
Brazilian Journal of Probability and Statistics
2009, Vol. 23, No. 1, 18–35
DOI: 10.1214/08-BJPS001
© Brazilian Statistical Association, 2009

Screening method for genetic linkage analysis: Case of the
transmission disequilibrium test

Smail Mahdi
University of the West Indies

Abstract. In this paper we investigate the use of a two-stage case-control
design to test for linkage disequilibrium in a large sample with a large num-
ber of null makers and one potential candidate marker. The scores, or signals,
obtained at the markers, at the same stage, are assumed to be independent.
The aim is to reduce the cost due to the number of laboratory analyses. In
the first stage, the test is carried out at all markers of a randomly selected
proportion λ of the sample at hand. Then the markers showing a score over
a specified threshold, say, the median score, along with an average random
proportion p of the makers with scores below the median are selected for the
second stage of the study. Combined scores are then computed at the second
stage and these cross-stage scores are not assumed to be necessarily addi-
tive or independent. This, partially, extends Satagopan et al. (Biometrics 58
(2002) 163–170) analysis in the case of independent marker outcomes. The
aim is to identify optimal values for p and λ that maximize the probability to
detect association in the case of association. The transmission-disequilibrium
test is considered in the analysis and analytical formulas for the underlying
probabilities are derived throughout. Furthermore, simulation results on the
performance of the two designs are presented.

1 Introduction

Although a lot of statistical methods have been developed to test for association
between markers and diseases in case-control studies, such as those of Spielman
and Ewens (1998), Spielman, McGinnis and Ewens (1993), Terwilliger (1995) and
Choulakian and Mahdi (2000), it remains that little attention has been paid to the
design of such studies, as pointed out in Satagopan et al. (2002). In association
studies for detecting the possible loci, conferring a risk for certain diseases, often
a large number of marker loci is needed to be genotyped for each individual of a
large sample. The cost of genotyping all marker loci for the whole sample of in-
dividuals could be then very costly. Therefore, an optimal design of the study, in
order to reduce the cost of testing all markers and all individuals, would be useful.
To this end, Satagopan et al. (2002) proposed a two-stage setup when the pri-
mary limitation on resources is the number of gene evaluations performed, rather
than the total number of individuals. They describe the cost constraint as it occurs
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in the analysis of association between a BRCA mutation and a single nucleotide
polymorphisms (SNP), based on approximately 1500 anonymous SNP’s and sev-
eral other known markers, in a total of 2000 cancer cases. In the first stage of the
analysis, all genes are evaluated on a subset of n1 individuals and then only the
most promising ones, say the top ith proportion, are evaluated on additional n2
individuals. The value of n2 depends on the remaining resources allocated to the
study. The computed test statistic for each subject is assumed to have an asymp-
totic normal distribution with mean μ and variance σ 2. The statistic is afterward
rescaled to lead to a Gaussian test statistic with variance 1. In the absence of asso-
ciation, that is, at the null markers, the mean is μ = 0. The computed statistic on
the first n1 subjects is assumed to have a normal distribution with mean n1μ and
variance n2

1. This argument suggests that the statistic, based on the n1 subjects,
is given by the sum of the n1 independent statistics for each individual. The used
assumption helps, therefore, to compute the mean and variance of the combined
statistic upon the n1 + n2 individuals as (n1 + n2)μ and (n1 + n2)

2, respectively.
Furthermore, the covariance between these two statistics is equal to n1. It is also
concluded that the joint distribution is binormal. Note that this is just a simplifying
assumption since univariate normal distributions do not necessarily have joint nor-
mal distributions, see, for instance, Johnson and Wichern (2002); only the converse
is true. The question is then to find the values n1 and i optimizing the probability
that the true gene is selected at the end of the study.

The drawback of this setup is that some potential marker candidates may pro-
vide, at first, signals slightly below the top ith proportion. Such markers would be
disregarded because of possible sampling errors that might be due to n1 and more
so to i, especially, when a small value like i = 10, the one recommended in Sa-
tagopan et al. (2002), is used. Furthermore, the inference is solely reduced to the
investigation of the mean of the distribution after the scaling of the test statistic. It
is worth noting that this scaling is not always possible when, for instance, the vari-
ance of the statistic is a function of the mean as it is in the case of the transmission
disequilibrium statistic (TDT) which is based upon a binomial variable. We recall
that the TDT statistic was proposed by Spielman, McGinnis and Ewens (1993) as
a family-based association test to test for the presence of genetic linkage between
a genetic marker and a trait.

