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1. Introduction

Let Y and T be two real random variables (rv) with unknown cumulative dis-
tribution functions (df) F and G respectively, both assumed to be continuous.
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Let X be a real-valued random covariable with df V and continuous density
v. Under random left-truncation (RLT), the rv of interest Y is interfered by
the truncation rv T , in such a way that Y and T are observed only if Y ≥ T .
Such data occur in astronomy and economics (see Woodroofe [31], Feigelson
and Babu [7], Wang et al. [30], Tsai et al. [29]) and also in epidemiology and
biometry (see, e.g., He and Yang [12]).

If there were no truncation, we could think of the observations as (Xj,Yj, Tj) ;
1 ≤ j ≤ N , where the sample size N is deterministic, but unknown. Under RLT,
however, some of these vectors would be missing and for notational convenience,
we shall denote (Xi, Yi, Ti) ; 1 ≤ i ≤ n, (n ≤ N) the observed subsequence
subject to Yi ≥ Ti from the N−sample. As a consequence of truncation, the
size of actually observed sample, n, is a binomial rv with parameters N and
µ := IP (Y ≥ T ) > 0. By the strong law of large numbers we have, as N → ∞

µn :=
n

N
→ µ, IP−a.s. (1)

Now we consider the joint df F (., .) of the random vector (X , Y) related to
the N−sample and suppose it is of class C1. The conditional df of Y given
X = x =: (x1, . . . , xd)

t
, that is F (y|x) = IE

[
1{Y≤y}|X = x

]
which may be

rewritten into

F (.|x) =
F1(x, .)

v(x)
(2)

where F1(x, .) is the first derivative of F (x, ·) with respect to x. For all fixed
p ∈ (0, 1), the pth conditional quantile of F given X = x is defined by

qp(x) := inf {y ∈ IR : F (y|x) ≥ p} .

It is well known that the quantile function can give a good description of the
data (see, Chaudhuri et al. [5]), such as robustness to heavy-tailed error dis-
tributions and outliers, especially the conditional median function q1/2(x) for
asymmetric distribution, which can provide a useful alternative to the ordinary
regression based on the mean. The nonparametric estimation of conditional
quantile has first been considered in the case of complete data (no truncation).
Roussas [24] showed the convergence and asymptotic normality of kernel esti-
mates of conditional quantile under Markov assumptions. For independent and
identically distributed (iid) rv’s, Stone [27] proved the weak consistency of ker-
nel estimates. The uniform consistency was studied by Schlee [26] and Gannoun
[9]. The asymptotic normality has been established by Samanta [25]. Mehra et

al. [20] proposed and discussed certain smooth variants (based both on single
as well as double kernel weights) of the standard conditional quantile estimator,
proved the asymptotic normality and found an almost sure (a.s.) convergence
rate, whereas Xiang [32] gave the asymptotic normality and a law of the iterated
logarithm for a new kernel estimator. In the dependent case, the convergence of
nonparametric estimation of quantile was proved by Gannoun [10] and Boente
and Fraiman [1].
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In the RLT model, Gürler et al. [11] gave a Bahadur-type representation
for the quantile function and asymptotic normality. Its extension to time series
analysis was obtained by Lemdani et al. [15].

The aim of this paper is to establish a strong uniform convergence rate for the
kernel conditional quantile estimator with randomly left-truncated data under
α−mixing conditions whose definition is given below. Hence, we extend the
obtained result by Lemdani et al. [16] in the iid case.

First, let Fk
i (Z) denotes the σ-field of events generated by {Zj , i ≤ j ≤ k}.

For easy reference, let us recall the following definition.

Definition 1.1. Let {Zi, i ≥ 1} denotes a sequence of random variables. Given
a positive integer n, set:

α(n) = sup
{
|IP(A ∩ B) − IP(A)IP(B)| : A ∈ Fk

1 (Z), B ∈ F∞
k+n(Z), k ∈ IN

}
.

The sequence is said to be α−mixing (strongly mixing) if the mixing coefficient
α(n) → 0.

Among various mixing conditions used in the literature, α−mixing is reason-
ably weak and has many practical applications (see, e.g. Doukhan [6] or Cai
([3, 4] for more details). In particular, Masry and Tjφstheim [18] proved that,
both ARCH processes and nonlinear additive AR models with exogenous vari-
ables, which are particularly popular in finance and econometrics, are stationary
and α−mixing.

The rest of the paper is organized as follows. In Section 2, we recall a definition
of the kernel conditional quantile estimator with randomly left-truncated data.
Assumptions and main results are given in Section 3. Section 4 is devoted to
application to prediction. Finally, the proofs of the main results are postponed
to Section 5 with some auxiliary results and their proofs.

2. Definition of the estimator

In the sequel, the letters C and C ′ are used indiscriminately as generic con-
stants. Note also that, N is unknown and n is known (although random), our
results will not be stated with respect to the probability measure IP (related
to the N−sample) but will involve the conditional probability P (related to
the n−sample). Also IE and E will denote the expectation operators related to
IP and P, respectively. Finally, we denote by a superscript (∗) any df that is
associated to the observed sample.

