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Randomization Does Not Justify Logistic
Regression
David A. Freedman

Abstract. The logit model is often used to analyze experimental data. How-
ever, randomization does not justify the model, so the usual estimators can be
inconsistent. A consistent estimator is proposed. Neyman’s non-parametric
setup is used as a benchmark. In this setup, each subject has two potential
responses, one if treated and the other if untreated; only one of the two re-
sponses can be observed. Beside the mathematics, there are simulation re-
sults, a brief review of the literature, and some recommendations for practice.
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1. INTRODUCTION

The logit model is often fitted to experimental data.
As explained below, randomization does not justify the
assumptions behind the model. Thus, the conventional
estimator of log odds is difficult to interpret; an al-
ternative will be suggested. Neyman’s setup is used
to define parameters and prove results. (Grammatical
niceties apart, the terms “logit model” and “logistic re-
gression” are used interchangeably.)

After explaining the models and estimators, we
present simulations to illustrate the findings. A brief
review of the literature describes the history and cur-
rent usage. Some practical recommendations are de-
rived from the theory. Analytic proofs are sketched at
the end of the paper.

2. NEYMAN

There is a study population with n subjects indexed
by i = 1, . . . , n. Fix πT with 0 < πT < 1. Choose nπT

subjects at random and assign them to the treatment
condition. The remaining nπC subjects are assigned to
a control condition, where πC = 1 − πT . According to
Neyman (1923), each subject has two responses: Yi

T

if assigned to treatment, and Yi
C if assigned to control.

The responses are 1 or 0, where 1 is “success” and 0 is
“failure.” Responses are fixed, that is, not random.
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If i is assigned to treatment (T ), then Yi
T is ob-

served. Conversely, if i is assigned to control (C), then
Yi

C is observed. Either one of the responses may be ob-
served, but not both. Thus, responses are subject-level
parameters. Even so, responses are estimable (see Sec-
tion 9). Each subject has a covariate Zi , unaffected by
assignment; Zi is observable. In this setup, the only
stochastic element is the randomization: conditional
on the assignment variable Xi , the observed response
Yi = XiYi

T + (1 − Xi)Yi
C is deterministic.

Population-level ITT (intention-to-treat) parameters
are defined by taking averages over all n subjects in the
study population:

αT = 1

n

∑
YT

i ,

(1)

αC = 1

n

∑
YC

i .

For example, αT is the fraction of successes if all sub-
jects are assigned to T ; similarly for αC . A parameter
of considerable interest is the differential log odds of
success,

� = log
αT

1 − αT
− log

αC

1 − αC
.(2)

The logit model is all about log odds (more on this be-
low). The parameter � defined by (2) may therefore be
what investigators think is estimated by running logis-
tic regressions on experimental data, although that idea
is seldom explicit.
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The Intention-to-Treat Principle

The intention-to-treat principle, which goes back to
Hill (1961, page 259), is to make comparisons based
on treatment assigned rather than treatment received.
Such comparisons take full advantage of the random-
ization, thereby avoiding biases due to self-selection.
For example, the unbiased estimators for the parame-
ters in (1) are the fraction of successes in the treatment
group and the control group, respectively. Below, these
will be called ITT estimators. ITT estimators measure
the effect of assignment rather than treatment. With
crossover, the distinction matters. For additional dis-
cussion, see Freedman (2006a).

3. THE LOGIT MODEL

To set up the logit model, we consider a study popu-
lation of n subjects, indexed by i = 1, . . . , n. Each sub-
ject has three observable random variables: Yi,Xi,Zi .
Here, Yi is the response, which is 0 or 1. The primary
interest is the “effect” of Xi on Yi , and Zi is a covari-
ate.

For our purposes, the best way to formulate the
model involves a latent (unobservable) random vari-
able Ui for each subject. These are assumed to be in-
dependent across subjects, with a common logistic dis-
tribution: for −∞ < u < ∞,

P(Ui < u) = exp(u)/[1 + exp(u)],(3)

where exp(u) = eu. The model assumes that X and Z

are exogenous, that is, independent of U . More for-
mally, {Xi,Zi : i = 1, . . . , n} is assumed to indepen-
dent of {Ui : i = 1, . . . , n}. Finally, the model assumes
that Yi = 1 if

β1 + β2Xi + β3Zi + Ui > 0;
else, Yi = 0.

Given X and Z, it follows that responses are in-
dependent across subjects, the conditional probability
that Yi = 1 being p(β,Xi,Zi), where

p(β, x, z) = exp(β1 + β2x + β3z)

1 + exp(β1 + β2x + β3z)
.(4)

(To verify this, check first that −Ui is distributed like
+Ui .) The parameter vector β = (β1, β2, β3) is usu-
ally estimated by maximum likelihood. We denote the
MLE by β̂ .

Interpreting the Coefficients in the Model

In the case of primary interest, Xi is 1 or 0. Consider
the log odds λT

i of success when Xi = 1, as well as the
log odds λC

i when Xi = 0. In view of (4),

λT
i = log

p(β,1,Zi)

1 − p(β,1,Zi)

= β1 + β2 + β3Zi,
(5)

λC
i = log

p(β,0,Zi)

1 − p(β,0,Zi)

= β1 + β3Zi.

In particular, λT
i −λC

i = β2 for all i, whatever the value
of Zi may be. Thus, according to the model, Xi = 1
adds β2 to the log odds of success.

Application to Experimental Data

To apply the model to experimental data, define
Xi = 1 if i is assigned to T , while Xi = 0 if i assigned
to C. Notice that the model not justified by random-
ization. Why would the logit specification be correct
rather than the probit—or anything else? What justifies
the choice of covariates? Why are they exogenous? If
the model is wrong, what is β̂2 supposed to be estimat-
ing? The last rhetorical question may have an answer:
the parameter � in (2) seems like a natural choice, as
indicated above.

More technically, from Neyman’s perspective, given
the assignment variables {Xi}, the responses are deter-
ministic: Yi = Yi

T if Xi = 1, while Yi = Yi
C if Xi = 0.

The logit model, on the other hand, views the responses
{Yi} as random—with a specified distribution—given
the assignment variables and covariates.

The contrast is therefore between two styles of infer-
ence.

• Randomization provides a known distribution for the
assignment variables; statistical inferences are based
on this distribution.

• Modeling assumes a distribution for the latent vari-
ables; statistical inferences are based on that as-
sumption. Furthermore, model-based inferences are
conditional on the assignment variables and covari-
ates.

A similar contrast will be found in other areas too, in-
cluding sample surveys. See Koch and Gillings (2005)
for a review and pointers to the literature.



LOGISTIC REGRESSION 239

What if the Logit Model is Right?

Suppose the model is right, and there is a causal in-
terpretation. We can intervene and set Xi to 1 with-
out changing the Z’s or U ’s, so Yi = 1 if and only if
β1 + β2 + β3Zi + Ui > 0. Similarly, we can set Xi to
0 without changing anything else, and then Yi = 1 if
and only if β1 +β3Zi +Ui > 0. Notice that β2 appears
when Xi is set to 1, but disappears when Xi is set to 0.