Following the methodology of Satagopan et al. (2002), we propose an alterna-
tive and safer setup in which all markers are tested on a subsample of size n1 in the
first step and all makers giving a signal over or equal to the sample median �XY of
the whole sample, made up with the signal of the true gene marker X and the null
markers Y (i), i = 1, . . . ,m, will be further analyzed. Moreover, an average small
random proportion p of the markers with signal below �XY will also be consid-
ered for the second stage of the analysis. This type of model, where only one locus
is assumed to be responsible of the trait (say, disease), is useful in linkage disequi-
librium analysis for localizing young mutations in isolated populations (see, e.g.,
Terwilliger (1995)).
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We recall that linkage disequilibrium (LD) between a marker locus and a disease
locus indicate that the two loci are closely linked. Indeed, when a new disease-
causing mutation occurs in a population, it necessarily occurs at some locus of
some haplotype. The disease allele is then associated with the allele, say A, car-
ried at a very close locus of the same haplotype. Since these loci are tightly linked,
the two alleles will co-segregate for many subsequent generations since recom-
binations are rare in such DNA short sequences. This will lead to a significant
difference in frequency of allele A in the disease population with respect to the
control population, provided that the populations are fairly stable and isolated to
major mixing. Note that associations decay in the long run, mainly because of the
recombination process.

It is worth noting that not all real applications require a high cost, including the
screening of a large number of markers and individuals. In the case of noncomplex
disorders, some association studies are based on moderate values such as n = 100
to n = 500 and m = 10 to m = 50. This even happens in studies on common
complex diseases; see, for instance, the analysis carried out in Fallin et al. (2001)
on the relationship between SNP’s within the APOE gene region and Alzheimer’s
disease (AD). Their case/control sample consisted of only 210 AD cases and 159
nondemented elderly controls. Furthermore, they have just used 8 SNP’s in a 205-
Kb region of chromosome 19 that contains the APOE gene and a set of 5 SNP’s in
a 200-Kb region on chromosome 13. However, finding genes predisposing to very
complex phenotypes is far from simple, and is likely to require a large high cost,
that is, multi-disciplinary research groups accumulating hundreds, and probably
thousands, of DNA samples from rigorously phenotyped subjects, as pointed out
in Buckland (2001).

We organize this paper as follows. In Section 2, following the Introduction, we
present the one-stage model and in Section 3, the two-stage model. The type one
error along with the power of the tests, based on the one-stage and the two-stage
models, are derived in Section 4 and 5, respectively. In Section 6, we develop
the screening procedure using the TDT statistic and in Section 7 we analyze the
sensitivity of the test performance with respect to the value of p (the proportion
of markers to be taken among those with scores below the median). Finally, we
display and discuss the obtained simulation results, on the performance of the two
methods with the TDT test, in Section 8.

2 Single stage-model

We consider throughout the case of m independent null markers and one poten-
tial true associated marker in a fairly large sample of n individuals. Let Y (i), i =
1, . . . ,m, and X denote the signals (outcomes) of the null markers and the true
marker, respectively. In the case of one-stage model, the probability P that the
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true gene, represented by X, is found at the end of the study is given by

P = P
(
Xn >

m
max
i=1

Y (i)
n

)
=

∫ ∞
−∞

(
1 − FXn(y

∗
n)

)
gn(y

∗
n) dy∗

n,

where FXn and gn represent the distribution functions of the scores Xn and

maxY
(j)
n , j = 1, . . . ,m, respectively, both evaluated at maxj (Y

(j)
n ) = y∗

n . The sub-
script n stands for the used sample size. We consider below the two-stage case.

3 Two-stage model

The steps of the model are outlined as follows.

Step 1. At this first stage, all the m + 1 markers are tested on n1 individuals as
in Satagopan et al. (2002). Let Xn1 and Y 1

n1
, . . . , Ym

n1
denote the obtained scores at

this stage. The setup consists in selecting all markers with a score above or equal
to the sample median �XY for further testing. We also add to the second sage,
on average, a random proportion p of the markers that provided a score below
�XY . Let p1 denote the probability that the X marker is selected for stage 2. This
probability is given by

p1 = P
[
(Xn1 ≥ �XY ) ∪ (

(Xn1 < �XY ) ∩ (S = 1)
)]

= P [(Xn1 ≥ �XY )] + pP [(Xn1 < �XY )],
where S is a Bernoulli variable with probability of success p. We use the following
lemma to evaluate p1.

