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1. Introduction

In many survival practical applications, censored dependent data appear. For
example, in the clinical trials domain, it is frequently happens that the patients
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from the same hospital have correlated survival times due to unmeasured vari-
ables like the quality of the hospital equipment. An example of such data can
be found in Lipsitz and Ibrahim (2000). In economic duration data, event times
are often correlated and the observation of the event may be prevented by the
occurrence of an earlier competing event called censoring. Another example is
the observations on duration of unemployment, which may be right censored
and are typically correlated. For real data, the reader can refer to Wei and Lin
(1989), Cai and Prentice (1995). However few papers deal with the regression
function under censoring in the dependent case, we can cite the recent paper of
El-Ghouch and Van Keilegom (2008) who estimate the regression function by
applying polynomial local linear regression techniques using Beran’s estimator.

Having in mind such kind of applications, consider a real random variable
(rv) Y and a sequence of strictly stationary rv’s (Yi)i≥1 with common un-
known absolutely continuous disribution function (df) F and let (Ci)i≥1, be a
sequence of censoring rv’s with common unknown df G. In contrast to statistics
for complete data studies, censored model involves pairs (Ti, δi)i=1,...,n where
only Ti = Yi ∧ Ci and δi = I{Yi≤Ci} are observed.

Let X be an R
d-valued random vector. Let (Xi)i≥1 be a sequence of copies

of the random vector X and denote by Xi,1, . . . , Xi,d the coordinates of Xi.
The study we perform below is then on the set of observations (Ti, δi, Xi)i≥1.
In regression analysis one expectes to identify, if any, the relationship between
the Yi’s and Xi’s. This means looking for a function m∗(X) describing this
relationship that realizes the minimum of the mean squared error criterion. It
is well known that this minimum is achieved by the regression function m(x)
defined on R

d by
m(x) = E (Y |X = x) .

There is a wide range of literature on nonparametric estimation of the regression
function and many nonlinear smoothers including kernel, spline, local polyno-
mial, orthogonal methods and so on. For an overview on methods and results
for both theoretical and application points of view considering independent
or dependent case, we refer the reader to Collomb (1981), Silverman (1986),
Härdle (1990), Wahba (1990), Wand and Jones (1995), Masry and Fan (1997),
Cai (2003) and Cai and Ould Säıd (2003).

In the uncensored case, the behavior of nonparametric estimators built upon
mixing sequences is extensively studied. The consistency has been investigated
by many authors. We only cite the recent work of Gonzalez-Manteiga et al.
(2002) where they developed a nonparametric test, based on kernel smoothers, to
decide whether some covariates could be suppressed in a multidimensional non-
parametric regression study. Under the α-mixing condition, the uniform strong
convergence of the Nadaraya-Watson estimator is treated in Doukhan (1994),
Bosq (1998), Liebscher (2001) and the references therein.

Our goal is to establish the strong uniform convergence with rate for the ker-
nel regression estimate under α-mixing condition in random censorship models
where the independence condition is relaxed. For this kind of model, Cai (2001)
established the asymptotic properties of the Kaplan-Meier estimator. Liebscher
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(2002) derive a rate uniform for the strong convergence of kernel density and
hazard rate estimators. His result represents an improvement of that given in
Cai (1998b).

To this end, we were interested in extending the result of Guessoum and
Ould Säıd (2008) from the iid to the dependent case. The paper is organized as
follows: In Section 2 we give some definitions and notations under the censorship
model of the regression function and strong-mixing process. Section 3 is devoted
to the assumptions and main result. In Section 4, some simulations are drawn
to lend further support to our theoretical results. Proof with auxiliary results
are relegated to Section 5.

2. Definition of estimators

Suppose that {Yi, i ≥ 1} and {Ci, i ≥ 1} are two independent sequences of sta-
tionary random variables. We want to estimate m(x) = E (Y |X = x) which can

be written as m(x) = r1(x)
ℓ(x) where

r1(x) =

∫

R

yfX,Y (x, y)dy (1)

with f·,·(x, y) being the joint density of (X,Y ) and ℓ(·) the density function of
the covariates.