The estimation of conditional df is based on the choice of weights. For the
complete data, the well-known Nadaraya-Watson weights are given by

Wi,N(x) =
K {(x − Xi) /hN}

∑N
i=1 K {(x − Xi) /hN}

=
(NhN)

−1
K {(x − xi) /hN}
vN(x)

(3)

that are measurable functions of x depending on X1, . . . , XN , with the con-
vention 0/0 = 0. The kernel K is a measurable function on IRd and (hN) a
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nonnegative sequence which tends to zero as N tends to infinity. The regression
estimator based on the N -sample is then given by

rN(x) =
(NhN )−1∑n

i=1 YiK {(x − Xi) /hN}
vN (x)

(4)

where vN is a well known kernel estimator of v based on the N−sample. As N
is unknown, then vN(·) cannot be calculated and therefore rN(·). On the other
hand, based on the n-sample, the kernel estimator

v∗n(x) =
1

nhn

n∑

i=1

K

(
x − Xi

hn

)
(5)

is an estimator of the conditional density v∗(x) (given Y ≥ T ), see Ould-Säıd
and Lemdani [21].

Under RLT sampling scheme, the conditional joint distribution (Stute, [28])
of (Y, T ) becomes

J∗(y, t) = P (Y ≤ y, T ≤ t) = IP (Y ≤ y, T ≤ t|Y ≥ T )

= µ−1

∫ y

−∞

G(t ∧ u)dF (u)

where t∧ u := min(t, u). The marginal distribution and their empirical versions
are defined by

F ∗(y) = µ−1

∫ y

−∞

G(u)dF (u), F ∗
n(y) = n−1

n∑

i=1

1{Yi≤y},

G∗(t) = µ−1

∫ ∞

−∞

G(t ∧ u)dF (u) and G∗
n(t) = n−1

n∑

i=1

1{Ti≤t},

where 1A denote the indicator function of the set A.
In the sequel we use the following consistent estimator

µn =
Gn(y) [(1 − Fn(y−))]

Cn (y)
, (6)

for any y such that Cn (y) 6= 0, where Fn(y−) denotes the left-limite of Fn at y.
Here Fn and Gn are the product-limit estimators (Lynden-Bell [17]) for F and
G, respectively i.e.,

Fn(y) = 1 −
∏

i/Yi≤y

[
nCn(Yi) − 1

nCn(Yi)

]
, Gn(y) =

∏

i/Ti>y

[
nCn(Ti) − 1

nCn(Ti)

]
,

where Cn(y) = n−1
∑n

i=11{Ti≤y≤Yi} is the empirical estimator of

C (y) = IP (T ≤ y ≤ Y |Y ≥ T ) .
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He and Yang [13] proved that µn does not depend on y and its value can then
be obtained for any y such that Cn (y) 6= 0. Furthermore, they showed (see their
Corollary 2.5) its IP−a.s. consistency.

Suppose now that one observes the n triplets (Xi, Yi, Ti) among the N ones
and for any df L, denotes the left and right endpoint of its support by aL :=
inf {x : L(x) > 0} and bL := sup {x : L(x) < 1} , respectively. Then under the
current model, as discussed by Woodroofe [31], F and G can be estimated
completely only if

aG ≤ aF , bG ≤ bF and

∫ ∞

aF

dF

G
< ∞.

In order to estimate the marginal density v we have to take into account the
truncation and the estimator

vn(x) =
µn

nhn

n∑

i=1

1

Gn(Yi)
K

(
x − xi

hn

)
(7)

is considered in Ould-Säıd and Lemdani [15]. Note that in this formula and the
forthcoming, the sum is taken only for i such that Gn (Yi) 6= 0.

Then, adapting Ould-Säıd-Lemdani’s weights, we get the following estimator
of the conditional df of Y given XX = x

Fn(y|x) = µn

n∑

i=1

W̃i,n(x)G−1
n (Yi)H

(
y − Yi

hn

)

=

n∑

i=1

1

Gn(Yi)
K

(
x − Xi

hn

)
H

(
y − Yi

hn

)

n∑

i=1

1

Gn(Yi)
K

(
x − Xi

hn

)

=:
F1,n(x, y)

vn(x)
(8)

where H is a distribution function defined on IR, and

F1,n(x, y) =
µn

nhd
n

n∑

i=1

1

Gn(Yi)
K

(
x − xi

hn

)
H

(
y − Yi

hn

)
(9)

is an estimator of F1(x, y). As the latter is continuous, it is clear that it is better
to define a smooth estimator by using a continuous function H(·) instead of a
step function I{·}. We point out here that the estimators (8) and (9) have been
already defined in Lemdani et al. [16].

Then a natural estimator of the pth conditional quantile qp(x) is given by

qp,n(x) := inf {y ∈ IR : Fn(y|x) ≥ p} . (10)

which satisfies Fn(qp,n(x)|x) = p.
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3. Assumptions and main results

In what follows, we focus our attention on the case of a univariate covariable
(d = 1) and denote X for x and K for K1. Assume that 0 = aG < aF and
bG ≤ bF . We consider two real numbers a and b such that aF < a < b < bF . Let
Ω be a compact subset of Ω0 = {x ∈ IR|v(x) > 0} and γ := inf

x∈Ω
v(x) > 0.