Lemma 1. For continuous distributions of X and Y, we have

P [X ≥ �XY ] = P [X ≥ �Y ],
where �Y is the sample median of the Y scores.

Proof. The random variable X satisfies the equality

P [X ≥ �XY ] = P [X ≥ �XY |X > �Y ]P [X > �Y ]
+ P [X ≥ �XY |X ≤ �Y ]P [X ≤ �Y ].

Note that under the condition X > �Y , we necessarily have �Y < �XY and if
X ≤ �Y , then �Y ≥ �XY . To evaluate P [X ≥ �XY |X > �Y ], we consider first the
case where there is no Y value between X and �Y . In such a case, we will neces-
sarily have X ≥ �XY ≥ �Y . Thus, P [X ≥ �XY |X > �Y ] = 1 in such case. On the
other hand, if there is a Y value between X and �Y , say, Ỹ , then �Y ≤ �XY ≤ Ỹ

and therefore, X ≥ �XY . Thus, P [X ≥ �XY |X > �Y ] = 1 as well. Thus, P [X ≥
�XY |X > �Y ] = 1 in both cases. Let us now consider the situation X ≤ �Y . First,



22 S. Mahdi

if there is no Y value between X and �Y then, we must have X ≤ �XY ≤ �Y , and
thus, P [X ≥ �XY |X ≤ �Y ]P [X ≤ �Y ] = PX = �XY ] = 0 since X and Y are
assumed to be continuous variables. Furthermore, if there is a Y value between X

and �Y , then X ≤ �XY ≤ �Y ; thus, P [X ≥ �XY |X ≤ �Y ]P [X ≤ �Y ] = PX =
�XY ] = 0. We conclude then the equality P [X ≥ �XY ] = P [X ≥ �Y ]. �

Thus, we have

p1 = 1 + (p − 1)

∫ ∞
−∞

FXn1
(ξ)ψ(ξ) dξ, (3.1)

where ψ represents the probability density function of the sample median �Y and
FXn1

(ξ) is the distribution function of Xn1 evaluated at �Y = ξ . The distribution
of the variable �Y can be approximated as

ψ(ξ) ∼ exp
[−m

(
2f (ξmed)(ξ − ξmed)

)2]
,

where ξmed is the true median of Yn1 and f is the probability density function
of Yn1 ; see, for example, Lupton (1993).

Evaluation of p2

The quantity p2 represents the probability that the marker X score outperforms the
Y scores at the second stage, given that the marker X is selected in phase 1. Let
η denote the random number of selected markers among whose with scores below
the median at the first stage. Then the total number of selected markers for phase 2
is m2 = k + η where k = m+4

2 if m is even and m+3
2 if m is odd and η is a binomial

variable with parameters m − k and p. The probability p2 is given by

p2 =
m−k+1∑

r=0

p2(r)Pr[η = r]

=
m−k+1∑

r=0

p2(r)

(
m − k + 1

r

)
pr(1 − p)m−k−r+1,

where

p2(r) = Pr[A(r)|B(r)]
and

A(r) = {
Xn2 > Y(1)

n2
, . . . ,Xn2 > Y(k)

n2
,Xn2 > Y(k+1)

n2
, . . . ,Xn2 > Y(k+r)

n2

};
B(r) = [

Y (1)
n1

≥ �Y , . . . , Y (k)
n1

≥ �Y

]

∩
[

r⋂
l=1

(
Y (k+l)

n1
< �Y ∩ S = 1

)] ∩ [
Xn1 ≥ �Y ∪ [Xn1 < �Y ∩ S = 1]],
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and

p2(r) =
∫ ∞
x2=−∞

{P [Yn2 ≤ x2|Yn1 ≥ �Y ]}k × {P [Yn2 ≤ x2|Yn1 < �Y ]}r

× P [Xn1 ≥ �Y ]
P [Xn1 ≥ �Y ] + pP [Xn1 < �Y ] × dP [Xn2 ≤ x2|XN1 ≥ �Y ]

+
∫ ∞
x2=−∞

{P [Yn2 ≤ x2|Yn1 ≥ �Y ]}k × {P [Yn2 ≤ x2|Yn1 < �Y ]}r

× pP [Xn1 < �Y ]
P [Xn1 ≥ �Y ] + pP [Xn1 < �Y ]

× dP [Xn2 ≤ x2|Xn1 < �Y ].
In order to compute the above integral, we need to evaluate separately the follow-
ing terms.