Now, it is well known that the kernel estimator of the regression function
m(·) under censorship model (see, eg Carbonez et al. (1995)) is given by

m̃n(x) =

n
∑

i=1

Win(x)
δiTi

Ḡ( Ti)
(2)

where Ḡ is the survival function of the rv C and

Win(x) =
Kd

(

x−Xi

hn

)

∑n
j=1 Kd

(x−Xj

hn

)

are the Watson-Nadaraya weights, Kd is a probability density function (pdf)
defined on R

d and hn a sequence of positive numbers converging to 0 as n goes
to infinity. Then (2) can be written

m̃n(x) =:
r̃1,n(x)

ℓn(x)

where

r̃1,n(x) =
1

nhd
n

n
∑

i=1

δiTi

Ḡ( Ti)
Kd

(

x−Xi

hn

)

and ℓn(x) =
1

nhd
n

n
∑

i=1

Kd

(

x−Xi

hn

)

.

(3)
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In practice, G is usually unknown, we replace it by the corresponding Kaplan–
Meier (1958) estimator (KME) Gn defined by

Gn(t) =

{

∏n
i=1

(

1− 1−δi
n−i+1

)1{Yi≤t}

, if t < Y(n),

0, if t ≥ Y(n).

The properties of the KME for dependent variables can be found in Cai (1998a,
2001). Then a feasible estimator of m(x) is given by:

mn(x) =
r1,n(x)

ℓn(x)

where

r1,n(x) =
1

nhd
n

n
∑

i=1

δiTi

Ḡn( Ti)
Kd

(

x−Xi

hn

)

(4)

is an estimator of r1(x) and ℓn(x) (defined in (3)) an estimator of ℓ(x).
In what follows, we define the endpoints of F andG by τF = sup

{

y, F̄ (y) > 0
}

,

τG = sup
{

y, Ḡ(y) > 0
}

and we assume that τF < ∞ and Ḡ(τF ) > 0 (this im-
plies τF < τG).

For technical reasons (see Lemma 1), we assume that {Ci, i ≥ 1} and {(Xi, Yi) ,
i ≥ 1} are independent; furthermore this condition is plausible whenever the
censoring is independent of the characteristics of the patient under study. We
point out that since Y can be a lifetime we can suppose it bounded. We put
‖t‖ =

∑d
j=1 |tj | for t ∈ R

d.
In order to define the α-mixing property, we introduce the following notations.

Denote by Fk
i (Z) the σ−algebra generated by {Zj, i ≤ j ≤ k} .

Definition Let {Zi, i = 1, 2, . . .} denote a sequence of rv’s. Given a positive
integer n, set

α(n) = sup
{

|P(A ∩B)− P(A)P(B)| : A ∈ Fk
1 (Z) and B ∈ F∞

k+n(Z), k ∈ IN∗
}

.

The sequence is said to be α-mixing (strong mixing) if the mixing coefficient
α(n) → 0 as n → ∞.

Many processes do fulfill the strong mixing property. We quote, here, the
usual ARMA processes which are geometrically strongly mixing, i.e., there exist
ρ ∈ (0, 1) and a > 0 such that, for any n ≥ 1, α(n) ≤ aρn (see, e.g., Jones
(1978)). The threshold models, the EXPAR models (see, Ozaki (1979)), the
simple ARCH models (see Engle (1982)), their GARCH extension (see Bollerslev
(1986)) and the bilinear Markovian models are geometrically strongly mixing
under some general ergodicity conditions. We refer the reader to the recent
Bradley’s monograph.

We suppose that the sequences {Yi, i ≥ 1} and {Ci, i ≥ 1} are α-mixing with
coefficients α1(n) and α2(n), respectively. Cai (2001, Lemma 2) showed that
{Ti, i ≥ 1} is then strongly mixing, with coefficient

α(n) = 4 max(α1(n), α2(n)).
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From now on, we suppose that {(Ti, δi, Xi) i = 1, . . . , n} is strongly mixing
with mixing’s coefficient α(n) such that α(n) = O(n−ν) for some ν > 3.

Now we are in position to give our assumptions and main result.