We introduce some assumptions, gathered below for easy reference needed to
state our results.

(K1) K is a positive-valued, bounded probability density, Hölder continuous
with exponent β > 0 and satisfying

|u|K (u) → 0 as |u| → +∞.

(K2) H is a df with C1−probability density H(1) which is poisitive, bounded
and has compact support. It is also Hölderian with exponent β.

(K3) i) H(1) and K are second-order kernels,
ii)
∫

K2(r)dr < ∞.
(M1) {(Xi, Yi) ; i ≥ 1} is a sequence of stationary α-mixing random variables

with coefficient α (n) .
(M2) {Ti; i≥ 1} is a sequence of iid truncating variables independent of {(Xi, Yi) ,

i ≥ 1} with common continuous df G.
(M3) There exists ν > 5+1/β for some β > 1/7 such that ∀n, α (n) = O (n−ν) .
(D1) The conditional density v∗(.) is twice continuously differentiable.
(D2) The joint conditional density v∗(., .) of (Xi, Xj) exists and satisfies

sup
r,s

|v∗(r, s) − v∗(r)v∗(s)| ≤ C < ∞,

for some constant C not depending on (i, j) .
(D3) The joint conditional density of (Xi, Yi, Xj, Yj) denoted by f∗ (., ., ., .),

exists and satisfies for any constant C,

sup
r,s,t,u

|f∗(r, s, t, u)− f∗(r, s)f∗(t, u)| ≤ C < ∞.

(D4) The joint density f (., .) is bounded and twice continuously differentiable.
(D5) The marginal density v(.) is locally Lipschitz continuous over Ω0.

The bandwidth hn =: h satisfies:

(H1)

h ↓ 0,
log n

nh
→ 0 and h = o (1/ logn) , as n → ∞,

(H2)

Cn
(3−ν)β

β(ν+1)+4β+1
+η

< h < C ′n
1

1−ν ,

where η satisfies

2

β(ν + 1) + 4β + 1
< η <

(ν − 3)β

β(ν + 1) + 4β + 1
+

1

1 − ν
,

ν and β are the same as in (M3).
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Remark 3.1. Assumptions (K) are quite usual in kernel estimation. Conditions
(D1), (D4) and (D5) are needed in the study of the bias term. (D2) and (D3)
are needed for covariance calculus and take similar forms to those used under
mixing. Hypothesis (H2) is used in Ould-Säıd and Tatachak [22] and is needed
to establish Lemma 5.1 and Lemma 5.4. Assumptions (M) concern the mixing
processes structure which are standard in such situation. The choice of β seems
to be surprising, but it is only technical choice which permit us to make one of
the variance term to be negligible.

Remark 3.2. Here we point out that we can not suppose that the original
data (that is the N -sample) satisfies some kind of dependency. Indeed, we do
not know if the observed data are α-mixing or are not. And if they are, we do
not know the coefficient. Therefore, we suppose that the observed data satisfy
some kind of mixing condition.

Remark 3.3. As we are interested in the number n of observations (N is
unknown), we give asymptotics as n → ∞ unless otherwise specified. Since
n ≤ N, this implies N → ∞ and these results also hold under IP−a.s. as N → ∞.

Our first result, stated in Proposition 3.1, is the uniform almost sure conver-
gence with rate of the conditional df estimator defined in (8).

Proposition 3.1. Under assumptions (K), (M), (D) and (H), we have

sup
x∈Ω

sup
a≤y≤b

|Fn(y|x) − F (y|x)| = O

(
max

{√
log n

nh
, h2

})
, P−a.s. as n → ∞

The second result deals with the strong uniform convergence with rate of
the kernel conditional quantile estimator qp,n(.) which is given in the following
theorem.

Theorem 3.1. Under the assumptions of Proposition 3.1 and for each fixed

p ∈ (0, 1) if the function qp satisfies for given ε > 0 there exists β > 0 such that

∀ηp : Ω → IR, sup
x∈Ω

|qp(x) − ηp(x)| ≥ ε ⇒ sup
x∈Ω

|F (qp(x)) − F (ηp(x))| ≥ β, (11)

we have

lim
n→∞

sup
x∈Ω

|qp,n(x) − qp(x)| = 0, P− a.s.

Furthermore, we have

sup
x∈Ω

|qp,n(x) − qp(x)| = O

(
max

{√
log n

nh
, h2

})
, P− a.s. as n → ∞

4. Applications to prediction

It is well known, from the robustness theory that the median is more robust than
the mean, therefore the conditional median, µ(x) = q1/2(x), is a good alternative
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to the conditional mean as a predictor for a variable Y given X = x. Note that
the estimation of µ(x) is given by µn(x) = q 1

2 ,n(x). Using this considerations

and section 2, we want to predict the non observed r.v. Yn+1 (which corresponds
to some modality of our problem), from available data X1 , . . ., Xn. Given a new
value Xn+1, we can predict the corresponding response Yn+1 by

Ŷn+1 = µn(Xn+1) = q1/2,n(Xn+1).

