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Abstract: Kernel methods are closely related to the notion of reproducing
kernel Hilbert space (RKHS). A kernel machine is based on the minimiza-
tion of an empirical cost and a stabilizer (usually the norm in the RKHS). In
this paper we propose to use Besov spaces as alternative hypothesis spaces.
We study statistical performances of a penalized empirical risk minimiza-
tion for classification where the stabilizer is a Besov norm. More precisely,
we state fast rates of convergence to the Bayes rule. These rates are adaptive
with respect to the regularity of the Bayes.
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1. Introduction

1.1. Classification framework

We consider the binary classification setting. Let (X, Y ) be a random variable
with unknown probability distribution P over X ×{−1,+1}.X ∈ X is called the
input variable. It is a feature vector, whereas Y ∈ {−1, 1} is the corresponding
class or label. The goal of classification is to predict class Y when only X is
observed. In other words, a classification algorithm builds a decision rule from
X to {−1, 1}. A classifier is a function f : X → R where the sign of f(x)
determines the class of an input x. The performance of a classifier is measured
by the generalization error, given by:

R(f) := P(sign(f(X)) 6= Y ).

If we assume that the joint distribution P is known, the best classifier is defined
by:

f∗(x) := 21{η(x)≥1/2} − 1, (1)

where η(x) := P(Y = 1|X = x). Classifier (1) is called the Bayes rule. It is easy
to see that it minimizes the generalization error.

Unfortunately, in practice η is unknown and then f∗ is not available. A nat-
ural way to overcome this difficulty is to provide an empirical classifier based on
training data. Suppose we have at our disposal a training set Dn = {(Xi, Yi), i =
1, . . . , n} made of i.i.d. realizations of the random variable (X, Y ) of law P . Now
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classification can be seen as a standard estimation problem where we have to
estimate f∗ from i.i.d. observations. The efficiency of an empirical classifier f̂n

is measured via its excess risk :

R(f̂n, f
∗) := R(f̂n) −R(f∗), (2)

where R(f̂n) := P(sign(f̂n(X)) 6= Y |Dn). Here we are interested in consistent

classifier f̂n, i.e. such that (2) tends to zero as n → ∞. Finally, a classifier f̂n

learns with rate (ψn)n∈N∗ if there exists an absolute constant C > 0 such that
for all integer n,

ER(f̂n, f
∗) ≤ Cψn, (3)

where E is the expectation with respect to the training set.
Without any assumption over the joint distribution P , [11] gives arbitrary

slow rates. However several authors propose different rates restricting the class
of distributions P . Pioneering works of Vapnik [30, 31] investigate the statisti-
cal performances of the Empirical Risk Minimization (ERM). The idea is very
simple: we are looking at the minimizer of the empirical risk:

Rn(f) =
1

n

n∑

i=1

1{sign(f(Xi)) 6=Yi}. (4)

If we suppose that the class of possible Bayes rules has finite VC dimension,
ERM reaches the parametric rate n− 1

2 in (3). Moreover, if P is noise-free (i.e.
R(f∗) = 0), the rate becomes n−1. This is a fast rate. More recently, [29] or [19]
describes intermediate situations using margin assumptions. These assumptions
add a control on the behaviour of the conditional probability function η at
the level 1

2
. Under this condition, they get minimax fast rates of convergence

between n− 1
2 and n−1 for ERM estimators in classification. At the present time,

there exists a vast literature about the fast rates phenomenon. Fast rates have
been obtained for different procedure such as Boosting ([7]), Plug-in rules ([1]),
SVM ([26]), or dyadic decision trees ([15]). In this work we propose to state fast
rates of convergence for a penalized empirical risk minimization using the hinge
loss.

1.2. SVM regularization

Support Vector Machines was first proposed by Boser, Guyon and Vapnik ([8])
for pattern recognition. Given a training set Dn, the SVM classifier (without

offset) f̂n solves the following minimization:

min
f∈HK

(
1

n

n∑

i=1

(1 − Yif(Xi))+ + αn‖f‖2
K

)
, (5)

where HK denotes the reproducing kernel Hilbert space (RKHS) associated
to the kernel K. The first term in (5) is an empirical cost using the hinge
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loss l(y, f(x)) := (1 − yf(x))+ . This term allows the solution to fit the data.
The second term regularizes the solution with ‖f‖2

K , the square norm of f in
the RKHS. The parameter αn is called the smoothing parameter. It has to be
determined explicitly to make the trade-off between these two terms. To get
statistical performances of the method, we need to take a closer look at the
couple (HK, ‖ · ‖K).

For any Borel measure µ over X , consider LK : L2(µ) → L2(µ) the integral
operator defined as:

LK : f 7→
∫

X

K(x, ·)f(x)µ(dx).

This operator is closely related to the kernel K. If X is compact and K is
continuous (K is called a Mercer kernel), LK is compact. From spectral theorem,
there exist (φk)k≥1, orthonormal basis of L2(µ) of eigenfunctions of LK with
(λk)k≥1 corresponding eigenvalues. It allows us to get a representation of HK

in a sequence space as follows:

HK =

{
f ∈ L2(µ) : f =

∑
akφk ,

∑

k≥1

a2
k

λk
< +∞

}
. (6)

In this case, the regularization in (5) can be written:

‖f‖2
K =

∑

k≥1

a2
k

λk
, (7)

where (ak)k≥1 gives a representation of f in the basis (φk)k≥1. For instance, con-
sider a convolution kernel K(x, y) = Φ(x− y). Then in (7), coefficients (ak)k≥1

are the Fourier coefficients of f whereas (λk)k≥1 are the Fourier coefficients of Φ.
Representation (6) holds for Mercer kernels. One can generalize this fact to

X = R
d in the following case. Suppose K(x, y) = Φ(x−y) is a convolution kernel.

If Φ has some mild properties, the RKHS associated to K can be written:

HK =

{
f ∈ L2(Rd) : ‖f‖2

K =
1

(2π)d

∫

Rd

|f̂(ω)|2

Φ̂(ω)
dω <∞

}
, (8)

where Φ̂ is the Fourier transform of Φ. In this case the regularity is expressed by
the asymptotic behaviour of the Fourier transform. For example, if we suppose
that φ̂ decreases polynomially with ω, HK is a Sobolev space.

[16] uses representation (8) to state learning rates for SVM minimization
when HK = W2

s (Rd) with s > d/2. It corresponds to a Sobolev space of contin-
uous functions as RKHS. If f∗ ∈ Br2∞(Rd), one gets:

ER(f̂n, f
∗) ≤ Cn−β(q,r,s), (9)
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where β is a function of:

• q the margin parameter,
• s the exponent of the Sobolev space W2

s (Rd),
• r the smoothness of f∗ ∈ Br2∞(Rd).

Parameter r describes the regularity of f∗ in the Besov space Br2∞(Rd). This
assumption is strongly related to the use of Sobolev space as hypothesis space. In
these functional spaces, the smoothness is related to the asymptotic behaviour
of the Fourier transform. This criterion depends on the variations of the function
in R

d. It is a global criterion. For instance, the derivability can be expressed in
terms of Fourier transform. For a given f such that f̂ ∈ L1(R), the following
elementary inequalities:

|f(k)(t)| ≤
∫

|eiωt(iω)k f̂(ω)|dω ≤
∫

|ω|k|f̂(ω)|dω

show that if ω 7→ ωpf̂(ω) ∈ L1(Rd), then f ∈ Cp. Unfortunately the Bayes rule
is not continuous. With previous remark, its Fourier transform decreases slowly
(in O(|ω|−1)). From this point of view, Sobolev spaces are not really adapted to
the shape of f∗. As a result, f∗ ∈ Br2∞(Rd) holds for small values of r (namely
r < d

2
). That’s why fast rates are not reached in [16].