3. Assumptions and main result

Let C be a compact set of Rd which is included in C0 =
{

x ∈ R
d / ℓ(x) > 0

}

.
We will make use of the following assumptions gathered here for easy reference:

A1) The bandwidth hn satisfies:

i) limn→+∞
nhd

n

logn = +∞,

ii)
√

log logn
n = o(hn),

iii) limn→+∞ h
d(ν−2)
n logn = 0.

A2) The kernel Kd is bounded and satisfies:
i)
∫

Rd ‖t‖Kd(t)dt < +∞,
ii)
∫

Rd(t1 + t2 + · · ·+ td)K
2
d(t)dt < +∞ and

∫

Rd K
2
d(t)dt < +∞,

iii) ∀(t, s) ∈ C2 |Kd(t)−Kd(s)| ≤ ‖t− s‖γ for γ > 0.

A3) The function r1(·) defined in (1) is continuously differentiable and
supx∈C

∣

∣

∂r1
∂xi

(x)
∣

∣ < +∞ for i = 1, . . . , d.

A4) The function r2(x) :=
∫

Rd

y2

Ḡ(y)
fX,Y (x, y)dy is continuously differentiable

and supx∈C

∣

∣

∂r2
∂xi

(x)
∣

∣ < +∞ for i = 1, . . . , d.

A5) ∃D1 > 0 and ∃D2 > 0 such that supu,v∈C |ℓij(u, v)| < D1 and supu∈C |ℓ(u)| <
D2, where ℓij is the joint distribution of (Xi, Xj).

A6) ∃θ > 0, ∃ c1 > 0, such that

c1n
γ(3−ν)

d[γ(ν+1)+2γ+1]
+θd ≤ hd

n.

A7)The marginal density ℓ(.) is continuously differentiable and supx∈C

∣

∣

∂ℓ
∂xi

(x)
∣

∣ <
+∞ for i = 1, . . . , d and there exists ξ > 0 such that ℓ(x) > ξ ∀x ∈ C.
Remark 3.1. Assumption A1 is very common in functional estimation both in
independent and dependent cases. However, it must be reinforced by Assump-
tion A6 which ensure the convergence of the series which appear in proof of
Lemma 3. We point out that A1 i) implies A1 ii) for d ≥ 2. Assumptions A2,
A3, A4 and A6 are needed in the study of the bias term of r1,n(x) which is
the kernel estimator of r1(x). We point out that we do not require for Kd to be
symmetric as in Guessoum and Ould Säıd (2008). Assumption A7 intervenes
in the convergence of the kernel density.

In the sequel the letter C denotes any generic constant.
Our main result is given in the following theorem which concerns the rate of

the almost sure uniform convergence of the regression function.
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Theorem 3.1. Under Assumptions A1-A7, we have

sup
x∈C

|mn(x)−m(x)| = O

(
√

logn

nhd
n

+

√

h
d(ν−2)
n logn

)

+O (hn) a.s as n → ∞.

Remark 3.2. The rate obtained here is slightly different from that obtained
by Guessoum and Ould Säıd (2008) in the independent case, which is

O
(

max
{

√

logn
nhn

, h2
n

}

)

for d = 1. Their result can easily be generalized for higher

dimensional covariate, ie X ∈ R
d, by adapting their Assumptions A2 and A4

to obtain the rate O
(

max
{

√

logn
nhd

n
, h2

n

}

)

.

Remark 3.3. If we choose hn = O
(

(

logn
n

)1/d+2
)

then Theorem 3.1 becomes:

sup
x∈C

|mn(x)−m(x)| = O

(

(

logn

n

)
1

d+2

)

a.s.

This is the optimal rate obtained by Liebscher (2001) in the uncensored case.