Nevertheless to say, that the theoretical predictor is given by µ(Xn+1) =
q1/2(Xn+1). Applying the above Theorem, we have the following corollary:

Corollary 4.1. Under the assumptions of Theorem 3.1, we have
∣∣q1/2,n(Xn+1) − q1/2(Xn+1)

∣∣ −→ 0, P − a.s. as n → ∞.

5. Proofs

We need some auxiliary results and notations to prove our results. The first
lemma gives the uniform convergence with rate of the estimator v∗n(x) defined
in (5).

Lemma 5.1. Under (K1), (K3), (M), (D1), (D2) and (H) we have

sup
x∈Ω

|v∗n(x) − v∗(x)| = O

(
max

{√
log n

nh
, h2

})
, P − a.s. as n → ∞

Proof. We have

sup
x∈Ω

|v∗n(x) − v∗(x)| ≤ sup
x∈Ω

|v∗n(x) − E [v∗n(x)]|+ sup
x∈Ω

|E [v∗n(x)] − v∗(x)|

=: I1n + I2n. (12)

We begin by study the variability term I1n. The idea consists in using
an exponential inequality taking into account the α−mixing structure. The
compact set Ω can be covered by a finite number ln of intervals of length

ωn = (n−1h1+2β))
1
2β , where β is the Hölder exponent. Let Ik := I(xk, ωn);

k = 1, . . . , ln, denote each interval centered at some points xk. Since Ω is
bounded, there exists a constant C such that ωnln ≤ C. For any x in Ω, there
exists Ik which contains x such that |x − xk| ≤ ωn. We start by writing

△i (x) :=
1

nh

{
K

(
x − Xi

h

)
− E

[
K

(
x − X1

h

)]}
.

Clearly, we have

n∑

i=1

△i (x) = {(v∗n(x) − v∗n(xk)) − (E [v∗n(x)] −E [v∗n(xk)])}

+ (v∗n(xk) − E [v∗n(xk)])

=:

n∑

i=1

△̃i (x) +

n∑

i=1

△i (xk) .
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Hence

sup
x∈Ω

∣∣∣∣∣

n∑

i=1

△i (x)

∣∣∣∣∣ ≤ max
1≤k≤ln

sup
x∈Ik

∣∣∣∣∣

n∑

i=1

△̃i (x)

∣∣∣∣∣+ max
1≤k≤ln

∣∣∣∣∣

n∑

i=1

△i (xk)

∣∣∣∣∣

=: S1n + S2n. (13)

Firstly, we have under assumption (K1),

sup
x∈Ik

∣∣∣∣∣

n∑

i=1

△̃i (x)

∣∣∣∣∣ ≤
1

nh

n∑

i=1

∣∣∣∣K
(

x − Xi

h

)
− K

(
xk − Xi

h

)∣∣∣∣

+
1

h
E

[∣∣∣∣K
(

x − X1

h

)
− K

(
xk − X1

h

)∣∣∣∣
]

≤ 2 supx∈Ik
|x − xk|β

h1+β

≤ Cωβ
nh−1−β = O

(
(nh)

−1/2)
. (14)

Hence, by (H1) and for n large enough, we get S1n = oP(1).
We now turn to the term S2n in (13). Under (K1), the rv’s Ui = nh△i (xk)

are centered and bounded. The use of the well known Fuk-Nagaev’s inequality
(see Rio [23, formula 6.19b, page 87]) slightly modified in Ferraty and Vieu [8,
see proposition A.11-ii), page 237], allows one to get, for all ε > 0 and r > 1

P

{
max

1≤k≤ln

∣∣∣∣∣

n∑

i=1

△i (xk)

∣∣∣∣∣ > ε

}
≤

ln∑

k=1

P

{∣∣∣∣∣

n∑

i=1

Ui (xk)

∣∣∣∣∣ > nhε

}

≤ Cω−1
n

{
n

r

( r

εnh

)ν+1

+

(
1 +

ε2n2h2

rs2
n

)− r
2

}

=: Q1n + Q2n (15)

where
s2
n =

∑

1≤i≤n

∑

1≤j≤n

|Cov(Ui, Uj)| .

Putting

r = (log n)1+δ, where δ > 0, and ε = ε0

√
log n

nh
, for some ε0 > 0. (16)

We have

Q1n = C(n−1h1+2β)
−1
2β

n

(log n)1+δ

(
(log n)1+δ

ε0

√
nh logn

)ν+1

= Cn1−ν+1
2 + 1

2β h−( 1
2β

+1+ v+1
2 )(log n)ν(1+δ)− υ+1

2 ε
−(ν+1)
0 .
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Note that under (M3) , it is easy to see that the following modified assumption
(H ′2) of (H2) hold,

Cn
(3−ν)β

β(ν+1)+2β+1
+η

< h < C ′n
1

1−ν , (H ′2)

where η satisfies

1

β(ν + 1) + 2β + 1
< η <

(ν − 3)β

β(ν + 1) + 2β + 1
+

1

1 − ν
, (17)

ν and β are the same as in (M3).
Then, from the left-hand side of (H ′2)

Q1n ≤ C ′(logn)ν(1+δ)− v+1
2 n−1− η

2β
(β(ν+1)+2β+1− 1

η
).