(i) The first term is given by

P [Yn2 ≤ x2|Yn1 ≥ �Y ]

=
∫ ∞
−∞ P [Yn2 ≤ x2, Yn1 ≥ ξY ]ψ(ξY ) dξY∫ ∞

−∞ P [Xn1 ≥ ξY ]ψ(ξY ) dξY

=
∫ ∞
−∞ P [Yn2 ≤ x2|Yn1 ≥ ξY ]P [Yn1 ≥ ξY ]ψ(ξY ) dξY∫ ∞

−∞ P [Xn1 ≥ ξY ]ψ(ξY ) dξY

=
∫ ∞
y1=ξY

∫ ∞
−∞ P [Yn2 ≤ x2|Yn1 = y1]fY1(y1)ψ(ξY ) dξY dy1∫ ∞

−∞ P [Xn1 ≥ ξY ]ψ(ξY ) dξY

=
∫ ∞
−∞ ψ(ξY )[∫ ∞

ξY
�Yn2 |y1(x2)fY1(y1) dy1]dξY∫ ∞

−∞[1 − WX1(ξY )]ψ(ξY ) dξY

,

where ψ is the pdf of �Y , fY1 probability density function of Yn1 , � the
conditional distribution function of Yn2 |Yn1 and W the distribution function
of Yn1 .

(ii) Similarly, we have

P [Yn2 ≤ x2|Yn1 < �Y ] =
∫ ∞
−∞ ψ(ξY )[∫ ξY−∞ �Yn2 |y1(x2)fY1(y1) dy1]dξY∫ ∞

−∞ WX1(ξY )ψ(ξY ) dξY

,

(iii)

P [Xn1 < �Y ] = 1 − P [Xn1 ≥ �Y ] =
∫ ∞
−∞

WX1(ξY )ψ(ξY ) dξY

and
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(iv)

dP [Xn2 ≤ x2|Xn1 > �Y ]

= d

dx2

{∫ ∞
−∞ ψ(ξY )[∫ ∞

ξY
ψXn2 |x1(x2)fx1(x1) dx1]dξY∫ ∞

−∞[1 − WX1(ξY )]ψ(ξY ) dξY

}
dx2,

where fx1 is the probability density function of X1 and �Xn2 |x1 , the condi-
tional distribution function of Xn2 |Xn1 .

(v) The last term is given by

dP [Xn2 ≤ x2|Xn1 ≤ �Y ]

= d

dx2

{∫ ∞
−∞ ψ(ξY )[∫ ξY−∞ ψXn2 |x1(x2)fX1(x1) dx1]dξY∫ ∞

−∞ WX1(ξY )ψ(ξY ) dξY

}
dx2.

4 Type one error

4.1 One-stage model

We recall that the type one error is given by the probability to reject the null hy-
pothesis H0 of no association under H0. Under the null hypothesis, the scores
Xn and Y

(i)
n for i = 1, . . . ,m have the same distribution as, say, Fy . Therefore,

for a significance level α, we reject H0 under H0 if maxm+1
i=1 Y

(i)
n > K0 where

K0 = F−1
Y (1 − α)1/(m+1). This derives from the following equation:

P [RejectH0|H0] = P
[
m+1
max
i=1

Y (i)
n > K0

]

= 1 − P
[
m+1
max
i=1

Y (i)
n ≤ K0

]
= 1 − [FY (K0)]m+1 = α.

4.2 Performance and power

We measure the performance of the one-stage model by the probability to conclude
association given that there is indeed association. This performance measure is
given by the following formula:

P
[
max

(
Y (1)

n , . . . , Y (m)
n ,Xn

)
> K0

] = 1 − [FY (K0)]mFXn(K0).