4. Simulations study

First, we consider the strong mixing bidimentionnal process generated by:

Xi = ρXi−1 +
√

1− ρ2ǫi,

Yi = Xi+1 i = 1, 2, . . . , n,

where 0 < ρ < 1, (ǫi)i is a white noise with standard Gaussian distribution
and X0 is a standard Gaussian rv independent of (ǫi)i. We also simulate n
iid rv Ci exponentially distributed with parameter λ = 1.5. It is clear that
the process (Xn, Yn, Cn) is stationary and strongly mixing, in fact the process

(Xn) is an AR(1) and given X1 = x, we have Y1 = ρx +
√

1− ρ2ǫ2, then,
Y1  N(ρx, 1 − ρ2). We calculate our estimator based on the observed data
(Xi,Ti , δi, ) i = 1, . . . , n, by choosing a Gaussian kernel K. In this case, we have
m(x) = E (Y1 |X1 = x) = ρx. In all cases we took hn satisfying A6, that is

hn = O
(

(log n/n)
1/3)

. The following graphs show the behavior of our estimator
when the percentage of censoring and ρ increase, for n rather large (here n =
300). One notices without surprise that the best behavior is obtained for a rate
of censoring equal to 0 (uncensored case) and an index of weak dependence
(ρ = 0.1).

We see that the asymptotic behavior is better for a small ρ and a weak rate
of censoring which is conforted by the following table, where we show how the
quality of the estimation is influenced by the percentage of the censoring which
appear clearly when we have high censoring, for various values of ρ and n.
The quality becomes slightly worse when we have high percentage of censoring,
however it remains acceptable.
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Fig 1. m(x) = ρx, with ρ = 0.1, n = 300 and a percentage of censoring = 0%, 20% and 40%,
respectively.
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Fig 2. m(x) = ρx, with ρ = 0.9, n = 300 and a percentage of censoring = 0%, 20% and 40%,
respectively.

Here we use the mean squarre error of the estimator with respect to the
theoretical value. For each values n and ρ we replicate B = 100 times and
taking the median over x ∈ [−2, 2], that is

med
x∈[−2, 2]

[

1

100

100
∑

i=1

E [mn(x)−m(x)]
2

]

,

which are consigned in the following table.
It is clear that the high censoring and the dependency (for high values of

ρ) affect slitghly the accuracy which is predictable but it remains all in all
satisfactory.

We also consider two nonlinear cases with a percentage of censoring = 15%
and ρ = 0.9

Yi = sin

(

π

2
Xi

)

, sinus case, (5)

Yi =
5

12
X2

i+1 − 0.15, parabolic case. (6)
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percentage of censoring n = 50 n = 100

0%
20%
40%

ρ = 0.9 ρ = 0.3 ρ = 0.1
0.180 0.070 0.059
0.484 0.086 0.064
0.648 0.094 0.063

ρ = 0.9 ρ = 0.3 ρ = 0.1
0.099 0.045 0.041
0.365 0.073 0.035
0.577 0.088 0.053

percentage of censoring n = 300

0%
20%
40%

ρ = 0.9 ρ = 0.3 ρ = 0.1
0.043 0.016 0.010
0.305 0.049 0.021
0.521 0.089 0.018
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Fig 3. m(x) = sin π

2
x, with n = 50, 100 and 300, respectively.
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Fig 4. m(x) = 5

12
ρ
2
x
2 + 5

12
(1 − ρ

2)− 0.15, with n = 50, 100 and 300, respectively.

Then we have m(x) = sin(π2x) for (5) and m(x) = 5
12ρ

2x2 + 5
12 (1 − ρ2) − 0.15

for (6).
Figures 3 and 4 show that the quality of fit for the non linear model is as

good as in the linear model. Furthermore, we see that the quality is better when
n increase.
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5. Proofs

We split the proof of the Theorem 3.1 in the following Lemmata.

Lemma 5.1. Under Assumptions A1 A2 i) and A3, for n large enough:

sup
x∈C

|E (r̃1,n(x)) − r1(x)| = O(hn) a.s.

Proof of Lemma 5.1. Observe that

E

(

δ1T1

Ḡ(T1)
|X1 = u

)

= E

[

E

[1{Y1≤C1}Y1

Ḡ(Y1)
|Y1

]

| X1 = u

]

= E

[

Y1

Ḡ(Y1)
E
[1{Y1≤C1}|Y1

]

| X1 = u

]

= E [Y1|X1 = u]

= m(u).