Hence, for any η as in (17), Q1n is bounded by the term of a finite-sum series.
Before we focus on Q2n, we have to study the asymptotic behavior of

s2
n =

n∑

i=1

V ar(Ui) +
∑

i 6=j

|Cov(Ui, Uj)|

=: svar
n + scov

n .

First, by (K3 : ii), (D1) and a change of variable, we obtain

svar
n = nV ar(U1)

= n

{
E

[
K2

(
xk − X1

h

)]
−E2

[
K

(
xk − X1

h

)]}

= O (nh) . (18)

On the other hand, a change of variable, (K1), (M1) and (D2) lead to

|Cov(Ui, Uj)| = |E [UiUj ]|

≤
∫∫

K

(
xk − r

h

)
K

(
xk − s

h

)
|v∗(r, s) − v∗(r)v∗(s)| drds

= O
(
h2
)
. (19)

Note also that, these covariances can be controlled by means of the usual Davy-
dov covariance inequality for mixing processes (see Rio [23, formula 1.12a, page
10] or Bosq [2, formula 1.11, page 22]). We have

∀i 6= j, |Cov(Ui, Uj)| ≤ Cα (|i − j|) . (20)

To evaluate scov
n , we use the technique developed by Masry [18]. Taking ϕn =⌈ (

n−1hn

)−1/ν ⌉
(where ⌈.⌉ denotes the smallest integer greater than the argu-

ment), we can write

scov
n =

∑

0<|i−j|≤ϕn

|Cov(Ui, Uj)| +
∑

|i−j|>ϕn

|Cov(Ui, Uj)| . (21)
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First, applying the upper bound (19) to the first covariance term in (21), we get
∑

0<|i−j|≤ϕn

|Cov(Ui, Uj)| ≤ Cnh2ϕn. (22)

For the second term, thanks to (20) we get
∑

|i−j|>ϕn

|Cov(Ui, Uj)| ≤ C
∑

|i−j|>ϕn

α (|i − j|)

≤ Cn2α (ϕn) . (23)

According to the right-hand side of (H ′2), using (M3), (22) and (23), we get

scov
n = O(nh). (24)

Finally, (18) and (24) lead directly to s2
n = O (nh) .

This is enough to study the quantity Q2n, since for ε and r as in (16) and
Taylor expansion of log(1 + x) allows us to write that

Q2n = Cω−1
n exp

[
−r

2
log

(
1 +

ε2
0nh log n

rsn

)]

≤ Cn
1
2β

−C′ε2
0h−(1+ 1

2β
)

= Cn
1
2β

−C′ε2
0h− 1

2β
(2β+1+(ν+1)β)h

ν+1
2 .

By using (H ′2) and (M3), the later can be made as a general term of a conver-
gent series. Hence

∑
n≥1 (Q1n + Q2n) < ∞, and therefore by Borel-Cantelli’s

Lemma, we have

I1n = O

(√
logn

nh

)
, P − a.s. as n → ∞

On the other hand, the bias term I2n does not depend on the mixing structure.
We prove its convergence by using a change of variable and a Taylor expansion
(see Lemma 6.1 in Lemdani et al. [16]). We get, under (K3) and (D1)

I2n = O
(
h2
)
, P − a.s. as n → ∞

Hence, replacing I1n and I2n in (12), we get the result.

The following Lemma is Lemma 4.2 in Ould-Säıd and Tatachak [22], in which
they state a rate of convergence for µn under α-mixing hypothesis, which is in-
teresting in itself, similar to that established in the iid case by He and Yang [13].

Lemma 5.2. Under assumptions (M), we have

|µn − µ| = O

(√
log logn

n

)
, P − a.s. as n → ∞.

Proof. See Lemma 4.2 in Ould-Säıd and Tatachak [22].
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Adapting (9), define

F̃1,n(x, y) :=
µ

nh

n∑

i=1

1

G(Yi)
K

(
x − Xi

h

)
H

(
y − Yi

h

)
. (25)

Lemma 5.3. Under the assumptions of Lemma 5.1 and (K2), we have,

sup
x∈Ω

sup
a≤y≤b

∣∣∣F1,n(x, y) − F̃1,n(x, y)
∣∣∣ = O

(√
log logn

n

)
, P − a.s. as n → ∞

Proof. Under (K2), the df H is bounded by 1. Hence

∣∣∣F1,n(x, y) − F̃1,n(x, y)
∣∣∣ ≤

{ |µn − µ|
Gn(aF )

+
µ supy≥aF

|Gn(y) − G(y)|
Gn(aF )G(aF )

}
|v∗n(x)| .

From Lemma 5.2, we have

|µn − µ| = O

(√
log logn

n

)
P− a.s. as n → ∞

Moreover, Gn(aF )
P−a.s. as n→∞→ G(aF ) > 0. In the same way and using

Remark 6 in Woodroofe [31] we get

sup
y≥aF

|Gn(y) − G(y)| = O
(
n−1/2

)
P− a.s. as n → ∞

Combining these last results with Lemma 5.1, we achieve the proof.

