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Abstract. The poverty analysis may require the observation of the same set
of households over the time in order to explain the evolution of the poverty
situation and to try to explain their behavior. In this case, the poverty mea-
sures have to be determined continuously in some interval [0, T ] and the sam-
ple poverty index becomes time-dependent. In this paper, we settle the global
problem of the weak convergence of the time-dependent poverty measures
in the functional space of continuous functions defined on [0, T ]. We en-
tirely describe the uniform asymptotic normality of the class of nonweighted
poverty indices including the Foster–Greer–Thorbecke and Chakravarty ones,
which both have the special property of satisfying all the needed axioms for
a poverty index.

1 Introduction

In this paper, we are concerned with the statistical analysis of poverty indices.
These are defined as follows. We consider a population of individuals, each
of which having a random income or expenditure Y with distribution function
G(y) = P(Y ≤ y). An individual is classified as poor whenever his income or ex-
penditure Y fulfills Y < Z, where Z is a specified treshold level (the poverty line).

Consider now a random sample Y1, Y2, . . . , Yn of size n of incomes, with empir-
ical distribution function Gn(y) = n−1#{Yi ≤ y : 1 ≤ i ≤ 1}. The number of poor
individuals within the sample is then equal to Qn = nGn(Z). And, from now on,
all the random elements used in the paper are defined on the same probability space
(�, A,P).

Given these preliminaries, we introduce measurable functions A(p,q, z), w(t),
and d(t) of p,q ∈ N, and z, t ∈ R. The meaning of these functions will be dis-
cussed later on. Set B(q) = ∑q

i=1 w(i).
Let now Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n be the order statistics of the sample

Y1, Y2, . . . , Yn of Y . We consider general poverty indices of the form

GPIn = A(Qn,n,Z)

nB(Qn)

Qn∑
j=1

w(μ1n + μ2Qn − μ3j + μ4)d

(
Z − Yj,n

Z

)
, (1.1)
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where μ1,μ2,μ3,μ4 are constants. In the sequel, (1.1) will be called a poverty in-
dex (indices in the plural) or simply a poverty measure according to the economists
terminology.

A number of poverty indices have been introduced in the literature since the
pioneering work of Nobel Prize winner Amartya Sen (1976), who first derived
poverty measures (see [9]) from an axiomatic point of view. A survey of these
indices is to be found in Zheng [12], who also discussed their introduction from
an axiomatic point of view. The determination of the poverty line is also of ma-
jor interest. In the domain of welfare research, several models of this type have
been introduced. At times, such models may be incompatible (see [6]). In [1,3,5,7,
8], a general methodology of investigation of these models have been developed,
through the appropriate modern technology. In the general frame proposed in [7],
the statistic (1.1) converges in probability to

GPI =
∫ Z

0
L1(u,G)d

(
Z − u

Z

)
dG(u), (1.2)

where L1 is some weight function depending on the distribution function, un-
der some very mild conditions. These results have natural applications to derive
asymptotic confidence intervals for indices based on data collected within develop-
ing countries. These methods turn out to be successful in the statistical monitoring
of poverty factors.

This model is, however, unpractical, in the sense that it is not time-dependent
and is then not appropriate to handle continuous panel data. In practice, the income
of individuals varies with time. We may be faced with continuous data in the form
of Y(t),0 < t < T , and some modification is needed in the definition of indices to
take this into account. We are led to consider the time-dependent general poverty
indices defined by

GPIn(t) = A(Qn(t), n,Z)

nB(Qn)
(1.3)

×
Qn(t)∑
j=1

w
(
μ1n + μ2Qn(t) − μ3j + μ4

)
d

(
Z − Yj,n(t)

Z

)
,

with 0 ≤ t ≤ T and T ∈ R.
This is the case where the poverty situation is analysed over the continuous pe-

riod of time [0, T ]. We then have to move from a fixed-time poverty analysis to
a continuous poverty analysis, where the same households are continuously ob-
served over the time and give the longitidunal observations of Y ∈ C([0, T ]),

{Y1(t), . . . , Yn(t),0 < t < T }.
This paper is aimed to settle the uniform weak convergence of such statistics,

that is, the asymptotic theory of the time-dependent poverty measures (1.3), in the
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space C([0, T ]) of real continuous functions defined on [0, T ]. As a first step, the
class of nonweighted poverty measures

Jn(t) = 1

n

Qn(t)∑
j=1

d

(
Z − Yj,n(t)

Z

)
, 0 < t < T, (1.4)

is studied. This class is very important for the poverty analysis since it includes the
Foster–Greer–Thorbecke and the Chakravarty indices which both are very pow-
erful ones since they fulfill all the desirable axioms (see [12]). Our best result is
the complete description of the uniform asymptotic weak laws of (1.4). Moreover,
we get as side effects tools that will be useful to handle the weighted and general
cases.