Furthermore, the probability that the X marker will outperform the Y ’s markers
and show association is referred to as the power of the testing procedure, which is
given by

Po1 = P
[
Xn >

m
max
i=1

Y (i)
n ∩ Xn > K0

]

= P
[
Xn >

m
max
i=1

Y (i)
n

]
P

[
K0 ≤ m

max
i=1

Y (i)
n

]

+ P [Xn > K0]P
[
K0 >

m
max
i=1

Y (i)
n

]
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= [1 − Gn(K0)] ×
∫ ∞
−∞

[1 − FXn(y
∗
n)]g(y∗

n) dy∗
n

+ [1 − FXn(K0)]Gn(K0),

where Gn represents the cumulative function of maxY
(i)
n for i = 1, . . . ,m.

5 Two-stage model

We derive below the type one error and the power of the two-stage model.

5.1 Type one error

For the same significance level α, as above, the corresponding two-stage proce-
dure critical value K1 for rejecting wrongly the null hypothesis H0 is given by the
solution of the equation

α =
m−k+1∑

j=0

P
[ k+j
max
i=1

Y
(i)
N > K1

∣∣η = j
]
P [η = j ]

=
m−k+1∑

j=0

[1 − FY (K1)]k+j

(
m − k + 1

j

)
pj (1 − p)m−k−j+1

(5.1)

= 1 −
m−k+1∑

j=0

FY (K1)
k+j

(
m − k + 1

j

)
pj (1 − p)m−k−j+1

= 1 − FY (K1)
k[pFY (K1) + 1 − p]m−k+1.

From a partial check of the above formula, we can state the following remarks.

Remark 1. When p = 1, we have K1 = K0. This agrees with the one-stage model
since all markers are selected for step 2 in such situations.

Remark 2. For a fixed value α, the right-hand side of equation (5.1) increases
as p increases, and so does the value K1, which reaches its maximum at K1 = K0.
Indeed, we have

dα(p)

dp
= (m − k + 1)FY (K1)

k[pFY (K1) + 1 − p]m−k(1 − FY (K1)
) ≥ 0

since pFY (K1) + 1 − p ≥ 0 and FY (K1) ≤ 1.
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5.2 Power

To evaluate the power, we consider first the case where k + r markers are selected
for the second phase. In this case, the probability for the selected set of markers to
show association, given that the true marker X is included in the subset, is

P (r) = P
[
max

(
Y

(1)
N , . . . , Y

(k+r−1)
N ,XN

)
> K1|η = r

]
= 1 − [FY (K1)]k+r−1FXN

(K1).

Therefore, the performance of the procedure, that is, the probability to observe
association, with any possible size of the selected markers set, is obtained as

℘ = p1

m−k+1∑
r=0

(
m − k + 1

r

)
pr(1 − p)m−k−r+1P (r),

where p1 is given in equation (3.1). Furthermore, the probability that the marker X

will outperform the Y markers and show association in the case where k + r mark-
ers, including the true marker, are selected for the final step is given by

P ′(k + r) = P
[
XN >

k+r−1
max
i=1

Y
(i)
N ∩ XN > K1

∣∣η = r
]

= P
[
XN >

k+r−1
max
i=1

Y
(i)
N

]
P

[
K1 ≤ k+r−1

max
i=1

Y
(i)
N

]

+ P [XN > K1]P
[
K1 >

k+r−1
max
i=1

Y
(i)
N

]

= [
1 − G(k+r−1)(K1)

] ×
{∫ ∞

−∞
[1 − FX(ξY )]gk+r−1(ξY ) dξY

}

+ [1 − FX(K1)]Gk+r−1(K1),

where Gk+r−1 and gk+r−1 are the distribution and probability density functions of
maxk+r−1

i=1 Yi , respectively. Thus, the power of the two-stage test is given by

Po2 = p1

m−k+1∑
r=0

(
m − k + 1

r

)
pr(1 − p)m−k−r+1P ′(k + r).

Remark 3. For p = 1, p1 = 1, Po2 = P ′(m + 1) = Po1 since K1 = K0 in such a
case. This agrees with the power of the one-stage procedure.