An alternative is to take into account the regularity of f∗: it is piecewise
constant with local discontinuities. This can be done using a multiresolution
analysis and considering Besov spaces as hypothesis spaces.

1.3. Besov regularization

It seems interesting to consider minimization (5) with more general hypothesis
spaces. We propose to use Besov spaces as hypothesis spaces and study the
minimization procedure:

min
f∈Bspq (Rd)

(
1

n

n∑

i=1

(1 − Yif(Xi))+ + αn‖f‖2
spq

)
, (10)

where ‖ · ‖spq denotes the norm in Bspq(R
d). We replace HK by Besov spaces.

The advantage of Besov spaces as compared to Sobolev spaces is that they give a
more general description of the smoothness properties of functions. An explicit
description of Bspq(R

d) and ‖ · ‖spq is given in Section 2. There exist several
motivations to introduce Besov spaces in (5):

• We have Bs22(R
d) = W2

s (Rd) is a Sobolev space of order s. For p = q = 2,
(10) corresponds to the standard SVM using Sobolev spaces as RKHS (see
[16]). Then (10) generalizes the Sobolev case.

• The use of the hinge loss l(y, f(x)) = (1−yf(x))+ in (10) is related to the
SVM algorithm. The statistical consequences of minimizing such a loss is
well-treated in [4]. The principal advantage when we are expecting rates
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of convergence is the control of the excess risk (2) by the excess risk using
the hinge loss. It gives in this paper fast rates of convergence. Another
caracteristic of the hinge loss concerns the regularity of the minimizer of
the risk. We have:

arg minRl(f) = arg minR(f) = f∗,

which is a non continuous function with values +1 or −1. For this reason,
fast rates cannot be reached in [16] for SVM with Sobolev spaces. Bspq(R

d)
with p < 2 gives more flexibility. It contains for instance piecewise regular
functions. In this case it will be easier to approximate the Bayes classifier,
which leads to better rates of convergence.

• There is a large theory around Besov spaces, such as a characterization
using wavelet coefficients. It gives a representation of the norm in (10) in
a sequence space as follows:

‖f‖spq =




∑

k∈Zd

|αk|p




1
p

+




∑

j∈N



2j(s+d( 1
2−

1
p ))

2d−1∑

l=1




∑

k∈Zd

|βjkl|p




1
p





q



1
q

,

where (αk) and (βjkq) are the wavelet coefficients.

This representation can be compared to the sequence space representation (7) of
a RKHS norm. In the standard SVM case, the regularization can be expressed
with respect to the spectrum of LK . It allows to control the complexity of the
RKHS. [20] or [6] control the local Rademacher average of balls in RKHS in
this sequence space. It depends on the asymptotic behaviour of the sequence
(λk)k≥1 and affects the statistical performances of the method. In this paper
we point out that similar facts can be derived for Besov spaces using a wavelet
analysis.

Minimization (10) is strongly related to the SVM minimization. However as
a kernel method, SVM uses a RKHS norm as regularization. It allows to define
SVM as a large margin hyperplane in some Hilbert feature space. Here the
hypothesis space is a Besov space. Besov spaces are not Hilbertian, and then
cannot be represented as RKHS. This penalized empirical risk minimization is
not an SVM minimization. However an interesting open problem is to express
(10) as a kernel method. This problem is connected to recent developments
on the theory of reproducing kernels. In this direction, a short discussion is
proposed at the end of this work.

The remainder of this paper is organized as follows: In Section 2, we introduce
the wavelet theory. We characterize Besov spaces in terms of wavelet coefficients.
It reduces the control of the Rademacher average to a problem in a sequence
space, leading to very natural proofs. An oracle inequality is deduced in Section
3. It is a direct application of a general model selection theorem due to [6]. We
finally control the approximation power of Besov balls to state fast learning rates
for the procedure (10). The solution is adaptive with respect to the regularity
of the Bayes. We conclude in Section 4 with a discussion. Section 5 is dedicated
to the proofs of the main results.
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2. Wavelet framework

For the mathematical aspects of wavelets, we refer for example to [21], while [17]
proposes comprehensive expositions for signal processing. Wavelet applications
in statistical settings are given for instance in [13]. For a complete study of
minimax rates of convergence for density estimation by wavelet thresholding,
we refer to [12].

Here recall some definitions and notations for wavelets and Besov spaces.
Going back to statistical learning theory, one proposes a control of the local
Rademacher average of Besov balls.

2.1. Besov spaces and wavelets

2.1.1. Wavelet bases of L2(Rd)

For the one-dimensional case, we refer for instance to [12]. To introduce the
d-dimensional case, we begin with an example in dimension 2 using the tensor
product. Write (V 1

j )j∈Z a multiresolution analysis (MRA for short in the sequel)

of L2(R) generated by φ. Write Vj = V 1
j × V 1

j for all j ∈ Z. Then the system

(φ(x − k)φ(y − l))k,l∈Z is an orthonormal basis of V0 in L2(R2). Let consider
Wj , j ∈ Z such that Vj+1 = Vj ⊕Wj . Then we have for j = 0:

W0 = V 1
0 ⊗W 1

0 ⊕W 1
0 ⊗ V 1

0 ⊕W 1
0 ⊗W 1

0 .

A basis of W0 is obtained with the three collections φ(x − k)ψ(y − l), ψ(x −
k)φ(y − l) and ψ(x− k)ψ(y − l) for (k, l) ∈ Z

2. More generally for all j ∈ Z:

Wj = V 1
j ⊗W 1

j ⊕W 1
j ⊗ V 1

j ⊕W 1
j ⊗W 1

j .

Then the two-dimensional mother wavelets are 2jφ(2jx−k)ψ(2jy−l), 2jψ(2jx−
k)φ(2jy−l) and 2jψ(2jx−k)ψ(2jy−l) for (k, l) ∈ Z

2. This means that there are
three wavelets in the two-dimensional case. This fact is illustrated in [21] with
a geometrical point of view. We can generalize this result in higher dimensions
with the following lemma.

Lemma 1. Let Vj, j ∈ Z a MRA r-regular of L2(Rd). Then there exist L =
2d − 1 functions ψ1, . . .ψL ∈ V1 such that:

1. for all l ∈ {1 . . .L}, for all α ∈ N
d : |α| ≤ r, for all x ∈ R

d and N ≥ 1,

|∂αψl(x)| ≤ CN(1 + |x|)−N ;

2. the system {ψl(x − k), 1 ≤ l ≤ L, k ∈ Z
d} is an ONB of W0.

As a result, the system given by:

2
dj
2 ψl(2

jx− k), 1 ≤ l ≤ L, k ∈ Z
d, j ∈ Z (11)

is an orthonormal basis of L2(Rd).
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This lemma generalizes the one-dimensional case. From a scaling function
r-regular and rapidly decreasing generating a MRA, we can construct 2d − 1
mother wavelets with the same regularity. The existence of such a wavelet basis
is proved in [21].

