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1. Introduction

In two recent papers, [8] and [9], the problem of survival analysis on a gen-
eral complete separable metric space was approached from the point of view of
set-indexed martingales (cf. [6]). The goal of these papers was to build a mathe-
matical structure that would handle data on general spaces (including, but not
limited to d-dimensional Euclidean space) subject to very general types of cen-
soring mechanisms. In particular, the cumulative hazard function was defined on
a class of sets, and a corresponding Nelson-Aalen-type estimator was proposed.

In [8], the censoring mechanism in a set-indexed framework was defined by
introducing the concept of a stopping set, a random set with a particular kind
of measurability. The stopping sets acted as windows, since we could observe
the data points only through them, and they permit the consideration of more
sophisticated censoring schemes than the usual multivariate generalizations of
right-censoring; however, the stopping sets were still restricted to certain shapes.

The theory of stopping sets was expanded to more general random sets called
anti-clouds in [9]. The name is inspired by the example of aerial photography,
where pictures are taken from high in the air and clouds may interfere with
the observation of whatever the subject of interest is. Anti-clouds, then, are
the complement of the clouds: the regions where we can actually observe the
data points. The difference between stopping sets and anti-clouds is, quite sim-
ply, that anti-clouds have virtually no restriction on the shape they can take;
obviously, this makes for much more realistic censoring schemes.

The measurability requirement imposed on these random sets allow one to
apply the theory of set-indexed martingales as developed in [6] to produce a set-
indexed Nelson-Aalen estimator for the cumulative hazard on a general complete
separable metric space in the presence of generalized censoring. In the case of
censoring by stopping sets, consistency and asymptotic unbiasedness of the es-
timator, as well as asymptotic normality of its finite-dimensional distributions,
are proven in [8]. The Nelson-Aalen estimator in the presence of censoring by
clouds presented more of a challenge, due to the general geometric nature of the
clouds; nevertheless, the estimator was shown to be consistent and asymptoti-
cally unbiased in [9].

Unfortunately, there were still some gaps in the general theory. Aside from the
lack of a functional central limit theorem for the general estimator of [9], there
remained a critical problem limiting the applicability of the estimator. As will
be seen subsequently, a process needed to construct the Nelson-Aalen estimator
may not be observable under some common data structures. In practice, this
could render the estimator unusable much of the time.

Our first goal is to address the observability problem and produce a working
estimator for the cumulative hazard, while still preserving the general censoring
model of [9]. It happens that the root of the observability problem lies in the
measurability requirement of the anti-clouds. By asking for a slightly weaker
measurability condition, it is possible for us to achieve our objective. We call
the new kind of random set that came from this modification a ∗-anti-cloud. If
the complements of these sets, the ∗-clouds, act as the censoring in the survival
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model, then we are always able to construct a Nelson-Aalen estimate that can
be observed.

Our second goal is to prove a functional central limit theorem for the Nelson-
Aalen estimator under generalized censoring on Euclidean space. In this case,
we can also establish the validity of bootstrap procedures.

It should be pointed out that various estimators for the cumulative hazard
have been proposed for bivariate data under right censoring. However, for the
most part they have been designed en route to producing a Kaplan-Meier-type
estimator for the survival function. Unfortunately, in higher dimensions the rela-
tionship between the survival and the hazard functions is not as straightforward
as it is in one dimension. In two dimensions, for example, the survival function
is determined by the hazard and both marginal distributions. For a good exposi-
tion of the representation of a bivariate survival function S in terms of the hazard
and the marginals, we refer the reader to [5] or [10]. Usually, one-dimensional
Kaplan-Meier estimates are used for the marginal survival functions; what will
change is the way the hazard is estimated. As Kalbfleisch and Prentice explain in
[10], the simplest of this type of estimator is due to Bickel, who uses the ratio of
the number of failure points that were uncensored in both components at (t1, t2)
to the number of pairs at risk at that point. The Dabrowska estimator and the
Prentice-Cai estimator represent attempts at improving this approach, by con-
sidering not only the ratio of the number of double failure times to the at-risk set,
but also the ratio of the number of failures on one coordinate when the other is
still alive to the at-risk set. Lastly, Pons proposed a martingale-based estimator
of the cumulative hazard of two right-censored survival times in [11], which she
then used to produce a test for independence of the two survival times by com-
paring it to the product of the usual one-dimensional Nelson-Aalen estimates of
both marginal cumulative hazards. However, her model required independence
of the components of the survival time.

All of the preceding estimators depend strongly on the structure of Euclidean
space and as well on the censoring mechanism, which is generally assumed to
be right censoring of each component of the data point separately. The ad-
vantage of the martingale methodology used here is that it provides a unified
and versatile approach to hazard estimation; in particular it is applicable to
both Euclidean and non-Euclidean spaces, and may be applied to very general
censoring mechanisms.

In this paper, for clarity we will restrict our attention to d-dimensional Eu-
clidean space. All of our applications and examples illustrating the problem
of observability are for two-dimensional data sets, and our theorems on the
asymptotic behaviour of the Nelson-Aalen estimator are stated for Rd

+-valued
observations. However, even in this familiar framework our results are new, since
the censoring mechanism is completely general. Details on the extension of the
model to non-Euclidean spaces are available in [2]. Furthermore, while this pa-
per focusses on the theoretical aspects of the estimation problem, the practical
utility of our approach is illustrated in [3], where the set-indexed hazard esti-
mator is used to analyze a bivariate medical data set involving subjects with
cardio-vascular risk factors.
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We will proceed as follows. In §2 we provide the mathematical framework
for our model. We develop the notion of the ∗-anti-cloud and show that certain
martingale properties are preserved under filtering by this more general censor-
ing mechanism. In §3, the observability problem of the original Nelson-Aalen
estimator is discussed. The results of §2 allow us to redefine the Nelson-Aalen
estimator of the cumulative hazard under censoring by ∗-clouds. We present
several examples to illustrate how our new estimator can be used to circum-
vent the observability problem through a transition from the anti-cloud model
to the ∗-anti-cloud structure. The price we pay is a possible loss of previously
uncensored data that will now need to be discarded. In §4 we show that the
Nelson-Aalen estimator satisfies a functional central limit theorem. These re-
sults are applied in §5 to show how the Nelson-Aalen estimator can be used
to develop various tests involving the dependence structure of the underlying
distribution. The validity of bootstrap methods is established in each case.

Most of these results can be found in additional detail in [2] (the doctoral
thesis of the first author), where estimation of the distribution and survival
functions is also considered.

2. Framework and definitions

2.1. The set-up

By restricting our attention to Euclidean space, the framework we will be using
is a particular case of that used in [2, 6, 8] and [9]. Let T = [0, r] =

∏d
1 [0, ri]

denote a compact rectangle in Rd
+ and let B denote the Borel sets of T . Without

loss of generality, we will usually assume that T = [0, 1]d, For D an arbitrary
subset of T , let TD be a countable dense subset of D. We will use ‘⊂’ to indicate
strict inclusion; moreover, D denotes the closure and D◦ denotes the interior of
D. The usual partial order on Rd

+ will be denoted by ‘≤’: s = (s1 , . . . , sd) ≤
(t1, . . . , td) = t ⇔ si ≤ ti, i = 1, . . . , d. If si < ti ∀i = 1, . . . , d we write s<<t. The
‘past’ of t ∈ T is At := {s ∈ T : s ≤ t}, the ‘future’ of t is Et := {s ∈ T : s ≥ t},
and the ‘wide past’ of t is Dt := {s ∈ T : t 6<<s} = (E◦

t )c.

Definition 2.1. Let (Ω,F, P ) be any complete probability space. A filtration
on T is a class of complete sub-σ-fields of F , {F t : t ∈ T} such that

• If s ≤ t, then Fs ⊆ F t ∀s, t ∈ T .
• F t =

⋂

i F ti
for any decreasing sequence (ti) in T such that ti ↓ t. (Con-

tinuity from above).

We will refer to (Ω,F, P ) = (Ω,F, P ;Ft, t ∈ T ) as a filtered probability space.

We can think of Ft as the history at t (or the information available in the
past of t). The ‘wide’ history (the information available in the wide past of t) is
defined by

F∗
t = ∨s∈Dt

Fs.

All processes will be indexed either by T or by B. We generally use the nota-
tion X(t) for a T -indexed process, and XA for a B-indexed process. Clearly, any
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B-indexed process X can be identified with a T -indexed process: X(t) := XAt
.

Conversely, any T -indexed process Y has a unique extension to an additive pro-
cess on the class of left-open right-closed rectangles C := {(s, t] =

∏d
1(si, ti]; s ≤

t ∈ T} via the usual sort of inclusion-exclusion formula. We say that Y is
increasing if each sample path of Y is continuous from above and satisfies
YC(ω) ≥ 0 ∀C ∈ C for every ω ∈ Ω. If Y is increasing then Y can be uniquely
extended to B as a measure-valued process; the same is true if Y is the difference
of increasing processes.