Then, we have from (3)

E (r̃1,n(x)) − r1(x) = E

(

1

hd
n

δ1T1

Ḡ(T1)
Kd

(

x−X1

hn

))

− r1(x)

= E

(

1

hd
n

Kd

(

x−X1

hn

)

E

(

δ1T1

Ḡ(T1)
|X1

))

− r1(x)

=

∫

Rd

1

hd
n

Kd

(

x− u

hn

)

m(u)ℓ(u)du− r1(x)

=

∫

Rd

Kd(t) [r1(x− hnt)− r1(x)] dt

since r1 = mℓ.
A Taylor expansion gives

r1(x − hnt)− r1(x) = −hn(t1
∂r1
∂x1

(x′) + · · ·+ td
∂r1
∂xd

(x′))

where x′ is between x− hnt and x. Then

sup
x∈C

|E(r̃1,n(x))− r1(x)| = sup
x∈C

∣

∣

∣

∣

∫

Rd

Kd(t) [r1(x− hnt)− r1(x)] dt

∣

∣

∣

∣

≤ hn sup
x∈C

∫

Rd

∣

∣

∣

∣

Kd(t)(t1
∂r1
∂x1

(x′) + · · ·+ td
∂r1
∂xd

(x′))dt

∣

∣

∣

∣

.

Then Assumptions A1, A2 i) and A3, give the result.

Now, we introduce the following lemma (Ferraty and Vieu (2006) Proposition
A.11 ii), p. 237).
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Lemma 5.2. Let {Ui, i ∈ N} be a sequence of real random variables, with strong
mixing coefficient α(n) = O(n−ν), ν > 1, such that ∀n ∈ N, ∀i ∈ N, 1 ≤ i ≤
n |Ui| < +∞. Then for each ε > 0 and for each q > 1 :

P

{ ∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

> ε

}

≤ C

(

1 +
ε2

qS2
n

)− q
2

+ nCq−1

(

2q

ε

)ν+1

where S2
n =

∑

i

∑

j |cov(Ui, Uj)| .
Lemma 5.3. Under Assumptions A1-A6, we have

sup
x∈C

|r̃1,n(x) − E(r̃1,n(x))| = O

(
√

logn

nhd
n

+

√

h
d(ν−2)
n logn

)

a.s as n → ∞.

Proof of Lemma 5.3. C is a compact set, then it admits a covering S by
a finite number sn of balls Bk(x

∗
k, a

d
n) centered at x∗

k = (x∗
1,k, . . . x

∗
d,k), k ∈

{1, . . . , sn}. Then for all x ∈ C there exists k ∈ {1, . . . , sn} such that ‖x− x∗
k‖ ≤

adn, where an verifies adγn = h
d(γ+1

2 )
n n−d

2 , (γ is the same as in Assumption A2
iii)). Since C is bounded there exists a constant M > 0 such that sn ≤ M

ad
n
.

Now we set, for x ∈ C:

∆i(x) =
1

nhd
n

δiTi

Ḡ(Ti)
Kd

(

x−Xi

hn

)

− E

(

1

nhd
n

δ1T1

Ḡ(T1)
Kd

(

x−X1

hn

))

.

It is obvious that
n
∑

i=1

∆i(x) = r̃1,n(x)− E(r̃1,n(x)).

Writing ∆i(x) −∆i(x
∗
k) = ∆̃i(x), we have clearly |∆i(x)| ≤

∣

∣

∣
∆̃i(x)

∣

∣

∣
+ |∆i(x

∗
k)|.

Then,

sup
x∈C

∣

∣

∣

∣

∣

n
∑

i=1

∆̃i(x)

∣

∣

∣

∣

∣

≤ sup
x∈C

{

1

n

n
∑

i=1

δi |Ti|
Ḡ(Ti)

1

hd
n

∣

∣

∣

∣

Kd

(

x−Xi

hn

)

−Kd

(

x∗
k −Xi

hn

)∣

∣

∣

∣

}

+sup
x∈C

{

E

(

δ1 |T1|
Ḡ(T1)

1

hd
n

∣

∣

∣

∣

Kd

(

x−X1

hn

)

−Kd

(

x∗
k −X1

hn

)∣

∣

∣

∣

)}

.

