and [28] in the context of
flow sampling. For the purpose of cluster analysis for
intrusion detection, Taylor and Alves-Foss [94] used
differential packet sampling rates on traffic attributed
to different applications—according to TCP/UDP port
number—to take a comparable number of samples
from each class.
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5.4 Report Loss Viewed as Sampling

Packet reports are subject to loss at the observation
point, in transmission or at the collector. Report loss
can be viewed as an additional form of sampling, albeit
with a priori unknown sampling properties.

To apply the correct renormalization to measured us-
age for unbiased estimation, the transmission rate of
the reports must be known. A strength of renormalizing
with the attained sampling rate as described in Sec-
tion 5.2 is that the attained sampling rate between
observation point and collector already combines the
effect of all packet loss between the two points,
whether due to sampling or packet loss.

When renormalizing usage with the target sam-
pling rate, the report transmission rate must be deter-
mined independently. If the observation point inserts
sequence numbers in reports prior to transmission, the
attained transmission rate can be estimated using the
method described in Section 5.2. Renormalization is
then performed using the product of the target sam-
pling rate with the attained transmission rate. For ex-
port over the wide area Internet, the pattern of report
loss is expected to be bursty due to the observed bursti-
ness of network congestion events; see [102] and ref-
erences therein. Following the remarks at the end of
Section 5.2, renormalization with the attained loss rate
offers robustness to bursty loss provided the bursts af-
fect all traffic classes equally.

6. SAMPLING IN THE FORMATION AND
COLLECTION OF FLOW RECORDS

There are three sets of resources involved in the pro-
duction of flow records: those at the router involved in
processing packets to compile the flow statistics, those
involved in exporting and transmitting the completed
flow records to their collection point, and those used to
analyze the statistics at the collector. In this section we
describe how usage of each of these resources can be
controlled through sampling.

The requirements for flow sampling are fundamen-
tally different than those for packet sampling due to the
statistical properties of flows. Whereas packet size is
bounded by a maximum that is dependent on the trans-
mission technology, experimental studies have shown
that the distribution of flow lengths is heavy-tailed;
in particular, a large proportion of the total bytes and
packets in the traffic stream occurs in a small propor-
tion of the flows (see, e.g., [41]). This makes both uni-
form sampling and uncontrolled sampling due to trans-
mission loss far more problematic for flow records than

for sampled packets, since omission of a single flow re-
port can have a huge impact on estimated usage.

Currently, NetFlow exports flow records using UDP
transport, which is not equipped with any capability
for reliable transmission. Capability for reliable ex-
port is being incorporated in the relevant standards un-
der development in the IPFIX Working Group of the
IETF [54]. In the short term, report loss can be min-
imized by locating staging collectors close to routers,
for example, in switching centers that house a number
of routers. The local networks over which reports are
transmitted are managed so as to be congestion-free, at
least under most operating conditions. (Although de-
nial of service attacks may give rise to bursts of records
of small flows that, if unchecked, may lead to conges-
tion.) The staging collectors can then retransmit the
flow records to their ultimate destination over the wide
area Internet using a reliable transport protocol such as
TCP. The staging collectors may also perform analysis.
However, even with future reliable transport from the
observation point, staging collectors may still be de-
sirable for scalability, since they can also perform data
reduction and field queries; see [29] for a description
of a such a system.

The rest of this section describes sampling methods
that avoid the pathologies of uniform sampling of flow
records. Sampling of packets prior to the formation of
flow records is described in Section 6.1. Sections 6.2
and 6.3 describe nonuniform packet and flow sampling
schemes that are better adapted to the statistical prop-
erties of flows.

6.1 Flow Records: Packet Selection

The main resource constraint for forming flow
records is at the router flow cache in which the keys
of active flows are maintained. To look up packet keys
at the full line of the router interfaces requires the
cache to operate in fast, expensive memory. More-
over, routers carry increasingly large numbers of flows
concurrently, necessitating a large cache. By sampling
the packet stream in advance of the construction of
flow records, the time window available for flow cache
lookup for each packet is prolonged, enabling storage
to be carried out in slower, less expensive memory.

Systematic sampling based on packet count has been
employed by Cisco for their Sampled NetFlow feature.
The more recently introduced random sampled Net-
Flow [85] feature employs stratified sampling based on
arrival count. As in Section 4.4.3, one packet is selected
at random out of every window onN consecutive ar-
rivals. The distinctive feature relative to periodic sam-
pling is that two consecutive packets can be sampled.
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However, since more than two consecutive packets are
never sampled whenN > 1, longer backlogs do not de-
velop provided the mean rate of sampled packets can
be accommodated.

Packet sampling versus flow records. If the sam-
pling period is much larger than the typical flow length,
then typically only one packet per flow will be re-
ported. If this were the rule, we might just as well
sample packets without constructing flow records. This
would save resources at the router since there would be
no need to cache the single packet flows until expira-
tion of the interpacket timeout.

So are flow records redundant in the face of packet
sampling? On the one hand, there are many short flows.
Web traffic is a large component of Internet traffic, in
which the average flow length is quite short, around 16
packets in one study [41]. On the other hand, there are
many reasons to expect that longer flows will continue
to account for most of the traffic: (i) consumer Inter-
net traffic is increasingly dominated by file sharing and
downloading applications for which flows of hundreds
and even thousands of packets are the norm; (ii) flows
of Internet telephony packets are also expected to be
long lived; (iii) in Virtual Private Networks, traffic from
many sources will be seen as a single aggregate flow in
the network core. Thus, unless packet sampling peri-
ods become large compared with the lengths of these
flows, flow statistics will still afford useful compres-
sion of information.