Definition 2.2 (cf. [9]).

• Given a filtered probability space, a T -indexed stochastic process Y =
{Y (t) : t ∈ T} is said to be adapted if Y (t) is F t-measurable for every
t ∈ T . A B-indexed stochastic process X = {XA : A ∈ B} is said to be
adapted if XAt

is F t-measurable for every t ∈ T .
• A B- (respectively, T -) indexed process X is said to be integrable if
E[| XA |] <∞ ∀A ∈ B (respectively, E[| X(t) |] <∞ ∀t ∈ T ).

• A T - or B-indexed integrable process M called a strong martingale if it is
adapted and for any C = (s, t] ∈ C, E[MC |F∗

s] = 0. If the process M is
not adapted, it will be called a pseudo-strong martingale.

• A process X is called a ∗- compensator of the process X if it is increasing
and the difference X −X is a pseudo-strong martingale.

Before moving on to adapted random sets, we should note that although we
are restricting ourselves to a compact set T , all of the definitions and develop-
ments throughout this work can easily be expanded to Rd

+ using the structure
found in Definition 2.1 of [8].

2.2. Clouds and ∗-clouds

We begin with the definition of an adapted random set, a notion that was first
introduced in [9]. Recall that a closed set D ⊆ T is a domain if D = D◦. Let K
be the class of domains D in T whose boundaries ∂D have Lebesgue measure
0, and let L be the class of open sets that are complements of sets in K.

Definition 2.3. A random set η : Ω → B is an adapted random set if for any
t ∈ T , {ω : t ∈ η(ω)} ∈ F t.

• An adapted random set ρ taking its values in L is a cloud.
• An adapted random set ξ taking its values in K is an anti-cloud.

We now define a new class of random sets, the so-called ∗-adapted sets:

Definition 2.4. A random set η : Ω → B is a ∗-adapted random set if for any
t ∈ T , {ω : t ∈ η(ω)} ∈ F∗

t .

• A ∗-adapted random set ρ taking its values in L is a ∗-cloud.
• A ∗-adapted random set ξ taking its values in K is a ∗-anti-cloud.
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The following theorems were proven in [9] for anti-clouds. We give the state-
ments for ∗-anti-clouds; the proofs are analogous to their anti-cloud counter-
parts. For details, see [2]. We recall from the definition of an increasing pro-
cess that if X is increasing, it can be extended as a measure to B. Therefore,
Xξ(ω) := Xξ(ω)(ω) is well-defined for any anti-cloud or *-anti-cloud.

Theorem 2.5. Let X be an increasing process (or the difference of two increas-
ing processes) and suppose that ξ is a ∗-anti-cloud. Then for any A ∈ B, both
XA∩ξ and XA∩∂ξ are random variables.

Now we deal with the filtered process Xξ
A := Xξ∩A.

Theorem 2.6. Let ξ be a ∗-anti-cloud and X = Y −W , where Y and W are
increasing processes such that Y∂ξ = W∂ξ = 0 a.s.

1. If X is a (pseudo)-strong martingale, then Xξ is a pseudo-strong martin-
gale.

2. Xξ will not generally be adapted, even if X is.

3. Hazard estimation and observability

3.1. The Nelson-Aalen estimator

The model is the same as the one in [8] and [9]. Assume that (Ω,F , P ) is a com-
plete filtered probability space. Let Y : Ω → T be a T -valued random variable,
and µ(B) = P {Y ∈ B} its distribution. The survival function associated with
Y is S(t) = µ(Et). We assume that µ is absolutely continuous with respect to
Lebesgue measure and denote by µ

′

the Radon-Nikodym derivative of µ.

Definition 3.1. • For t ∈ T , the hazard function of Y is h where

h(t) =
µ

′

(t)

S(t)
.

If S(t) = 0, h(t) is defined to be zero.
• The integrated hazard function of Y is H where

HA =

∫

A

h(u)du for any A ∈ B.

Let N = {NA, A ∈ B} = {I{Y ∈A}, A ∈ B} be the single jump process associ-

ated with Y and FY = {FY
t , t ∈ T} its minimal filtration: FY

t = σ{NB : B ∈
B, B ⊆ At}∪ {P0}, where P0 is the class of P -null sets. This filtration is in fact
continuous from above, as was proved in [7]. N is increasing, and it was proved
in [8] that it has a ∗-compensator:

Proposition 3.2. ([8], Proposition 2.9) The process N defined by

NA =

∫

A∩AY

µ(Eu)−1µ(du) =

∫

A∩AY

h(u)du =

∫

A

I{Y ∈Eu}h(u)du
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is a ∗-compensator of the process N with respect to its minimal filtration, where
AY (ω) = AY (ω).

Suppose we have a T -valued random variable Y whose associated single jump
process N is adapted to a filtration F , as well as an F -∗-cloud ρ with correspond-
ing ∗-anti-cloud ξ = ρc. The filtered jump process N ξ

· := I{Y ∈ξ∩·} corresponds
to observing occurrences of Y only on the complement of the ∗-cloud; then we
can say that N has been filtered by the ∗-cloud ρ.

Example 3.3. This example shows that our framework includes the usual bi-
variate censoring model, as presented in [11]. We assume that T = [0, 1]2 (or
any bounded rectangle in R2

+). Let Y = (Y1, Y2) ∈ [0, 1]2 be a two-dimensional
failure time on a filtered probability space (Ω,F , P ), and suppose that F satis-

fies FY
t ⊆ F t for every t ∈ [0, 1]2. Let t = (t1, t2) ∈ [0, 1]2, F (1)

t1 =
∨

t2
F (t1,t2),

F (2)
t2

=
∨

t1
F (t1,t2), and let τ = (τ1, τ2) be a two-dimensional censoring time,

where τi is an F (i)-stopping time for i = 1, 2.
Suppose we can observe Y ∧ τ = (Y1 ∧ τ1, Y2 ∧ τ2) and I{Yi≤τi}, i = 1, 2. Now

we can express everything in terms of sets, letting At = [0, t], and ξ = [0, τ ].
The random set ξ is a ∗-anti-cloud, since

{t ∈ ξ} = {(t1, t2) ∈ [0, τ1]× [0, τ2]} = {t1 ≤ τ1}∩{t2 ≤ τ2} ∈ F (1)
t1 ⊗F (2)

t2 ⊆ F∗
t .

Finally, the counting process of censored times is

N ξ(t) = N ξ
At

= I{Y ∧τ≤t,Y1≤τ1,Y2≤τ2} = I{Y ∈At∩ξ}.

In what follows, if ξ : Ω → K, let Fξ denote the minimal filtration with
respect to which ξ is a ∗-anti-cloud.

Definition 3.4. Let Y be a T -valued random variable and let FY be the
minimal filtration generated by its associated jump process N . Let F be a
filtration such that FY

t ⊆ F t ∀t ∈ T and let ξ be an F -∗-anti-cloud. ξ is

1. weakly independent of Y if the ∗-compensator of N with respect to F is
the same as the ∗-compensator with respect to FY ;

2. independent of Y if FY is independent of Fξ and F t = FY
t ∨Fξ

t , ∀t ∈ T .

The following lemma is an immediate consequence of Theorem 2.6.

Lemma 3.5. Suppose that ξ is a ∗-anti-cloud, that Y and ξ are weakly in-
dependent and that the filtration F satisfies F t = FY

t ∨ Fξ
t , ∀t ∈ T . If N is

the single-jump process associated with Y , then (N − N)ξ is a pseudo-strong
(F-)martingale.

Now we are able to define the Nelson-Aalen estimator of the integrated hazard
function using filtered data. We will use definitions analogous to those in [9].

Henceforth, we assume that we have a sequence of i.i.d. T -valued random
variables (Yi) with the same distribution as Y , as well as a sequence (ξi) of
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∗-anti-clouds independent of the Y ′
i s. Define the following processes: for A ∈ B

and t ∈ T ,

N
(n)
A =

n
∑

i=1

I{Yi∈A},

Zn(t) =

n
∑

i=1

I{Yi∈Et}I{t∈ξi}, (1)

N
(n)

A =

∫

A

Zn(t)h(t)dt,

N (n)ξ

A =
n

∑

i=1

I{Yi∈A∩ξi}.

By independence and Lemma 3.5, N
(n)

is a ∗-compensator for N (n)ξ
, and

the B-indexed process

M (n)
. = N (n)ξ

. −
∫

.