On this basis, for each subject, whatever the value
of Zi may be, setting Xi to 1 rather than 0 adds β2

to the log odds of success. If the model is right, β2

is a very useful parameter, which is well estimated by
the MLE provided n is large. For additional detail on
causal modeling and estimation, see Freedman (2005).

Even if the model is right and n is large, β2 differs
from � in (2). For instance, αT will be nearly equal to
1
n

∑n
i=1 p(β,1,Zi). So logαT − log(1 − αT ) will be

nearly equal to

log

(
1

n

n∑
i=1

p(β,1,Zi)

)

(6)

− log

(
1

n

n∑
i=1

[1 − p(β,1,Zi)]
)
.

Likewise, logαC − log(1 −αC) will be nearly equal to

log

(
1

n

n∑
i=1

p(β,0,Zi)

)

(7)

− log

(
1

n

n∑
i=1

[1 − p(β,0,Zi)]
)
.

Taking the log of an average, however, is quite dif-
ferent from taking the average of the logs. The former
is relevant for � in (2), as shown by (6)–(7); the latter
for computing

1

n

n∑
i=1

(λT
i − λC

i ) = β2,(8)

where the log odds of success λT
i and λC

i were com-
puted in (5).

The difference between averaging inside and outside
the logs may be surprising at first, but in the end, that
difference is why you should put confounders like Z

into the equation—if you believe the model. Section 9
below gives further detail, and an inequality relating β2

to �.

From Neyman to Logits

How could we get from Neyman to the logit model?
To begin with, we would allow Yi

T and Yi
C to be 0–1

valued random variables; the Zi can be random too. To
define the parameters in (1) and (2), we would replace
Yi

T and Yi
C by their expectations. None of this is prob-

lematic, and the Neyman model is now extremely gen-
eral and flexible. Randomization makes the assignment
variables {Xi} independent of the potential responses
Yi

T, Yi
C .

To get the logit model, however, we would need to
specialize this setup considerably, assuming the exis-
tence of IID logistic random variables Ui , independent
of the covariates Zi , with

Yi
T = 1 if and only if

β1 + β2 + β3Zi + Ui > 0,
(9)

Yi
C = 1 if and only if

β1 + β3Zi + Ui > 0.

Besides (9), the restrictive assumptions are the follow-
ing:

(i) The Ui are independent of the Zi .
(ii) The Ui are independent across subjects i.

(iii) The Ui have a common logistic distribution.

If you are willing to make these assumptions, what ran-
domization contributes is a guarantee that the assign-
ment variables {Xi} are independent of the latent vari-
ables {Ui}. Randomization does not guarantee the ex-
istence of the Ui , or the truth of (9), or the validity of
(i)–(iii).

4. A PLUG-IN ESTIMATOR FOR THE LOG ODDS

If a logit model is fitted to experimental data, aver-
age predicted probabilities are computed by plugging
β̂ into (4):

α̃T = 1

n

n∑
i=1

p(β̂,1,Zi),

(10a)

α̃C = 1

n

n∑
i=1

p(β̂,0,Zi).

(The tilde notation is needed; α̂T and α̂C will make
their appearances momentarily.) Then the differential
log odds in (2) can be estimated by plugging into the
formula for �:

�̃ = log
α̃T

1 − α̃T
− log

α̃C

1 − α̃C
.(10b)
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As will be seen below, �̃ is consistent.
The ITT (intention-to-treat) estimators are defined as

follows:

α̂T = 1

nT

∑
i∈T

Yi, α̂C = 1

nC

∑
i∈C

Yi,(11a)

where nT = nπT is the number of subjects in T and
nC = nπC is the number of subjects in C. Then

�̂ = log
α̂T

1 − α̂T
− log

α̂C

1 − α̂C
.(11b)

The ITT estimators are consistent too, with asymptot-
ics discussed in Freedman (2008a, 2008b). The intu-
ition: α̂T is the average success rate in the treatment
group, and the sample average is a good estimator for
the population average. The same reasoning applies
to α̂C .

5. SIMULATIONS

The simulations in this section are designed to show
what happens when the logit model is fitted to ex-
perimental data. The data generating mechanism is
not the logit, so the simulations illustrate the conse-
quences of specification error. The stochastic element
is the randomization, as in Section 2. (Some auxiliary
randomness is introduced to construct the individual-
level parameters, but that gets conditioned away.) Let
n = 100,500,1000,5000. For i = 1, . . . , n:

let Ui,Vi be IID uniform random variables,
let Zi = Vi ,
let YC

i = 1 if Ui > 1/2, else YC
i = 0,

let YT
i = 1 if Ui + Vi > 3/4, else YT

i = 0.
Suppose n is very large. The mean response in the

control condition is around P(Ui > 1/2) = 1/2, so the
odds of success in the control condition are around 1.
(The qualifiers are needed because the Ui are chosen at
random.) The mean response in the treatment condition
is around 23/32, because

P(Ui + Vi < 3/4) = (1/2) × (3/4)2 = 9/32.

So the odds of success in the treatment condition are
around (23/32)/(9/32). The parameter � in (2) will
therefore be around

log
23/32

9/32
− log 1 = log

23

9
= 0.938.

Even for moderately large n, non-linearity in (2) is an
issue, and the approximation given for � is unsatisfac-
tory.

The construction produces individual-level varia-
tion: a majority of subjects are unaffected by treatment,

TABLE 1
Simulations for n = 100, 500, 1000, 5000. Twenty-five percent of
the subjects are assigned at random to C, the rest to T . Averages

and SDs are shown for the MLE β̂ and the plug-in estimator �̃, as
well as the true value of the differential log odds � defined in (2).

There are 1,000 simulated experiments for each n

n β̂1 β̂2 β̂3 Plug-in Truth

100 −0.699 1.344 2.327 1.248 1.245
0.457 0.540 0.621 0.499

500 −1.750 1.263 3.318 1.053 1.053
0.214 0.234 0.227 0.194

1000 −1.568 1.046 3.173 0.885 0.883
0.155 0.169 0.154 0.142

5000 −1.676 1.134 3.333 0.937 0.939
0.071 0.076 0.072 0.062

about 1/4 are helped, about 1/32 are harmed. The co-
variate is reasonably informative about the effect of
treatment—if Zi is big, treatment is likely to help.

Having constructed Zi , Yi
C and Yi

T for i = 1, . . . ,

n, we freeze them, and simulate 1000 randomized con-
trolled experiments, where 25% of the subjects are as-
signed to C and 75% to T . We fit a logit model to
the data generated by each experiment, computing the
MLE β̂ and the plug-in estimator �̃ defined by (10b).
The average of the 1000 β̂’s and �̃’s is shown in Ta-
ble 1, along with the true value of the differential log
odds, namely, � in (2). We distinguish between the
standard deviation (SD) and the standard error (SE).
Below each average, the table shows the correspond-
ing SD.

