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An expansion for the maximum likelihood estimator of
location and its distribution function

Shanti Venetiaan
Anton de Kom University of Suriname

Abstract. In this paper stochastic expansions of the maximum likelihood
estimator for location and for the asymptotic expansion of the distribution
function of this estimator are derived. A Cornish–Fisher expansion is also
given for the quantile function of the distribution function. All expansions
are given in explicit expressions.

1 Introduction

In many papers we may find results about the asymptotic expansion of the maxi-
mum likelihood estimator (MLE) and its distribution function. We mention Pfan-
zagl (1973), who considers asymptotic expansions related to minimum contrast
estimators. Pfanzagl (1979) discovered the phenomenon “first-order efficiency
implies second-order efficiency.” Klaassen and Venetiaan (1994) have given an
alternative proof for this phenomenon. Furthermore, we mention Bickel and
van Zwet (1978), Pfanzagl and Wefelmeyer (1985) and Bickel, Götze and van
Zwet (1985). Chibisov (1973) considers expansions for minimum contrast esti-
mators, which include the maximum likelihood estimator. We will be using his
approach. Hall (1992) presents expansions for estimators admitting a stochastic
expansion and relates these to the bootstrap. Akahira (1996) proved a conjecture of
Ghosh (1994), namely that “third-order efficiency implies fourth-order efficiency.”
He does so by considering estimators with the most concentration probability.
Kano (1998) also considers the concentration probability of estimators and shows
that proper bias adjustment of the estimators leads to “third-order efficiency im-
plies fourth-order efficiency” a necessary and sufficient condition for fifth-order
efficiency and a proof that the MLE is fifth-order efficient.

In this paper, the author explores the location model and gives explicit expres-
sions for the expansions. Akahira (1996) gives explicit expressions as well, but in
the 1/n(3/2) term of his expansion, he leaves some parameters for the reader to
calculate.

In this paper, the reader will also find an expansion for the quantiles of the
distribution function of the MLE for location. These expansions are particularly
useful when one is interested in optimizing the length of a confidence interval.
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Now we introduce the theoretical framework of this paper. Consider estimation
of the location parameter θ in the one-dimensional location model of i.i.d. ran-
dom variables X1, . . . ,Xn. Assume that the common distribution of the random
variables has finite Fisher information for location. This means that this distribu-
tion is absolutely continuous with an absolutely continuous density f (· − θ) with
derivative f ′(· − θ) such that

I (f ) =
∫ (

f ′

f

)2

f < ∞

holds. We have a regular parametric model then, and asymptotically efficient esti-
mation is possible. Let θ̂n denote the maximum likelihood estimator for location
(MLE) and

Gn(y) = Pf (·−θ)

(√
nI (f )(θ̂n − θ) ≤ y

)
, y ∈ R. (1.1)

Asymptotic efficiency of θ̂n means that Gn converges weakly to the standard
normal distribution function � as n → ∞ or equivalently

G−1
n (u) → �−1(u), 0 < u < 1. (1.2)

In Section 2 we will present an stochastic expansion for the MLE for location,
by using and adjusting the results of Chibisov (1973) about expansions for mini-
mum contrast estimators. Furthermore, we will note that our approach fits in the
theoretical framework of Hall (1992) and so we arrive at an asymptotic expansion
for the distribution function of the MLE. The last result is a Cornish–Fisher ex-
pansion for the quantiles of the distribution function of the MLE. Proofs of the
above-mentioned results may be found in Section 3.

1.1 Notation

We will be using the following notation:

η2 = Eψ2
2 (X1)/I

2(f ), η3 = Eψ3
1 (X1)/I

3/2(f ),

η4 = Eψ4
1 (X1)/I

2(f ), η5 = Eψ5
1 (X1)/I

(5/2)(f ),

η6 = E(ψ2(X1)ψ3(X1))/I
(5/2)(f )

with ψi(x) = f (i)

f
(x).

2 Maximum likelihood estimator and expansions

In this section we will state a result about the maximum likelihood estimator, by
viewing it as a special case of a minimum contrast estimator.