Zn(t)h(t)dt (2)

is a pseudo-strong martingale with respect to F , the minimal filtration generated
by the sequences (Yi) and (ξi). Since

N (n)ξ(dt) = Zn(t)h(t)dt+M (n)(dt),

regarding M (n) as noise, we come to a set-indexed version of the Nelson-Aalen
estimator for HA:

Ĥ
(n)
A =

∫

A

N (n)ξ(dt)

Zn(t)
=

∑

{i:Yi∈A∩ξi}
(Zn(Yi))

−1. (3)

We observe that Ĥ
(n)
A −HA =

∫

A
M(n)(dt)

Zn(t) ; the following is analogous to Propo-

sition 4.5 of [9]; for details, see [2].

Proposition 3.6. Ĥ(n) −H is a pseudo-strong martingale.

3.2. The observability problem

The Nelson-Aalen estimator defined in (3) is identical to that introduced in [9],
with the exception that in [9] it was assumed that ξ is an anti-cloud. We will
now explain the reason for incorporating the more general censoring mechanism
(∗-clouds) into the survival model.

Example 3.7. Ideally, we would like to have all the information regarding the
events in F∗

t at time t. Unfortunately, this is generally not possible in practice,
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6

-

r

t b

Y

ξc

ξ

Fig 1. The observability problem: we don’t know whether Y ∈ Et.

and we have to settle for somewhat more limited information. Specifically, if ξ
is a fully observable anti-cloud, typically we may only be able to observe

Ht = σ{I{Y ∈A∩ξ}, I{s∈ξ} : A ⊆ Dt, s ∈ Dt} ⊆ F∗
t .

We need the event I{Y ∈Et}I{t∈ξ} to be observable in order to construct the esti-
mator for the integrated hazard function. But the problem is that I{Y ∈Et}I{t∈ξ}
is not Ht-measurable, and so the estimator cannot be used. Indeed, suppose t ∈ ξ
and Dt ∩ ξc 6= ∅. If Y is not observed in Dt ∩ ξ, it is impossible to know whether
Y ∈ Dt ∩ ξc or Y ∈ Et. This situation is illustrated in Figure 1.

To correct this, we can define ξ∗(ω) = {t : Dt∩ξc(ω) = ∅}. ξ∗ is a ∗-anti-cloud,
since {t ∈ ξ∗} = {Dt ∩ ξc = ∅} = {Dt ⊆ ξ} =

⋂

s∈Dt
{s ∈ ξ} =

⋂

s∈TDt
{s ∈ ξ} ∈

Ht ⊆ F∗
t , recalling that TDt

stands for a countable dense subset of Dt. Figure 2
pictures the ∗-anti-cloud ξ∗ corresponding to the anti-cloud ξ in Figure 1.

Now consider I{Y ∈Et}I{t∈ξ∗}. We have that if t ∈ ξ∗, then Dt ⊆ ξ, and so

{Y ∈ Et} ∩ {t ∈ ξ∗} = {Y ∈ Dt}c ∩ {t ∈ ξ∗}
= {Y ∈ Dt ∩ ξ}c ∩ {t ∈ ξ∗} ∈ Ht.

This means that I{Y ∈Et}I{t∈ξ∗} is Ht-measurable and hence observable, and
now we are able to calculate the estimator.

Of course, there are instances where it is not possible to observe I{t∈ξ} when-
ever the observation Y happens before time t; in other words, when the anti-
cloud is not fully observable and Y ∈ At. In this case, the information available
up to time t consists of

Ht = σ{I{Y ∈A∩ξ}, I{s∈ξ∩Ec
Y
} : A ⊆ Dt, s ∈ Dt} ⊆ F∗

t ;

nevertheless, we can still observe the event I{Y ∈Et}I{t∈ξ∗}: indeed, using the
fact that {Y ∈ Et} =

⋂

s∈TD◦

t

{s ∈ Ec
Y } and {t ∈ ξ∗} =

⋂

s∈TD◦

t

{s ∈ ξ}, we have
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6

-

ξ∗

Fig 2. The resulting ∗-anti-cloud ξ∗.

that

{Y ∈ Et} ∩ {t ∈ ξ∗} =
⋂

s∈TD◦

t

({s ∈ Ec
Y } ∩ {s ∈ ξ}) =

⋂

s∈TD◦

t

{s ∈ Ec
Y ∩ ξ} ∈ Ht.

This example demonstrates that an estimator can always be constructed, but
in some sense it would be a worst-case scenario: we observe that the move from ξ
to ξ∗ as defined above may entail articially censoring observed values of Y that lie
in ξ \ ξ∗. Therefore, in practice, we should examine each information structure
closely to determine whether the Nelson-Aalen estimator can be constructed
using the anti-cloud ξ (cf. Example 3.10), and if not, how best to define an
appropriate anti-cloud that censors as few observations as possible. This will be
illustrated in Example 3.9.

Example 3.8. We now consider a generalization of Example 3.3. Again, assume
that T = [0, 1]2. Let Y = (Y1, Y2) ∈ [0, 1]2 be a two-dimensional failure time
on a filtered probability space (Ω,F , P ), t = (t1, t2) ∈ [0, 1]2 with FY

t ⊆ F t for

every t ∈ [0, 1]2 and F (i)
ti

as in Example 3.3 for i = 1, 2; but instead of having
a single two-dimensional censoring time, we will consider a finite sequence of
F (i)-stopping times 0 = ηi1 ≤ νi1 ≤ ηi2 ≤ νi2 ≤ . . . ≤ ηini

≤ νini
for i = 1, 2.

Let s = (s1, s2) and u = (u1, u2) and suppose we can observe

Ht = {I{Yi≤si,Yi∈
⋃

ni

j=1
[ηij ,νij]}, I{Yi∈(νij,ηi,j+1),ηi,j+1≤ui} : s, u ∈ At; i = 1, 2}.

An illustration of this kind of situation can be seen in Figure 3. This scenario
could arise in a laboratory, where test animals are under continuous observation
during the day, but not at night.
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Fig 3. We can observe the failure times in the unshaded area.

Let ξ∗ = {⋃n1

j=1[η1j, ν1j] ×
⋃n2

j=1[η2j, ν2j]}. We have that

{t ∈ ξ∗} = {(t1, t2) ∈
n1
⋃

j=1

[η1j, ν1j] ×
n2
⋃

j=1

[η2j, ν2j]}

= {t1 ∈
n1
⋃

j=1

[η1j, ν1j]} ∩ {t2 ∈
n2
⋃

j=1

[η2j, ν2j]}

= (

n1
⋃

j=1

{t1 ∈ [η1j, ν1j]})∩ (

n2
⋃

j=1

{t2 ∈ [η2j, ν2j]})

∈ F (1)
t1 ⊗F (2)

t2 ⊆ F∗
t ,

so ξ∗ is a ∗-anti-cloud. Then I{Y ∈Et}I{t∈ξ∗} can be observed and we get our
estimator for the integrated hazard function.

Example 3.9. Once more, assume that T = [0, 1]2. Suppose now that we have
a sequence of i.i.d. T -valued random variables (Yi) = (Y1,i, Y2,i) with the same
distribution as Y , as well as a sequence of i.i.d. [0, 1]-valued random variables
κ1,i < κ2,i for i = 1, 2, . . .. Define the filtration Fκ1,κ2

t1 = σ{I{κ1,i≤s1}, I{κ2,i≤s1} :

s1 ≤ t1}, and let F (t1,t2) := FY
(t1,t2)

∨ Fκ1,κ2

t1
, as well as F (1)

t1
=

∨

t2
F (t1,t2),

F (2)
t2

=
∨

t1
F (t1,t2). Let ρi := {(t1, t2) : κ1,i < t1 < κ2,i, t1 < t2 < t1 + c}

represent the censored region, where c denotes a constant. Then it is easy to see
that ρi is a sequence of ∗-clouds, since the κj,i are stopping times. This kind of
data structure can arise when, for example, Y1 is the age of start of pregnancy
and Y2 is the age of onset of a disease such as tuberculosis. At κ1, it is found
that the test used for diagnosing the disease is dangerous for a pregnant woman,
so once the pregnancy starts it becomes impossible to diagnose that disease for
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Fig 4. The regions ρ and ρ∗.

the next nine months. At time κ2 though, a new safe test becomes available and
the times of onset of the disease are no longer censored. See Figure 4.

In this case, we would censor the pairs (Y1,i, Y2,i) on the extended region
ξ∗i

c = ρ∗i := {(t1, t2) : κ1,i < t1 < κ2,i, t1 < t2 < κ2,i + c} ⋃ {(t1, t2) :
t1 < κ1,i, κ1,i < t2 < κ2,i + c} in order to be able to observe the indicators
I{Y ∈Et}I{t∈ξ∗

i
} needed to obtain the Nelson-Aalen estimator, as illustrated in

Figure 4. Note that ρ∗i is also a sequence of ∗-clouds, since all the endpoints of
the intervals in the definition of each ρ∗i are stopping times with respect to both

F (1)
t1 and F (2)

t2 ; hence

{(t1, t2) ∈ ρ∗i } ∈ F (1)
t1 ⊗F (2)

t2 ⊆ F (1)
t1 ∨ F (2)

t2 = F∗
(t1,t2).