From Assumption A2 iii)

sup
x∈C

∣

∣

∣

∣

∣

n
∑

i=1

∆̃i(x)

∣

∣

∣

∣

∣

≤ sup
x∈C

(

2E(|Y1|)
Ḡ(τF )

1

hd
n

∥

∥

∥

∥

x− x∗
k

hn

∥

∥

∥

∥

γ)

≤ E(|Y1|)
Ḡ(τF )

adγn

hγ+d
n

≤ E(|Y1|)
Ḡ(τF )

h
d(γ+1

2 )
n n−d

2

hγ+d
n

≤ C
√

nhd
n

hγ(d−1)
n .

Assumption A1 i) implies that supx∈C

∣

∣

∑n
i=1 ∆̃i(x)

∣

∣ = O
(

1√
nhd

n

)

a.s.



Z. Guessoum, E. Ould Säıd/Kernel regression for censored and α-mixing condition 127

On the other hand, let Ui = nhd
n∆i(x

∗
k). In order to apply Lemma 5.2, we

have to calculate S2
n. It is clear that

S2
n =

∑

i

∑

j

i6=j

|cov(Ui, Uj)|+ nV ar(U1).

We have

V ar(U1) = E

[

δ21T
2
1

Ḡ2(T1)
K2

d

(

x∗
k −X1

hn

)]

− E
2

[

δ1T1

Ḡ(T1)
Kd

(

x∗
k −X1

hn

)]

=: I1 − I2.
Using the conditional expectation properties and a change of variables, we get

I1 = E

[

δ21T
2
1

G2(T1)
K2

d

(

x∗
k −X1

hn

)]

= E

[

K2
d

(

x∗
k −X1

hn

)

E

(

δ21T
2
1

G2(T1)
|X1

)]

≤ hd
n

Ḡ(τF )

∫

Rd

K2
d(t)r2(x

∗
k − hnt)dt.

By a Taylor expansion around x∗
k, under Assumptions A2 ii) and A4, we obtain

I1 = O(hd
n).

From Assumption A3,

I2 = E
2

[

Kd

(

x∗
k −X1

hn

)

E

[

δ1T1

Ḡ(T1)
|X1

]]

=

[∫

Rd

Kd

(

x∗
k − u

hn

)

r1(u)dt

]2

= O(h2d
n ).

Finally V ar(U1) = O(hd
n).

Now let S2∗
n =

∑

i

∑

j
i6=j

|cov(Ui, Uj)|, a direct calculus of |cov(Ui, Uj)| gives

|cov(Ui, Uj)| = |E(UiUj)|

=

∣

∣

∣

∣

E

{[

δiTi

Ḡ(Ti)
Kd

(

x∗
k −Xi

hn

)

− E

(

δiTi

Ḡ(Ti)
Kd

(

x∗
k −Xi

hn

))]

×
[

δjTj

Ḡ(Tj)
Kd

(

x∗
k −Xj

hn

)

− E

(

δjTj

Ḡ(Tj)
Kd

(

x∗
k −Xj

hn

))]}∣

∣

∣

∣

≤
∣

∣

∣

∣

E

(

Yi

Ḡ(Yi)
Kd

(

x∗
k −Xi

hn

)

Yj

Ḡ(Yj)
Kd

(

x∗
k −Xj

hn

))∣

∣

∣

∣

+

∣

∣

∣

∣

E

(

Yi

Ḡ(Yi)
Kd

(

x∗
k −Xi

hn

))

E

(

Yj

Ḡ(Yj)
Kd

(

x∗
k −Xj

hn

))∣

∣

∣

∣

≤ Ch2d
n

∫

Rd

∫

Rd

Kd(z)Kd(t)

×
[

ℓij (x
∗
k − zhn, x

∗
k − thn) + ℓi(x

∗
k − zhn)ℓj(x

∗
k − thn)

]

dzdt.
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Assumption A5 gives
|cov(Ui, Uj)| = O(h2d

n ). (7)

On the other hand, from a result in Bosq (1998, p. 22), we have

|cov(Ui, Uj)| ≤ Cα (|i− j|) . (8)

Then to evaluate S2∗
n the idea is to introduce a sequence of integers wn which

we will precise below. Then we use (7) for the close i and j and (8) otherwise.
That is

S2∗
n =

∑∑

{0<|i−j|≤wn}

|cov(Ui, Uj)|+
∑∑

{|i−j|>wn}

|cov(Ui, Uj)|

≤ C
∑∑

{0<|i−j|≤wn}

h2d
n + C

∑∑

{|i−j|>wn}

α (|i− j|)

≤ C
(

nh2d
n wn

)

+ Cn2α (wn) .