The paper is organized as follows. In Section 2, we review some important
cases of poverty measures as illustrations for the reader. In Section 3, we give our
results on the time-dependent poverty index (1.4) and discuss the hypotheses from
a parametric view. Section 4 is devoted to the proofs, while the conclusion is given
in Section 5.

2 Examples

One may devide the poverty indices into two classes. The first includes the non-
weighted ones. The most popular of them is the Foster–Greer–Thorbecke (1984,
[4]) class which is defined for α ≥ 0, by

FGT(α) = 1

n

Qn∑
j=1

(
Z − Yj,n

Z

)α

. (2.1)

For α = 0, (2.1) reduces to Qn/n, the headcount of poor individuals. For α = 1
and α = 2, it is respectively interpreted as the severity of poverty and the depth in
poverty. (2.1) is obtained from (1.1) by taking

w(u) ≡ 1 :A(Qn,n,Z) = Qn :B(Qn) = Qn :d(u) = uα.

Next, we have for α ≥ 0, by

C(α) = 1

n

Qn∑
j=1

(
1 −

(
Yj,n

Z

)α)
,

the Chakravarty family class of poverty measures (see [2]).
The second class consists of the weighted indices. We mention here two of its

famous members. The Sen (1976) index (see [9])

PSE,n = 2

n(Qn + 1)

Qn∑
j=1

(Qn − j + 1)

(
Z − Yj,n

Z

)
. (2.2)
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(2.2) is obtained from (1.1), by taking

d(u) = u :w(u) = u :A(Qn,n,Z) = Qn,

B(Qn) = Qn(Qn + 1)/2 :μ1 = 0; μ3 = μ2 = μ4 = 1.

The Shorrocks (1995) index (see [10])

PSH,n = 1

n2

Qn∑
j=1

(2n − 2j + 1)

(
Z − Yj,n

Z

)
. (2.3)

(2.3) is obtained from (1.1) by taking

d(u) = u, w(u) = u, A(Qn,n,Z) = Qn(Qn + 1)/(n),

and

B(Qn) = Qn(Qn + 1), μ1 = μ3 = 2, μ2 = 0, μ4 = 1.

(2.2) and (2.3) evaluate the poverty intensity by giving a more important weight on
the poorest individuals. This means that a small decrease of the intensity indicates
most improvement in the population.

These are only some of the most important indices used by economists for mon-
itoring the poverty situation. But our form (1.1) concerns an unlimited number of
possible indices, covering almost all the available ones. Our statistical results, in
this paper, are given for the general form and will work, at once, for almost the
used measures.

3 Our results

We suppose that the d.f. Gt(x) = P(Yj (t) ≤ x) admits a derivative gt (x). Put
Gs,t (u) = P(X(t) ≤ u, X(s) ≤ u). Our results will rely on the following hypothe-
ses.

(H1) There exits a positive real number r > 0, and there exists a positive function
g such that for 0 ≤ s, t ≤ T ,

sup
u≥0

|gt (u) − gs(u)| ≤ g(u)|t − s|1+r

and ∫ Z

0
g(u)du = K1 < ∞.

(H2) For 0 ≤ s, t ≤ T , for some constant K2,

sup
u≥0

|Gt,s(u) − Gs(u)| ≤ K2|t − s|1+r .
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(H3) For 0≤ s, t ≤ T , for some constant K3,

E|Y(t) − Y(s)|2 ≤ K3|t − s|1+r .

(H4) d is bounded by one and is differentiable with derivative function d ′ bounded
by M:

0 ≤ d ≤ 1, |d ′| ≤ M.

We now state our main result.

Theorem 1. Let (H1), (H2), (H3), (H4) hold. Then the stochastic process
{√n(Jn(t) − μ(t)),0 ≤ t ≤ T } converges in C([0, T ]) to a centred Gaussian pro-
cess with covariance function

�(s, t) =
∫ ∞

0

∫ ∞
0

(
d

(
Z − u

Z

)
1(u≤Z) − μ(t)

)

×
(
d

(
Z − v

Z

)
1(v≤Z) − μ(s)

)
gt (u)gs(v) dudv

=
∫ Z

0

∫ Z

0
d

(
Z − u

Z

)
d

(
Z − v

Z

)
gt (u)gs(v) dudv − μ(t)μ(s),

where

μ(t) =
∫ Z

0
d

(
Z − u

Z

)
gt (u) du.