The censored region defined by ρ∗ is clearly much smaller than the ∗-clouds of
Example 3.7, and would result in less lost data.

Example 3.10. There are examples that fit the original censoring model of [9]
when T = [0, 1]2. Suppose that ξ is an anti-cloud which is a lower layer (L is a
lower layer if t ∈ L implies that At ⊆ L) and that we can observe

Ht = {I{Yi≤si}, I{u∈ξ} : s, u ∈ At; i = 1, 2},
where Y = (Y1, Y2), s = (s1, s2). Since ξ is a lower layer, I{Y ∈Et}I{t∈ξ} =
(1 − I{Y1<t1})(1− I{Y2<t2})I{t∈ξ} ∈ Ht, and the anti-cloud ξ itself may be used
in (3). An application of this model to the analysis of a medical data set in given
in [3].

4. A functional central limit theorem

In this section, for clarity of exposition we will assume that T = [0, 1]2, but all
results can be extended to bounded rectangles in Rd. Our objective is to prove
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a functional central limit theorem for the T -indexed process

U
(n)
t :=

√
n(Ĥ

(n)
At

−HAt
).

We will use the functional delta method, for which [13] is an excellent reference.
Throughout this section, we will make extensive use of the following nota-

tion. If X is an arbitrary set, then the Banach space l∞(X) is the set of all
functions f : X → R that are bounded uniformly and equipped with the norm
‖f‖ = supx |f(x)|. C[0, 1]2 denotes the continuous functions, and D[0, 1]2 is the
Banach space of all functions f : [0, 1]2 → R continuous from the upper right
quadrant and with limits from the other quadrants. Both C[0, 1]2 and D[0, 1]2

are equipped with the uniform norm. Finally, BVM [0, 1]2 denotes the space of
all functions in D[0, 1]2 with total variation bounded by M . Products of these
spaces will always be equipped with a product norm.

The next lemma will be used in the proof of the functional central limit
theorem. It is a two-dimensional version of Lemma 3.9.17 in [13], and since the
proof is similar, it will be omitted.

Lemma 4.1. For each fixed M , the maps φ : l∞[0, 1]2 × BVM [0, 1]2 → R and
ψ : l∞[0, 1]2 ×BVM [0, 1]2 → D[0, 1]2,

φ(A,B) =

∫

(0,1]

AdB, ψ(A,B)(t) =

∫

(0,t]

AdB (4)

are Hadamard-differentiable tangentially to C[0, 1]2×D[0, 1]2 at each (A,B) in
l∞[0, 1]2 ×BVM [0, 1]2 such that

∫

|dA| <∞, and the derivatives are given by

φ′
A,B(α, β) =

∫

Adβ +

∫

αdB, ψ′
A,B(α, β)(t) =

∫

(0,t]

Adβ +

∫

(0,t]

αdB,

where
∫

Adβ is defined via the two-dimensional integration by parts formula
found in Theorem 8.8 of [4] if β is not of bounded variation.

Before moving on to the central limit theorem, we have to make some as-
sumptions that will allow us to apply the delta method to our processes.

Assumption 4.2. P (t ∈ ξ) is continuous in t ∈ T and there exists ǫ > 0 such
that P (t ∈ ξ) > ǫ for every t ∈ T . For all s, t ∈ T , P (s ∈ ξ) − P (s, t ∈ ξ) ≤
K |s− t|, where K is a constant and |·| denotes the Euclidean norm.

The preceding assumption is quite natural: any point has a positive proba-
bility of being uncensored, and given that a point is uncensored, it is likely that
nearby points are uncensored as well.

Assumption 4.3. The survival function S satisfies a Lipschitz condition of
order 1.

Assumption 4.4. If S(τ, τ ) > 0, then g(·) := (S(·)P (· ∈ ξ))−1 is of bounded
variation on [0, τ ]2.
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The following functional central limit theorem is the main result of this arti-
cle.

Theorem 4.5. Under Assumptions 4.2, 4.3 and 4.4,
(

1√
n

(Zn(·) − E(Zn(·))), 1√
n

(N (n)ξ

A·
− E(N (n)ξ

A·
))

)

⇒ (∆,Γ)

where ∆ and Γ are tight Gaussian processes on C[0, 1]2 and D[0, 1]2 respectively.

Moreover, U (n) =
√
n(Ĥ

(n)
A·

− HA·
) ⇒ G in l∞[0, τ ]2 for every τ such that

S(τ, τ ) > 0, where G is a mean-zero Gaussian process such that for t ∈ T ,

Gt =

∫

[0,t]

dΓ(u)

S(u)P (u ∈ ξ)
−

∫

[0,t]

∆(u)h(u)

S(u)P (u ∈ ξ)
du.

The first term in Gt is defined by integration by parts.

Before proceeding with the proof, we make a few observations and prove
a lemma that will be required. The statement of the CLT is very similar to
Example 3.9.19 in [13]. One of the differences, obviously, is that we are working
on two dimensions instead of one. However, the major difference resides in our
censoring mechanism and the information we are provided with; a consequence
of this is that Zn, the survivor function process, will not be in D[0, 1]2. This
lack of sample path regularity necessitates Assumptions 4.2 and 4.3 above, which
yield the following lemma and its corollary:

Lemma 4.6. Under Assumptions 4.2 and 4.3, the sequence of processesDn(t) :=
1√
n
[Zn(t) − E(Zn(t))] converges in distribution in l∞[0, 1]2 to a tight Gaussian

process ∆ taking its values on C[0, 1]2.

Proof. Let Wt = I{Y ∈Et} and Vt = I{t∈ξ}. Note that Assumption 4.2 implies
that E |Vt − Vs| ≤ 2K |t− s|, since

E |Vt − Vs| = E|I{t∈ξ} − I{s∈ξ}| = P (t ∈ ξ, s ∈ ξc) + P (s ∈ ξ, t ∈ ξc).

Then we have that

E|I{Y ∈Et}I{t∈ξ} − I{Y ∈Es}I{s∈ξ}|)
= E [E(|WtVt −WtVs|)|Wt,Ws]

= E [|Vt − Vs| |Wt = Ws = 1]P (Wt = Ws = 1)

+ E [Vt|Wt = 1,Ws = 0]P (Wt = 1,Ws = 0)

+ E [Vs|Wt = 0,Ws = 1]P (Wt = 0,Ws = 1)

≤ 2K |t− s|S(s ∨ t) + P (t ∈ ξ)(S(t) − S(s ∨ t))
+ P (s ∈ ξ)(S(s) − S(s ∨ t))

≤ K∗ |t− s| ,

for some constant K∗, where the first inequality follows from the independence
of the processes V and W and the observation at the beginning of this proof; the
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second is a consequence of Assumption 4.3. But by a nearly identical argument
to that in Example 2.11.14 in [13] -we use two-dimensional blocks instead of
closed intervals- this implies that the sequence of processes defined by

1√
n

[

n
∑

i=1

I{Yi∈Et}I{t∈ξi} − nS(t)P (t ∈ ξ)

]

=
1√
n

[Zn(t) −E(Zn(t))] = Dn(t)

converges in distribution to a tight Gaussian process ∆ on l∞[0, 1]2. Continuity
of ∆ is a consequence of the fact that E|Dn(s) −Dn(t)|2 ≤ K1|s− t| for some
constant K1 <∞ (cf. [13], pg. 41): from Assumptions 4.2 and 4.3, we have that

E|Dn(s) −Dn(t)|2 = S(s)P (s ∈ ξ) + S(t)P (t ∈ ξ) − 2S(s ∨ t)P (s, t ∈ ξ)

− [S(s)P (s ∈ ξ) − S(t)P (t ∈ ξ)]2

= [S(s)P (s ∈ ξ) − S(s ∨ t)P (s, t ∈ ξ)] + [S(t)P (t ∈ ξ)

− S(s ∨ t)P (s, t ∈ ξ)] − [S(s)P (s ∈ ξ) − S(t)P (t ∈ ξ)]2

= [S(s) − S(s ∨ t)]P (s ∈ ξ) + [S(t) − S(s ∨ t)]P (t ∈ ξ)

+ S(s ∨ t)[P (s ∈ ξ) − P (s, t ∈ ξ)]

+ S(s ∨ t)[P (t ∈ ξ) − P (s, t ∈ ξ)]

− [S(s)P (s ∈ ξ) − S(t)P (t ∈ ξ)]2

≤ K1 |s− t| .