Resource usage: Sparse flows and flow splitting.
Sampling canincrease the number of flow records gen-
erated from an application flow for which the typical
time between sampled packets exceeds the flow in-
terpacket timeoutT . Consider sampling packets with
probability 1/N from a flow that comprisesn packets
over a durationt . If

t

T
>

n

N
> 1,(1)

then the typical time between sampled packets,tN/n,
exceedsT and more than one packet is typically sam-
pled. Such flows were calledsparse by Duffield, Lund
and Thorup [30]. These authors derived expressions for
the means of the rate of production of flow statistics
and number of active flows, given the statistics of orig-
inal application flows. In experiments, flows from file
sharing and streaming applications were found to be
most susceptible to splitting: they have many packets
and are comparatively long-lived.

6.2 Flow Records: Cache Selection

We now describe sampling schemes which reduce
the amount of fast memory needed for flow caching
by targeting sampling in such a way that cache entries
tend to be instantiated only for longer flows.

In the sample-and-hold proposal of Estan and
Varghese [36], a cache lookup is performed for the key
of each incoming packet and if a match is found, sta-
tistics are updated as usual for the flow with match-
ing key. However, if a match is not found, a new
cache entry is created only with a certain probability
1 − (1 − p)s for somep, wheres is the size of the
packet. Thus the probability that a flow that comprises
b bytes is not sampled at all is(1 − p)b, independent
of the manner in which the bytes of the flow are di-
vided among its packets. Clearly the bytes reported for
a flow never exceed the actual bytes and, unless the first
packet is selected, there will be an undercount. How-
ever, the relative error is smaller for larger flows and
can be made arbitrarily small by adjustingp. Estan
and Varghese [36] derived upper bounds for the ex-
pected number of flow records and lower bounds for
the expected usage reported.

With sample-and-hold, it is not possible to form an
unbiased estimator of the true flow sizes in the manner
of Section 4.6 in general. This is because the number
of bytes that have not been sampled is unknown and,
hence, the probability for a given flow to have been
sampled, given knowledge only of the number of sam-
pled bytes, also is unknown. An exception is the special
case that all packets have a common size; denote this
by a. Then for a flow that is sampled, the expectation
of the difference between the actual and sampled flow
bytes isa(1/(1− p)a − 1). Thus, adding this quantity
to the reported bytes yields an unbiased estimator of
the actual flow bytes.

Sample-and-hold requires a cache lookup for all
packets. To function at the line speed of network in-
terfaces, this requires that the cache be maintained in
fast—and hence expensive—memory. The advantage
that sample-and-hold can bring over not sampling is
that, since short flows tend not to be instantiated in the
cache and since most of the usage occurs in a small pro-
portion of long flows, it is possible to reduce the size
of the cache memory relative to the unsampled case.

Kodialam, Lakshman and Mohanty proposed the
runs based traffic estimator (RATE) [62]. Flow cache
entries are instantiated and updated only when the
same key is observed in a run of two back-to-back
packets. This is achieved by maintaining a register
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that contains the key of the last packet observed and
comparing it against the key of the next incoming
packet. This scheme favors the formation of statistics
for longer flows, because they have a larger chance of
forming a run. The statistics of runs are used to esti-
mate the volume of high volume traffic components,
exploiting results from renewal theory to determine the
trade-off between estimation accuracy and flow cache
size.

In an abstract setting, Gibbons and Matias [45] pro-
posedcounting samples from a set of possibly repeated
items of various types. Sampling is independent, but
once a given type of item is sampled, a count is
maintained of all occurrences of that type within the
set. Taking items as packets, distinguished by a key,
sample-and-hold reduces to counting samples when
all packets have identical size. Manku and Motwani
[70] proposedsticky sampling, in which packet sam-
pling probabilities vary during the measurement pe-
riod, while probabilistic reconfiguration and selective
discard of cache entries favors retention of longer-lived
flows.

6.3 Flow Records: Report Selection

Sampling can also be applied to completed flow
records, either at the router immediately prior to export
or within the infrastructure that is used to collect the
flow records. We saw that uniform sampling is prob-
lematic due to the consequences of omitting records of
large flows. This motivates sampling that is dependent
on the size of the flow being reported. A simple ap-
proach is to discard flow records whose byte size falls
below a threshold. This gives a conservative, and hence
biased, measure of the total bytes and is susceptible to
subversion: An application or user that splits their traf-
fic up into small flows could evade measurement alto-
gether. This would be a weakness for accounting and
security applications.

Duffield, Lund and Thorup [28] proposed nonuni-
form probability sampling based on flow bytes. Given
a selection function p :N → (0,1], a flow of sizex is
selected with probabilityp(x). Given a set ofn flows
with sizesS = {xi : i = 1, . . . , n}, let S′ denote the cor-
responding (random) set of sizes of selected flows. As
in Section 4.6, we form an unbiased estimator of the
total bytesX = ∑

x∈S x using the Horvitz–Thompson
estimatorX′ = ∑

x∈S′ x/p(x).
What is the best choice of selection functionp? The

answer to this question depends on the use to which
the statistics will be put. Duffield, Lund and Thorup