For example, with n = 100, the average of the 1000
β̂2’s is 1.344; the SD is 0.540; the Monte Carlo SE
in the average is therefore 0.540/

√
1000 = 0.017. The

average of the 1000 plug-in estimates is 1.248, and the
true � is 1.245. When n = 5000, the bias in β̂2 as an
estimator of � is 1.134 − 0.939 = 0.195, with a Monte
Carlo SE of 0.076/

√
1000 = 0.002. There is a confu-

sion to avoid: n is the number of subjects in the study
population, varying from 100 to 5000, but the number
of simulated experiments is fixed at 1000. (The Monte
Carlo SE measures the impact of randomness in the
simulation, which is based on a sample of “only” 1000
observations.)

The plug-in estimator is essentially unbiased and less
variable than β̂2. The true value of � changes from one
n to the next, since values of Yi

C,Yi
T are generated

by Monte Carlo for each n. Even with n = 5000, the
true value of � would change from one run to another,
the SD across runs being about 0.03 (not shown in the
table).
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Parameter choices—for instance, the joint distrib-
ution of (Ui,Vi)—were somewhat arbitrary. Surpris-
ingly, bias depends on the fraction of subjects assigned
to T . On the other hand, changing the cutpoints used to
define Yi

C and Yi
T from 1/2 and 3/4 to 0.95 and 1.5

makes little difference to the performance of β̂2 and the
plug-in estimator. In these examples, the plug-in esti-
mator and the ITT estimators are essentially unbiased;
the latter has slightly smaller variance.

The bias in β̂2 depends very much on the covariate.
For instance, if the covariate is Ui + Vi rather than Vi ,
then β̂2 hovers around 3. Truth remains in the vicinity
of 1, so the bias in β̂2 is huge. The plug-in and ITT
estimators remain essentially unbiased, with variances
much smaller than β̂2; the ITT estimator has higher
variance than the plug-in estimator (data not shown for
variations on the basic setup, or ITT estimators).

The Monte Carlo results suggest the following:

(i) As n gets large, the MLE β̂ stabilizes.
(ii) The plug-in estimator �̃ is a good estimator of

the differential log odds �.
(iii) β̂2 tends to over-estimate � > 0.

These points will be verified analytically below.

6. EXTENSIONS AND IMPLICATIONS

Suppose the differential log odds of success is the pa-
rameter to be estimated. Then β̂2 is generally the wrong
estimator to use—whether the logit model is right or
the logit model is wrong (Section 9 has a mathematical
proof). It is better to use the plug-in estimator (10) or
the ITT estimator (11). These estimators are nearly un-
biased, and in many examples have smaller variances
too.

Although details remain to be checked, the conver-
gence arguments in Section 8 seem to extend to probits,
the parameter corresponding to (2) being

�−1(αT ) − �−1(αC),

where � is the standard normal distribution function.
On the other hand, with the probit, the plug-in esti-
mators are unlikely to be consistent, since the analogs
of the likelihood equations (16)–(18) below involve
weighted averages rather than simple averages.

In simulation studies (not reported here), the probit
behaves very much like the logit, with the usual dif-
ference in scale: probit coefficients are about 5/8 of
their logit counterparts (Amemiya, 1981, page 1487).
Numerical calculations also confirm inconsistency of
the plug-in estimators, although the asymptotic bias is
small.

According to the logit and probit models, if treat-
ment improves the chances of success, it does so for
all subjects. In reality, of course, treatment may help
some subgroups and hurt others. Subgroup analysis can
therefore be a useful check on the models. Consistency
of the plug-in estimators—as defined here—does not
preclude subgroup effects.

Logit models, probit models, and their ilk are not jus-
tified by randomization. This has implications for prac-
tice. Rates and averages for the treatment and control
groups should be compared before the modeling starts.
If the models change the substantive results, that raises
questions that need to be addressed.

There may be an objection that models take ad-
vantage of additional information. The objection has
some merit if the models are right or nearly right.
On the other hand, if the models cannot be validated,
conclusions drawn from them must be shaky. “Cross-
tabulation before regression” is a slogan to be consid-
ered.

7. LITERATURE REVIEW

Logit and probit models are often used to analyze ex-
perimental data. See Pate and Hamilton (1992), Gilens
(2001), Hu (2003), Duch and Palmer (2004), Frey and
Meier (2004), Gertler (2004). The plug-in estimator
discussed here is similar to the “average treatment ef-
fect” sometimes reported in the literature; see, for ex-
ample, Evans and Schwab (1995). For additional dis-
cussion, see Lane and Nelder (1982), Brant (1996).

Lim (1999) conjectured that plug-in estimators based
on the logit model would be consistent, with an in-
formal argument based on the likelihood equation. He
also conjectured inconsistency for the probit. Middle-
ton (2007) discusses inconsistent logit estimators.

The logistic distribution may first have been used
to model population growth. See Verhulst (1845) and
Yule (1925). Later, the distribution was used to model
dose-response in bioassays (Berkson, 1944). An early
biomedical application to causal inference is Truett,
Cornfield, and Kannel (1967). The history is consid-
ered further in Freedman (2005). The present paper ex-
tends previous results on linear regression (Freedman,
2008a, 2008b).

Statistical models for causation go back to Jerzy
Neyman’s work on agricultural experiments in the
early part of the 20th century. The key paper, Neyman
(1923), was in Polish. There was an extended discus-
sion by Scheffé (1956), and an English translation by
Dabrowska and Speed (1990). The model was covered
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in elementary textbooks in the 1960s; see, for instance,
Hodges and Lehmann (1964, Section 9.4). The setup
is often called “Rubin’s model,” due in part to Holland
(1986); that mistakes the history.

Neyman, Kolodziejczyk, and Iwaszkiewicz (1935)
develop models with subject-specific random effects
that depend on assignment, the objective being to es-
timate average expected values under various circum-
stances. This is discussed in Section 4 of Scheffé
(1956).

Heckman (2000) explains the role of potential out-
comes in econometrics. In epidemiology, a good source
is Robins (1999). Rosenbaum (2002) proposes using
models and permutation tests as devices for hypothesis-
testing. This avoids difficulties outlined here: (i) if
treatment has no effect, then Yi

T = Yi
C = Yi for all

i, and (ii) randomization makes all permutations of i

equally likely—which is just what permutation tests
need.

Rosenblum and van der Laan (2008) suggest that, at
least for purposes of hypothesis testing, robust SEs will
fix problems created by specification error. Such opti-
mism is unwarranted. Under the alternative hypothesis,
the robust SE is unsatisfactory because it ignores bias
(Freedman, 2006b).

Under the null hypothesis, the robust SE may be
asymptotically correct, but using it can reduce power
(Freedman, 2008a, 2008b). In any event, if the null hy-
pothesis is to be tested using model-based adjustments,
exact P -values can be computed by permutation meth-
ods, as suggested by Rosenbaum (2002).

Models are often deployed to infer causation from
association. For a discussion from various perspec-
tives, see Berk (2004), Brady and Collier (2004), and
Freedman (2005). The last summarizes a cross-section
of the literature on this topic (pages 192–200).

Consider a logit model like the one in Section 3.
Omitting the covariate Z from the equation is called
marginalizing over Z. The model is collapsible if the
marginal model is again logit with the same β2. In other
words, given the X’s, the Y ’s are conditionally inde-
pendent, and

P(Yi = 1|Xi) = exp(β1 + β2Xi)

1 + exp(β1 + β2Xi)
.