Lemma 5.4. Under assumptions (K), (M), (D3), (D4), and (H), we have,

sup
x∈Ω

sup
a≤y≤b

∣∣∣F̃1,n(x, y) − E
[
F̃1,n(x, y)

]∣∣∣ = O

(√
log n

nh

)
, P−a.s. as n → ∞

Proof. The proof is analogous to that in Lemma 5.1. We give only the leading
lines. As Ω and [a, b] are compact sets, then they can be covered by a finite
number ln and dn of intervals I1, . . . , Iln and J1, . . . , Jdn

of length ωn as in

Lemma 6.1 and λn =
(
n−1h2β

) 1
2β and centers x1, . . . , xln and y1, . . . , ydn

re-
spectively. Since Ω and [a, b] are bounded, there exist two constant C1 and C2

such that lnωn ≤ C1 and dnλn ≤ C2. Hence for any (x, y) ∈ Ω × [a, b], there
exist xk and yj such that |x − xk| ≤ ωn and |y − yj| ≤ λn. Thus we have the
following decomposition

sup
x∈Ω

sup
y∈[a, b]

∣∣∣F̃1,n(x, y) − E
[
F̃1,n(x, y)

]∣∣∣

≤ max
1≤k≤ln

sup
x∈Ik

sup
y

∣∣∣F̃1,n(x, y) − F̃1,n(xk, y)
∣∣∣

+ max
1≤k≤ln

max
1≤j≤dn

sup
y∈Jj

∣∣∣F̃1,n(xk, y) − F̃1,n(xk, yj)
∣∣∣
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+ max
1≤k≤ln

max
1≤j≤dn

∣∣∣F̃1,n(xk, yj) −E
[
F̃1,n(xk, yj)

]∣∣∣

+ max
1≤k≤ln

max
1≤j≤dn

sup
y∈Jj

∣∣∣E
[
F̃1,n(xk, yj)

]
−E

[
F̃1,n(xk, y)

]∣∣∣

+ max
1≤k≤ln

sup
x∈Ik

sup
y

∣∣∣E
[
F̃1,n(xk, y)

]
−E

[
F̃1,n(x, y)

]∣∣∣

=: J1n + J2n + J3n + J4n + J5n.

Firstly, concerning J1n and J5n, assumptions (K1) and (K2) yield

sup
x∈Ik

sup
y

∣∣∣F̃1,n(x, y) − F̃1,n(xk, y)
∣∣∣ ≤ Cµωβ

n

G(aF )h1+β
sup

y

∣∣∣∣H
(

y − Yi

h

)∣∣∣∣

= O
(
(nh)

−1/2)
.

Hence, by (H1) we get

√
nhn

logn
sup
x∈Ω

sup
y∈[a, b]

∣∣∣F̃1,n(x, y) − F̃1,n(xk, y)
∣∣∣ = o(1). (26)

Similarly, we obtain for J2n and J4n

sup
y∈Jj

∣∣∣F̃1,n(xk, y) − F̃1,n(xk, yj)
∣∣∣ ≤ Cµλβ

n

G(aF )h1+β

∣∣∣∣K
(

xk − Xi

h

)∣∣∣∣ =O
((

nh2
n

)−1/2)
.

Again, by (H1) we get

√
nh

logn
sup
x∈Ω

sup
y∈[a, b]

∣∣∣F̃1,n(xk, y) − F̃1,n(xk, yj)
∣∣∣ = o(1). (27)

As to J3n, for all ε > 0 we have

P

{
max

1≤k≤ln
max

1≤j≤dn

∣∣∣F̃1,n(xk, yj) − E
[
F̃1,n(xk, yj)

]∣∣∣ > ε

}

≤ ln dnP
{∣∣∣F̃1,n(xk, yj) − E

[
F̃1,n(xk, yj)

]∣∣∣ > ε
}

. (28)

Set, for any i ≥ 1,

Ψi(xk, yj) :=
µ

nh

{
1

G(Yi)
K

(
xk − Xi

h

)
H

(
yj − Yi

h

)

−E

[
1

G(Yi)
K

(
xk − X1

h

)
H

(
yj − Yi

h

)]}
.

Under (K1) and (K2), the rv’s Vi := nhΨi(xk, yj) are centered and bounded

by 2µM0M1

G(aF ) =: C < ∞. Then, applying again Fuk-Nagaev inequality, we obtain
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that, for all ε > 0 and r > 1,

P

{
max

1≤k≤ln
max

1≤j≤dn

∣∣∣∣∣

n∑

i=1

Ψi(xk, yj)

∣∣∣∣∣ > ε

}

= P

{
max

1≤k≤ln
max

1≤j≤dn

∣∣∣∣∣

n∑

i=1

Vi

∣∣∣∣∣ > nhε

}

≤ C1C2 (ωnλn)
−1

{
n

r

(
2r

εnh

)ν+1

+

(
1 +

ε2n2h2

rs2
n

)− r
2

}

≤ Cn
1
β h

−( 1
2β

+2)
n

n

r

( r

εnh

)ν+1

+ Cn
1
β h−( 1

2β
+2)

(
1 +

ε2n2h2

rs2
n

)− r
2

=: J31n + J32n, (29)

where s2
n =

∑
1≤i≤n

∑
1≤j≤n |Cov(Vi, Vj)| .