[28] provided an answer to this question in the context
of balancing the opposing constraints of keeping the
variance ofX′ small, while at the same time reducing
the number of samples #S′ taken. This trade-off can
be expressed through the costCp = VarX′ + z2E#S′.
Herez2 is a parameter that expresses the relative im-
portance of the aims in the balance. Ifz is large,Cp is
kept small by keepingE#S′ small, while if z is small,
Cp is kept small by keeping VarX′ small. The selection
functionp that minimizesCp for all S is found to be
pz(x) = min{1, x/z}: Flows of byte size greater than
the thresholdz are sampled with probability 1; other-
wise they are sampled with probability proportional to
their byte size. This is reminiscent of PPS (see Sec-
tion 4.6) except that rather than determining the con-
stant of proportionalityz from the data and having all
probabilities less than 1, we parameterizez, select ob-
jects independently and allow unit selection probabili-
ties. We call sampling with the selection functionpz

optimal for the cost. Resource usage for processing
the flow records is bounded: The number of sampled
records per byte of original traffic isE[#S′]/X ≤ 1/z.
The bound is tight when all flows have size below
thresholdz. Further details and developments in size-
dependent sampling of flow records can be found in
[27, 29, 30, 32].

6.4 Ramifications of Flow Sampling for
Billing Applications

Discard-below-threshold and sample-and-hold
never overestimate usage. However, although cus-
tomers would never be overcharged, the shortfall for
the provider is unconstrained. On the other hand, opti-
mal sampling can overestimate byte usage sinceX′ is
an unbiased estimator ofX with nonzero variance.
For applications, such as billing, where overestimation
may be a larger problem than underestimation, one can
bias the estimatorX′ negatively to reduce the chance
of overestimation. A convenient way to achieve this
is provided by the bound VarX′ ≤ zX. This suggests
using the biased estimatorX′

s = X′ − s
√

zX′ for the
purposes of billing ands > 0 can be thought of as the
number of standard deviations by which the estimated
usage is to be negatively biased.

The billing scheme can itself be adapted to sam-
pling. Duffield, Lund and Thorup [28] proposed flat
rate billing for usage up to a levelL, with a pro-
portionate charge only on usage above this level. The
billing scheme is insensitive to the errors in estimat-
ing small usage. When coupled with optimal size-
dependent sampling of flow records, it can be shown
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that the coefficient of variation of the charge is bounded
belowε provided the sampling thresholdz and billing
insensitivity levelL obeyz ≤ ε2L. This property holds
independently of the statistics of the flow sizes. In
practice, we expectz to be constrained below through
the capacity of the measurement infrastructure—recall
it bounds the mean bytes reported per flow record—
and we expectε to be constrained above through pol-
icy. Thus the constraint can be realized by making the
billing interval, and hence the amount of usage esti-
mated, sufficiently large.

7. RATE ADAPTIVE AND RATE
CONSTRAINED SAMPLING

Sampling trades off estimation accuracy against re-
duction in sample volumes. The choice of sampling pa-
rameters reflects the relative priorities attached to these
two opposing goals. In practice, traffic streams exhibit
both systematic and statistical variability: Internet traf-
fic rates have both daily and weekly cycles; link fail-
ures and network reconfigurations lead to level shifts
in traffic rates observed on some links; routing proto-
cols may propagate such changes far from their point
of origin. This section discusses two approaches to the
problem of maintaining sampling goals within accept-
able limits under varying traffic loads: adaptation of the
sampling rate and rate constrained sampling.

7.1 Rate Adaptive Sampling

Rate adaptive sampling involves adjusting the sam-
pling rate in response to the rate at which objects are
selected or in anticipation of a predicted traffic rate.
Drobisz and Christensen [24] developed a multiplica-
tive adaptive scheme to manage resource usage for
packet measurement in routers. They described two
different controls: one based on CPU utilization and
the other based on packet interarrival times. Packets are
selected when a counter is decremented to zero (and
then reset). Adaptation takes place by adjusting the
counter through multiplication by the ratio of the actual
to desired router CPU utilization or the current to av-
erage packet interarrival time. The main motivation of
the study was estimation of parameters of self-similar
traffic from samples. It was found that the adaptive
methods produced more accurate estimates than static
sampling under a given resource constraint.

Choi, Park and Zhang [11] focused on maintaining
accuracy of estimates of the short-term traffic load at
a router under varying traffic rates. The motivation of
this study was the identification of change-points in the

traffic load; the accuracy of rate estimates determines
the resolution at which changes can be detected.

For the sampling of flow records, Duffield, Lund
and Thorup [29] provided a rate adaptive version of
the size-dependent sampling scheme described in Sec-
tion 6.3. The aim is to control the rate at which samples
are produced independent of the offered load. Con-
trol is effected through multiplicative adaptation of the
sampling thresholdz of successive time windows. If
N samples are taken over a window in which the tar-
get number isM with thresholdz, the threshold for the
next window iszN/M . Under this iteration, the mean
rate at which samples are taken converges to the target
rate when the arrival process of flow records is station-
ary.

Hernandez, Chidester and George [50] used a pre-
dictive approach to anticipate variations in the offered
load and adjust the sampling interval accordingly to
meet sampling volume constraints. Their method com-
bines linear prediction with a fuzzy logic approach that
classifies the broad dynamics of the load.

7.2 Rate Constrained Sampling

Rate adaptive sampling has a number of drawbacks:

(i) Due to the inherent latency of adaptation, hard
sampling volume constraints cannot be met under
arbitrary statistical and systematic variation in the
offered traffic.

(ii) Systematic undersampling (by arranging for the
mean sampling rate to be lower than the target)
is necessary to accommodate uncontrolled varia-
tions in the traffic rate.