Guo and Geng (1995) give conditions for collapsibil-
ity; also see Ducharme and Lepage (1986). Gail (1986,
1988) discusses collapsing when a design is balanced.
Robinson and Jewell (1991) show that collapsing will
usually decrease variance: logit models differ from lin-
ear models. Aris et al. (2000) review the literature and
consider modeling strategies to compensate for non-
collapsibility.

8. SKETCH OF PROOFS

We are fitting the logit model, which is incorrect,
to data from an experiment. As before, let Xi be the
assignment variable, so Xi = 1 if i ∈ T and Xi = 0
if i ∈ C. Let Yi be the observed response, so Yi =
XiYi

T +(1−Xi)Yi
C . Let Ln(β) be the “log-likelihood

function” to be maximized. The quote marks are there
because the model is wrong; Ln is therefore only a
pseudo-log-likelihood function. Abbreviate pi(β) for
p(β,Xi,Zi) in (4). The formula for Ln(β) is this:

Ln(β) =
n∑

i=1

Ti,(12a)

where

Ti = log[1 − pi(β)]
(12b)

+ (β1 + β2Xi + β3Zi)Yi.

(The T is for term, not treatment.) It takes a moment to
verify (12), starting from the equation

Ti = Yi log(pi) + (1 − Yi) log(1 − pi).(13)

Each Ti is negative. The function β → Ln(β) is
strictly concave, as one sees by proving that L′′

n is
a negative definite matrix. Consequently, there is a
unique maximum at the MLE β̂n. We write β̂n to show
dependence on the size n of the study population, al-
though that creates a conflict in the notation. If pressed,
we could write β̂n,j for the j th component of the MLE.

The ith row of the “design matrix” is (1,Xi,Zi).
Tacitly, we are assuming this matrix is nonsingular.
For large n, the assumption will follow from regularity
conditions to be imposed. The concavity of Ln is well
known. See, for instance, pages 122–123 in Freedman
(2005) or page 273 in Amemiya (1985). Pratt (1981)
discusses the history and proves a more general result.

For reference, we record one variation on these
ideas. Let M be an n × p matrix of rank p; write Mi

for the ith row of M . Let y be an n×1 vector of 0s and
1s. Let β be a p×1 vector. Let wi > 0 for i = 1, . . . , n.
Consider M and y as fixed, β as variable. Define L(β)

as
n∑

i=1

wi{− log[1 + exp(Mi · β)] + (Mi · β)yi}.

PROPOSITION 1. The function β → L(β) is strict-
ly concave.

One objective in the rest of this section is showing
that

βn converges to a limit β∞ as n → ∞.(14)
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A second objective is showing that

the plug-in estimator �̃ is consistent.(15)

The argument actually shows a little more. The plug-in
estimator α̃T, the ITT estimator α̂T, and the parameter
αT become indistinguishable as the size n of the study
population grows; likewise for α̃C, α̂C and αC.

The ITT estimators α̂T, α̂C were defined in (11). Re-
call too that nT = nπT and nC = nπC are the numbers
of subjects in T and C respectively. The statement of
Lemma 1 involves the empirical distribution of Zi for
i ∈ T , which assigns mass 1/nT to Zi for each i ∈ T .
Similarly, the empirical distribution of Zi for i ∈ C as-
signs mass 1/nC to Zi for each i ∈ C.

To prove Lemma 1, we need the likelihood equa-
tion L′

n(β) = 0. This vector equation unpacks to three
scalar equations in three unknowns, the components of
β that make up β̂n:

1

nT

∑
i∈T

p(β̂n,1,Zi) = 1

nT

∑
i∈T

Yi,(16)

1

nC

∑
i∈C

p(β̂n,0,Zi) = 1

nC

∑
i∈C

Yi,(17)

1

n

n∑
i=1

p(β̂n,Xi,Zi)Zi = 1

n

n∑
i=1

YiZi.(18)

This follows from (12)–(13) after differentiating with
respect to β1, β2, and β3—and then doing a bit of al-
gebra.

LEMMA 1. If the empirical distribution of Zi for
i ∈ T matches the empirical distribution for i ∈ C (the
first balance condition), then the plug-in estimators
α̃T, α̃C match the ITT estimators. More explicitly,

1

n

n∑
i=1

p(β̂n,1,Zi) = 1

nT

∑
i∈T

Yi,

1

n

n∑
i=1

p(β̂n,0,Zi) = 1

nC

∑
i∈C

Yi.

PROOF. The plug-in estimators α̃T, α̃C were de-
fined in (10); the ITT estimators α̂T, α̂C, in (11). We
begin with α̃T. By (16),

1

nT

∑
i∈T

p(β̂n,1,Zi) = 1

nT

∑
i∈T

Yi = α̂T.

By the balance condition,

1

nC

∑
i∈C

p(β̂n,1,Zi) = 1

nT

∑
i∈T

p(β̂n,1,Zi)

equals α̂T too. Finally, the average of p(β̂n,1,Zi) over
all i is a mixture of the averages over T and C. So
α̃T = α̂T as required. The same argument works for
α̃C, using (17). �

For the next lemma, recall αT, αC from (1). The easy
proof is omitted, being very similar to the proof of the
previous result.

LEMMA 2. Suppose the empirical distribution of
the pairs (Yi

T, Yi
C) for i ∈ T matches the empirical

distribution for i ∈ C (the second balance condition).

Then α̂T = αT and α̂C = αC .

LEMMA 3. Let x be any real number. Then

ex − 1
2e2x < log(1 + ex) < ex,

x + e−x − 1
2e−2x < log(1 + ex) < x + e−x.

The first bound is useful when x is large and neg-
ative; the second, when x is large and positive. To
get the second bound from the first, write 1 + ex =
ex(1+e−x), then replace x by −x. The first bound will
look more familiar on substituting y = ex . The proof is
omitted, being “just” calculus.

For the next result, let G be an open, bounded, con-
vex subset of Euclidean space. Let fn be a strictly
concave function on G, converging uniformly to f∞,
which is also strictly concave. Let fn take its maxi-
mum at xn, while f∞ takes its maximum at x∞ ∈ G.
Although the lemma is well known, a proof may be
helpful. We write G \H for the set of points that are in
G but not in H .

LEMMA 4. xn → x∞ and fn(xn) → f∞(x∞).

PROOF. Choose a small neighborhood H of x∞ =
arg maxf∞. There is a small positive δ with f∞(x) <

f∞(x∞) − δ for x ∈ G \ H . For all sufficiently large
n, we have |fn − f∞| < δ/3. In particular, fn(x∞) >

f∞(x∞) − δ/3. On the other hand, if x ∈ G \ H , then

fn(x) < f∞(x) + δ/3 < f∞(x∞) − 2δ/3.

Thus, arg maxfn ∈ H . Furthermore, fn(xn) ≥
fn(x∞) > f∞(x∞) − δ/3. In the other direction,
f∞(x∞) ≥ f∞(xn) > fn(xn) − δ/3. So

|maxfn − maxf∞| < δ/3,

which completes the proof. �
For the final lemma, consider a population consisting

of n objects. Suppose r are red, and r/n → ρ with 0 <

ρ < 1. (The remaining n− r objects are colored black.)
Now choose m out of the n objects at random without
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replacement, where m/n → λ with 0 < λ < 1. Let Xm

be the number of red objects that are chosen. So Xm is
hypergeometric. The lemma puts no conditions on the
joint distribution of the {Xm}. Only the marginals are
relevant.