Now choosing wn =
[

1
hd
n

]

+ 1, we have S2∗
n ≤ O(nhd

n) +Cn2α
(

1
hd
n

)

. The mixing

coefficient yields n2α
(

1
hd
n

)

= O(n2hdν
n ).

So
S2∗
n = O(nhd

n) +O(n2hdν
n ).

Finally, we have

S2
n = S2∗

n + nV ar(U1) = O(nhd
n) +O(n2hdν

n ).

Then, for ε > 0, applying Lemma 5.2, we have

P

{∣

∣

∣

∣

∣

n
∑

i=1

∆i(x
∗k)

∣

∣

∣

∣

∣

> ε

}

= P

{∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

> nhd
nε

}

≤ C

(

1 + C
ε2nhd

n

q(1 + nh
d(ν−1)
n )

)− q
2

+ nCq−1

(

q

εnhd
n

)ν+1

.

(9)

If we replace ε by ε0

(

√

logn
nhd

n
+

√

h
d(ν−2)
n logn

)

=: εn for all ε0 > 0 in (9), we

get

P

{∣

∣

∣

∣

∣

n
∑

i=1

∆i(x
∗k)

∣

∣

∣

∣

∣

> εn

}

≤ C

(

1 + C
ε20 logn

q

)− q
2

+ nCq−1









q

ε0

(

√

logn
nhd

n
+

√

h
d(ν−2)
n logn

)









ν+1

.

(10)
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By choosing q = (logn)
1+b

(b > 0), (10) becomes

P

{∣

∣

∣

∣

∣

n
∑

i=1

∆i(x
∗k)

∣

∣

∣

∣

∣

> εn

}

≤ Cn−Cε20 + nCq−1

(

q

ε0

)ν+1
(

nhd
n logn

)− ν+1
2

≤ Cn−Cε20 + Cε
−(ν+1)
0 (log n)

ν(1+b)
n1− ν+1

2 h
− d(ν+1)

2
n .

Now we can write

P

{

max
k=1,...,sn

∣

∣

∣

∣

∣

n
∑

i=1

∆i(x
∗k)

∣

∣

∣

∣

∣

> ε0

(
√

logn

nhd
n

+

√

h
d(ν−2)
n logn

)}

≤
sn
∑

i=1

P

{∣

∣

∣

∣

∣

n
∑

i=1

∆i(x
∗k)

∣

∣

∣

∣

∣

> εn

}

≤ Ma−d
n

(

Cn−Cε20 + Cε
−(ν+1)
0 (logn)

ν(1+b)
n1− ν+1

2 h
− d(ν+1)

2
n

)

≤ CMh
−d(1+ 1

2γ )
n n

d
2γ −Cε20

+ MCε
−(ν+1)
0 (logn)

ν(1+b)
n1− ν+1

2 + d
2γ h

−d(ν+1)
2 − d

2γ −d
n

=: CMJ1 +MCε
−(ν+1)
0 J2. (11)

We have from Assumption A6

J2 ≤ C (logn)
ν(1+b)

n1− ν+1
2 + d

2γ n− (3−ν)
2 −θd(γ(ν+1)+2γ+1

2γ )

≤ C (logn)ν(1+b) n−1−θd(
γ(ν+1)+2γ+1− 1

θ
2γ ).

Then, for an appropriate choice of θ, J2 is the general term of a convergent
series. In the same way, J1 ≤ nς−Cε20 and we can choose ε0 such that J1 is
the general term of convergent series. Finally, applying Borel-Cantelli lemma,
to (11) gives the result.