84 S. Venetiaan

Definition. We say θ̂n is a minimum contrast estimator if θ̂n satisfies

Ln(θ̂n) = inf
θ∈R

Ln(θ), (2.1)

where Ln(θ) = n−1 ∑n
i=1 ρ(Xi − θ), with ρ : R → R measurable. The MLE is

obtained when we take ρ(·) = − logf (·).
Theorem 1. Let X,X1, . . . ,Xn be i.i.d. with common density f (· − θ0). Let θ̂n be
the MLE defined by (2.1) with ρ(·) = − logf (·) and let ρ(·) satisfy the following
conditions.

(1) For all K ⊂ R compact, supθ∈K Eθρ
2(X) = A < ∞.

(2) ρ(·) is five times differentiable.
(3) There exists a finite function R(·) and a δ > 0 such that for every y ∈ R,

|θ | < δ: ∣∣ρ(5)(y) − ρ(5)(y − θ)
∣∣ ≤ R(y)|θ | and E0R

5/2(X) < ∞.

(4) E0|ρ(α)(X)|5 < ∞ for α = 1, . . . ,5.

Then θ̂n admits a stochastic expansion

√
n(θ̂n − θ0) = ξ1

a2
+ 1√

n

(−ξ1ξ2

a2
2

+ a3ξ
2
1

2a3
2

)

+ 1

n

(
ξ1ξ

2
2

a3
2

− 3a3ξ
2
1 ξ2

2a4
2

+ ξ2
1 ξ3

2a3
2

+ a2
3ξ3

1

2a5
2

− a4ξ
3
1

6a4
2

)

+ 1

n3/2

(
3ξ2

1 a3ξ
2
2

a5
2

+ 5ξ4
1 a3

3

8a7
2

− 5ξ4
1 a4a3

12a6
2

− 3ξ2
1 ξ3ξ2

2a4
2

(2.2)

− 5ξ3
1 a2

3ξ2

2a6
2

+ ξ4
1 a5

24a5
2

+ ξ3
1 ξ3a3

a5
2

+ 2ξ3
1 a4ξ2

3a5
2

− ξ3
1 ξ4

6a4
2

− ξ1ξ
3
2

a4
2

)
+ γn,

where ξj denotes the normalized sum of the independent random variables
ρ(j)(Xi).

ξj = 1√
n

n∑
i=1

(
ρ(j)(Xi) − aj

)
, aj = E0ρ

(j)(X) for j = 1, . . . ,5.

Furthermore, for any sequence of positive constants {εn}, with

εn

√
n(logn)−2 → ∞,

we have

P0

(
|γn| ≥ εn

n3/2

)
= o

(
1

n3/2

)
. (2.3)
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We now present the expansion for the distribution function.

Theorem 2. Let the conditions of Theorem 1 hold, then the distribution function
of the MLE admits an Edgeworth expansion to order n−3/2, namely

Gn(x) = �(x) − φ(x)

{
η3(x

2 + 2)

12
√

n

+ 1

n

(
η2

3

288
x5 −

(
1

8
− η2

6
+ 5η4

72
+ η2

3

72

)
x3

+
(

η4

24
− η32

24
− 1

8

)
x

)

+ 1

n3/2

(
η3

3

10368
x8 −

(
η3

96
− η2η3

72
+ 19η3

3

10368
+ 5η3η4

864

)
x6

+
(

η4η3

72
+ η5

30
− 19η3

3

1728
− η6

8

)
x4

−
(

35η3
3

864
+ η3

32
+ η5

80
− 5η4η3

96

)
x2

+ 5η4η3

48
− 35η3

3

432
− η3

16
− η5

40

)}

+ o

(
1

n3/2

)
.

The next result is about a Cornish–Fisher expansion for the inverse of the dis-
tribution function of the MLE.