Let us make some remarks on the hypotheses before the proofs.

Remark 1. In handling the Senegalese data, we have seen that the variable X =
1/(y0 − Y), where Y is the income and y0 the lowest income, is well fitted to
the lognormal law. For three periods, the variance remains almost constant. In the
case of longitidunal data, we may then suppose that the variable X(t) follows a
lognormal law of mean m(t) and variance σ 2(t). If we suppose, as mentioned
above that the variance is constant and equal to σ 2 and that the lowest income is
also fixed to y0, we have

Gt(u) = φ
((− log(u − y0) − m(t)

)
/σ

)
1(u≥y0)

and

gt (u) = − log(u − y0)

σ
φ′((− log(u − y0) − m(t)

)
/σ

)
1(u≥y0),

where φ is the distribution function of the standard normal random variable. Since
φ′′ is bounded (say by K0), we arrive at

sup
u≥0

|gt (u) − gs(u)| ≤ K0
− log(u − y0)

σ 2 1(u≥y0)|m(t) − m(s)|.
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The condition (H4) is then plausible since
∫ Z
y0

− log(u − y0) du (naturally with

y0 ≤ Z) is finite and the condition |m(t) − m(s)| ≤ |t − s|1+r is not so restrictive.

Remark 2. The condition (H1) is reasonable since Gs,t ↑ Gs for s ↑ t . In sum-
mary, in future papers, the hypotheses have to be largely expressed in terms of
parametric models of the income, in the sense painted here, such as lognormal and
Singh–Maddala families which both seem to be very adequate for poverty data.

4 Proofs

Our proofs will rely of the modern theory of the empirical processes weak conver-
gence as stated in [11]. We then begin by noticing that {√n(Jn(t)−μ(t)),0 ≤ t ≤
T } is a functional empirical process

αn(f ) = √
n

{
1

n

n∑
j=1

f (Yj ) − Ef (Yj )

}
,

for f ∈ F0 = {ft :x 
→ d(Z−x(t)
Z

)1(x(t)≤Z),0 ≤ t ≤ T }. We have, in view of (H4),

sup
0≤t≤T

|ft (x) − Eft (Y )| = sup
0≤t≤T

∣∣∣∣d
(

Z − x(t)

Z

)
1(x(t)≤Z) − μ(t)

∣∣∣∣ ≤ 2. (4.1)

By following [11] (page 81), the functional weak law of {αn(f ), f ∈ F }, for a
given family F of measurable functions defined on [0, T ], may be handled in the
general frame of empirical processes theory, whenever

sup
f ∈F

|f (x) − Ef (Y )| < ∞, (4.2)

for any x∈ C([0, T ]). Indeed this is the case for our family because of (4.1).
This allows to study {αn(f ), f ∈ F0} as a stochastic process indexed by func-
tions f ∈ F0 with states in l∞(C([0, T ])), the space of bounded functions defined
on C([0, T ]). Next, since the functions f ∈ F are square integrable with respect
to PY , that is,

∀t ∈ [0, T ] Eft (Y )2 = PY (f 2
t ) < 1,

we get, by the results in [11] (page 81), that the sequence of stochastic processes
{√n(Jn(t) − μ(t)),0 ≤ t ≤ T } converges in finite distributions to a Gaussian pro-
cess {X(t),0 ≤ t ≤ T } with covariance function �(s, t). This, in fact, easily fol-
lows from the multivariate central limit theorem. The second step of the proof is to
show that {√n(Jn(t) − μ(t)),0 ≤ t ≤ T } weakly converges to {X(t),0 ≤ t ≤ T }.
At this step, we shall use an application of Prohorov’s theorem through Theo-
rem 1.5.4 in [11], which states that the sequence of stochastic processes

Xn(t) = αn(ft ) = 1√
n

∑
j

{
d

(
Z − Yj (t)

Z

)
1(Yj (t)≤Z) − μ(t)

}
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weakly converges X, whenever the finite distributions of Xn weakly converge to
those of X and {Xn(t),0 ≤ t ≤ T } is asymptotically tight. Since finite-distribution
convergence holds, we have to establish the asymptotic tightness of Xn. This, in
turn, requires, in view of Theorem 1.5.7 of [11], that Xn(t) is asymptotically tight
for every t, and that there exists a semi-metric ρ on [0, T ], such that ([0, T ], ρ) is
totally bounded and

∀ε > 0, η > 0,∃δ > 0, lim sup
n→+∞

P
∗(

sup
ρ(s,t)<δ

|Xn(s) − Xn(t)| > ε
)