We illustrate below the screening methodology through the X-linkage trans-
mission disequilibrium test (TDT). Following the terminology of Spielman and
Ewens (1998), as reported in Ho and Bailey-Wilson (2000), this test uses the to-
tal number of transmissions T of allele A1 in n pairs of heterozygous mothers
(A1,A2) and their affected children to test for associations disease-gene. Mothers
with multiple affected children contribute multiple pairs to n. The used test statistic
is the Z-score test with Yates’s continuity correction.
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6 Screening with the TDT statistic

We consider here the transmission disequilibrium statistic evaluated at the X

marker as well as at the Yi’s markers. When this statistic is based on n1 individu-
als, that is, n1 pairs of heterozygous mothers (A1,A2) and their affected children,
it is given by

Xn1 = |ζ x
n1

− n1/2| − 0.5√
n1/4

and

Yn1 = |ζ y
n1 − n1/2| − 0.5√

n1/4

at the true marker X and the null marker Y , respectively. The variables ζ
y
n1 and ζ x

n1

have independent binomial distributions with parameters (n1,
1
2) and (n1, p̃), re-

spectively. When the full sample size n = n1 + n2 is used, we similarly have

Xn1+n2 = |ζ x
n1

+ ζ x
n2

− (n1 + n2)/2| − 0.5√
(n1 + n2)/4

and

Yn1+n2 = |ζ y
n1 + ζ

y
n2 − (n1 + n2)/2| − 0.5√

(n1 + n2)/4
.

Note that, in the above statistics, the variable Xn1+n2 cannot be algebraically de-
composed into a sum of Xn1 and Xn2 as in Satagopan et al. (2002). This is also
true for Yn1+n2 statistic as well.

We compute below the mean, variance and covariance of the above statistics.
The covariance between the scores Yn1 and Yn1+n2 is obtained as

cov(Yn1, Yn1+n2)

= 4√
n1(n1 + n2)

E[|ζ y
n1

− n1/2| × |(ζ y
n1

− n1/2) + (ζ y
n2

− n2/2)|] (6.1)

− E[|ζ y
n1

− n1/2|]E[|(ζ y
n1

− n1/2) + (ζ y
n2

− n2/2)|].
Using the classical normal approximation, ζ

y
l ∼ N( l

2 , l
4) for l is large, we get after

integration and numerical approximation, the following formulas

E[|ζ y
l − l/2|] � 0.2

√
l (6.2)

and

E[|ζ y
n1

− n1/2||(ζ y
n1

− n1/2) + (ζ y
n2

− n2/2)|] � (0.73 + 0.34τ)
τn2

2

16
, (6.3)

where l can take the values n1 or n = n1 +n2. After substitution of equations (6.2)
and (6.3) into equation (6.1), we get

cov(Yn1, Yn1+n2) = 0.73 + 0.34τ√
τ(1 + τ)

n − 0.16,
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where τ = n1
n2

and n = n1 +n2. Using similar techniques, one can easily derive the
following quantities:

E(Yn1) � 0.8 − 1√
n1

and

Var(Yn1) � 1 −
[
0.8 − 1√

n1

]2

.

Furthermore, if we assume that the vector (Yn1, Yn1+n2) has an approximate bi-
normal distribution, then the conditional distribution of Yn1+n2 |Yn1 is also normal.
The mean and variance of this conditional distribution can easily be deducted from
the parent joint distribution.

Similarly, using the normal approximation ζ x
n1

∼ N(np̃, np̃(1 − p̃)), we get

E(Xn1) =
∫ ∞
−∞

{ |ζ x
n1

− n1/2| − 0.5√
n1/4

}

× 1√
2π

√
n1p̃(1 − p̃)

exp
[
−1

2

[
ζ x
n1

− n1p̃√
n1p̃(1 − p̃)

]2]
dζ x

n1
.

Making now the change of variable, z = ζ x
n1

−n1p̃√
n1p̃(1−p̃)

, yields after integration,

E(Xn1) = 2
√

p̃(1 − p̃)

[√
2

π
exp

(
−K2

2

)
+ K

(
1 − 2�(−K)

)] − 1√
n1

,

where K = (p̃ − 1
2)

√
n1

p̃(1−p̃)
. Moreover, with the use of the same techniques, we

obtain the following approximation:

E(X2
n1

) =
∫ ∞
−∞

{ |ζ x
n1

− n1/2| − 0.5√
n1/4

}2

× 1√
2π

√
n1p̃(1 − p̃)

exp
[
−1

2

[
ζ x
n1

− n1p̃√
n1p̃(1 − p̃)

]2]
dζ x

n1

= n1 + 4p̃(1 − p̃)(1 + n1)

− 4

√
p̃(1 − p̃)

n1

[√
2

π
exp

(
−K2

2

)
+ K

(
1 − 2�(−K)

)] + 3

n1

= n1 + 4p̃(1 − p̃)(1 + n1) + O(n−1/2).