Theorem 3. If the conditions of Theorem 1 are fulfilled, then the inverse of the
distribution function of the MLE admits a Cornish–Fisher expansion

G−1
n (v) = �−1(v) + η3

12
√

n

(
(�−1(v))2 + 2

)

+ 1

n

((
−5η4

72
− 1

8
+ η2

6
− η2

3

72

)
(�−1(v))3

+
(
−η2

3

36
− 1

8
+ η4

24

)
�−1(v)

)

+ 1

n3/2

((
η2η3

24
− η4η3

144
− η3

48
− η6

8
+ η5

30
− 19η3

3

1728

)
(�−1(v))4 (2.4)

+
(

η4η3

48
− 67η3

3

1296
− 5η3

48
+ η2η3

12
− η5

80

)
(�−1(v))2
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− η5

40
+ η3η4

9
− 113η3

3

1296
− η3

12

)

+ o

(
1

n3/2

)
.

3 Proofs

3.1 Proof of Theorem 1

The proof presented here is a reorganization of the proof of Theorem 5 of
Chibisov (1973). First we prove that θ̂n is a solution of the equation

L′
n(θ) = 0, (3.1)

with probability 1 + o(n−1). Because ρ(·) is differentiable, the infimum of Ln(θ)

is attained either at a stationary point or at ±∞. We will show that the probability
that the infimum is taken at the boundary is sufficiently small. To do so we will
apply Lemma 4 of Michel and Pfanzagl (1971). With regular techniques it may be
shown that their conditions are satisfied, among others by using the L1 continuity
theorem and by using the remark Lemma 2 of Pfanzagl (1973) to obtain a similar
but stronger result than the Chebyshev inequality. With the above we come to the
following consistency result. For all δ > 0,

P(|θ̂n − θ0| > δ) = o

(
1

n

)
. (3.2)

Consequently, with probability 1 + o(1/n) the infimum is attained at (−δ, δ) and
hence at a stationary point; in other words θ̂n satisfies (3.1).

Assume without loss of generality that θ0 = 0. We expand L′
n(θ) by using con-

dition (2).

L′
n(θ) = 1

n

n∑
i=1

ρ′(Xi − θ)

(3.3)

= 1

n

n∑
i=1

ρ′(Xi) − θ

n

n∑
i=1

ρ′′(Xi) + · · · + θ4

24n

n∑
i=1

ρ(5)(Xi − θ ′),

where |θ ′| ≤ |θ |. We write (3.3) as

L′
n(θ) = ξ1n√

n
− θ

(
ξ2n√

n
+ a2

)
+ θ2

2

(
ξ3n√

n
+ a3

)

− θ3

6

(
ξ4n√

n
+ a4

)
+ θ4

24

(
ξ5n√

n
+ a5

)
+ λn(θ),
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where λn(θ) = θ4

24n

∑n
i=1[ρ(5)(Xi − θ ′) − ρ(5)(Xi)]. Since θ̂n solves L′

n(θ) = 0

an approximation θ
(4)
n of θ̂n may be obtained by solving L′

n(θ) − λn(θ) = 0 and
writing the solution as θ

(4)
n + Op(n−5/2) where

√
nθ

(4)
n equals the right-hand side

of (2.2) minus γn. In Venetiaan (2007) a thorough description is given of the way
the expansions were obtained.

Note that

L′
n(θ̂n) − Ln

(
θ(4)
n

) = −(
θ̂n − θ(4)

n

)( ξ2n√
n

+ a2

)
+ · · · + [θ̂4

n − (θ
(4)
n )4]

24

(
ξ5n√

n
+ a5

)

+ λn(θ̂n) − λn

(
θ(4)
n

)
.

From this equation and noting that L′
n(θ̂n) = 0, we obtain the following inequal-

ity

∣∣θ̂n − θ(4)
n

∣∣∣∣∣∣ ξ2n√
n

+ a2

∣∣∣∣ ≤ ∣∣L′
n

(
θ(4)
n

) − λn

(
θ(4)
n

)∣∣

+
∣∣∣∣ θ̂

2
n − (θ

(4)
n )2

2

∣∣∣∣
∣∣∣∣ ξ3n√

n
+ a3

∣∣∣∣
(3.4)