As a consequence, any f ∈ L2(Rd) can be decomposed as:

f =
∑

k∈Zd

α0kφ0k +
∑

j≥0

∑

k∈Zd

2d−1∑

l=1

βjklψjkl, (12)

where

α0k =

∫

Rd

f(x)φ0k(x)dx and βjkl =

∫

Rd

f(x)ψjkl(x)dx.

In the case of tensor product, we have for all k ∈ Z
d and x ∈ R

d:

φ0k(x) = φ(x1 − k1) . . . φ(xd − kd).

Moreover for all j ≥ 0, k ∈ Z
d, l ∈ {1, . . . , 2d − 1} and x ∈ R

d:

ψjkl(x) = 2
dj

2 ψe1 (2jx1 − k1) . . . ψ
ed(2jxd − kd),

for e ∈ {0, 1}d\0Rd = E and where we write for simplicity ψ0 = φ and ψ1 = ψ.
Here we are interested in compactly supported wavelet bases. [10] has shown

that in dimension d = 1, there exists an orthonormal basis of compactly sup-
ported wavelets satisfying conditions of Lemma 1, for any integer r ≥ 1 (for
r = 0, it corresponds to the Haar basis). Using the tensor product, this result
gives a compactly supported d-dimensional wavelet basis of L2(Rd) (see [21] for
details).

2.1.2. Besov spaces

Besov spaces were introduced by O.V. Besov in the 60s. Here we propose to
characterize Besov spaces Bspq(R

d) in terms of wavelet coefficients.
Recall Pj : L2(Rd) → Vj is the projection operator into Vj and Dj = Pj+1 −

Pj . We know that for f ∈ Lp(Rd), f ∈ Bspq(R
d) if and only if P0(f) ∈ Lp(Rd)

and if there exists a positive sequence (ǫj)j∈N such that:

‖Dj(f)‖p ≤ 2−jsǫj . (13)

To express the Lp-norm of Dj(f) in terms of the AMR of L2(Rd), we need the
following lemma.

Lemma 2. Let g1, . . . gL compactly supported on R
d satisfying assumptions 1.

and 2. of Lemma 1 for L = 2d − 1. Let f(x) =
∑L

l=1

∑
k∈Zd λkl2

dj

2 gl(2
jx− k).

Then there exist 0 < c1 < c2 such that for all 1 ≤ p,

c12
dj( 1

2−
1
p)

2d−1∑

l=1




∑

k∈Zd

|λkl|p




1
p

≤ ‖f‖p ≤ c22
dj( 1

2−
1
p)

2d−1∑

l=1




∑

k∈Zd

|λkl|p




1
p

.
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Lemma 2 is a direct consequence of [21, Lemma 8], using the d-dimensional
change of variables formula.

Gathering with (13), we arrive at the following characterization of Besov
spaces.

Lemma 3. Let p ≥ 1 and f ∈ Lp(Rd). Then f ∈ Bspq(R
d) if and only if:




∑

k∈Zd

|α0k|p




1
p

+




∑

j∈N



2j(s+d( 1
2−

1
p))

2d−1∑

l=1




∑

k∈Zd

|βjkl|p




1
p





q



1
q

< +∞, (14)

where:

α0k =

∫

Rd

f(x)φ0k(x)dx and βjkl =

∫

Rd

f(x)ψjkl(x)dx.

First term in (14) corresponds to the Lp-norm of P0(f) whereas the second
term corresponds to the lq-norm of 2js‖Dj(f)‖p.

This characterization of Besov spaces will be useful to control the complexity
of Bspq(R

d) in this sequence space. For other characterizations, we refer to [22]
or [28], including the most usual definition in terms of modulus of continuity.

2.2. Local complexity of Besov balls

First error bounds for empirical risk minimization go back to Vapnik (see [31]).

Consider an ERM estimator f̂ERM over a collection of classifiers F , [31] states
that:

R(f̂ERM ) − inf
f∈F

R(f) ≤ 2 sup
f∈F

|Rn(f) −R(f)| . (15)

This leads to the study of the supremum of an empirical process. With concen-
tration inequalities, this random process can be controled by its expectation,
up to some residual terms. The behaviour of the maximum of the empirical
process gives rise to a specific notion of size fot the class F , called global size.
This measure is related to the worst deviation of the empirical error to the true
error, and the obtained bounds might be loose.

Recently, sharp bounds have been established using different localized ver-
sions of (15). It is now common to use localized averages. Considering the penal-
ized empirical minimization (10) using the hinge loss l(y, f(x)) = (1− yf(x))+ ,
we are interesting in:

E sup
f∈B(R):Ef(X)2≤r

∣∣∣∣∣
1

n

n∑

i=1

l(Yi, f(Xi)) − El(Y, f(X))

∣∣∣∣∣ , (16)

where in the sequel B(R) = {f ∈ Bspq(R
d) : ‖f‖spq ≤ R}. Parameter r allows

us to identify locally the scale of richness of the function class. It really measures
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the magnitude of the error deviation of functions with small variance, which are
the one that are likely to be picked by the learning algorithm. From the lipschitz
property of the hinge loss, gathering with the well-known symmetrization device
(originally in [30]), it turns out that there is a tight connection between such a
quantity and the following expectation:

E sup
f∈B(R):Ef(X)2≤r

∣∣∣∣∣
1

n

n∑

i=1

ǫif(Xi)

∣∣∣∣∣ , (17)

where ǫi, i = 1, . . . , n are i.i.d. with P (ǫ1 = 1) = P (ǫ1 = −1) = 1
2
. The ǫi

are called Rademacher variables. (17) is called the local Rademacher average of
B(R). The use of Rademacher averages in Classification goes back to [14] (see
also [5, 3, 2]).

[20] has proved that the local Rademacher average of a kernel class is deter-
mined by the spectrum of its integral operator (see also [6]). Under assumptions
on the law ofX, we propose a same type of result for Besov classes. The following
theorem is the meaty part to deduce statistical performances of minimization
(10). It allows us to control the local average (16) and to obtain an oracle in-
equality (Proposition 1).

Theorem 1. Suppose PX admits a density ρ such that:

• a ≤ ρ(x) ≤ A for any x ∈ X ;
• ρ has compact support P = {x ∈ X : ρ(x) 6= 0}.

Then if s > d
p and 1 ≤ p ≤ 2, there exists a constant c depending on a and A

such that:

∀r > 0, E sup
f∈B(R):Ef(X)2≤r

∣∣∣∣∣
1

n

n∑

i=1

ǫif(Xi)

∣∣∣∣∣ ≤
c√
n
R

d
2u r

s− d
p

2u ,

where u = s+ d
(

1
2 − 1

p

)
.

A detailed proof is presented in Section 5. As mentioned in the introduction,
we use wavelet theory presented above. More precisely, Lemma 3 allows us to
control (17) in a sequence space.

Remark 1. Consider the Sobolev case in dimension 1. For p = q = 2 and d = 1,

the upper bound becomes R
1
2s r

2s−1
4s . It corresponds to the upper bound of [20,

Theorem 2.1] for eigenvalues of the integral operator such that λk ≤ k−2s. It
illustrates that this result generalizes the Sobolev case p = q = 2.

Remark 2. This result holds for parameter range of Besov spaces such that
s > d

p
. In this case, there exists a continuous embedding from Bspq(R

d) into

C(Rd). It ensures that the evaluation functional δx : f 7→ f(x) is continuous on
Bspq(R

d), exactly as in the RKHS case. In the sequel we consider Besov spaces
with such a restriction.
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3. Statistical performances

To state learning rates to the Bayes, we act in two steps. First step is to state
an oracle inequality of the form:

ERl(f̂n, f
∗) ≤ C inf

f∈Bspq(Rd)

(
Rl(f, f

∗) + αn‖f‖2
spq

)
+ δn.