LEMMA 5. Xm/n → λρ almost surely as n → ∞.

PROOF. Of course, E(Xm) = rm/n. The lemma
can be proved by using Chebychev’s inequality, after
showing that

E

[(
Xm − r

m

n

)4]
= O(n2).

Tedious algebra can be reduced by appealing to Theo-
rem 4 in Hoeffding (1963). In more detail, let Wi be in-
dependent 0–1 variables with P(Wi = 1) = r/n. Thus,∑m

i=1 Wi is the number of reds in m draws with re-
placement, while Xm is the number of reds in m draws
without replacement. According to Hoeffding’s theo-
rem, Xm is more concentrated around the common ex-
pected value. In particular,

E

{(
Xm − r

m

n

)4}
< E

{[
m∑

i=1

(
Wi − r

n

)]4}
.

Expanding [∑m
i=1(Wi − r

n
)]4 yields m terms of the

form (Wi − r
n
)4. Each of these terms is bounded above

by 1. Next consider terms like (Wi − r
n
)2(Wj − r

n
)2

with i �= j . The number of such terms is of order m2,
and each term is bounded above by 1. All remaining
terms have expectation 0. Thus, E[(Xn − r m

n
)4] is of

order m2 < n2. �
NOTE. There are m4 terms in (a1 + · · · + am)4 =∑
ijk
 aiajaka
. By combinatorial arguments:

(i) m terms are like ai
4, with one index only.

(ii) 3m(m − 1) are like ai
2aj

2, with two different
indices.

(iii) 4m(m − 1) are like ai
3aj , with two different

indices.
(iv) 6m(m − 1)(m − 2) are like ai

2ajak , with three
different indices.

(v) m(m−1)(m−2)(m−3) are like aiajaka
, with
four different indices.

The counts can also be derived from the “multino-
mial theorem,” which expands (a1 + · · · + am)N . For
an early—and very clear—textbook exposition, see
Chrystal (1889, pages 14–15). A little care is needed,
since our counts do not restrict the order of the in-
dices: i < j and i > j are both allowed. By contrast,

in the usual statements of the multinomial theorem, in-
dices are ordered (i < j ). German scholarship traces
the theorem (“der polynomische Lehrsatz”) back to
correspondence between Leibniz and Johann Bernoulli
in 1695; see, for instance, Tauber (1963), Netto (1927,
page 58), and Tropfke (1903, page 332). On the other
hand, de Moivre (1697) surely deserves some credit.

We return now to our main objectives. In outline, we
must show that Ln(β)/n converges to a limit L∞(β),
uniformly over β in any bounded set; this will follow
from Lemma 5. The limiting L∞(β) is a strictly con-
cave function of β , with a unique maximum at β∞: see
Proposition 1. Furthermore, β̂n → β∞ by Lemma 4. In
principle, randomization ensures that the balance con-
ditions are nearly satisfied, so the plug-in estimator is
consistent by Lemmas 1–2. A rigorous argument gets
somewhat intricate; one difficulty is showing that re-
mote β’s can be ignored, and Lemma 3 helps in this
respect.

Some regularity conditions are needed. Technical-
ities will be minimized if we assume that Zi takes
only a finite number of values; notational overhead
is reduced even further if Zi = 0, 1, or 2. There are
now 3 × 2 × 2 = 12 possible values for the triples
Zi,Yi

C,Yi
T . We say that subject i is of type zct pro-

vided

Zi = z, Yi
C = c, Yi

T = t.

Let θz,c,t be the fraction of subjects that are of type zct ;
the number of these subjects is nθz,c,t .

The θ ’s are population-level parameters. They are
not random. They sum to 1. We assume the θ ’s are
all positive. Recall that πT is the fraction of subjects
assigned to T . This is fixed (not random), and 0 <

πT < 1. The fraction assigned to C is πC = 1 − πT .
In principle, πT , πC , and the θz,c,t depend on n. As n

increases, we assume these quantities have respective
limits λT , λC and λz,c,t , all positive. Since z takes only
finitely many values,

∑
z,c,t λz,c,t = 1.

When n is large, within type zct , the fraction of sub-
jects assigned to T is random, but essentially λT : such
subjects necessarily have response Yi = t . Likewise,
the fraction assigned to C is random, but essentially
λC : such subjects necessarily have response Yi = c. In
the limit, the Z’s are exactly balanced between T and
C within each type of subject. That is the essence of
the argument; details follow.

Within type zct , let nT
z,c,t and nC

z,c,t be the number of
subjects assigned to T and C, respectively. So

nT
z,c,t + nC

z,c,t = nθz,c,t .
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The variables nT
z,c,t are hypergeometric. They are un-

observable. This is because type is unobservable: Yi
C

and Yi
T are not simultaneously observable.

To analyze the log-likelihood function Ln(β), recall
that Yi = XiYi

T + (1 − Xi)Yi
C is the observed re-

sponse. Let nz,x,y be the number of i with Zi = z,Xi =
x,Yi = y; here z = 0, 1, or 2, x = 0 or 1, and y = 0
or 1. The nz,x,y are observable because Yi is observ-
able. They are random because Xi is random. Also let
nz,x = nz,x,0 + nz,x,1, which is the number of subjects
i with Zi = z and Xi = x. Now Ln(β)/n in (12) is the
sum ∑

z,x

Tz,x,(19a)

where

Tz,x = −nz,x

n
log[1 + exp(β1 + β2x + β3z)]

(19b)
+ nz,x,1

n
(β1 + β2x + β3z).

(Again, T is for “term,” not “treatment.”) This can be
checked by grouping the terms Ti in (12) according to
the possible values of (Zi,Xi, Yi). There are six terms
Tz,x in (19), corresponding to z = 0,1, or 2 and x = 0
or 1.

We claim

nz,x,y = nT
z,0,y + nT

z,1,y if x = 1,
(20)

= nC
z,y,0 + nC

z,y,1 if x = 0.

The trick is seeing through the notation. For instance,
take x = 1. By definition, nz,1,y is the number of i

with Zi = z,Xi = 1, Yi = y. The i’s with Xi = 1 cor-
respond to subjects in the treatment group, so Yi = Yi

T .
Thus, nz,1,y is the number of i with Zi = z,Xi =
1, Yi

T = y. Also by definition, nT
z,c,y is the number of

subjects with Zi = z,Xi = 1, Yi
C = c,Yi

T = y. Now
add the numbers for c = 0,1: how these subjects would
have responded to the control regime is at this point ir-
relevant. A similar argument works if x = 0, complet-
ing the discussion of (20).

Recall that θz,c,y → λz,c,y as n → ∞. Let

θz = ∑
c,y

θz,c,y and λz = ∑
c,y

λz,c,y.

Thus, θz is the fraction of subjects with Zi = z, and
θz → λz as n → ∞.