< η, (4.3)

where P
∗ denotes the outer probability defined by P

∗(A) = inf {P(B),B ⊇ A,B ∈
A}. To prove that Xn is asymptotically tight, notice first that each Xn(t) weakly
converges to Gaussian random variable N (0,�(t, t)). It follows, in view of
Lemma 1.3.8 in [11], that Xn(t) is asymptotically tight, since any probability on R

is tight and then asympotically tight. Since Xn has almost sure continuous paths,
supρ(s,t)<δ |Xn(s) − Xn(t)| is measurable and (4.3) becomes

∀ε > 0, η > 0,∃δ > 0, lim sup
n→+∞

P
∗(

sup
ρ(s,t)<δ

|Xn(s) − Xn(t)| > ε
)

< η. (4.4)

Now, one may use techniques very similar to those of Example 2.2.12 in [11] to
conclude. We prove in Lemma 1 below that (4.4) is implied by

E|Xn(t) − Xn(s)|2 ≤ K0|t − s|1+r (4.5)

with ρ(s, t) = |s − t |. Then, the rest of the proof consists in establishing (4.5),
given Lemma 1 to be proved later. In order to do that, let

Mj(t) = d

(
Z − Yj (t)

Z

)
1(Yj (t)≤Z) − μ(t)

and

Mj(t) = d

(
Z − Yj (t)

Z

)
1(Yj (t)≤Z).

Since the random elements of C([0, T ]), Mj(s)−Mj(t) are independent and cen-
tred, for any (s, t) ∈ [0, T ]2, we get

E|Xn(t) − Xn(s)|2 = 1

n

∑
E

(
Mj(t) − Mj(s)

)2
.

By the c2-inequality (|a + b|r ≤ 2r−1(|a|r + |b|r ) for r ≥ 1),

E
(
Mj(t) − Mj(s)

)2 ≤ 2
(
E

(
Mj(t) − Mj(s)

)2 + 2
(
μ(s) − μ(t)

))2
.

First by (H1) and (H4),

|μ(t) − μ(t)| ≤
∫ Z

0
d

(
Z − u

Z

)
|gt (u) − gs(u)|du

≤
(∫ Z

0
g(u)d

(
Z − u

Z

))
|t − s|1+r = K1|t − s|1+r .
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This in turn implies

|μ(t) − μ(t)|2 ≤ K2
1T 1+r |t − s|1+r .

Next

Mj(t) − Mj(s) = d

(
Z − Yj (t)

Z

)
1(Yj (t)≤Z) − d

(
Z − Yj (s)

Z

)
1(Yj (s)≤Z).

Add and substract

d

(
Z − Yj (t)

Z

)
1(Yj (s)≤Z)

in the formula above and use the c2-inequality again and the one bound of the
function d(·), to get

(
Mj(t) − Mj(s)

)2 ≤ 2
∣∣∣∣d

(
Z − Yj (t)

Z

)
− d

(
Z − Yj (s)

Z

)∣∣∣∣
2

+ 2
∣∣1(Yj (t)≤Z) − 1(Yj (s)≤Z)

∣∣2
≤ 2

M2

Z2

(
Yj (t) − Yj (s)

)2 + 2
∣∣1(Yj (t)≤Z) − 1(Yj (s)≤Z)

∣∣2.
Recall that

|1A − 1B |2 = 1ABc + 1AcB.

Then ∣∣1(Yj (t)≤Z) − 1(Yj (s)≤Z)

∣∣2 = 1(Yj (t)≤Z<Yj (s)) + 1(Yj (s)≤Z<Yj (t))

and

E
(
1(Yj (t)≤Z<Yj (s))

) = P
(
Yj (t) ≤ Z

) − P
(
Yj (t) ≤ Z,Yj (s) ≤ Z

)
(4.6)

= Gt(Z) − Gs,t (Z).

By using (H2), we arrive at

E|Xn(t) − Xn(s)|2 ≤
(

4M2

Z2 K3 + 8K2 + K2
1T 1+r

)
|t − s|1+r . (4.7)

This proves, in view of Lemma 1 that {√n(Jn(t) − μ(t)),0 ≤ t ≤ T } is asymp-
totically tight. The uniform weak convergence follows, that is, F0 = {ft :x 
→
d(Z−x(t)

Z
)1(x(t)≤Z),0 ≤ t ≤ T } is a Donsker Class.

As announced, the proof will be complete after of the following lemma.