The statistical sense of this inequality is rather transparent. It ensures classifier
f̂n to have comparable performances with the best classifier called oracle (which
minimizes the true risk), up to a residual term δn such that δn → 0 as n→ ∞.
Constant C has to be close to 1.

It remains to control the right hand side of the oracle inequality. The main
term of this bound is called the approximation function, defined in this case as:

a(αn) = inf
f∈Bspq (Rd)

(
Rl(f, f

∗) + αn‖f‖2
spq

)
.

Following [16], we use the theory of interpolation spaces to control this function
under an assumption over the Bayes f∗. Finally, to get rates of convergence such
as (3), it remains to note that:

ER(f̂n, f
∗) ≤ ERl(f̂n, f

∗).

3.1. Oracle inequality

To obtain good statistical properties, we need to restrict the class of considered
distributions P . A standard way is to impose a margin hypothesis over the
conditional probability function η. In this work we will assume that there exist
η0, η1 > 0 such that:

∀x ∈ X ,
∣∣∣∣η(x) −

1

2

∣∣∣∣ ≥ η0 and min(η(x), 1− η(x)) ≥ η1. (18)

This assumption is closely related to the margin assumption originally due to
[29]. The first part ensures a jump of the probability η at the level 1

2 . The second
part is not natural. It avoids the no noise case where η(x) ∈ {0, 1}. It appears
for some technical reasons discussed in Section 5 (see also [6]).

Proposition 1 (Oracle inequality). Let P the joint distribution such that the
marginal of X satisfies assumptions of Theorem 1. Suppose (18) holds for some
η0, η1 > 0. Consider a non-decreasing function φ on R

+ such that φ(0) = 0 and
φ(x) ≥ x for x ≥ 1

2 .
Given (Xi, Yi), i = 1, . . . , n i.i.d. from P , we define:

ĝn = arg min
f∈Bspq(Rd)

(
1

n

n∑

i=1

l(Yi, f(Xi)) + αnφ(‖f‖spq)

)
, (19)



S. Loustau/Penalized ERM over Besov spaces 834

where s > d
p and 1 ≤ p ≤ 2. If we choose αn such that:

αn ≥ c1n
− 2u

2u+d + η−1
1

(
c2

logn

n
+ c3

log logn

n
+
c4
n

)
, (20)

then the estimator ĝn is such that:

ERl(ĝn, f
∗) ≤ 2 inf

f∈Bspq(Rd)
(Rl(f, f

∗) + αnφ(‖f‖spq))

+ 4αn

(
2φ(2) + c

η1

η0

)
+

2

n
,

where c, c1, c2, c3 and c4 are absolute constants and u = s+ d
(

1
2 − 1

p

)
.

Remark 3. It holds whatever φ : φ(0) = 0 and φ(x) ≥ x for x ≥ 1
2
. From

the model selection approach, the minimum required regularization is of order
‖f‖spq . In the standard SVM, a regularization of order ‖f‖2

spq is used. Thus we
only consider in Corollary 1 the two cases φ(x) = x and φ(x) = 2x2. These two
orders of regularization will lead to different statistical performances.

Remark 4. This inequality is independent of the approximation term. The
choice of αn in (20) only depends on the hypothesis set we consider. A control
of the approximation power of Besov spaces will give adaptive learning rates.

3.2. Rates of convergence

Last step is to control the approximation term in the oracle inequality of Propo-
sition 1. The theory of interpolation spaces allows us to measure how well the
models approximate the target function f∗. We finally get the following rates
of convergence.

Corollary 1 (Rates of convergence). Let P satisfying assumptions of Propo-
sition 1. Then for any 1 ≤ p ≤ 2 and s > d

p
, define the estimators

f̂n := arg min
f∈Bspq(Rd)

(
1

n

n∑

i=1

l(Yi, f(Xi)) + αn‖f‖spq

)

and

ĝn := arg min
f∈Bspq(Rd)

(
1

n

n∑

i=1

l(Yi, f(Xi)) + 2αn‖f‖2
spq

)
.

Suppose that f∗ ∈ Brp∞(Rd) for some r > 0. Then there exist absolute constants
C, C ′ > 0 such that:

ER(f̂n, f
∗) ≤ Cn− r

s
2u

2u+d , (21)

and

ER(ĝn, f
∗) ≤ C ′n− r

2s−r
2u

2u+d , (22)

where we choose αn such that an equality holds in (20).
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Remark 5. We consider two special cases for the function φ of Proposition 1.
Estimator f̂n is the penalized empirical minimizer using the weakest regular-
ization (linear with respect to the norm) whereas ĝn uses the standard SVM

penalization (of order ‖f‖2). We can see coarsely that the rate of f̂n outper-
forms the one of ĝn since r

s >
r

2s−r . With this approach, a lighter regularization
results in a better bound.

Remark 6. The construction of these estimators does not depend on the reg-
ularity of the Bayes. The smoothing parameter αn is chosen independently of
the parameter r appearing in the assumption f∗ ∈ Brp∞(Rd). As a result, es-

timators f̂n and ĝn are called adaptive. They adapt to the regularity of the
Bayes.

Remark 7. [16] gives learning rates for SVM using Sobolev spaces. In particu-

lar, under a strong margin assumption, we obtain n− 2rs
2rs+d(2s−r) . We can compare

this bound with (22) for p = q = 2. In this case we have n− r
2s−r

2s
2s+d . This rate

is clearly slower than n
− 2rs

2rs+d(2s−r) since s > r. However it gives similar results
when s→ r.

3.3. Fast rates and optimality

Consider the one-dimensional case where X = R. Suppose f∗ is such that:

card{x ∈ R : f∗ jumps at x} = N <∞. (23)

It means that the Bayes rule changes only a finite number of times over the real
line. Under this assumption, SVM algorithm using Sobolev spaces cannot reach
fast rates (see [16]). In this paper Besov spaces allow us to consider values of
p < 2. With (23), if 1 ≤ p = q < 2, we have using [17]:

f∗ ∈ Brpq(R) for r =
1

2
+

1

p
.

Consequently, f∗ such that (23) holds belongs to Br11(R) ⊂ Br1∞(R) for r =

3/2. Substituing into (22), the rate becomes n
− 6s−3

2s(4s−3) which is a fast rate for s
small enough. This example illustrates the importance to consider Besov spaces
with p < 2 as hypothesis space. For p < 2, these spaces contain piecewise regular
functions with local discontinuities. It gives fast rates of convergence.

An interesting question thought it is out of the scope of this paper is the
optimality of Corollary 1. To answer to this question, it should be possible
to link the assumption of regularity of f∗ in the d-dimensional case with more
standard complexity assumption for classification. For example, a more classical
model for possible Bayes rule is the Hölder Boundary Fragment assumption
over the decision boundary ([29]). Using the characterization of Besov norms
with wavelet coefficients, it should be interesting to link Corollary 1 to this
framework. It may give a direction to deduce minimax facts in our framework,
using for instance lower bounds of [24].
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4. Conclusion

We have studied a new procedure of penalized empirical risk minimization using
Besov spaces. This method generalizes SVM algorithm using Sobolev spaces as
RKHS. The introduction of Besov spaces gives more flexibility to study the
approximation power of the procedure. For the estimation part of the analysis,
we adopt the model selection approach of [6]. We propose a control of the local
Rademacher average of Besov balls. We hence obtain fast learning rates to the
Bayes. Moreover, the construction of these estimators does not depend on the
regularity of the Bayes. They are adaptive with respect to the regularity of f∗.