(iii) The effective sampling probability is reduced for
objects that occur during periods of high load.
However, it may be precisely the objects that oc-
cur during these periods that are the most impor-
tant to capture.

These drawbacks motivate sampling strategies that
can select a specified number of objects during a
given measurement interval. Several algorithms have
been proposed. Reservoir sampling (in which one
keeps a reservoir ofk ongoing samples) with uniform
probability was treated by Vitter [97]. For nonuni-
form probability sampling, an algorithm for weighted
reservoir sampling with replacement was provided by
Chaudhuri, Motwani and Narasayya [10]; it requires
at mostO(k) operations per item. An algorithm for
sampling without replacement that requiresO(logk)

operations per item was recently proposed by Duffield,
Lund and Thorup [32] in a modification of the work in
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Section 6.3. All these methods require only one pass
through the stream of objects and only aboutk items
need to be maintained in storage at any time. There is
some penalty to pay in latency, since the identities of
objects to be selected are only determined once the last
object has been processed; sampling is not adapted in
the sense of Section 4.2. For this reason, unless the
measurement interval can be kept short, these tech-
niques may be better suited to data base applications
rather than sampling at the observation point.

8. INFERENCE OF DETAILED FLOW STATISTICS

In Sections 5 and 6 we saw how aggregate byte or
packet counts can be estimated by dividing the sampled
counts by the selection probability. However, under-
standing more detailed statistics of packet flows gen-
erated by the endpoint applications is important for a
number of purposes, including:

• Determining resource requirements for flow statis-
tics: for constructing them at a router and for trans-
mitting them to a collector. From Section 6 it is clear
that the requirements depend on sampling rates,
the flow arrival rate and the detailed distribution of
packets per flow; see [28] and [29] for further de-
tails.

• Characterizing source traffic: numbers of packets
and bytes, and durations of individual flows and also
higher levels, for example, transactions involving
multiple flows that combine a set of applications
such as a Web browsing session that comprises a
DNS lookup followed by an HTTP transfer. Such
characterizations have been performed for unsam-
pled flows to support network design decisions (see
[38] and [41]).

To support such applications, the characteristics of
application level flows need to be inferred from either
sampled packets or packet sampled flow records. For
some problems protocol level information can be ex-
ploited. Duffield, Lund and Thorup [30] used packet
sampled NetFlow statistics to estimate mean number
of packets per TCP connection. The first packet in each
direction of a TCP connection has a bit—called the
SYN flag—set in the TCP header. Barring loss and re-
transmission, each direction of the connection contains
exactly one SYN packet. NetFlow records include the
cumulative OR of its packets’ SYN flags and so indi-
cate whether one or more packets assigned to a flow
had their SYN flag set. Under packet sampling with
probability 1/N , the expected number of SYN flags

seen per direction is 1/N times the number of connec-
tions. Accordingly, we can form a moment estimator of
the number of connections byN times the number of
packet sampled flows which reported a SYN flag. Di-
viding this into the estimated total number of packets
(i.e.,N times the number of sampled packets) yields an
estimator of the mean number of packets per connec-
tion.

A more challenging problem is to estimate the distri-
bution of the number of packets or bytes per flow, or the
distribution of the duration of flows, from 1 inN packet
sampled flow statistics. A potential difficulty is that the
application level flows and the measured flows need
not coincide. A single application flow may be split
into several measured flows by the separate or com-
bined actions of sampling, the inactive time-out or the
active time-out. Measured flows with a common key
may be combined during analysis, effectively length-
ening timeoutsafter measurement has taken place.

Even after such surgery, the problem of inferring
original flow statistics still remains. The simple ap-
proach of multiplying measured lengths and durations
by N does not suffice in general: The number of flows
will be underestimated (some flows have no packets
sampled) and there will be a bias toward longer flows
(these have a greater probability of being sampled).
Furthermore, there is an inherent difficulty in resolving
the distribution of short flows, that is, those with far
fewer thanN packets. These flows typically all have at
most one packet sampled, regardless of their original
length.

Recent work by Duffield, Lund and Thorup [31] in-
ferred a smoothed version of the distribution of flow
lengths, that is, the numbers of packets per original
flow, from the measured frequencies of sampled flow
lengths. The work used both maximum likelihood es-
timation and ad hoc methods that locate the range in
which the most frequent lengths lie. Here the smoothed
distribution can be thought of as representing an aver-
age over a set of original length distributions that is
compatible with the measured distribution.

Hohn and Veitch [51] considered the related problem
of recovering the distribution of the number of pack-
etsi per original flow from the distribution of sampled
packets per flow in a model of Poisson flow arrivals.
Using spectral analysis, they found the inherent limits
of such inversion of the full distribution for small sam-
pling rates, although mean flow lengths and asymptotic
properties of heavy-tailed length distributions can be
recovered. They also pointed out that under uniform
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sampling offlows, the distributionfi of original pack-
etsi per flow can be recovered straightforwardly from
the distributiongi of packets per sampled flow: they
are the same. This fact can be reconciled with Sec-
tion 6.3 by observing that the estimate of mean flow
length

∑
i iĝi that arises from a measured versionĝi

of gi need not be close to the mean
∑

i igi even when
ĝi is close togi .