As n → ∞, we claim that

nz,1,y/n → λT (λz,0,y + λz,1,y),(21)

nz,1/n → λT λz,(22)

nz,0,y/n → λC(λz,y,0 + λz,y,1),(23)

nz,0/n → λCλz,(24)

where, for instance, λT is the limit of πT as n → ∞.
More specifically, there a set N of probability 0, and
(21)–(24) hold true outside of N . Indeed, (21) follows
from (20) and Lemma 5. Then (22) follows from (21)
by addition over y = 0,1. The last two lines are similar
to the first two.

A little more detail on (21) may be helpful. What is
the connection with Lemma 5? Consider nT

z,0,y , which
is the number of subjects of type z0y that are assigned
to T . The “reds” are subjects of type z0y, so the frac-
tion of reds in the population converges to λz,0,y , by as-
sumption. We are drawing m times at random without
replacement from the population to get the treatment
group, and m/n → λT , also by assumption. Now Xm

is the number of reds in the sample, that is, the num-
ber of subjects of type z0y assigned to treatment. The
lemma tells us that Xm → λT λz,0,y almost surely. The
same argument works for nT

z,1,y . Add to get (21).
Next, fix a positive, finite, real number B . Consider

the open, bounded, convex polyhedron GB defined by
the six inequalities

|β1 + β2x + β3z| < B(25)

for x = 0,1 and z = 0,1,2. As n → ∞, we claim that
Ln(β)/n → L∞(β) uniformly over β ∈ GB , where

L∞(β) = λT �T + λC�C,(26a)

�T = ∑
z

(−λz log[1 + exp(φT (z))]
(26b)

+ (λz,0,1 + λz,1,1)φT (z)
)
,

�C = ∑
z

(−λz log[1 + exp(φC(z))]
(26c)

+ (λz,1,0 + λz,1,1)φC(z)
)
,

φT (z) = β1 + β2 + β3z,
(26d)

φC(z) = β1 + β3z.

(Recall that λT was the limit of πT as n → ∞, and like-
wise for λC .) This follows from (21)–(24), on splitting
the sum in (19) into two sums, one with terms z1 and
the other with terms z0. The z1 terms give us λT �T ,
and the z0 terms give us λC�C . The conclusion holds
outside the null set N defined for (21)–(24).

It may be useful to express the limiting distribution
of {Z,X,Y } in terms of λT ,λC and λz,c,t , the latter
being the limiting fraction of subjects of type zct . See
Table 2. For example, what fraction of subjects have
Z = z,X = 1, Y = 1 in the limit? The answer is the
first row, second column of the table. The other entries
can be read in a similar way.
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TABLE 2
Asymptotic distribution of {Z,X,Y }

expressed in terms of λT ,λC and λz,c,t

Value Weight

z11 λT (λz,0,1 + λz,1,1)

z10 λT (λz,0,0 + λz,1,0)

z01 λC(λz,1,0 + λz,1,1)

z00 λC(λz,0,0 + λz,0,1)

The function β → L∞(β) is strictly concave, by
Proposition 1 with n = 12 and p = 3. The rows of
(M y) run through all 12 combinations of 1 z x y with
z = 1,2,3, and x = 0,1, and y = 0,1. The weights are
shown in Table 2.

Let β∞ be the β that maximizes L∞(β). Choose B

in (25) so large that β∞ ∈ GB . Lemma 4 shows that
maxβ∈GB

Ln(β)/n is close to L∞(β∞) for all large
n. Outside GB—if B is large enough—Ln(β)/n is too
small to matter; additional detail is given below. Thus,
β̂n ∈ GB for all large n, and converges to β∞.

This completes the argument for (14) and we turn to
proving (15)—the consistency of the plug-in estima-
tors defined by (10). Recall that θz is the fraction of i’s
with Zi = z; and θz → λz as n → ∞. Now

α̃T = 1

n

n∑
i=1

p(β̂n,1,Zi)

= ∑
z

θzp(β̂n,1, z)

→ ∑
z

λzp(β∞,1, z),

where the function p(β, x, z) was defined in (4). Re-
member, z takes only finitely many values! A similar
argument shows that α̃C → ∑

z λzp(β∞,0, z).
The limiting distribution for {Zi,Yi

C,Yi
T } is de-

fined by the λz,c,t , where λz,c,t is the limiting fraction
of subjects of type zct ; recall that λz = ∑

c,t λz,c,t . We
claim ∑

z

λzp(β∞,1, z) = ∑
z,c

λz,c,1,(27)

∑
z

λzp(β∞,0, z) = ∑
z,t

λz,1,t .(28)

Indeed, (22) and (24) show that in the limit, the Zi are
exactly balanced between T and C. Likewise, (21) and
(23) show that in the limit, the pairs Yi

T, Yi
C are ex-

actly balanced between T and C. Apply Lemmas 1–2.
The left-hand side of (27) is the plug-in estimator for

the limiting αT. The right-hand side is the ITT estima-
tor, as well as truth. The three values coincide by the
lemmas. The argument for (28) is the same, complet-
ing the discussion of (27)–(28).

The right-hand side of (27) can be recognized as the
limit of 1

n

∑n
i=1 Yi

T = ∑
z,c θz,c,1; likewise, the right-

hand side of (28) is the limit of 1
n

∑n
i=1 Yi

C. This com-
pletes the proof of (15). In effect, the argument par-
lays Fisher consistency into almost-sure consistency,
the exceptional null set being the N where (21)–(24)
fail.

Our results give an indirect characterization of limβn

as the β at which the limiting log-likelihood function
(26) takes on its maximum. Furthermore, asymptotic
normality of {nT

z,c,t } entails asymptotic normality of β̂n

and the plug-in estimators, but that is a topic for an-
other day.

Additional Detail on Boundedness

Consider a z1 term in (19). We are going to show
that for B large, this term is too small to matter. Fix a
small positive ε. By (22), for all large n,

nz,1/n > (1 − ε)λT λz;
by (21),

nz,1,1/n < (1 + ε)λT (λz,0,1 + λz,1,1).

Let z′ = β1 + β2 + β3z ≥ B > 0. By Lemma 3,

log[1 + exp(z′)] > z′ + exp(−z′) − 1
2 exp(−2z′) > z′

because z′ ≥ B > 0. Our z1 term is therefore bounded
above for all large n by

[−(1 − ε)λz + (1 + ε)(λz,0,1 + λz,1,1)]λT z′.

The largeness needed in n depends on ε not B .
We can choose ε > 0 so small that

(1 + ε)(λz,0,1 + λz,1,1) < (1 − 2ε)λz,

because λz,0,1 + λz,1,1 < λz. Our z1 term is therefore
bounded above by −ελT λzB . For B large enough, this
term is so negative as to be irrelevant. The argument
works because all λz,c,t are assumed positive, and there
are only finitely many of them. A similar argument
works for z′ = β1 + β2 + β3z ≤ −B , and for terms z0
in (19). These arguments go through outside the null
set N defined for (21)–(24).
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Summing up

It may be useful to summarize the results so far. The
parameter αT is defined in terms of the study popula-
tion, as the fraction of successes that would be obtained
if all members of the population were assigned to treat-
ment; likewise for αC. See (1). The differential log odds
� of success is defined by (2). There is a covariate tak-
ing a finite number of values. A fraction of the sub-
jects are assigned at random to treatment, and the rest
to control. We fit a logit model to data from this ran-
domized controlled experiment, although the model is
likely false. The MLE is β̂n. ITT and plug-in estimators
are defined by (10)–(11).