From technical point of view, this paper generalizes the control of Rademacher
to a non Hilbertian functional space. It is well-known that local Rademacher of
RKHS balls can be controled using RKHS formalism. Here we propose to use a
wavelet analysis to get a similar result for Besov spaces. A compactly supported
wavelet basis allows us to work in a sequence space.

This contribution could be compared with another introduction of wavelet
theory in classification. [15] studies the statistical performances of the LASSO
estimator, solving the minimization:

min
f∈Fd

(
n∑

i=1

1(f(Xi) 6= Yi) + α‖f‖L1

)
.

The hypothesis space Fd is made of piecewise constant classifiers on a dyadic
regular grid of [0, 1]d. It allows to decompose each classifier into a fundamental
system of indicators on dyadic sets of [0, 1]d. This system is closely related to the
wavelet tensor product of the Haar basis. As a consequence, in all the proofs,
similitudes with the technics used in the wavelet literature are granted. From
this point of view, the present work can be compared to [15].

Unfortunately, from practical point of view, the presence of Besov norms in
our procedure leads to some computational problems. Besov spaces are not
Hilbert spaces. As a result, our method cannot be embedded into a kernel
method and computed as SVM algorithm. The feature space is not a RKHS
in this case.

Recently, several authors investigate learning algorithm with non Hilbertian
hypothesis space. [9] underlines the main principles of an hypothesis space in
a learning problem. The hypothesis set must be composed of pointwise defined
functions. Moreover the evaluation functional δx : f 7→ f(x) must be continu-
ous. Due to the embedding theorem, Besov spaces Bspq(R

d) with s > d
p have

this property. In the RKHS case, it corresponds to the reproducing property. It
gives a reproducing kernel lying in the RKHS. However the Hilbertian structure
is not necessary. To generalize the notion of RKHS to RKS (Reproducing Kernel
Space), we need a bilinear form corresponding to the scalar product for RKHS.
It could be done with the duality map, considering a duality couple (H,H∗). [18]
establishes an equivalence between particular dualities called evaluation subdu-
alities and a set of weakly continuous applications called reproducing kernels. [9]
also provides an explicit construction of both subdualities and the associated
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reproducing kernel. It is a generalization to the construction of RKHS using
Carleman operator. The construction is based on the duality map.

Finally we know from [21] that (Bspq(R
d),B−sp′q′(Rd)) are in duality through

the duality map:

<f, g>Bspq(Rd),B−sp′q′(Rd)=< P0(f), P0(g) >L2(Rd) +
∑

j≥0

<Dj(f), Dj (g)>L2(Rd),

where B−sp′q′ (Rd) is the space of distributions such that (13) holds for −s < 0.
As a result, it will be interesting in this direction to find a kernel generating
Besov spaces as RKS. Last step would be to implement our procedure with such
a kernel.

5. Proofs

This section is dedicated to the proofs of the main results of this paper. Through-
out this section, c denotes a constant that may vary from line to line. For p,
q > 0, we write p′, q′ such that 1/p+ 1/p′ = 1/q+ 1/q′ = 1. Finally, with some
abuse of notations, we write Ef for EPX

f(X) and El(f) for EP l(Y, f(X)).

5.1. Proof of Theorem 1

Since the marginal of X admits a bounded density ρ with compact support P,
we have:

{
f ∈ B(R) : Ef2 ≤ r

}
⊆
{
f ∈ B(R) :

∫

P

f2(x)dx ≤ r

a

}
:= F(R, r).

Moreover X1, . . .Xn are i.i.d. from ρ. Then:

E sup
f∈F(R,r)

∣∣∣∣∣
1

n

n∑

i=1

ǫif(Xi)

∣∣∣∣∣ = E sup
f∈B(R):‖f‖2

L2 (Rd)
≤ r

a

∣∣∣∣∣
1

n

n∑

i=1

ǫif(Xi)

∣∣∣∣∣ . (24)

We then have to bound the RHS of (24).
Let begin with the one-dimensional case, i.e. when the input domain X ⊂ R.

From wavelet decomposition, we can write f ∈ L2(R) as:

f =
∑

k∈Z

α0kφ0k +
∑

j≥0

∑

k∈Z

βjkψjk = fα,β . (25)

The description of Besov spaces using wavelets leads to the following equivalent
norm:

‖f‖spq =

(
∑

k∈Z

|α0k|p
) 1

p

+




∑

j≥0

2jq(s+1
2−

1
p
)

(
∑

k∈Z

|βjk|p
) q

p





1
q

.
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Moreover from Lemma 2,

‖f‖2 ≈
(
∑

k∈Z

|α0k|2
) 1

2

+
∑

j≥0

(
∑

k∈Z

|βjk|2
)1

2

,

where x ≈ y means there exist c, C > 0 such that cy ≤ x ≤ Cy.
For f ∈ Bspq(R) with s > 1

p
, the wavelet expansion (25) is pointwise since

the evaluation functionals are continuous in these spaces (see Remark 2). Thus
we obtain:

E sup
f∈B(R):‖f‖2

L2≤
r
a

∣∣∣∣∣
1

n

n∑

i=1

ǫif(Xi)

∣∣∣∣∣ ≤ E sup
(α,β)∈Γ(R,r)

∣∣∣∣∣
1

n

n∑

i=1

ǫifα,β(Xi)

∣∣∣∣∣ ,

where fα,β is defined in (25) and

Γ(R, r) =

{
(α, β) : γpq(α, β) ≤ R and γ2(α, β) ≤

√
r√
ac

}
,

for

γpq(α, β) =

(
∑

k∈Z

|α0k|p
) 1

p

+




∑

j≥0

(
2j(s+d( 1

2−
1
p
))
(∑

|βjk|p
) 1

p

)q




1
q

,

and

γ2(α, β) =

(
∑

k∈Z

|α0k|2
) 1

2

+
∑

j≥0

(
∑

k∈Z

|βjk|2
) 1

2

.

Hence we get for any integer d′:

∣∣∣∣∣

n∑

i=1

ǫifα,β(Xi)

∣∣∣∣∣ =

∣∣∣∣∣∣

∑

k∈Z

α0k

n∑

i=1

ǫiφ0k(Xi) +
∑

j≥0

∑

k∈Z

βjk

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

k∈Z

α0k

n∑

i=1

ǫiφ0k(Xi) +

d′∑

j=0

∑

k∈Z

βjk

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∑

j>d′

∑

k∈Z

βjk

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣∣
:= T1 + T2.

To prove the inequality, we will bound this two terms separately.
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We begin applying the Hölder (twice) and Jensen inequalities to T2:

E[T2] ≤ E

∑

j>d′

(
∑

k∈Z

|βjk|p
) 1

p
(
∑

k∈Z

|
n∑

i=1

ǫiψjk(Xi)|p
′

) 1
p′

≤
∑

j>d′

(
∑

k∈Z

|βjk|p
) 1

p
(
∑

k∈Z

E|
n∑

i=1

ǫiψjk(Xi)|p
′

) 1
p′

≤




∑

j>d′



2j(s+1
2−

1
p
)

(
∑

k∈Z

|βjk|p
) 1

p




q



1
q

×




∑

j>d′



2−j(s+1
2−

1
p
)




∑

k∈Z

E

∣∣∣∣∣

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣

p′




1
p′





q′



1
q′

.