9. HASH-BASED SAMPLING

Hash-based sampling offers both a convenient way
to emulate random sampling through generation of
pseudorandom variates, and a powerful way to consis-
tently select subsets of objects whose contents share a
common property. The basic idea is as follows. We are
given a hash functionh with domain the object con-
tent setC. Given some subsetS ⊂ h(C), called the
selection range, a packet with contentc is selected
if the hashh(c) ∈ S. Comparison with Section 4.3
shows that hash-based sampling is in fact a filter: The
object is selected ifc ∈ h−1(S). However, for good
choices of hash function, the inverse imageh−1(S) is
extremely complex and henceh is not expressible as,
say, a mask/match filter or a simple combination of
these.

9.1 Statistical Properties

In what sense can a deterministic filtering operation
be used to achieve pseudorandom sampling? Two con-
ditions must be fulfilled. First, the hash functionh must
be strong in the sense that it has good mixing proper-
ties: Small changes in the input (e.g., the flipping of a
single bit) must cause large changes in the output. If
this condition holds, any local region of potential hash
inputsc becomes spread widely overh(C) by the ac-
tion h; hence the distribution ofh(c) tends to be fairly
uniform even if the distribution ofc is not. The frac-
tion of objects in the clump that is selected is close
to #S/#h(C), so the target sampling rate can be tuned
through appropriate choice of the size of the selection
rangeS.

The second desirable property depends more closely
on the statistics of the content. In applications, the con-
tent comprises a number of distinct fields, for example,
source and destination IP address, and TCP/UDP port
numbers (if present) for a packet. Although hash-based
selection decisions are deterministic, they can provide
the appearance of random sampling in the sense that
selection decisions appear only weakly correlated with
the values of individual fields. Conditions for this are

(i) a strong hash function must be used and (ii) for each
field f1, another input fieldf2 exists that is sufficiently
variable and mutually weakly correlated: The variabil-
ity of f2 has the effect of making selection appear in-
dependent of the value off1.

9.2 Guarding Against Pitfalls and Vulnerabilities

Since hash-based sampling is deterministic, a con-
cern is whether a large set of related objects can be
sampled at a rate that differs significantly from the tar-
get sampling rate. An extreme case would be if the
objects avoided sampling altogether, either (i) through
unanticipated behavior in the hash function or (ii) be-
cause they had been deliberately crafted to have this
property. The first point underlines the importance of
using a strong hash function.

Hash functions based on modular arithmetic can
be strong with a judicious choice of modulus; see
Section 6.4 in [60]. Well-known hash functions such
as CRC32 [56] and MD5 [89] may already be im-
plemented in network elements for other purposes,
making their potential reuse convenient for sampling.
However, the strength of available hash functions can
vary; whereas strong hash functions are typically em-
ployed for cryptographic purposes, other applications
may need only a comparatively simple hash. Scarcity
of processing resources may preclude using stronger
hash functions in some cases. For these reasons, the
statistical properties of candidate hash functions need
to be evaluated, preferably on traces of actual object
sequences, before use for hash-based sampling.

Can hash-based sampling be deliberately evaded?
If its use becomes widespread, it is likely that well-
known hash functions will be used and/or the choice
of hash function will be standardized and hence well
known. Nevertheless, network operators have two de-
fenses against objects crafted to evade sampling. The
first defense is through choice of the selection range,
that is, S can be kept private or regularly changed,
while the sampling rate—as determined by #S—is held
constant. However, an attacker who crafted a set of
packets all with the same hash value would know that
the packets would be either all selected or all not se-
lected. A stronger defense is to employ a parameteri-
zable hash function and keep the parameter private. In
this case the set of hash values of the packets could
not be predicted. Examples of parameters are the ini-
tial vector in CRC32 and moduli in hashes based on
modular arithmetic.
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9.3 Applications

Flowwise packet sampling. Suppose we wish to
sample all packets from a random subset of flows of
packets passing through a router. This is useful for un-
derstanding packet dynamics when resources are not
available to collect full packet traces. One method is to
employ a flow caching scheme in which newly instan-
tiated cache entries are randomly marked. If marked,
then a report is made on each packet arriving with the
corresponding key; if not, no report is made. Hash-
based sampling can be used to achieve the same type
of packet selection without caching flow keys. Instead,
the flow key of each packet is hash sampled and se-
lected packets are reported on. Hash sampling ensures
that all packets of a given key are either selected or not
selected together.

Trajectory sampling. In trajectory sampling, all
routers in a network hash-sample packets using an
identical hash function and selection range. The do-
main of the hash is restricted to those fields that are in-
variant from hop to hop: time-to-live is excluded since
it is decremented per hop. Thus a given packet is sam-
pled either at all points on its path through the network
or at none. The packet signals implicitly to the router,
through its hash, whether or not it should be sampled.

The domain of the hash function needs to be wider
than just a flow key, if packets are to be selected
pseudorandomly within flows. A report on each se-
lected packet is exported to a collector. The collector
can reconstruct trajectories of the selected packets pro-
vided it can match different reports on the same packet
and distinguish them from reports on different packets.
For this purpose, reports may also contain a second dis-
tinct hash, the identification hash, of the selected pack-
ets and/or timing information.

Applications of trajectory sampling include (i) es-
timation of the network path matrix, that is, the traf-
fic intensities according to network path, broken down
by flow, (ii) detection of routing loops, as indicated by
self-intersecting trajectories, (iii) passive performance
measurement [prematurely terminating trajectories in-
dicates packet loss and packet latencies can be deter-
mined if reports include (synchronized) time stamps]
and (iv) network attack tracing of the actual paths taken
by attack packets with spoofed source addresses.