The size of the population is n. This is increasing to
infinity. “Types” of subjects are defined by combina-
tions of possible values for the covariate, the response
to control, and the response to treatment. We assume
that the fraction of subjects assigned to treatment con-
verges to a positive limit, along with the fraction in
each type. The parameters αT and αC converge too.
This may seem a little odd, but αT and αC may depend
on the study population, hence on n.

THEOREM 1. Under the conditions of this section,
if a logit model is fitted to data from a randomized con-
trolled experiment: (i) the MLE β̂n converges to a limit
β∞; (ii) the plug-in estimator α̃T, the ITT estimator α̂T,
and the parameter αT have a common limit; (iii) α̃C,
α̂C, and αC have a common limit; (iv) �̃, �̂, and �

have a common limit. Convergence of estimators holds
almost surely, as the sample size grows.

Estimating Individual-Level Parameters

At the beginning of the paper, it was noted that the
individual-level parameters Yi

T and Yi
C are estimable.

The proof is easy. Recall that Xi = 1 if i is assigned to
treatment, and Xi = 0 otherwise; furthermore, P(Xi =
1) = πT is in (0,1). Then YiXi/πT is an unbiased esti-
mator for Yi

T, and Yi(1 − Xi)/(1 − πT ) is an unbiased
estimator for Yi

C, where Yi = XiYi
T + (1 − Xi)Yi

C is
the observed response.

9. AN INEQUALITY

Let subject i have probability of success pi if treated,
qi if untreated, with 0 < qi < 1 and the qi not all equal.
Suppose

pi

1 − pi

= λ
qi

1 − qi

for all i, where λ > 1. Thus,

pi = λqi

1 + (λ − 1)qi

and 0 < pi < 1. Let p = 1
n

∑
i pi be the average value

of pi , and likewise for q . We define the pooled multi-
plier as

p/(1 − p)

q/(1 − q)
.

The log of this quantity is analogous to the differential
log odds in (2).

The main object in this section is showing that

λ is strictly larger than the pooled multiplier.(29)

Russ Lyons suggested this elegant proof. Fix λ > 1.
Let f (x) = x/(1 − x) for 0 < x < 1. So f is strictly
increasing. Let h(x) = f −1(λf (x)), so pi = h(qi). In-
equality (29) says that f (p) < λf (q), that is, p <

h(q). Since pi = h(qi), proving (29) comes down to
proving that h is strictly concave. But

h(x) = λx

1 + (λ − 1)x

= λ

λ − 1

(
1 − 1

1 + (λ − 1)x

)
,

and y → 1/y is strictly convex for y > 0. This com-
pletes the proof of (29).

In the other direction,
p

1 − p
− q

1 − q
= p − q

(1 − p)(1 − q)
> 0(30)

because pi > qi for all i. So the pooled multiplier ex-
ceeds 1. In short, given the assumptions of this section,
pooling moves the multiplier downward towards 1. Of
course, if λ < 1, we could simply interchange p and q .
The conclusion: pooling moves the multiplier toward 1.

In this paper, we are interested in estimating differ-
ential log odds. If the logit model (4) is right, the coeffi-
cient β2 of the treatment indicator is a biased estimator
of the differential log odds � in (2)—biased away from
0. That is what the inequalities of this section demon-
strate, the assumptions being β3 �= 0, Zi is nonrandom,
and Zi shows variation across i. (Random Zi are easily
accommodated.)

If the logit model is wrong, the inequalities show that
β̂2 > �̂ if �̂ > 0, while β̂2 < �̂ if �̂ < 0. The assump-
tions are the same, with β3 replaced by β̂3, attention
being focused on the limiting values defined in the pre-
vious section. Since the plug-in estimator �̂ is consis-
tent, β̂2 must be inconsistent.

The pooling covered by (29)–(30) is a little differ-
ent from the collapsing discussed in Guo and Geng
(1995). (i) Pooling does not involve a joint distribution
for {Xi,Zi}, or a logit model connecting Yi to Xi and
Zi . (ii) Guo and Geng consider the distribution of one
triplet {Yi,Xi,Zi} only, that is, n = 1.



248 D. A. FREEDMAN

ACKNOWLEDGMENTS

Thad Dunning, Winston Lim, Russ Lyons, Philip
Stark and Peter Westfall made helpful comments, as
did an anonymous editor. Ed George deserves special
thanks for helpful comments and moral support.

REFERENCES

AMEMIYA, T. (1981). Qualitative response models: A survey.
J. Economic Literature 19 1483–1536.

AMEMIYA, T. (1985). Advanced Econometrics. Harvard Univ.
Press.

ARIS, E. M. D., HAGENAARS, J. A. P., CROON, M. and VER-
MUNT, J. K. (2000). The use of randomization for logit and
logistic models. In Proceedings of the Fifth International Con-
ference on Social Science Methodology (J. Blasius, J. Hox, E.
de Leuw and P. Smidt, eds.). TT Publications, Cologne.

BERK, R. A. (2004). Regression Analysis: A Constructive Cri-
tique. Sage, Thousand Oaks, CA.

BERKSON, J. (1944). Application of the logistic function to bio-
assay. J. Amer. Statist. Assoc. 39 357–365.

BRADY, H. E. and COLLIER, D. (2004). Rethinking Social In-
quiry: Diverse Tools, Shared Standards. Rowman & Littlefield,
Lanham, MD.

BRANT, R. (1996). Digesting logistic regression results. The Amer-
ican Statistician 50 117–119.

CHRYSTAL, G. (1889). Algebra: An Elementary Text Book for the
Higher Classes of Secondary Schools and for Colleges. Part
II. Adam and Charles Black, Edinburgh. Available on Google
Scholar 7/28/07.

DABROWSKA, D. M. and SPEED, T. P. (1990). On the applica-
tion of probability theory to agricultural experiments. Essay on
principles. Section 9. Statist. Sci. 5 456–480. MR1092986

DE MOIVRE, A. (1697). A method of raising an infinite multino-
mial to any given power, or extracting any given root of the
same. Philos. Trans. Roy. Soc. London 19 619–625.

DUCH, R. M. and PALMER, H. D. (2004). It’s not whether you win
or lose, but how you play the game. American Political Science
Review 98 437–452.

DUCHARME, G. R. and LEPAGE, Y. (1986). Testing collapsibility
in contingency tables. J. Roy. Statist. Soc. Ser. B 48 197–205.
MR0867997

EVANS, W. N. and SCHWAB, R. M. (1995). Finishing high school
and starting college: Do Catholic schools make a difference?
Quarterly J. Economics 110 941–974.

FREEDMAN, D. A. (2005). Statistical Models: Theory and Prac-
tice. Cambridge Univ. Press. MR2175838

FREEDMAN, D. A. (2006a). Statistical models for causation: What
inferential leverage do they provide? Evaluation Review 30
691–713.

