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A note on a unified approach for cure rate models
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Abstract. Yin and Ibrahim [Canad. J. Statist. 33 (2005) 559–570] presented
a unified class of cure rate models based on a Box–Cox type transformation
of the population survival function. Our work provides a probabilistic justifi-
cation to this transformation by means of the negative binomial distribution.

1 Introduction

Models for survival data with a surviving fraction (also known as cure rate mod-
els or long-term survival models) play an important role in reliability and survival
analysis. Cure rate models cover the situations where there are sampling units in-
susceptible to the occurrence of the event of interest. The literature on the sub-
ject is by now rich and growing rapidly. The books by Maller and Zhou (1996)
and Ibrahim, Chen and Sinha (2001), as well as the review article by Tsodikov,
Ibrahim and Yakovlev (2003) and the recent article by Cooner et al. (2007), could
be mentioned as key references. Our chief contribution is a probabilistic justifica-
tion through the negative binomial distribution for the transformation introduced
by Yin and Ibrahim (2005).

2 Model and main results

As in Yakovlev and Tsodikov (1996) and Yin and Ibrahim (2005), we formu-
late the model within a biological context. The promotion time (time to event)
for the kth tumor cell is denoted by tk , k = 1, . . . ,N , where N denotes the un-
observable number of competing causes that can produce a detectable cancer.
We assume that the variables tk are i.i.d. with cumulative distribution function
F(t) and S(t) = 1 − F(t). The observable time to relapse of cancer is defined
as T = min{t0, t1, . . . , tN }, where P(t0 = ∞) = 1. Further, we assume that N is
independent of t1, t2, . . . . Exponential, piecewise exponential, and Weibull dis-
tributions, for instance, can be used to represent t1, t2, . . . . Under this setup, the
survival function for the population is given by

Spop(t) = P(N = 0) + P(t1 > t, . . . , tN > t |N ≥ 1)P(N ≥ 1).
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Tsodikov, Ibrahim and Yakovlev (2003), among others, proved that Spop(t) =
g(S(t)), where g(·) is the probability generating function of the number of com-
peting causes (N). The choice of a particular distribution for N entails some con-
sequences. In this note the number of competing causes is modeled by the nega-
tive binomial distribution, leading to a formulation that encompasses some specific
models found in the literature.

We suppose that the number of competing causes follows a negative binomial
distribution with parameters α and θ (Piegorsch (1990); Saha and Paul (2005)),
with probability function

pm = P(N = m) = �(α−1 + m)

�(α−1)m!
(

αθ

1 + αθ

)m

(1 + αθ)−1/α, (2.1)

m = 0,1,2, . . . , for θ > 0 and α > −1/θ , so that

E(N) = θ and var(N) = θ(1 + αθ). (2.2)

The probability generating function is given by

g(s) =
∞∑

m=0

pmsm = {1 + αθ(1 − s)}−1/α, 0 ≤ s ≤ 1. (2.3)

Taking into account (2.3) we arrive at the improper survival function

Spop(t) = g(S(t)) = {1 + αθF(t)}−1/α. (2.4)

The surviving fraction, defined as p0 = Spop(∞) = limt→∞ Spop(t), comes out to
be p0 = (1 + αθ)−1/α . Figure 1 displays the improper survival function corre-
sponding to different values for α. In these plots the promotion time is exponen-
tially distributed with scale parameter equal to 1 and θ = 0.8.

Figure 1 Improper survival functions with F(t) = 1 − e−t and θ = 0.8.



102 M. de Castro, V. G. Cancho and J. Rodrigues

Yin and Ibrahim (2005) proposed a class of cure rate models motivated by a
transformation of the unknown population survival function. Next we prove that
their proposal can be interpreted by means of the negative binomial distribution.
The argument runs as follows. From (2.4) we have that

Spop(t)
−α − 1

α
= θF (t), (2.5)

an expression analogous to the Box–Cox transformation and that reduces to ex-
pression (4) in Yin and Ibrahim (2005) by taking a = −α in their paper. As
α → 0, we obtain the Poisson distribution in (2.1) and Spop(t) in (2.5) becomes
Spop(t) = exp{−θF (t)}, giving rise to the promotion time cure model (Yakovlev
and Tsodikov (1996)).

Piegorsch (1990) pointed out that when α = −1/κ , for κ a positive integer such
that κ > θ , the negative binomial distribution with parameters θ and −1/κ gives
the same probabilities as a binomial distribution with parameters κ and θ/κ . So,
taking κ = 1 (Bernoulli distribution) we get α = −1, Spop(t) in (2.5) becomes
Spop(t) = 1 − θF (t), corresponding to the mixture cure model (Berkson and Gage
(1952)). Therefore, α can be called a dispersion parameter (Saha and Paul (2005)).
From (2.2) it follows that the variance of the number of competing causes under
the negative binomial model is flexible. If −1/θ < α < 0, there is under-dispersion
from the Poisson model. We illustrated this point with the mixture cure model. On
the other side, if α > 0 the counts are over-dispersed.

3 Conclusion

In a few words, under the negative binomial distribution for the number of com-
peting causes, we present a probabilistic formulation of the cure rate model related
to the transformation proposed by Yin and Ibrahim (2005). In our interpretation
there is a strong connection between the parameter of the transformation (α) and
the dispersion in the counts of competing causes.

Adopting the negative binomial distribution for the number of competing
causes, we envision more general cure rate models with the dispersion parame-
ter α ≥ −1 in (2.4). For instance, α = 1 conduces to the geometric distribution.
Promising work is in progress addressing issues such as model identifiability (Li,
Taylor and Sy (2001)) and the existence of proper posterior distributions in a
Bayesian context (Chen, Ibrahim and Sinha (1999), Cooner et al. (2007)).
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