Related measurement methods. Trajectory sampling
was proposed by Duffield and Grossglauser [26]; fur-
ther work on issues of collection and trajectory recon-
struction are covered in [25]. Hashing for identification

(as opposed to sampling) of packets measured at differ-
ent points has been proposed for wide area ATM net-
work measurements; see [20]. Hash-based correlation
of elements in multiple packet traces during postanaly-
sis was used by Moon and Roscoe [73].

Packet hashing for the purposes of identifying packet
paths for network attack detection was proposed by
Snoeren et al. [92]. Routers are to maintain digests of
recently arrived packets in the form of Bloom filters
[7], which comprise arrays of hashes of the invariant
packet content. Bloom filters are a data structure that
compactly stores sufficient information to determine
whether a given packet is absent from the digested set:
If the hashes of a test packet are all present in the
Bloom filter, then the packet is judged to have been
previously digested. Hence false positives may occur,
but not false negatives. When a packet is deemed to be
suspicious for some reason, the packet’s path through
the network can be traced back by testing its member-
ship in the set of router Bloom filters.

An alternative trace-back approach, as proposed by
Savage, Wetherall, Karlin and Anderson [90] and elab-
orated on by Dean, Franklin and Stubblefield [22] and
Song and Perrig [93], is for routers to encode their
identity within selected packets. If a packet is found
to have participated in an attack, its path can be de-
termined by decoding. One potential drawback is the
lack of spare fields in the IP packet header. Instead, IP
header fields, such as the identification field, must be
reused. This may interfere with the operation of other
applications. A case in point is trajectory sampling. In-
clusion of the identification field in the hash input is
attractive for trajectory sampling since it varies from
packet to packet in the same flow. (Although this is not
always the case in practice, it seems partly due to bad
implementations.) Per hop modification of this field for
trace-back breaks the trajectory semantic.

An alternative approach to trajectory sampling is to
randomly mark packets upon entry to the network and
then sample only marked packets in the core. This has
potential drawbacks similar to those of the last para-
graph: the lack of an available bit for marking in the
packet header. An additional drawback is that on de-
ployment,all edge routers in a network must be ca-
pable of filtering marked incoming packets; otherwise,
an attacker could overwhelm the measurement system
with deliberately marked packets.

10. BEYOND SAMPLING

Recall the main attractions of sampling: (i) all de-
tail is retained from the selected objects, (ii) no addi-
tional storage is required at the observation point and
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(iii) there is little or no latency in selecting objects.
In practice there is scope for relaxing these proper-
ties somewhat. Whereas sampling yields a subset of
exact representatives of the data—each sampled ob-
ject was present in the original object stream—the con-
clusions drawn concerning the population are often
approximate. For routine queries, there should be no
objection to using an approximate summary represen-
tation of the data provided that it allows conclusions
to be drawn with the same or better accuracy, or with
smaller storage or computational requirements, or with
smaller response time. Such a representation can be an
adjunct to the complete data, rather than a replacement
for it: a class of rapid queries would be supported by
the summaries and detailed queries could still be per-
formed on the full data set.

Ideally, summaries must be computable in a single
pass over the object stream, or possibly some small
number of passes over batches. Only limited compu-
tational and storage resources may be available, if not
on the measurement device itself, then on some nearby
host that mediates the transmission of data to the ulti-
mate collector. At the collector constraints on computa-
tions may be relaxed further, due to the availability of
high performance computers with extensive memory
and disk or tape storage. In the last context there is also
a role for permanent data reduction: working data from
the recent past is reduced as it ages, prior to archiving.
Barbara et al. [5] reviewed various approaches to data
reduction. In this section we very briefly describe some
promising approaches for compactly summarizing the
massive data sets produced by passive measurement.

10.1 Summary Data Structures

The problem of developing compact summaries of
objects streams has attracted much attention in the last
few years. For network measurement, the usefulness of
a summary depends on (i) being computable on one
pass through the data stream, (ii) updates being cheap
to compute, (iii) storage costs and (iv) the ability to
service return queries on the dominant features of the
object stream with acceptable accuracy.

Gibbons and Matias [46] defined anf (n)-synopsis
data structure (or simply, synopsis) for a classQ of
queries as a structure that can support answers toQ

usingO(f (n)) storage for a data set of sizen. Here
f (n) = o(nε) for someε < 1. They reviewed a num-
ber of constructions of synopses to support queries
on different characteristics of data sets, including fre-
quency moments (e.g., the number of distinct elements,

total number of elements), the most frequently occur-
ring members and quantiles. A frequent strategy is to
map data to storage using a hash function, which, on
one hand, allows identification of repeated elements,
and on the other hand, has statistical properties that
can be exploited for estimation (e.g., by randomized
algorithms). See [35] and [37] for recent approaches
to counting the number of distinct flow keys, and
[19] and [23] for estimating the size of dominant flows.
(On the other hand, deterministic algorithms for this
last problem are provided in [48].)

Recent work by Gilbert, Kotidis, Muthukrishnan and
Strauss [47] describes sketches—a type of synopsis
built on inner products of data with random vectors.
One attractive feature is the linearity of sketches, which
facilitates combination, and the geometry of the in-
ner product, in which comparisons between data can
be expressed. The authors focus on sketches built on
wavelet bases. This furnishes a natural path for approx-
imation: retention of only the dominant wavelet coef-
ficients. Gilbert et al. gave applications to the problem
of finding heavy hitters in streams of packet or flow
records.