FREEDMAN, D. A. (2006b). On the so-called “Huber Sandwich
Estimator” and “robust standard errors.” Amer. Statist. 60 299–
302. MR2291297

FREEDMAN, D. A. (2008a). On regression adjustments to experi-
mental data. Adv. in Appl. Math. 40 180–193. MR2388610

FREEDMAN, D. A. (2008b). On regression adjustments in experi-
ments with several treatments. Ann. Appl. Statist. 2 176–196.

FREY, B. S. and MEIER, S. (2004). Social comparisons and pro-
social behavior: Testing “conditional cooperation” in a field ex-
periment. American Economic Review 94 1717–1722.

GAIL, M. H. (1986). Adjusting for covariates that have the same
distribution in exposed and unexposed cohorts. In Modern Sta-
tistical Methods in Chronic Disease Epidemiology (S. H. Mool-
gavkar and R. L. Prentice, eds.) 3–18. Wiley, New York.

GAIL, M. H. (1988). The effect of pooling across strata in perfectly
balanced studies. Biometrics 44 151–162.

GERTLER, P. (2004). Do conditional cash transfers improve child
health? Evidence from PROGRESA’s control randomized ex-
periment. American Economic Review 94 336–341.

GILENS, M. (2001). Political ignorance and collective policy pref-
erences. American Political Science Review 95 379–396.

GUO, G. H. and GENG, Z. (1995). Collapsibility of logistic re-
gression coefficients. J. Roy. Statist. Soc. Ser. B 57 263–267.
MR1325390

HECKMAN, J. J. (2000). Causal parameters and policy analysis
in economics: A twentieth century retrospective. Quarterly J.
Economics 115 45–97.

HILL, A. B. (1961). Principles of Medical Statistics, 7th ed. The
Lancet, London.

HODGES, J. L. and LEHMANN, E. (1964). Basic Concepts
of Probability and Statistics. Holden-Day, San Francisco.
MR0185709

HOEFFDING, H. (1963). Probability inequalities for sums of
bounded random variables. J. Amer. Statist. Assoc. 58 13–30.
MR0144363

HOLLAND, P. W. (1986). Statistics and causal inference (with dis-
cussion). J. Amer. Statist. Assoc. 8 945–970. MR0867618

HU, W.-Y. (2003). Marriage and economic incentives: Evidence
from a welfare experiment. J. Human Resources 38 942–963.

KOCH, C. G. and GILLINGS, D. B. (2005). Inference, design-
based vs. model-based. In Encyclopedia of Statistical Sciences
(S. Kotz, C. B. Read, N. Balakrishnan and B. Vidakovic, eds.),
2nd ed. Wiley, Hoboken, NJ.

LANE, P. W. and NELDER, J. A. (1982). Analysis of covariance
and standardization as instances of prediction. Biometrics 38
613–621.

LIM, W. (1999). Estimating impacts on binary outcomes under
random assignment. Unpublished technical note, MDRC, New
York.

MIDDLETON, J. (2007). Even for randomized experiments, logis-
tic regression is not generally consistent. Unpublished technical
note, Political Science Dept., Yale Univ.

NETTO, E. (1927). Lehrbuch der Combinatorik. Teubner, Leipzig.
NEYMAN, J. (1923). Sur les applications de la théorie des proba-

bilités aux experiences agricoles: Essai des principes. Roczniki
Nauk Rolniczych 10 1–51. (In Polish.) English translation by D.
M. Dabrowska and T. P. Speed (1990) Statist. Sci. 5 465–480
(with discussion).

NEYMAN, J., KOLODZIEJCZYK, S. and IWASZKIEWICZ, K.
(1935). Statistical problems in agricultural experimentation. J.
Roy. Statist. Soc. 2 Supplement 107–154.

PATE, A. M. and HAMILTON, E. E. (1992). Formal and informal
deterrents to domestic violence: The Dade county spouse as-
sault experiment. American Sociological Review 57 691–697.

PRATT, J. W. (1981). Concavity of the log likelihood. J. Amer. Sta-
tist. Assoc. 76 103–106. MR0608179

http://www.ams.org/mathscinet-getitem?mr=1092986
http://www.ams.org/mathscinet-getitem?mr=0867997
http://www.ams.org/mathscinet-getitem?mr=2175838
http://www.ams.org/mathscinet-getitem?mr=2291297
http://www.ams.org/mathscinet-getitem?mr=2388610
http://www.ams.org/mathscinet-getitem?mr=1325390
http://www.ams.org/mathscinet-getitem?mr=0185709
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=0867618
http://www.ams.org/mathscinet-getitem?mr=0608179


LOGISTIC REGRESSION 249

ROBINS, J. M. (1999). Association, causation, and marginal struc-
tural models. Synthese 121 151–179. MR1766776

ROBINSON, L. D. and JEWELL, N. P. (1991). Some surprising
results about covariate adjustment in logistic regression models.
Internat. Statist. Rev. 58 227–240.

ROSENBAUM, P. R. (2002). Covariance adjustment in randomized
experiments and observational studies (with discussion). Statist.
Sci. 17 286–327. MR1962487

ROSENBLUM, M. and VAN DER LAAN, M. J. (2008). Using
regression models to analyze randomized trials: Asymptoti-
cally valid hypothesis tests despite incorrectly specified models.
Available at http://www.bepress.com/ucbbiostat/paper219/.

SCHEFFÉ, H. (1956). Alternative models for the analysis of vari-
ance. Ann. Math. Statist. 27 251–271. MR0082249

TAUBER, S. (1963). On multinomial coefficients. Amer. Math.
Monthly 70 1058–1063. MR0160735

TROPFKE, J. (1903). Geschichte der Elementar-mathematik in sys-
tematischer Darstellung. Verlag Von Veit & Comp, Leipzig.

TRUETT, J., CORNFIELD, J. and KANNEL, W. (1967). A multi-
variate analysis of the risk of coronary heart disease in Fram-
ingham. J. Chronic Diseases 20 511–524.

VERHULST, P. F. (1845). Recherches mathématiques sur la loi
d’accroissement de la population. Nouveaux mémoires de
l’Académie Royale des Sciences et Belles-Lettres de Bruxelles
18 1–38.

YULE, G. U. (1925). The growth of population and the factors
which control it (with discussion). J. Roy. Statist. Soc. 88 1–62.

http://www.ams.org/mathscinet-getitem?mr=1766776
http://www.ams.org/mathscinet-getitem?mr=1962487
http://www.bepress.com/ucbbiostat/paper219/
http://www.ams.org/mathscinet-getitem?mr=0082249
http://www.ams.org/mathscinet-getitem?mr=0160735

	Introduction
	Neyman
	The Intention-to-Treat Principle

	The Logit Model
	Interpreting the Coefficients in the Model
	Application to Experimental Data
	What if the Logit Model is Right?
	From Neyman to Logits

	A Plug-In Estimator for the Log Odds
	Simulations
	Extensions and Implications
	Literature Review
	Sketch of Proofs
	Additional Detail on Boundedness
	Summing up
	Estimating Individual-Level Parameters

	An Inequality
	Acknowledgments
	References