Corollary 4.7. Under Assumptions 4.2 and 4.3

sup
t∈[0,1]2

∣

∣

∣

∣

Zn(t)

n
− S(t)P (t ∈ ξ)

∣

∣

∣

∣

→P 0

as n → ∞.

We are now ready to proceed with the proof of our main result.

Proof of Theorem 4.5. Since the ξi’s are i.i.d., we have that the sequence of
processes (Cn) defined by

Cn(t) :=
1√
n

[

n
∑

i=1

I{Yi∈At∩ξi} − nP (Y ∈ At, Y ∈ ξ)

]

converges in distribution to a tight Gaussian process Γ on D[0, 1]2. This fol-
lows simply from the CLT for empirical processes, since we are working with a
subdistribution. Combined with Lemma 4.6, this means that

1√
n

[

(Zn(·), N (n)ξ

A·
) − (E(Zn(·)), E(N (n)ξ

A·
))

]

⇒ (∆,Γ)
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on l∞[0, 1]2×D[0, 1]2, where (∆,Γ) is a Gaussian process on C[0, 1]2×D[0, 1]2.

Recalling (3), we note that the estimator depends on the pair (Zn

n ,
N(n)ξ

n ) through
the maps

(A,B) −→
(

1

A
,B

)

−→
∫

1

A
dB. (5)

It is a consequence of Lemma 4.1 that the map (5) is Hadamard-differentiable
tangentially to C[0, 1]2 × D[0, 1]2 on a domain of the type {(A,B) :

∫

|dB| ≤
M,A ≥ ǫ} for given M and ǫ > 0, at every point (A,B) such that 1/A is
of bounded variation. Whenever t is restricted to an interval [0, τ ]2 such that

S(τ ) > 0, by Assumption 4.4 and Corollary 4.7, the pair (Zn

n , N(n)ξ

n ) is contained
in this domain with probability tending to 1 for M ≥ 1 and ǫ sufficiently small.
The derivative map is given by

(α, β) 7−→
∫

(1/A)dβ −
∫

(α/A2)dB.

Now we can apply the delta method to conclude that

U
(n)
· =

√
n(Ĥ(n)

A·
−HA·

) ⇒ G·,

where

Gt =

∫

[0,t]

dΓ(u)

S(u)P (u ∈ ξ)
−

∫

[0,t]

∆(u)

(S(u)P (u ∈ ξ))2
dP (Y ∈ Au, Y ∈ ξ)

is again Gaussian. As in Lemma 4.1, the first term in the limiting process has
to be defined by integration by parts, since Γ may not be of bounded variation.
To complete the proof, we observe that dP (Y ∈ Au, Y ∈ ξ) = P (u ∈ ξ)µ(du) =
S(u)P (u ∈ ξ)h(u)du.

The following proposition will allow us to identify the covariance structure
of the limiting Gaussian process G.

Proposition 4.8. Under Assumptions 4.2 and 4.3, if A is a Borel subset of
[0, τ ]2 where S(τ, τ ) > 0, then as n → ∞,

[√
n(Ĥ

(n)
A −HA)

]

−
[
∫

A

1

S(t)P (t ∈ ξ)
· M

(n)(dt)√
n

]

→P 0.

Proof. For any Borel set A ⊆ [0, τ ]2,

√
n(Ĥ

(n)
A −HA) =

√
n

∫

A

1

Zn(t)
M (n)(dt)

=

∫

A

(

n

Zn(t)
− 1

S(t)P (t ∈ ξ)

)

M (n)(dt)√
n

(6)

+

∫

A

1

S(t)P (t ∈ ξ)
· M

(n)(dt)√
n

. (7)

Using Corollary 4.7, we can show that (6) converges in probability to 0 with
exactly the same argument as in the proof of Theorem 5.1 in [8].
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Remark 4.9. Proposition 4.8 gives us the central limit theorem for the finite-

dimensional distributions of
√
n(Ĥ

(n)
A −HA) over a more general class of Borel

sets, since
∫

A
1

S(t)P(t∈ξ) ·
M(n)(dt)√

n
is the normalized sum of n i.i.d. processes, as

noted in [8]. This comes up short of giving us a functional CLT since we need to
prove tightness. It is for this reason that we believe the use of the delta method
is a more elegant approach to this particular problem. Furthermore, as will be
seen in the next section, the delta method justifies the use of bootstrapping.

The next proposition is identical to its counterpart in [9] (Corollary 4.7).

Proposition 4.10. Let g be a continuous function on T . Then
∫

. g(t)M
(n)(dt)

is a pseudo-strong martingale and for C,D ∈ C,

Cov

(
∫

C

g(s)M (n)(ds),

∫

D

g(t)M (n)(dt)

)

(8)

= n

[
∫

C∩D

g2(t)S(t)P (t ∈ ξ)h(t)dt

+

∫ ∫

l(C,D)

g(s)g(t)µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)dsdt

]

,

where

l(C,D) = {(c, d) ∈ C ×D : c ∈ Ac
d ∩ Ec

d}
= {(c, d) ∈ C ×D : d ∈ Ac

c ∩ Ec
c}.

Now that we have Propositions 4.8 and 4.10, we are in position to give the
covariance structure for the limiting process in Theorem 4.5.

Lemma 4.11. The covariance structure for the process G in Theorem 4.5 is
given, for C,D ∈ C, by

Cov(GC , GD) =

∫

C∩D

(S(t)P (t ∈ ξ))−1h(t)dt (9)

+

∫ ∫

l(C,D)

µ(Es ∩ Et)P (s, t ∈ ξ)

S(s)S(t)P (s ∈ ξ)P (t ∈ ξ)
h(s)h(t)dsdt.

Proof. From Proposition 4.8, we have that the only term that contributes to
the covariance is (7), and so (9) follows by an application of Corollary 4.10.

5. Applications

For all our applications, we will assume that T = [0, 1]2, and that F t = F (t1,t2)

is trivial if either t1 = 0 or t2 = 0. We recall that F (1)
t1 = ∨t2F (t1,t2) and F (2)

t2 =

∨t1F (t1,t2). We have F∗
t = F (1)

t1
∨ F (2)

t2
, and by triviality of F t on the axes,

F∗
(t1,0) = F (1)

t1 and F∗
(0,t2) = F (2)

t2 . Assumptions 4.2, 4.3 and 4.4 will be assumed
to hold throughout this section.
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Fig 5. The stopping times κ1 and κ2.

5.1. Test of independence

We now concern ourselves with the construction of a test of independence of
the components (Y1, Y2) of the random vector Y ∈ T . We will follow closely the
development of the ideas presented in [11].

As noted in [8] and [11], when Y1 and Y2 are independent, the hazard is the
product of the marginal hazards. Therefore, we have to be able to estimate the
marginal hazards in order to obtain a test of independence. We will review the
four examples given in §3.2 in order to illustrate how this is done.

• Example 3.7: Given ξ and the corresponding ∗-anti-cloud ξ∗, define

κ1 := sup{t1 : (t1, 0) ∈ ξ∗}
κ2 := sup{t2 : (0, t2) ∈ ξ∗},

see Figure 5; note that κ1 is an F (1)-stopping time: for any t1 ∈ [0, 1],

{κ1 ≤ t1} = {t1 < κ1}c = {(t1, 0) ∈ ξ∗i }c ∈ F∗
(t1,0) = F(1)

t1
.

Similarly, we can show that κ2 is an F (2)-stopping time. Taken separately, each
Yj is censored on the intervals ξc

j := (κj, 1] for j = 1, 2.
• Example 3.8: This example is illustrated in Figure 3. In this case, since

νij, µij are F (i)-stopping times, i = 1, 2; , j = 1, 2, . . ., Yi is censored on the

F (i)-adapted clouds ∪j(νij, µij), i = 1, 2.
• Example 3.9: Referring to Figure 4, taken separately, Y1 is not censored at

all, since it is always possible to determine whether the individual is pregnant
or not, but Y2 is censored on the interval (κ1,i, κ2,i + c).

• Example 3.10: In this structure, Y1 is censored on the right by the F (1)-
stopping time

κ1 = inf{s : (s, 0) 6∈ ξ}.
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Likewise, Y2 is censored on the right by the F (2)-stopping time

κ2 = inf{u : (0, u) 6∈ ξ}.

In each of these examples, we end up with the same type of one and two-
dimensional structure: the pair (Y1, Y2) is filtered on an F -∗-cloud, and each Yj

is filtered by an F (j)-∗-cloud ξc
j , a union of random open intervals with endpoints

that are F (j)-stopping times for j = 1, 2. We would like to note that in classical
one-dimensional problems, the intervals are usually taken to be left-open and
right-closed in order to ensure predictability, but since we are assuming that
P (Y∂ξ = 0) = 1, the endpoints of the intervals can actually be ignored.