Remark 5.1. We point out that the parameter θ of Assumption A6 can be
chosen such as:

θ >
1

γ(ν + 1) + 2γ + 1
.

This condition ensures the convergence of the series of Lemma 5.3.

Lemma 5.4. Under Assumptions A1-A2 and A5-A7,

sup
x∈C

|ℓn(x) − ℓ(x)| = O

(
√

log n

nhd
n

+

√

h
d(ν−2)
n logn

)

+O (hn) a.s as n → ∞.

Proof of Lemma 5.4. We have

sup
x∈C

|ℓ(x)− ℓn(x)| ≤ sup
x∈C

|ℓn(x)− E (ℓn(x))|+ sup
x∈C

|E (ℓn(x))− ℓ(x)| .
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By Assumptions A1–A2, A5–A7, by an analogous proof to that of Lemma
5.3 without censoring (that is Ḡ(Ti) = 1, δi = 1 and Yi = 1) and putting

ε = ε0
(

√

logn
nhd

n
+

√

h
d(ν−2)
n logn

)

we get

sup
x∈C

|ℓn(x)− E (ℓn(x))| = O

(
√

logn

nhd
n

+

√

h
d(ν−2)
n logn

)

. (12)

Furthermore, under A2 i) and A7 and using a Taylor expansion, we get

sup
x∈C

|E (ℓn(x))− ℓ(x)| = O(hn)

which permit us to conclude.

Lemma 5.5. Under Assumptions A1–A2, A5–A7, we have

sup
x∈C

|r1,n(x)− r̃1,n(x)| = o(hn) a.s as n → ∞.

Proof of Lemma 5.5. We have from (3) and (4)

|r1,n(x)− r̃1,n(x)|

=
1

nhd
n

∣

∣

∣

∣

∣

n
∑

i=1

1{Yi<Ci}Yi

Ḡn(Yi)
Kd

(

x−Xi

hn

)

− 1{Y1<C1}Yi

Ḡ(Yi)
Kd

(

x−Xi

hn

)

∣

∣

∣

∣

∣

≤ 1

nhd
n

∣

∣

∣

∣

∣

n
∑

i=1

YiKd

(

x−Xi

hn

)

Ḡ(Yi)− Ḡn(Yi)

Ḡn(Yi)Ḡ(Yi)

∣

∣

∣

∣

∣

≤ 1

Ḡn(τF )Ḡ(τF )
sup
t≤τF

(∣

∣Ḡn(t)− Ḡ(t)
∣

∣

) 1

nhd
n

n
∑

i=1

|Yi|Kd

(

x−Xi

hn

)

.

In the same way as for Theorem 2 of Cai (2001), it can be shown under A1 that

sup
t≤τF

(∣

∣Ḡn(t)− Ḡ(t)
∣

∣

)

= O

(
√

log logn

n

)

a.s.

Furthermore, from the definition of ℓn(x), Lemma 5.4, Assumptions A1, A2
and A7, and the fact that Y is bounded we get the result.

Proof of Theorem 3.1. We have

sup
x∈C

|mn(x) −m(x)|

≤ sup
x∈C

∣

∣

∣

∣

r1,n(x)

ℓn(x)
− r̃1,n(x)

ℓn(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

r̃1,n(x)

ℓn(x)
− E(r̃1,n(x))

ℓn(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

E(r̃1,n(x))

ℓn(x)
− r1(x)

ℓn(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

r1(x)

ℓn(x)
− r1(x)

ℓ(x)

∣

∣

∣

∣
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≤ 1

inf ℓn(x)

{

sup
x∈C

|r1,n(x) − r̃1,n(x)| + sup
x∈C

|r̃1,n(x)− E(r̃1,n(x))|

+ sup
x∈C

|E(r̃1,n(x)− r1(x))| + sup
x∈C

(

|r1(x)| ξ−1
)

sup
x∈C

|ℓ(x)− ℓn(x)|
}

(13)

The kernel estimator ℓn(x) is almost surely bounded away from 0 because of
Lemma 5.4 and Assumption A7.

Then (13) in conjunction with Lemmas 5.1, 5.3, 5.4 and 5.5 we conclude the
proof.
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