Lemma 1. Let T > 0 and {Xn(t),0 ≤ t ≤ T } be a sequence of separable stochas-
tic processes such that there exists r > 0 so that

∀n ≥ 1 E|Xn(t) − Xn(s)|2 ≤ K0|t − s|1+r . (4.8)
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Then,

∀n > 0,∀ε > 0,∀ν > 0,∃ρ > 0, P

(
sup

|s−t |≤δ1/α

|Xn(s) − Xn(t)| ≥ ε
)

≤ ν.

Proof. Assume that (4.8) holds. Let α = min(1, (1 + r)/2) and consider the semi-
metric d(s, t) = |s − t |α on [0, T ]. We have

‖Xn(s) − Xn(t)‖2 ≤ max
(
K1/2, T (r−1)/2)

d(s, t). (4.9)

This inequality is obvious for α = (1 + r)/2. As for α = 1 ≤ (1 + r)/2, it is based
on

|s − t |(1+r)/2 ≤ T (1+r)/2
∣∣∣∣s − t

T

∣∣∣∣
(1+r)/2

≤ T (1+r)/2
∣∣∣∣s − t

T

∣∣∣∣ ≤ T (r−1)/2|s − t |,

for (s, t) ∈ [0, T ]2, since the function x 
→ ax is decreasing for 0 < a < 1. Next
[t − ε1/α, t + ε1/α] is a d-ball of radius ε centred on t ∈ [0, T ]. It follows that one
can cover [0, T ] with (T /2)ε−1/ε d-balls of radius ε so that the minimum number
of d-balls of radius needed to cover [0, T ], denoted N(d, ε) is less or equal to
(T /2)ε−1/α . Considering the Lp-norm as an Orlicz one with ‖ · ‖p = ‖ · ‖ψ and
ψ(x) = x2, which complies with the condition of Theorem 2.2.4 in [11]. Applying
this theorem, we get, for all η > 0 and for δ > 0, for some K4 > 0 only depending
on C0 = min(K1/2, T (r−1)/2)),∥∥∥ sup

d(s,t)≤δ

|Xn(s) − Xn(t)|
∥∥∥

2
≤ K4

[∫ η

0
ψ−1(D(d, ε)) dε + δψ−1(D2(d, η))

]
,

where D(d, ε) is the maximal lenght of ε-separated chains in ([0, T ], d). Recall
that a sequence of points x1, x2, . . . is a ε-separated chain of points of ([0, T ], d)

if d(xi, xj ) > ε for 1 ≤ i �= j . Using the relation D(d, ε) ≤ N(d, ε/2), (see [11],
page 98). we then get∥∥∥ sup

d(s,t)≤δ

|Xn(s) − Xn(t)|
∥∥∥

2
≤ K4

[∫ η

0
ψ−1(

N(d, ε/2)
)
dε + δψ−1(

N2(d, η/2)
)]

.

Using the expression of ψ−1(x) = x1/2, we arrive at∥∥∥ sup
|s−t |≤δ1/α

|Xn(s) − Xn(t)|
∥∥∥

2

≤ K4

[(
T

21+1/α

)1/2 ∫ η

0
ε−1/2α dε + δ

T

21+1/α
η−1/α

]

= K4

[(
T

21+1/α

)1/2 ∫ η

0
ε−1/2α dε + δ

T

21+1/α
ε1/α

]

= K4

[(
T

21+1/α

)1/2 η1−1/(2α)

1 − 1/(2α)
+ δ

T

21+1/α
η−1/α

]
= A(η, δ).



466 G. S. Lo and S. T. Sall

Now it is evident that we may choose first η and next δ to make A(η, δ) arbitrary
small. To finish, we use Markov’s inequality for x > 0

P

(
sup

|s−t |≤δ1/α

|Xn(s) − Xn(t)| ≥ x
)

≤ A(η, δ)2

x2 .

Fix x = ε > 0 and ν > 0, and choose first η and next δ such that x−2A(η, δ) ≤ ν.
Putting ρ = δ1/α , we conclude

∀ε > 0,∀ν > 0,∃ρ > 0, P
(

sup
|s−t |≤ρ

|Xn(s) − Xn(t)| ≥ ε
)

≤ ν. �

5 Conclusion

Our results yield tools to handle discrete and continuous longitudinal data. In ap-
plied cases, the hypotheses must be specialised in terms of parametric families
suitable to the concerned data. In the Senegalese case, the lognormal and Sing–
Maddala families seem to be very adapted and the hypotheses proved not to be
very restrictive. Data driven research works are under way in this topic. The results
do not cover the so important weighted measures such as the Sen and Shorrocks
one. They will be handled in future papers as extension of the results given here.
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