Now we are in position to define the analogous one-dimensional processes

N
(n)
1

ξ1

(t1) =

n
∑

i=1

I{Y1,i≤t1}I{Y1,i∈ξ1,i}

N
(n)
2

ξ2

(t2) =

n
∑

i=1

I{Y2,i≤t2}I{Y2,i∈ξ2,i}

Zn,1(t1) =

n
∑

i=1

I{Y1,i≥t1}I{t1∈ξ1,i}

Zn,2(t2) =

n
∑

i=1

I{Y2,i≥t2}I{t2∈ξ2,i},

as well as the processes Cn,j(tj) = n−1/2[N
(n)
j

ξj

(tj) − E(N
(n)
j

ξj

(tj))] and

Dn,j(tj) = n−1/2[Zn,j(tj) − E(Zn,j(tj))] for j = 1, 2. We will also make use
of the one-dimensional analogues of the process M (n)

. :

M
(n)
j (·) = N

(n)
j

ξj

(·) −
∫

.

Zn,j(uj)h(uj)duj, j = 1, 2.

The cumulative marginal hazards are estimated by

Ĥ
(n)
j (tj) =

∫

[0,tj]

N
(n)
j

ξj

(duj)

Zn,j(uj)
, j = 1, 2.

Lemma 5.1. n1/2(Ĥ(n) −H, Ĥ(n)
1 −H1, Ĥ

(n)
2 −H2) ⇒ (G,G1, G2) in the space

l∞([0, τ1]×[0, τ2])×l∞[0, τ1]×l∞[0, τ2] for every τ = (τ1, τ2) such that S(τ ) > 0,
where the vector (G,G1, G2) is jointly Gaussian with continuous sample paths.

Proof. We start very similarly to the proof of Lemma 4.1 in [11]. Recall that

Dn(t) := n−1/2[Zn(t)−E(Zn(t))] and Cn(t) := n−1/2[N (n)ξ
At

−E(N (n)ξ
At

)]. We
already saw in the proof of Theorem 4.5 that (Dn, Cn) converges to (∆,Γ)
on l∞[0, 1]2 × D[0, 1]2. We also know that (Dn,j, Cn,j) converges to a joint
Gaussian process (∆j,Γj), j = 1, 2, on l∞[0, 1] × D[0, 1], since the same argu-
ments for the convergence of (Dn, Cn) still apply. Therefore, the joint sequence
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(Dn, Dn,1, Dn,2, Cn, Cn,1, Cn,2) is tight in the product of topologies of the space
l∞[0, 1]2 × (l∞[0, 1])2 × D[0, 1]2 × (D[0, 1])2. This, coupled with the fact that
its finite-dimensional distributions converge to those of a Gaussian process with
continuous sample paths, give the convergence of the sequence.

Next, note that both the estimators for the cumulative marginal hazards

depend on the pairs (
Zn,j

n ,
N

(n)

j

ξj

n ), j = 1, 2, through the map (5), where the in-
tegral is defined on R instead of R2. Using the same arguments as in Theorem

4.5,we can show that n1/2(Ĥ
(n)
j −Hj) ⇒ Gj in D[0, τj] for every τj such that

Sj(τj) > 0, where Gj are mean-zero Gaussian processes for j = 1, 2. As a conse-
quence of this fact and the joint convergence of (Dn, Dn,1, Dn,2, Cn, Cn,1, Cn,2),
we get the desired result.

As was the case in [11], in order to construct our test of independence be-
tween (Y1,i) and (Y2,i), i = 1, 2, . . ., we will take the difference between the two-
dimensional Nelson-Aalen estimator and the estimator under the hypothesis of

independence. Define Vn := n1/2(Ĥ(n) − Ĥ(n)
1 Ĥ

(n)
2 ) on [0, τ ], where τ = (τ1, τ2).

We could calculate the covariance structure of Vn, but since the statistic of in-
terest will be seen to be supt∈[0,τ] Vn(t), we prefer to use a bootstrap test based
on Vn and our efforts will now turn towards that goal.

We shall use the delta method for the bootstrap, and for that we need to
verify that the classes of functions needed are Donsker classes. Let X1, . . . , Xn

be a sample of random elements in a measurable space (X ,A) with distribution
P , let G be a collection of measurable functions g : X → R and let Pn be
the empirical measure of the Xi, which induces a map from G to R defined by
Png := n−1

∑n
i=1 g(Xi).

Ivanoff and Merzbach observed in [9] that an anti-cloud is measurable as a
random closed set as a consequence of part 2 of their Corollary 3.10; it is easy
to see that the same is true of ∗-anti-clouds. Now assume that we can fully
observe the pair (Yi, ξi); that is, suppose we can observe the point Yi even if it
lies inside the censored region and, conversely, we are able to observe the whole
shape of the anti-cloud ξi regardless of the location of Yi. Then we can take
(Yi, ξi) to be the random elements Xi in the previous definition. Let P be the
joint distribution of the pair (Yi, ξi), let Pn denote its empirical measure, P̃n the
bootstrap empirical distribution and G̃n the bootstrap empirical process defined
by G̃n :=

√
n(P̃n − Pn). For a more complete description of these elements, as

well as for the exact statement of the delta method for bootstrap in probability
-which we will use a few lines ahead- refer to Sections 3.6 and 3.9 of [13],
respectively.

Let G1 = {g1
t : t ∈ T} and G2 = {g2

t : t ∈ T} be defined, respectively, by
g1

t (Yi, ξi) := I{Yi∈Et}I{t∈ξi} and g2
t (Yi, ξi) := I{Yi∈At}I{Yi∈ξi}. Then both G1

and G2 are Donsker classes, since both were shown to be convergent in distribu-
tion to tight Gaussian limits on l∞[0, 1]2 in the proof of Theorem 4.5. We can
apply Theorem 2.10.6 in [13] to find that the pair (G1, G2) is also a Donsker class,
since each one is uniformly bounded. It is also clear that G1 and G2 have finite
envelope functions because both classes are comprised exclusively of indicator



A. Carabarin Aguirre and B.G. Ivanoff/Multidimensional hazard estimation 369

functions. Hence, by Theorem 3.6.1 in [13], the conditions (3.9.9) of [13] are
met. Furthermore, we have shown that the map (5) is Hadamard-differentiable
tangentially to C[0, 1]2×D[0, 1]2 on a certain domain. Then we only need to ap-
ply Theorem 3.9.11 in [13], the delta method for bootstrap in probability, to get
the conditional convergence given (Yi, ξi) of the bootstrapped Nelson-Aalen es-
timator. Similar arguments lead to the same conclusion for the one-dimensional
bootstrapped Nelson-Aalen estimators.

The above is summarized in the next lemma, which is an analogue of Lemma
5.1 for the bootstrapped estimators.

Lemma 5.2. Assume we can observe the pairs (Yi, ξi) for i = 1, 2, . . ., and

let (Ỹi, ξ̃i) denote the bootstrap sample. Then if H̃(n), H̃
(n)
1 , H̃

(n)
2 represent the

bootstrapped versions of the joint and marginal Nelson-Aalen estimators, we

have that n1/2(H̃(n) − Ĥ(n), H̃
(n)
1 − Ĥ

(n)
1 , H̃

(n)
2 − Ĥ

(n)
2 ) converges conditionally

given (Yi, ξi) to the Gaussian process (G,G1, G2) of Lemma 5.1.

Now that we have seen that the bootstrapping is working correctly under
the assumption of complete observability of the pairs (Yi, ξi), we note that the
bootstrapped version of the statistics only involve the product of indicator func-
tions qi = I{Yi∈At}I{Yi∈ξi} and ri = I{Yi∈Et}I{t∈ξi}. This means we can drop
the assumption of complete observability, since those indicators can still be con-
structed because the events involved are observable under the survival model.
Therefore, we can in fact bootstrap directly from the observed values qi, ri and
come up with the same estimators.

We can deduce from Lemma 5.1 that on [0, τ1] × [0, τ2],

(

n1/2
[

Ĥ(n)(t1, t2) − Ĥ
(n)
1 (t1)Ĥ

(n)
2 (t2) − (H(t1, t2) −H1(t1)H2(t2))

]

)

converges in distribution to a mean-zero Gaussian process; indeed, we can

rewrite Vn = n1/2(Ĥ(n) − Ĥ
(n)
1 Ĥ

(n)
2 ) as

Vn = n1/2(Ĥ(n) −H) − n1/2(Ĥ
(n)
1 −H1)Ĥ

(n)
2 − n1/2(Ĥ

(n)
2 −H2)H1

+ n1/2(H −H1H2),

hence

n1/2
(

Ĥ(n) − Ĥ
(n)
1 Ĥ

(n)
2 − (H −H1H2)

)

= n1/2(Ĥ(n) −H)

− n1/2(Ĥ
(n)
1 −H1)(Ĥ

(n)
2 −H2)

− n1/2(Ĥ
(n)
1 −H1)H2

− n1/2(Ĥ
(n)
2 −H2)H1,

which converges weakly to G − H2G1 − H1G2. Lemma 5.2 guarantees us that
for the bootstrapped estimators,

sup
t∈[0,τ]

∣

∣

∣
n

1/2[H̃(n)(t1, t2) − H̃
(n)
1 (t1)H̃

(n)
2 (t2) − (Ĥ(n)(t1, t2) − Ĥ

(n)
1 (t1)Ĥ

(n)
2 (t2))]

∣

∣

∣
(10)
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converges in distribution to the sup of the absolute value of that same Gaus-
sian process. Then we can bootstrap from (qi, ri) jointly and find cα so that
(1 − α)100% of the absolute values of (10) fall below cα, which would give us
(1 − α)100% uniform confidence bands for the difference H −H1H2.