The definition of Γ(R, r) leads to:

E[T2] ≤ R




∑

j>d′



2−j(s+1
2−

1
p
)




∑

k∈Z

E

∣∣∣∣∣

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣

p′




1
p′





q′



1
q′

, (26)

where 1
p + 1

p′ = 1
q + 1

q′ = 1.

Next step is to control, for all j > d′, the serie:

∑

k∈Z

E

∣∣∣∣∣

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣

p′

.

Lemma 4. Let Y1, . . . Yn i.i.d. with zero mean and σ2 variance. Then for all
u ≥ 2, there exists cu > 0 such that:

E

∣∣∣∣∣
1

n

n∑

i=1

Yi

∣∣∣∣∣

u

≤ cu

[
σu

n
u
2

+
E|Y1|u
nu−1

]
.

This concentration inequality is due to Rosenthal ([23]).
Putting Yi = ǫiψjk(Xi), we have with Lemma 2, gathering with conditions

on the density ρ:

E|Yi|p ≤ A‖ψjk‖p
p ≤ c2j(p

2−1),

for an absolute constant c depending on A. As a result, applying Lemma 4 for
u = p′ ≥ 2, we obtain:

E

∣∣∣∣∣
1

n

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣

p′

≤ cp′n− p′

2



c
p′

2 + c

(
2j

n

) p′

2 −1


 .
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Now it is worth noticing that since p and the wavelets functions ψjk are com-
pactly supported, the quantity:

Eψp′

jk =

∫

R

|ψjk(x)|p′

p(x)dx

is zero whatever k ∈ SC (j) := {k ∈ Z : suppψjk ∩ P = ∅}. We know from [21]
that there exists a constant c > 0 such that ♯S(j) ≤ c2j. Then:

∑

k∈Z

E

∣∣∣∣∣
1

n

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣

p′

=
∑

k∈S(j)

E

∣∣∣∣∣
1

n

n∑

i=1

ǫiψjk(Xi)

∣∣∣∣∣

p′

≤ c2jn− p′

2



c
p′

2 + c

(
2j

n

) p′

2 −1


 .

Gathering with (26), we obtain:

E[T2] ≤ cp′

R√
n




∑

j>d′

2−j(s+ 1
2−

1
p )q′




∑

k∈S(j)

c
p′

2 + c

(
2j

n

) p′

2 −1




q′

p′





1
q′

≤ cp′

R√
n




∑

j>d′

2−jq′(s−1
2 )



c
p′

2 + c

(
2j

n

)p′

2 −1




q′

p′





1
q′

≤ c
R√
n




∑

j>d′

2−jq′(s− 1
2 ) + 2−jq′(s− 1

p )n
q′

p′

(
1− p′

2

)




1
q′

≤ c
R√
n

(
2−d′q′(s−1

2 ) + 2−d′q′(s− 1
p)n

q′

p′

(
1−p′

2

)) 1
q′

,

where the convergence of the geometric serie comes from the condition s > 1
p
.

Moreover we have p ≤ 2. Then s− 1
2 ≥ s− 1

p and 1 − p′

2 ≤ 0. We obtain:

E[T2] ≤ c
R√
n

(
2−d′q′(s− 1

p)
(

1 + n
q′

p′

(
1− p′

2

))) 1
q′

≤ c
R√
n

2−d′(s− 1
p ).

Last step is to control T1. We put β−1,k = α0k and ψ−1k = φ0k. Thus we have,
applying successively Cauchy-Schwarz and Jensen inequalities,
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E[T1] ≤ E

∣∣∣∣∣∣∣

d′∑

j=−1

(
∑

k∈Z

β2
jk

) 1
2




∑

k∈Z

(
n∑

i=1

ǫiψjk(Xi)

)2




1
2

∣∣∣∣∣∣∣

≤
d′∑

j=−1

(
∑

k∈Z

β2
jk

)1
2




∑

k∈Z

E

(
n∑

i=1

ǫiψjk(Xi)

)2




1
2

.

Besides, Eǫiǫj = 0, ∀i 6= j. Then:

E

(
n∑

i=1

ǫiψjk(Xi)

)2

=

n∑

i=1

Eψjk(Xi)
2.

We have to control, for j ∈ {−1, . . . d′} the serie:

∑

k∈Z

n∑

i=1

Eψjk(Xi)
2.

As above, since p and the wavelet mother ψ are compactly supported,

∑

k∈Z

n∑

i=1

Eψjk(Xi)
2 =

∑

k∈S(j)

n∑

i=1

Eψjk(Xi)
2

where ♯S(j) ≤ c2j. Finally we obtain:

E[T1] ≤ c
√
n

d′∑

j=−1

(
∑

k∈Z

β2
jk

) 1
2

2
j
2

≤ c
√
n2

d′

2

d′∑

j=−1

(
∑

k∈Z

β2
jk

)1
2

≤ 2
d′

2 c

√
rn√
a
,

where last line comes from the definition of Γ(R, r).
Then there exists a constant c > 0 depending on a and A such that:

E

∣∣∣∣∣
1

n

n∑

i=1

ǫifα,β(Xi)

∣∣∣∣∣ ≤
c√
n

inf
d′∈N

(
R2−d′(s− 1

p) + 2
d′

2

√
r

a

)
.

Optimizing with respect to d′, we obtain the following upper bound in dimen-
sion 1:

c√
n
R

1

2( 1
2
+s− 1

p ) r

s− 1
p

2( 1
2
+s− 1

p) .
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Now we turn out into the d-dimensional case. The principle of the proof
follows the one dimensional case. From (12) we have, for any f ∈ Bspq(R

d):

f =
∑

k∈Zd

α0kφ0k +
∑

j≥0

∑

k∈Zd

2d−1∑

l=1

βjklψjkl = fα,β(x),

where the equality is pointwise since s > d
p . Then we can write:

E sup
f∈B(R):‖f‖2

L2≤
r
a

∣∣∣∣∣
1

n

n∑

i=1

ǫif(Xi)

∣∣∣∣∣ ≤ E sup
(α,β)∈Γd(R,r)

∣∣∣∣∣
1

n

n∑

i=1

ǫifα,β(Xi)

∣∣∣∣∣ ,

where now:

Γd(R, r) =

{
(α, β) : γd

pq(α, β) ≤ R and γd
2 (α, β) ≤

√
r√
ac

}
,

for

γd
pq(α, β) =




∑

k∈Zd

|αk|p




1
p

+




∑

j≥0



2j(s+d( 1
2−

1
p
))

2d−1∑

l=1




∑

k∈Zd

|βjkl|p




1
p





q



1
q

,

and

γd
2 (α, β) =




∑

k∈Zd

|αk|2




1
2

+
∑

j≥0

2d−1∑

l=1




∑

k∈Zd

|βjkl|2




1
2

.

We proceed as in dimension 1. For any integer d′:

∣∣∣∣∣

n∑

i=1

ǫifα,β(Xi)

∣∣∣∣∣ ≤

∣∣∣∣∣∣

∑

k∈Zd

α0k

n∑

i=1

ǫiφ0k(Xi) +

d′∑

j=0

2d−1∑

l=1

∑

k∈Zd

βjkl

n∑

i=1

ǫiψjkl(Xi)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∑

j>d′

2d−1∑

l=1

∑

k∈Zd

βjkl

n∑

i=1

ǫiψjkl(Xi)

∣∣∣∣∣∣
:= T3 + T4.