A different approach to estimating dominant traffic
components was taken by Kumar et al. [64], who ex-
tended the concept of Bloom filter to keep track of
the number of times a given object is presented. Due
to inherent collisions within the Bloom filter (see Sec-
tion 9.3), some analysis is required to estimate the fre-
quencies of presented objects.

10.2 Data Squashing

Consider a data set that comprisesn records ofk
fields. Data squashing entails constructing a summary
data set ofm � n records withk + 1 fields, where the
additional field is a weightwi such that

∑m
i=1 wi = n.

Random sampling is a special case where the records
of the squashed set are a random sample of the orig-
inal records andwi = n/m. However, data squashing
aims to provide better accuracy than is available from
simple sampling. Although there is currently no unified
theory of data squashing, three approaches have been
proposed; for further details and comparison, see the
review by DuMouchel [33].

Closest to simple sampling is the approach of Owen
[75], who selected an initial random sample of the orig-
inal data and then assigned the weights by matching
moments using the empirical likelihood method. The
trade-off of this simple computational approach is that
the squashed data set may have to be quite large to
achieve the desired accuracy. Two other approaches are



492 N. DUFFIELD

based directly on likelihood. The idea is to choose the
points of the squashed set and their weights so that the
original and the squashed data have the same likelihood
function. Madigan et al. [69] assumed a logistic regres-
sion as the data model. The likelihood is evaluated at a
representative set of parameters. The idea is to cluster
points with similar likelihood, then merge clusters into
a single representative squashed data value, its weight
being the number of points merged. The algorithm re-
quires two passes: one to choose the logistic parame-
ters and one to cluster and merge. DuMouchel et al.
[34] argued that for any likelihood function that can be
approximated by a low order Taylor series over mul-
tivariate bins, the squashed data set can be chosen by
matching low order moments within each bin. Loca-
tion of the squashed data points requires a constrained
search within each bin. This is the most computation-
ally intensive method of the three. On the other hand,
it claims the greatest advantage for accuracy: in one
example, 750,000 record data yielded a mean square
error almost 500 times smaller compared with simple
random sampling and the data size was reduced by a
factor of roughly 100.

Clearly the computational complexities of these
methods may limit the applicable domain of some of
them to collectors and other back end systems. Another
challenge is the immense range of values taken by cat-
egorical data such as IP addresses: there are over 1019

possible source–destination IP address pairs. Squash-
ing based on the natural clustering from topology or
routing may be a useful way to reduce dimensionality.

11. SAMPLING IMPLEMENTATIONS AND
RAMIFICATIONS FOR STANDARDS

The different sampling methods and their implemen-
tations represent an additional source of variability for
interpretation of measurements. Only under unrealisti-
cally strong assumptions (e.g., that the distribution of
objects is permutation invariant) do the classical sam-
pling methods (random, systematic, stratified) yield the
same sampling distribution. In practice, objects are de-
pendent: packets are associated, through their keys,
into flows. Application and user behavior lead to recur-
rence of flow keys over time, for example, a day-trader
checking and rechecking the price of a stock on a fi-
nancial website. In the presence of dependence, differ-
ent sampling methods may yield different conclusions
about the population under study.

How can these differences be quantified and to what
extent do they need to be taken into account when im-
plementing sampling methods, drawing up standards

for sampling in routers or designing applications that
use sampled data? Currently routers sample packets
using pseudorandom independent sampling [44, 55] or
systematic sampling [59], depending on the equipment
vendor. Should these be standardized as two distinct
configurable sampling functions or can they be re-
garded as two different detailed implementations of
some basic reference method?

Hypothesis testing can distinguish different sam-
pling distributions and test their accuracy against the
original population; see Section 4.5. Even if sampling
distributions arising from different methods are sta-
tistically distinguishable, they may be close enough
for some applications. Duffield, Lund and Thorup [31]
found the distributions of lengths of packet sampled
flows arising from periodic and independent sampling
with the same probability to be statistically distin-
guishable. Differences in the distributions, although
small, persisted even for large data sets. The differ-
ences could be attributed to the different sampling
properties of flows. For example, two packets of a flow
occurring back-to-back in the packet stream will never
both be selected by periodic sampling, although they
can be selected in independent sampling. Typical dif-
ferences in the sampled distributions were only about
1% for the most common flow lengths. These differ-
ences are probably negligible for many networking
management applications, although there are no gen-
erally accepted accuracy requirements for them. The
relationship between the traffic properties, sampling
methods and application requirements clearly needs
better understanding before these questions can be set-
tled on a scientific basis.

12. CONCLUSIONS AND OUTLOOK

Passive measurements play a crucial role in manag-
ing IP networks and understanding the properties of
traffic that traverses them. The volumes of measured
data are increasing for two reasons: the increase in link
speeds and the requirement for detailed measurements.
Resource and cost constraints necessitate data reduc-
tion, to be performed at the observation point and/or
within the measurement collection infrastructure. Of
the reduction methods in current widespread use (filter-
ing, aggregation and sampling), only sampling allows
the retention of arbitrary detail. To reduce the impact of
sampling variance, the sampling design and the down-
stream applications must be well matched to the sta-
tistical properties of the underlying stream of objects.
Newer aggregation and compression methods, such as
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synopses and squashing, allow some trade-off between
retention of detail, and computational and storage re-
quirements.