Finally, for our test of independence H◦ : H = H1H2 vs. H◦ : H 6= H1H2,

we reject H◦ if supt∈[0,τ] n
1/2

∣

∣Ĥ(n)(t1, t2) − Ĥ
(n)
1 (t1)Ĥ

(n)
2 (t2)

∣

∣ > cα.

5.2. Test of hazard rate order

Let X1, . . . , Xn and Y1, . . . , Ym be independent random samples from bivariate
distributions F and G respectively, and suppose that there is a common cen-
soring mechanism in the form of a sequence of independent ∗-clouds. We are
interested in testing whether the distributions are equal on a particular set or,
more generally, on a suitable class of sets, against the alternative that there is
a difference in the hazard rates.

We start with the case where we look at the hazards on a fixed set A. The
null hypothesis is H◦ : F = G, and we can test it either against a single-
sided alternative such as HF

A < HG
A , or the double-sided alternative HF

A 6= HG
A .

Tests using a one-sided alternative lead us to tests of hazard rate order such
as H◦ : F = G vs. H1 : hF < hG on A, since this alternative would imply
HF

A < HG
A . It is natural to consider the difference between the Nelson-Aalen

estimators ĤF and ĤG of the integrated hazards, which leads to the test statistic

W
(N)
A =

√

nm

N

(

Ĥ
(n)F
A − Ĥ

(m)G
A

)

,

where N = n+m.
By Remark 4.9, we still have that both U

(n)F
A =

√
n(Ĥ

(n)F
A − HF

A ) and

U
(m)G
A =

√
m(Ĥ

(m)G
A −HG

A ) converge to independent mean-zero Gaussian limits
UF

A and UG
A respectively. We can write

W
(N)
A =

√

m

N
U

(n)F
A −

√

n

N
U

(m)G
A +

√

nm

N

(

HF
A −HG

A

)

.

Under the null hypothesis of equality of the cumulative hazards on the set A,
and assuming n

n+m → λ as n,m→ ∞, we get that

W
(N)
A ⇒

√
1 − λUF

A −
√
λUG

A .

The limit variable has the same distribution as UF
A under the null hypothesis.

Then we have a test of asymptotic level α for a two-sided alternative if we reject

the null hypothesis whenever |W (N)
A | > w(N), where we choose w(N) such that

w(N) → wF = inf{t : P (|UF
A | > t) ≤ α}. A test with a one-sided alternative

would be handled similarly; we just have to remove the absolute values.
We can also consider testing for the hazard rate over a whole class, as long

as it is Donsker in order to preserve the Gaussian limits. An example would
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be to take the class of rectangles A = {Az = [0, z] : z ∈ [0, τ ]}, where [0, τ ] =
[0, τ1] × [0, τ2] for τ = (τ1, τ2). All the previous remarks about W (N) are still

valid, but now use supz∈[0,τ] |W (N)
Az

| and supz∈[0,τ] W
(N)
Az

as the test statistics,

as well as choosing w(N) → wF = inf{t : P (supz∈[0,τ] |UF
Az

| > t) ≤ α} and

w(N) → wF = inf{t : P (supz∈[0,τ] U
F
Az

> t) ≤ α} for two-sided and one-sided
alternatives, respectively.

Assuming we can fully observe the pairs (Xi, ξi), (Yj , ξ
′
j) for i = 1, . . . , n and

j = 1, . . . , m, we determine the appropriate critical value for w(N) by bootstrap-
ping from the pooled sample S(N) = (X1, ξ1), . . . , (Xn, ξn), (Y1, ξ

′
1), . . . , (Ym, ξ

′
m),

where we choose any of these observations with probability 1/N , as was done
in Section 3.7.2 in [13]. Define J = λF +(1−λ)G, and note that under the null
hypothesis, HJ = HF . We assign the first n elements from the resampling to F ,
and the rest to G. Let Ḧ(n,N)F and Ḧ(m,N)G be the Nelson-Aalen estimators
for the pooled sample assigned to F and G respectively, and Ḧ(N) the estimator
for the complete pooled sample. Set

Ẅ (N) =

√

nm

N

(

Ḧ(n,N)F − Ḧ(m,N)G
)

.

Next, note that by Hadamard-differentiability and Theorem 3.7.6 in [13], we
know that

√
n(Ḧ(n,N)F −Ḧ(N)) ⇒ UJ

1 and
√
m(Ḧ(m,N)G−Ḧ(N)) ⇒ UJ

2 , where
UJ

1 and UJ
2 are independent mean-zero Gaussian processes with covariance as

defined in Lemma 4.11, with S equal to the survival function of J and h = J ′/S.
Then if we let λN = n/N ,

Ẅ (N) =
√

n(1 − λN)
(

Ḧ(n,N)F − Ḧ(N)
)

−
√

mλN

(

Ḧ(m,N)G − Ḧ(N)
)

,

which converges in distribution to
√

1 − λUJ
1 −

√
λUJ

2 , also a Gaussian process
on [0, τ ] equal in distribution to UJ

1 . Then, as remarked in Section 3.7.2 of [13],
we can use

ẅN = inf
{

t : P ( sup
z∈[0,τ]

Ẅ
(N)
Az

> t) ≤ α
}

as critical values for a one-sided test, and

ẅN = inf
{

t : P ( sup
z∈[0,τ]

|Ẅ (N)
Az

| > t) ≤ α
}

for the two-sided test.
Once again, as we did following the statement of Lemma 5.2, we can see

that the bootstrapped version of our test statistic only uses the functions qi =
I{Xi∈At}I{Xi∈ξi}, ri = I{Xi∈Et}I{t∈ξi}, q

′
j = I{Yj∈At}I{Yj∈ξ′

j
} and r′j = I{Yj∈Et} ×

I{t∈ξ′

j
}; then we can safely drop the assumption of complete observability, given

that even without it we can still construct the appropriate estimators. Thus,
the test can be performed by bootstrapping directly from the recorded values
qi, ri, q

′
j, r

′
j and following the procedure described above.
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5.3. The hazard of a copula

Suppose we have a sequence (Xi, Yi) of i.i.d. bivariate random vectors with
continuous distribution J and continuous, strictly increasing marginals F and
G, and let H denote the integrated hazard function. Our goal is to estimate the
hazard of the copula C associated with J .

As usual, each pair (Xi, Yi) will be censored by an F -∗-cloud ξc
i . Let C(p, q) =

J(F−1(p), G−1(q)), the copula function for J , and let C be the survival function
for the copula: C(p, q) = 1− p− q+C(p, q). It is straightforward to verify that
the integrated hazard of the copula, HC , satisfies

HC(p, q) = H(F−1(p), G−1(q)), 0 ≤ p, q ≤ 1. (11)

In other words, calculating the cumulative hazard of the copula at (p, q) is the
same as calculating the cumulative hazard of the original distribution at the
point (F−1(p), G−1(q)). We would like to estimate the cumulative hazard of the
copula, and the equation above seems to suggest that we could do so by looking
at the Nelson-Aalen estimator for the integrated hazard of the distribution J
evaluated at the appropriate quantiles of F and G. If F and G are unknown,
we would replace (F−1(p), G−1(q)) with the quantiles of the respective Kaplan-
Meier estimates of the marginals F and G (See Section IV.3.1 in [1]).