We apply the Hölder (twice) and Jensen inequalities to T4 to get:

E[T4] ≤ R




∑

j>d′



2−j(s+d( 1
2−

1
p ))




∑

k∈Zd

2d−1∑

l=1

E

∣∣∣∣∣

n∑

i=1

ǫiψjkl(Xi)

∣∣∣∣∣

p′




1
p′





q′



1
q′

.

Next step is to control, for all j > d′, the serie:

∑

k∈Zd

2d−1∑

l=1

E

∣∣∣∣∣

n∑

i=1

ǫiψjkl(Xi)

∣∣∣∣∣

p′

.
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We have with Lemma 2:

E|Yi|p ≤ A‖ψjkl‖p
p ≤ c2dj( p

2−1),

since ψ is compactly supported. As a result, applying the Rosenthal inequality,
we obtain:

E

∣∣∣∣∣
1

n

n∑

i=1

ǫiψjkl(Xi)

∣∣∣∣∣

p′

≤ cp′n−p′

2



c
p′

2 + c

(
2dj

n

) p′

2 −1


 .

Now it is worth noticing that since p and the wavelets ψjkl are compactly sup-
ported, the quantity

E|ψjkl|p
′

=

∫

R

|ψjkl(x)|p
′

p(x)dx

is zero whatever k /∈ Sd(j) := {k ∈ Z
d : supp(ψjkl) ∩ P 6= ∅}. There exists an

absolute constant c > 0 which only depends on d such that ♯Sd(j) ≤ c2dj . As a
result,

∑

k∈Zd

2d−1∑

l=1

E

∣∣∣∣∣

n∑

i=1

ǫiψjkl(Xi)

∣∣∣∣∣

p′

=
∑

k∈Sd(j)

2d−1∑

l=1

E

∣∣∣∣∣

n∑

i=1

ǫiψjkl(Xi)

∣∣∣∣∣

p′

.

With previous inequality, we hence have:

E[T4] ≤ cp′

R√
n




∑

j>d′

2−j(s+d( 1
2−

1
p))q′




∑

k∈Sd(j)

c
p′

2 + c

(
2dj

n

) p′

2 −1




q′

p′





1
q′

≤ c
R√
n




∑

j>d′

2−jq′(s−d
2 ) + 2−jq′(s− d

p)n
q′

p′

(
1− p′

2

)




1
q′

≤ c
R√
n

(
2−d′q′(s− d

2 ) + 2−d′q′(s− d
p)n

q′

p′

(
1−p′

2

)) 1
q′

,

where the condition s > d
p

ensures the convergence of the geometric serie. More-
over we have p ≤ 2. Then, as above:

E[T4] ≤ c
R√
n

2−d′(s− d
p).

It remains to control T3. For brievity, we put β−1k1 = αk, ψ−1k1 = φk and for
any l > 1, β−1kl = 0 ψ−1kl = 0. Applying successively Cauchy-Schwarz and
Jensen, one has:

E T3 ≤
d′∑

j=−1




∑

k∈Zd

2d−1∑

l=1

β2
jkl





1
2



∑

k∈Zd

2d−1∑

l=1

E

(
n∑

i=1

ǫiψjkl(Xi)

)2




1
2

.
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With the same argument as in dimension one, we obtain:

E

(
n∑

i=1

ǫiψjkl(Xi)

)2

=

n∑

i=1

Eψjkl(Xi)
2.

We have to control, for j ∈ {−1, . . . d′} the serie

∑

k∈Zd

2d−1∑

l=1

n∑

i=1

Eψjkl(Xi)
2.

Since f and the wavelet mother ψ are compactly supported,

∑

k∈Zd

2d−1∑

l=1

n∑

i=1

Eψjkl(Xi)
2 =

∑

k∈Sd(j)

2d−1∑

l=1

n∑

i=1

Eψjkl(Xi)
2

where ♯Sd(j) ≤ c2dj . Finally we get:

E[T3] ≤ c
√
n

d′∑

j=−1




∑

k∈Zd

2d−1∑

l=1

|βjkl|2




1
2

2
dj
2 ≤ √

nr2
dd′

2 ,

from the definition of Γd(R, r).
Then the control of the two terms entails:

E

∣∣∣∣∣
1

n

n∑

i=1

ǫifα,β(Xi)

∣∣∣∣∣ ≤
c√
n

inf
d′∈N

(
R2−d′(s− d

p) + 2
dd′

2
√
r
)
.

Optimizing with respect to d′, we lead to the conclusion.

5.2. Proof of Proposition 1

To prove the oracle inequality, we use the following model selection approach.
From [6], minimization (10) can be rewritten as f̂n = f̂

R̂
where:

f̂R = arg min
f∈B(R)

1

n

n∑

i=1

(1 − Yif(Xi))+ and

R̂ = arg min
R>0

(
1

n

n∑

i=1

(1 − Yif̂R(Xi))+ + αnR
2

)
,

where B(R) = {f ∈ Bspq(R
d) : ‖f‖spq ≤ R}. This gives a model selection

interpretation of classifier f̂n, where models are balls in Bspq(R
d). We can then

apply the following general model selection theorem (Theorem 5 in [6]). We
recall it for completeness.
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Theorem 2. Let l a loss function such that g∗ ∈ arg minf∈L2(PX ) El(Y, f(X)).
Let (Gm)m∈M a countable collection of models with Gm ⊂ L2(PX), ∀m ∈ M.
We suppose there exist a pseudo-distance d on L2(PX), a sequence of sub-
root1 functions (φm)m∈M, and two sequences of positive numbers (bm)m∈M and
(Cm)m∈M such that:

(H1) ∀m ∈ M, ∀g ∈ Gm, ‖l(g)‖∞ ≤ bm.
(H2) ∀g, g′ ∈ L2(PX), V ar (l(Y, g(X)) − l(Y, g′(X))) ≤ d2(g, g′).
(H3) ∀m ∈ M, ∀g ∈ Gm, d

2(g, g∗) ≤ CmE (l(Y, g(X)) − l(Y, g(X)∗)).
(H4) ∀m ∈ M, ∀g0 ∈ Gm, ∀r ≥ r∗m:

E

[
sup

g∈Gm:d(g,g0)2≤r

(E − Ên)(l(Y, g(X)) − l(Y, g(X)0))

]
≤ φm(r),

where r∗m satisfies φm(r∗m) = r∗m/Cm and ÊnX = 1
n

∑
Xi.

Let (xm)m∈M a real sequence such that
∑

m∈M e−xm ≤ 1 and:

∀m, m′ ∈ M, xm ≤ xm′ ⇒ bm ≤ bm′ and Cm ≤ Cm′ .

Let (ρm)m∈M a family of positive numbers. Let g̃ such that there exists m̃ ∈ M
with g̃ ∈ Gm̃ and:

1

n

n∑

i=1

l(Yi, g̃(Xi)) + pen(m̃) ≤ inf
m∈M

inf
g∈Gm

(
n∑

i=1

l(Yi, g(Xi)) + pen(m) + ρm

)
.