+
∣∣∣∣ θ̂

3
n − (θ

(4)
n )3

6

∣∣∣∣
∣∣∣∣ ξ4n√

n
+ a4

∣∣∣∣
+

∣∣∣∣ θ̂
4
n − (θ

(4)
n )4

24

∣∣∣∣
∣∣∣∣ ξ5n√

n
+ a5

∣∣∣∣ + |λn(θ̂n)|.
For C sufficiently large, we have

P

(∣∣∣∣ ξjn√
logn

∣∣∣∣ > C

)
= P

(
1√
n

∣∣∣∣∣
n∑

i=1

(
ρ(j)(Xi) − aj

)∣∣∣∣∣ > C
√

logn

)

(3.5)

= o

(
1

n3/2

)
, j = 1, . . . ,5.

Here we used condition (4) and we applied Theorem 1 of Nagaev (1965) and
the proof of Theorem 3.2 of Chibisov (1972) with minor adjustments. With (3.5)
we see that P(|θ(4)

n | > δ) = o(1/n3/2). Together with (3.2) it follows that |θ̂2
n −

(θ
(4)
n )2|, |θ̂3

n − (θ
(4)
n )3| and |θ̂4

n − (θ
(4)
n )4| are of smaller order than |θ̂n − θ

(4)
n |. This

means, again in view of (3.5) and because the conditions imply a2 
= 0, that the sec-
ond, third and fourth term at the right-hand side of (3.4) are of smaller order than
the left-hand side of (3.4). Consequently, since γn = √

n(θ̂n − θ
(4)
n ) and since a2

does not vanish, claim (2.3) and hence the theorem have been proved once it has
been shown that

P

(∣∣L′
n

(
θ(4)
n

) − λn

(
θ(4)
n

)∣∣ >
εn

n2

)
= o

(
1

n3/2

)
, (3.6)
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and

P

(
|λn(θ̂n)| > εn

n2

)
= o

(
1

n3/2

)
. (3.7)

Note that L′
n(θ

(4)
n ) − λn(θ

(4)
n ) = −(θ

(4)
n )4ξ5n/24

√
n + Rn, with

Rn =
16∑
l=5

n−l/2
∑

0≤i,j,k,m<l,i+j+k+m=l

ci,j,k,mξ i
1nξ

j
2nξ

k
3nξ

m
4n

for some constants ci,j,k,m. (3.6) holds if

P

(∣∣θ(4)
n

∣∣4 ξ5n

24
√

n
>

εn

n2

)
+ P

(
|Rn| > εn

n2

)
= o

(
1

n3/2

)
. (3.8)

With (3.5) and the conditions on εn, we see that the first term at the left-hand side
of (3.8) is bounded by

P

(∣∣θ(4)
n

∣∣4 ξ5n

24
√

n
>

εn

n2

)
≤ P

(∣∣θ(4)
n

∣∣4 >

(
εn

n2

)4/5)

+ P

(∣∣∣∣ ξ5n

24
√

n

∣∣∣∣ >

(
εn

n2

)1/5)

≤ P(|ξ1n| > D1ε
1/5
n n1/10) (3.9)

+ P(|ξ5n| > D2ε
1/5
n n1/10)

= o

(
1

n3/2

)
,

where D1 and D2 are certain constants. For the second term at the left-hand side
of (3.8) we note, with the help of arguments as in (3.9), that it is of the order

O

( 16∑
l=5

4∑
j=1

P(|ξjn| > ε1/l
n n1/2−2/l)

)
= O

( 4∑
j=1

P(|ξjn| > ε1/5n1/10)

)

= o

(
1

n3/2

)
.

We have proved (3.6). With the use of condition (3) we bound |λn(θ̂n)| which

equals |θ̂n|4
24n

|∑n
i=1[ρ(5)(Xi − θ̂ ′

n) − ρ(5)(Xi)]|, by

|θ̂n|4
24n

|θ̂ ′
n|

∣∣∣∣∣
n∑

i=1

R(Xi)

∣∣∣∣∣ ≤ |θ̂n|5
24n

∣∣∣∣∣
n∑

i=1

R(Xi)

∣∣∣∣∣.
Note that because E0R

5/2(X) < ∞, it may be shown that

P

(
1

n

∣∣∣∣∣
n∑

i=1

R(Xi)

∣∣∣∣∣ > C

)
= o

(
1

n3/2

)
.
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Then

P
(|λn(θ̂n)| ≤ c0θ̂

5
n

) = 1 + o

(
1

n

)
.