By taking ε and r as in (16), we get

J31n = Cε
−(ν+1)
0 n1+ 1

β
− ν+1

2 (log n)ν(1+δ)− υ+1
2 h

−1
2β

(1+4β+(ν+1)β).

Then, using (H1) and (H2) we get

J31n ≤ Cε
−(ν+1)
0 n−1− η

2β (1+4β+(ν+1)β− 2
η )(log n)ν(1+δ)− v−1

2 .

Hence, the condition upon β and for any η as in (H2), J31n is the general term
of a finite-sum series.

Let us now examine the term J32n. First, we have to calculate

s2
n = nV ar(V1) +

∑

i 6=j

|Cov(Vi, Vj)| .

We have

V ar(V1) = E

[
µ2

G2(Y1)
K2

(
xk − Xi

h

)
H2

(
yj − Y1

h

)]

− E2

[
µ

G(Yi)
K

(
xk − Xi

h

)
H

(
yj − Y1

h

)]

=: V1 + V2.

Remark that

E

[
µ2

G2(Y1)
H2

(
yj − Y1

h

)∣∣∣∣X1

]
=

∫
µ2

G2(y1)
H2

(
yj − y1

h

)
f∗ (y1|X1) dy1

=

∫
µ

G(y1)
H2

(
yj − y1

h

)
f (y1|X1) dy1

= E

[
µ

G(Y1)
H2

(
yj − Y1

h

)]
.
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Then

V1 = E

[
µ

G(Y1)
K2

(
xk − Xi

h

)
H2

(
yj − Y1

h

)]

≤ µ

G(aF )
E

[
K2

(
xk − Xi

h

)]

≤ µhn

G(aF )

∫
K2 (r) v∗ (xk − rh) dr.

Under (K3 : ii) and (D1), we have V1 = O (h). An analogous developpement
gives that V2 = O

(
h2
)
, which implies V ar(V1) = O (h) .

On the one hand, (M1), (K1) and (K2) lead to

|Cov(Vi, Vj)| =

∣∣∣∣
∫ ∫ ∫ ∫

µ

G(r)
K

(
xk − u

h

)
H

(
yj − r

h

)
µ

G(t)
K

(
xk − s

h

)

× H

(
yj − t

h

)
f∗
1,1,j+1,j+1(u, r, s, t)dudrdsdt

−
∫ ∫

µ

G(r)
K

(
xk − u

h

)
H

(
yj − r

h

)
f∗(u, r)dudr

×
∫ ∫

µ

G(t)
K

(
xk − s

h

)
H

(
yj − t

h

)
f∗(s, t)dsdt

∣∣∣∣

≤ µ2

G2(aF )

∫ ∫ ∫ ∫ ∣∣∣∣K
(

xk − u

h

)
H

(
yj − r

h

)
K

(
xk − s

h

)

× H

(
yj − t

h

) (
f∗
1,1,j+1,j+1(u, r, s, t)−f∗(u, r)f∗(s, t)

)∣∣∣∣dudrdsdt.

Using Assumption (D3) and by a change of variable, it follows that

|Cov(Vi, Vj)| = O
(
h4
)
. (30)

On the other hand, from a result in Bosq [2, p.22], we have

|Cov(Vi, Vj)| = O (α (|i − j|)) . (31)

Then to evaluate
∑

i 6=j |Cov(Vi, Vj)| , the idea is to introduce a sequence of
integers ϕn the same as in Lemma 5.1, and using (30) for the nearest and (31)
for the farest integer i and j. Then we get
∑

i 6=j

|Cov(Vi, Vj)| =
∑ ∑

0<|i−j|≤ϕn

|Cov(Vi, Vj)| +
∑ ∑

|i−j|>ϕn

|Cov(Vi, Vj)|

≤
∑ ∑

0<|i−j|≤ϕn

h4 +
∑ ∑

|i−j|>ϕn

α (|i − j|)

≤ Cnϕnh4 + Cn2α (ϕn)).

The right-hand side of (H2) and (M3) , one has
∑

i 6=j |Cov(Vi, Vj)| = O (nh) .
So sn = O (nh) .
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Consequently, by taking r and ε as in (16) and using Taylor expansion of
log(1 + x), the term J32n becomes

J32n ≤ Cn
1
β h−( 1

2β
+2) exp

{
−1

2
ε2
0 log n

}

= Cn
1
β
−Cε2

0h−( 1
2β

+2).

By using (H2) and (M3), the later can be made as a general term of summable
series. Thus

∑
n≥1 (J31n + J32n) < ∞. Then by Borel-Cantelli’s Lemma, the

first term of (29) goes to zero a.s. and for n large enough, we have J3n =

O
(√

log n
nh

)
, this complet the proof of the Lemma.

Lemma 5.5. Under assumptions (K3) and (D4) we have,

sup
x∈Ω

sup
a≤y≤b

∣∣∣E
[
F̃1,n(x, y)

]
− F1(x, y)

∣∣∣ = O
(
h2
)
, P − a.s. as n → ∞

Proof. The bias terms do not depend on the mixing structure. The proof of
Lemma 5.5 is similar to that of Lemma 6.2 in Lemdani et al. [16], hence its
proof is omitted.