The work reviewed in this paper suggests several
areas for future research. The first concerns the de-
velopment of embedded monitoring in network ele-
ments. A better understanding of the impact of choice
of sampling operation on measured traffic character-
istics would inform choices made in standardization.
Emerging standards for packet sampling are likely to
endorse mostly classical design methods, due to both
the resource constraints and the depth of understand-
ing of the underlying methods. As resources become
cheaper and more readily available, some statistical
analysis can be moved to routers. The choice of sta-
tistics can be standardized; the choice of algorithm can
be an implementation issue over which equipment ven-
dors could compete on price and performance.

Section 8 reported work on the general problem
of inferring distributions of multipacket events (such
as flows) in the original traffic from the correspond-
ing sampled events. This can generally be framed as
a problem of linear inversion under positivity con-
straints. The occurrence and solution of such problems
is already familiar from network tomography (see, e.g.,
[96]). Some of the techniques applied in that area may
be useful in the present case.

Distributed measurement infrastructures will pro-
vide multiple correlated observations of network
events, as observed from the vantage points of different
measurement devices. The volume of measurements
will grow with the scale of the infrastructure. A chal-
lenge will be to provide some form of distributed data
reduction across the infrastructure to eliminate redun-
dancies between multiple network views.

Although many current measurement-based applica-
tions employ aggregate usage per traffic class, appli-
cations increasingly need to track and correlate small
events. This is particularly true for detection of intru-
sions and network attacks, which are increasingly a
composite of smaller constituents, spatially or tempo-
rally distributed so as to better evade detection. There
is a large body of recent research and products that uses
attack signatures and anomalous departures from cus-
tomary usage patterns as signifiers of attacks; see, for
example, Lee’s [66] online bibliography. The task is
made harder by sampling, especially when measure-
ment must be, like the attacks, spatially and temporally
distributed, and when the analysis requires correlation
of different measurements. Under independent sam-
pling the weight attached to composite events may be

small. Correlated sampling that can exploit specific or
generic properties of such attacks to enhance capture of
multiple constituents would help boost detection rates.
In some recent work related to this question, Kodialam
and Lakshman [61] provided a game theoretic analy-
sis of the sampling rates necessary to detect distributed
attack traffic.

Finally, the comments of the previous paragraph
raise a larger question. Until recently sampling de-
ployed in network elements has been classical: in-
dependent or periodic uniform sampling. This was a
reasonable choice, since (i) the implementations were
simple, (ii) there were well-known methods available
to analyze the sampled data and (iii) there was no clear
benefit to using more complex methods. It is becom-
ing evident that new sampling methods are needed both
to service new applications (e.g., hash-based sampling
in Section 9) and to circumvent the limits of classi-
cal methods to provide data most suited for inference
of original traffic properties (long flows in Sections
6.2 and 6.3, short flows in Section 8 and network at-
tacks in the previous paragraph). A rational choice of
the best sampling method requires balancing the costs
involved (including those of implementation, resource
usage and estimation accuracy) together with the flexi-
bility to provide statistics that may play a role in future
network management applications.

APPENDIX: THE STRUCTURE AND FUNCTION OF
PACKETS IN THE INTERNET

We summarize the mechanisms by which a host
(e.g., a personal computer, a Web server, a router) con-
nected to the Internet, can send data to another such
host. Data are carried by packets, which are forwarded
along a network path that comprises one or more links
joined by network elements such as routers or switches.
The structure of the packets is defined by network pro-
tocols, most commonly the Internet protocol [82]. In-
ternet protocol packets comprise the payload—the data
to be sent—and a header, which contains the infor-
mation each network element needs to determine over
which link to forward the packet. Each host in the In-
ternet possesses one or more IP addresses, which are
32 bit numbers in the currently predominant version 4
of IP. Internet protocol addresses are organized hier-
archically: service providers are allocated contiguous
blocks of address, which they redistribute in blocks to
their customers, and so on, down to the level of indi-
vidual hosts.

The IP packet header includes the IP address of both
its source and destination. An IP router maintains a
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routing table which determines the link over which a
given packet is to be forwarded based on the packet’s
destination IP address. The contents of the routing ta-
bles are themselves arrived at through the exchange
between routers of information concerning network
topology and connectedness. The exchange of infor-
mation is mediated by routing protocols, whose oper-
ation among routers is a distributed optimization that
results in forwarding paths that have the lowest cost
by some measure (e.g., shortest path length), under the
constraint of policies set by network operators.

The IP header contains other fields, such as a check-
sum of the header contents (to detect bit errors) and
time-to-live (TTL), an initially positive integer that is
decremented by each router. When TTL becomes zero,
the packet is discarded and a notification packet is sent
to the packet source IP address. This avoids infinite
propagation of packets around routing loops that arise
from misconfiguration.

Applications running on hosts do not typically use
IP directly. Rather, they interact through a transport
layer that provides the appearance of a direct connec-
tion between the partner applications. In this case, the
IP packets carrying data between applications have a
payload which comprises a further header for the trans-
port protocol, followed, at last, by the actual data to be
transmitted. Two transport protocols are dominant. The
user datagram protocol [81] provides a nearly trans-
parent interface to the IP, but no facility to detect or
recover from loss of packets in transmission, for ex-
ample, due to congestion at routers when buffers that
contain packets that are awaiting processing overflow.
The transmission control protocol [83] provides a reli-
able connection between source and destination, han-
dling detection of packet loss and retransmission, and
also governing the rate of transmission in response to
congestion (as indicated by packet loss). Both TCP and
UDP headers contain 16 bit port numbers for source
and destination, which the hosts use to direct received
packets to the intended application. TCP also uses se-
quence numbers (for loss detection) and single bit flags
that signal, among other things, the start and end of
connections between hosts.
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