We note that

θ̂5
n ≤ 31

(
θ̂n − θ(4)

n

)5 + 31
(
θ(4)
n

)5
. (3.10)

With arguments similar to those immediately after (3.5) we find that the first term
at the right-hand side of (3.10) is of smaller order than |θ̂n − θ

(4)
n |. This means that

we may focus on

P

((
θ(4)
n

)5
>

c1εn

n2

)
= O

(
P(|ξ1n| > ε1/5

n n−1/10)
) = o

(
1

n3/2

)
,

which follows from (3.9). This proves (3.7) and hence the theorem (end of proof
of Theorem 1).

3.2 Proof of Theorem 2

Let Sn be
√

nθ̂
(4)
n , then

√
n(θn − θ0) = Sn + γn. (3.11)

Because the sub terms introduced in (2.2) are polynomials in normalized sums,
Sn fits in the model described by Hall (1992), Section 2.4. With his Theorem 2.2
we see that the distribution of Sn admits an Edgeworth expansion. We take Yi =
(ρ′(Xi), ρ

′′(Xi) − a2, ρ
(3)(Xi) − a3, ρ

(4)(Xi) − a4)
T and put Ȳ = 1

n

∑
Yi . Then

Sn = √
nA(Ȳ) with A(y1, y2, y3, y4) = g1(y1) + g2(y1, y2) + g3(y1, y2, y3) +

g4(y1, y2, y3, y4); cf. (2.2). Let

σ = {E(ρ′(X1))
2}1/2(Eρ′′(X1))

−1.

Note that σ = (I (f ))−1/2 with our choice for ρ(·). Also put ‖t‖ =
[∑4

j=1(t
(j))2]1/2 and let χ(t) denote the characteristic function of Y1. In view

of (3.11) we have

sup
x

∣∣∣∣P
(√

n(θ̂n − θ0)

σ
≤ x

)
− P

(
Sn

σ
≤ x

)∣∣∣∣
≤ P

(
|γn| ≥ σεn

n3/2

)
+ sup

x

∣∣∣∣P
(

Sn

σ
≤ x

)
− P

(
Sn

σ
≤ x − εn

n3/2

)∣∣∣∣ (3.12)

+ sup
x

∣∣∣∣P
(

Sn

σ
≤ x

)
− P

(
Sn

σ
≤ x + εn

n3/2

)∣∣∣∣.
It may be shown with techniques adapted from Chibisov and van Zwet (1984a)

that

lim sup
‖t‖→∞

|χ(t)| < 1. (3.13)
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Note that the conditions of Theorem 2.2 with j = 3 of Hall (1992), page 56,
are fulfilled for Sn. So, it suffices to prove that the right-hand side of (3.12) is of
the order o(1/n3/2) for an appropriate choice of {εn}. Indeed, with {εn} as in (2.3)
the first term at the right-hand side of (3.12) is o(1/n3/2). Taking εn ↓ 0 and us-
ing the existence of an Edgeworth expansion for Sn, uniformly in x, we see that
the last two terms of (3.12) are of the order o(1/n3/2) too. The fact that Sn fits
Hall’s (1992) model for a stochastic expansion ensures that the cumulants of Sn

will determine the polynomials in the expansion for the distribution function Gn.
In Venetiaan (2007) one may find the calculations of the cumulants and verify that
indeed they are of the structure indicated by Hall (1992). In that paper it is also
described how the polynomials are obtained from the cumulants, and one will find
that these equal the polynomials in (2.4). The proof is complete (end of proof of
Theorem 2).

3.3 Proof of Theorem 3

Theorem 3 follows in a straightforward way from Theorem 2. Directions for the
computations may be found in Venetiaan (2007).
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