The next Lemma gives the uniform convergence with rate of the estimator vn(x)
defined in (7).

Lemma 5.6. Under the assumptions of Lemma 5.1 and condition (D5), we

have

sup
x∈Ω

|vn(x) − v(x)| = O

(
max

{√
log n

nh
, h2

})
, P − a.s. as → ∞.

Proof. Adapting (7), define

ṽn(x) =
µ

nh

n∑

i=1

1

G(Yi)
K

(
x − Xi

h

)
. (32)

We have

sup
x∈Ω

|vn(x) − v(x)| ≤ sup
x∈Ω

|vn(x) − ṽn(x)|

+ sup
x∈Ω

|ṽn(x) −E [ṽn(x)]|

+ sup
x∈Ω

|E [ṽn(x)] − v(x)|

=: L1n + L2n + L3n.

For the first term, using analogous framework as in Lemma 5.3, we get

L1n = O

(√
log log n

n

)
, P − a.s. as → ∞. (33)
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In addition, by using the same approach as for I1n in the proof of Lemma 5.1,
we can show that, for n large enough

L2n = O

(√
logn

nh

)
, P − a.s. as → ∞. (34)

Finally, a change of variable and a Taylor expansion we get, under (K3) and (D5)

E [ṽn(x)]− v(x) = E

[
µ

nh

n∑

i=1

1

G(Y1)
K

(
x − X1

h

)]
− v(x)

=
1

h

∫
K

(
x − u

h

)
v(u)du − v(x)

=
h2

2

∫
r2K (r) v′′(x̃)dr

with x̃ ∈ [x − rh, x] , which yields that

L3n = O
(
h2
)
, P − a.s. as n → ∞. (35)

Combining (33), (34) and (35) permit to conclude the proof.

Proof of Proposition 3.1. In view of (8), we have the following classical decom-
position

sup
x∈Ω

sup
a≤y≤b

|Fn(y|x) − F (y|x)|

≤ 1

γ − sup
x∈Ω

|vn(x) − v(x)|

{
sup
x∈Ω

sup
a≤y≤b

|F1,n(x, y) − F1(x, y)|

+ γ−1sup
x∈Ω

sup
a≤y≤b

|F (y|x)| sup
x∈Ω

|vn(x) − v(x)|
}

.

Furthermore, we have

sup
x∈Ω

sup
a≤y≤b

|F1,n(x, y) − F1(x, y)| ≤ sup
x∈Ω

sup
a≤y≤b

∣∣∣F1,n(x, y) − F̃1,n(x, y)
∣∣∣

+ sup
x∈Ω

sup
a≤y≤b

∣∣∣F̃1,n(x, y) − E
[
F̃1,n(x, y)

]∣∣∣

+sup
x∈Ω

sup
a≤y≤b

∣∣∣E
[
F̃1,n(x, y)

]
− F1(x, y)

∣∣∣ .

In conjunction with Lemmas 5.3–5.6, we conclude the proof.

We now embark on the proof of Theorem 3.1.

Proof of Theorem 3.1. Let x ∈ Ω. As Fn(·|x) and F (·|x) are continuous, we
have F (qp(x)|x) = Fn(qp,n(x)|x) = p. Then
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|F (qp,n(x)|x) − F (qp(x)|x)| ≤ |F (qp,n(x)|x) − Fn(qp,n(x)|x)|
+ |Fn(qp,n(x)|x) − F (qp(x)|x)|

≤ |F (qp,n(x)|x) − Fn(qp,n(x)|x)|
≤ sup

a≤y≤b
|Fn(y|x) − F (y|x)| . (36)

The consistency of qp,n(x) follows then immediately from Proposition 3.1 in
conjunction with the inequality

∑

n

{
sup
x∈Ω

|qp,n(x) − qp(x)| ≥ ε

}
≤
∑

n

{
sup
x∈Ω

sup
a≤y≤b

|Fn(y|x) − F (y|x)| ≥ β

}
.

For the second part, a Taylor expansion of F (.|.) in neighborhood of qp, implies
that

F (qp,n(x)|x)− F (qp(x)|x) = (qp,n(x) − qp(x)) f (q̃p(x)|x) (37)

where q̃p is between qp and qp,n and f (.|x) is the conditional density of Y
given X = x. Then, from the behavior of F (qp,n(x)|x)−F (qp(x)|x) as n goes to
infinity, it is easy to obtain asymptotic results for the sequence (qp,n(x) − qp(x)) .
By (37) we have

sup
x∈Ω

|qp,n(x) − qp(x)| |f (q̃p(x)|x)| ≤ sup
x∈Ω

sup
a≤y≤b

|Fn(y|x) − F (y|x)| .

The result follows from (D4) and the Proposition 3.1. Here we point out that,
if f (q̃p(x)|x) = 0, for some x ∈ Ω, we should increase the order of Taylor
expansion to obtain the consistency of qp,n(x) (with an adapted rate).
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