Now, suppose for the moment that F and G are known. Define the pseudo-
observations (X#

i , Y
#
i ) := (F (Xi), G(Yi)), so that the distribution of (X#

i , Y
#
i )

is the copula C. The observable region then becomes

ξ#i = {(F (x), G(y)) : (x, y) ∈ ξi} ,

and the new filtration (now defined on [0, 1]2) is F#(p, q) = F(F−1(p), G−1(q)).
Using Equation (3), we have

Ĥ(n)c(p, q) =
∑

{i:(X#
i

,Y #
i

)≤(p,q),(X#
i

,Y #
i

)∈ξ#
i
}

(Z#
n (X#

i , Y
#
i ))−1. (12)

But note that

Z#
n (u, v) =

n
∑

i=1

I{(X#
i

,Y #
i

)∈Eu,v}I{(u,v)∈ξ#
i
}

=
n

∑

i=1

I{(Xi,Yi)∈E
(F −1(u),G−1(v))

}I{(F−1(u),G−1(v))∈ξi}

= Zn(F−1(u), G−1(v)),

so

(12) =
∑

{i:(Xi,Yi)≤(F−1(p),G−1(q)),(Xi,Yi)∈ξi}
(Zn(Xi, Yi))

−1

= Ĥ(n)(F−1(p), G−1(q)), (13)
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and hence we have an empirical analogue of (11). More generally, forD ⊆ [0, 1]2,
let (F−1, G−1)(D) := {(F−1(p), G−1(q)) : p, q ∈ D}, in which case we can

estimate HC
D with H̃

(n)C
D = Ĥ(n)((F−1, G−1)(D)). The asymptotic normality of√

n(H̃
(n)C
D −HC

D) follows from Remark 4.9.
If F and G are unknown, the next step is to estimate the quantiles F−1

and G−1. We will do so by taking the appropriate quantiles of the Kaplan-
Meier estimators F̂ , Ĝ of F and G respectively; then our estimator will be
Ĥ(n)C = Ĥ(n)(F̂−1, Ĝ−1), where F̂−1(p) = inf{s : F̂ (s) ≥ p} and Ĝ−1(q) is
defined in a similar manner. It is important to note that A(F̂−1(p),Ĝ−1(q)) is still

a ∗-anti-cloud: indeed, since F̂ (s) and Ĝ(t) are adapted to F (1)(s) and F (2)(t)
respectively,

(s, t) ∈ A(F̂−1(p),Ĝ−1(q)) =
{

s ≤ F̂−1(p)
}

∩
{

t ≤ Ĝ−1(q)
}

=
{

F̂ (u) < p, ∀ u < s
}

∩
{

Ĝ(v) < q, ∀ v < t
}

∈ F (1)
s ∨ F (2)

t ⊆ F∗
(s,t).

An immediate consequence of this is that our estimator still maintains a pseudo-
strong martingale structure. Moreover, under Assumptions 4.2, 4.4 and 4.3, the
composition map

(

Zn, N
(n)ξ, Zn,1, N

(n)
1

ξ1

, Zn,2, N
(n)
2

ξ2) φ1−→ (Zn , N
(n)ξ , Ĥ

(n)
1 , Ĥ

(n)
2 )

φ2−→ (Zn , N
(n)ξ , F̂ , Ĝ)

φ3−→ (Ĥ(n), F̂ , Ĝ)
φ4−→ (Ĥ(n), F̂−1, Ĝ−1)

φ5−→ Ĥ(n) ◦ (F̂−1, Ĝ−1) (14)

is Hadamard-differentiable tangentially to C[0, 1]2 × BVM [0, 1]2 × (C[0, 1] ×
BVM [0, 1])2 on a domain analogous to map (5): the maps φ1 and φ3 are Hadamard-
differentiable as a consequence of Theorem 4.5, φ2’s Hadamard differentiability
comes from Lemma 3.9.30 in [13], and φ4 and φ5 are Hadamard-differentiable by
Example 3.9.24 and Lemma 3.9.25, respectively, in [13] again. Hence, the pro-

cess
√
n(Ĥ

(n)C
· −HC

· ) converges in l∞[0, τ ] = l∞([0, τ1]× [0, τ2]) to a mean zero
Gaussian limit for every (τ1, τ2) such that S(F−1(τ1), G

−1(τ2)) = C(τ1, τ2) > 0.

An example: The FGM copula

We can apply the preceding results to Farlie-Gumbel-Morgenstern (FGM) cop-
ulas. The FGM copula with parameter θ is defined by Cθ(u, v) = uv + θuv(1 −
u)(1 − v). Suppose CJ1 and CJ2 are two FGM copulas with parameters θJ1

and θJ2 , respectively, and we are interested in testing H◦ : CJ1 = CJ2 vs.
H1 : CJ1 < CJ2 . For FGM copulas, this is equivalent to testing H ′

◦ : θJ1 = θJ2

vs. H ′
1 : θJ1 < θJ2 . This test can be performed by ‘translating’ these conditions
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to those of a test of hazard rate order: we look for a specific set A under which
θJ1 < θJ2 is equivalent to hCJ1 (u, v) < hCJ2 (u, v) for (u, v) ∈ A, and then we
can apply the results of the preceding sections.

We have Cθ(u, v) = (1 − u)(1 − v) + θuv(1 − u)(1 − v), as well as ∂2C
∂u∂v =

1 + θ(1 − 2u)(1 − 2v). Then hCJ1 (u, v) < hCJ2 (u, v) becomes

1 + θJ1 (1 − 2u)(1 − 2v)

(1 − u)(1 − v) + θJ1uv(1 − u)(1 − v)
<

1 + θJ2 (1 − 2u)(1− 2v)

(1 − u)(1 − v) + θJ2uv(1 − u)(1 − v)
,

which is equivalent to

(θJ2 − θJ1 )uv < (θJ2 − θJ1 )(1 − 2u)(1 − 2v)

after cross-multiplying and rearranging terms. Under the alternative hypothesis
θJ1 < θJ2 , the previous inequality becomes

uv < (1 − 2u)(1 − 2v),

and finally
1 − 2u− 2v + 3uv > 0.

This means that, under H ′
1 : θJ1 < θJ2 , we have hCJ2 (u, v) − hCJ1 (u, v) > 0

for every (u, v) lying in the set {(u, v) : 1 − 2u− 2v + 3uv > 0}. Now in order
to ensure that CJi

is uniformly bounded below, i = 1, 2, define A := [0, τ ] ∩
{(u, v) : 1 − 2u− 2v + 3uv > 0} for any τ = (τ1, τ2) with τi < 1, i = 1, 2.

We consider two scenarios. First, suppose the distributions J1 and J2 have
the same (known) marginal distributions F and G. Since

∫

A
(hCJ2 − hCJ1 )dλ =

H
CJ2

A −H
CJ1

A , an appropriate test statistic would be (letting N = n+m)
√

nm

N

(

H̃
(n)CJ2

A − H̃
(n)CJ1

A

)

,

which would get large if θJ2 > θJ1 .
More realistically, suppose the marginal distributions of J1 and J2 are un-

known. If θJ2 > θJ1 , then H
CJ2

Au
− H

CJ1

Au
> 0 for every u ∈ A. In this case, an

appropriate test statistic is W
(N)
A = supu∈A

√

nm
N (Ĥ

(m)CJ2

Au
− Ĥ

(n)CJ1

Au
), which

would get large if θJ2 > θJ1 . We need to consider two different cases for calcu-
lating the critical values for our test statistic.

If it is reasonable to assume that the marginals from the two distributions
are equal, we proceed with bootstrapping from the pooled sample as indicated

in Subsection 5.2. Under H◦, we know that W
(N)
A converges to the sup over A

of a mean-zero Gaussian limit UCJ1 , and our test of level α would reject H◦
whenever W

(N)
A > ẅN , where ẅN = inf{t : P (Ẅ

(N)
A > t) ≤ α}.

On the other hand, if the assumption of equal marginals is not justified, we
can no longer pool the samples. In this case we will start by bootstrapping each

sample separately. Let Ḧ
(n)CJ1

Au
and Ḧ

(m)CJ2

Au
denote the bootstrapped Nelson-

Aalen estimators. Now let

Ü (n,m) =

√

nm

N

(

Ḧ(m)CJ2 − Ḧ(n)CJ1 − (Ĥ(m)CJ2 − Ĥ(n)CJ1 )
)

,
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which can be rewritten as
√

n

N

(√
m(Ḧ(m)CJ2 − Ĥ(m)CJ2 )

)

−
√

m

N

(√
n(Ḧ(n)CJ1 − Ĥ(n)CJ1 )

)

.

Assuming that n
n+m

→ λ as n,m → ∞, the last expression converges con-

ditionally given the original samples to
√
λUCJ2 −

√
1 − λUCJ1 by Lemma

5.2, where UCJ1 and UCJ2 are the independent mean-zero Gaussian limits of√
n(Ĥ(n)CJ1 −HCJ1 ) and

√
m(Ĥ(m)CJ2 −HCJ2 ) respectively. Under the null hy-

pothesis, W
(N)
A has the same limiting distribution as Ẅ

(n,m)
A := supu∈A Ü

(n,m)
Au

.
Then we have a test of asymptotic level α if we reject the null hypothesis when-

ever W
(N)
A > ẅn,m, where ẅn,m = inf{t : P (Ẅ

(n,m)
A > t) ≤ α}.
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