Then if m 7→ pen(m) satisfies, for any m ∈ M:

pen(m) ≥ 250K
r∗m
Cm

+
Bm(xm + log2)

3n
+
Bm logBm

n
, (27)

where Bm = 75KCm + 28bm, we obtain:

ERl(g̃, f
∗) ≤ K + 1

5

K − 1
inf

m∈M

(
inf

g∈Gm

Rl(g, g
∗) + 2pen(m) + ρm +

2

n

)
. (28)

Theorem 2 is rather general. It can be applied to a wide variety of situa-
tions related to many statistical models. In particular it can be used to propose
adaptive estimators in non-parametric regression, density estimation or classi-
fication. It gives the minimum required penalty to get an oracle inequality for
a penalized empirical cost minimizer.

In our setup, we have to find constant bR, CR, a subroot function φR and a
distance d on L2(PX) such that:

(H1) ∀R ∈ R
+, ∀g ∈ B(R), ‖l(g)‖∞ ≤ bR;

(H2) ∀g, g′ ∈ L2(PX), V ar (l(g) − l(g′)) ≤ d2(g, g′);

1φ : R
+ → R

+ is a subroot function if it is a positive non-decreasing function such that
φ(r)/

√
r is non-increasing.
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(H3) ∀R ∈ R
+, ∀g ∈ B(R), d2(g, f∗) ≤ CRE (l(g) − l(f∗));

(H4) ∀R ∈ R
+, ∀r > 0, we have

E sup
f∈B(R):d(f,0)2≤r

∣∣∣∣∣
1

n

n∑

i=1

ǫif(Xi)

∣∣∣∣∣ ≤ φR(r).

Once assumptions (H1)-(H4) are granted, next step is to discretize the contin-
uous family of models (B(R))R∈R+ over a certain family of values of the radii.
Following [6], we consider the set of discretized radii:

R = {M−12k, k ∈ N, 0 ≤ k ≤ ⌈log2 n⌉}.

To apply the second part of Theorem 5 in [6], the penalty function should satisfy:

pen(R) ≥ c1

(
r∗

CR
+

(CR + bR)(xR + log2)

3n
+

(CR + bR) log(CR + bR))

n

)
,

where c1 is a suitable constant. It can be checked that condition (20) on αn

ensures such an inequality for:

pen(R) = αn

(
φ

(
MR

2

)
+
η1

η0

)
.

Last step is to forth between the discretized framework and the continuous
framework. We follow exactly [6] to write ĝn defined in (19) as an approxi-
mate penalized minimum empirical risk estimator of Theorem 2 over the family
(B(R))R∈R .

It only remains to prove (H1)-(H4).

5.2.1. Proof of (H1)

We only consider in Proposition 1 a parameter range of Besov spaces Bspq(R
d)

such that s > d
p . As a result, from the continuous embedding of Bspq(R

d) into

C(Rd) for s > d
p , one gets for any f ∈ Bspq(R

d):

‖f‖∞ ≤ c‖f‖spq.

We hence obtain (H1) with bR = 1 + cR since |l(y, f(x))| ≤ 1 + |f(x)|.

5.2.2. Proof of (H2)-(H3)

To check these assumptions, we have to choose a distance d in L2(PX). This
choice has been done implicitely in Theorem 1. This theorem will prove (H4)
with the usual distance d(g, g′) = E(g − g′)2, for any g, g′ ∈ L2(PX). It comes
from Section 3.2.1 which allows us to write the L2-norm of a function in Bspq(R

d),
using wavelet decomposition. Then we consider the same distance to check (H2)
and (H3).
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(H2) is trivially satisfied because the hinge loss l is a Lipschitz function.
Moreover with Lemma 11 of [6], hypothesis (18) ensures (H3) with constant

CR = 2
(

MR
η1

+ 1
η0

)
. The choice of the distance above corresponds to the setting

(S1) in [6]. That’s why the second part of (18) is necessary in our context.

5.2.3. Proof of (H4)

The proof of (H4) has been done in Section 3.2.2.

5.3. Proof of Corollary 1

We only treat the particular case φ(x) = x. From Proposition 1, we have in this
case:

ERl(f̂n, f
∗) ≤ 2 inf

f∈Bspq (Rd)
(Rl(f, f

∗) + αn‖f‖spq) + 4αn

(
4 + c

η1

η0

)
+

2

n
,

which gives, since l is the hinge loss, a control on the excess risk of f̂n as follows:

ER(f̂n, f
∗) ≤ 2 inf

f∈Bspq(Rd)
(Rl(f, f

∗) + αn‖f‖spq) + 4αn

(
4 + c

η1

η0

)
+

2

n
. (29)

To get Corollary 1, it remains to control the RHS of (29) called the approx-
imation function, defined by:

a(αn) = inf
f∈Bspq (Rd)

(Rl(f, f
∗) + αn‖f‖spq) .

By the Lipschitz property of the hinge loss, gathering with assumptions on the
marginal of X, we have, for any p ≥ 1:

a(αn) ≤ inf
f∈Bspq(Rd)

(
A‖f − f∗‖Lp(Rd) + αn‖f‖spq

)

= c inf
R∈R+

(
inf

f∈B(R)
‖f − f∗‖Lp(Rd) + αnR

)
,

where c depends on A.
To control the first term above, we use the following result.

Lemma 5. For any r < s,

f∗ ∈ Brp∞(Rd) ⇒ inf
f∈B(R)

‖f − f∗‖Lp(Rd) ≤ ‖f∗‖
s

s−r
rp∞

(
1

R

) r
s−r

.

Proof. The cornerstone idea in the proof is the use of interpolation spaces. Given
two Banach spaces B and B′, θ ∈]0, 1[ and q ∈ [0,∞], the space (B,B′)θ,q called
interpolation space between B and B′ consists of all f ∈ B such that

‖f‖θ,q :=






(∫ +∞

0
t−θqPt(f)

q dt
t

) 1
q if q <∞,

sup
t>0

{
t−θPt(f)

}
if q = ∞,
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is finite, where Pt(f) is a norm in B called the Peetre’s functional (see [27] for
a definition).

Here we are interested in the case q = ∞ and the following geometric expla-
nation of interpolation space [25, Theorem 3.1]:

f ∈ (B,B′)θ,∞ =⇒ inf
g∈BB′ (R)

‖f − g‖B ≤ ‖f‖
1

1−θ

θ,∞

( 1

R

) θ
1−θ , (30)

where BB′ (R) := {f ∈ B′ : ‖f‖B′ ≤ R}. It means that the distance of any func-
tion in (B,B′)θ,∞ to the ball BB′(R) tends to zero with a given rate of con-
vergence. This approximation problem arose from the study of approximation
error in learning theory, where usually B = L2 and B′ = HK a reproducing
kernel Hilbert space ([25]). Here we propose a generalization to the Banach case
with Besov spaces. We use in particular the following stability of Besov spaces
in terms of interpolation spaces:

∀0 < θ < 1, (Lp(Rd),Bspq(R
d))θ,∞ = Bγp∞(Rd),

where γ = θs. From (30) with θ = r
s
, we conclude the proof of Lemma 5.

Using this lemma and optimizing with respect to R leads to:

a(αn) ≤ c inf
R∈R+

((
1

R

) r
s−r

+ αnR

)
≤ cα

r
s
n .

Finally going back to (29), we arrive at:

ER(f̂n), f∗) ≤ 2cα
r
s
n + 4αn

(
4 + c

η1

η0

)
+

2

n
.

Choosing αn such that an equality holds in (20) concludes the proof.
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