Note that in the case p̃ = 1
2 , we get E(Xn1) =

√
2
π

− 1√
n1

and E(X2
n1

) = 1 −
2
√

2
πn1

since K = 0. This yields, Var(Xn1) = 1 − 2
π

− 1
n1

� 1 − 2
π

� (0.6)2 for
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large n1. These values agree with the obtained values at the null marker Yn1 . On the

other hand, for p̃ > 1
2 , we get E(Xn1) = (2p̃ − 1)

√
n1 + O(n

−1/2
1 ) and E(X2

n1
) =

4p̃(1 − p̃) + (2p̃ − 1)2n1 + O(n
−1/2
1 ) which are function of n1 and p̃. This yields

Var(Xn1) = 4p̃(1 − p̃) + O(n
−1/2
1 ). Therefore, the asymptotic value of Var(Xn1)

which is 4p̃(1 − p̃) is not the same for every value of p̃.
The covariance between the statistics Xn1 and Xn1+n2 , evaluated on a set of n1

individual pairs and on a set of n1 + n2 individual pairs that include the first n1

ones, is given by

cov(Xn1,Xn1+n2)

= 4√
n1(n1 + n2)

E[|ζ x
n1

− n1/2||(ζ x
n1

− n1/2) + (ζ x
n2

− n2/2)|]

− E[|ζ x
n1

− n1/2|]E[|(ζ x
n1

− n1/2) + (ζ x
n2

− n2/2)|]

� χ

∫ ∞
−∞

∫ ∞
−∞

|ζ x
n1

− n1/2|
× |(ζ x

n1
− n1/2) + (ζ x

n2
− n2/2)|δ(ζ x

n1
, ζ x

n2
) dζ x

n1
dζ x

n2

−
∫ ∞
−∞

{ |ζ x
n1

− n1/2| − 0.5√
n1/4

}2

× 1√
2π

√
n1p̃(1 − p̃)

exp
[
−1

2

[
ζ x
n1

− n1p̃√
n1p̃(1 − p̃)

]2]
dζ x

n1

×
∫ ∞
−∞

{ |ζ x
n1+n2

− (n1 + n2)/2| − 0.5√
(n1 + n2)/4

}2 1√
2π

√
(n1 + n2)p̃(1 − p̃)

× exp
[
−1

2

[
ζ x
n1+n2

− (n1 + n2)p̃√
(n1 + n2)p̃(1 − p̃)

]2]
dζ x

n1+n2
,

where the δ is the joint normal density function of the independent variables
ζ x
n1

−n1p̃√
(n1p̃(1−p̃)

,
ζ x
n2

−n2p̃√
(n2p̃(1−p̃)

and χ = 4√
n1(n1+n2)

. The use of the normal approximation
and the Delta method, yields, after computation and simplification, the following
result:

cov(Xn1,Xn1+n2)

� 4√
n1(n1 + n2)

[n1(n1 + n2)|p̃ − 1/2|]

−
(

2
√

p̃(1 − p̃)

[√
2

π
exp

(
−K2

2

)
+ K

(
1 − 2�(−K)

)] − 1√
n1

)
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×
(

2
√

p̃(1 − p̃)

[√
2

π
exp

(
−K ′2

2

)
+ K

(
1 − 2�(−K ′)

)]

− 1√
n1 + n2

)
,

where K ′ = (p̃ − 1
2)

√
n1+n2
p̃(1−p̃)

and � is the distribution function of the standard
normal variable.

7 Sensitivity to markers with scores below median

To check on the sensitivity of the analysis with respect to the markers that provide
scores below the median at the first stage, we evaluate the probability that the true
marker’s score X is among that markers. This probability is approximately given
by

P [Xn1 < �Y ] =
∫ ∞
−∞

�0

(ξ − μXn1

σXn1 )

)
ψ(ξ)dξ,

where �0 is the distribution function of the standard normal variable and ψ the
probability density function of the sample median �Y which is approximately
Gaussian with mean ξmed and variance σ 2

�Y
= 1

4m[f (ξmed)]2 ; see Cramér (1946).

Using the second-order approximation of the function �0(
ξ−μXn1

σXn1
) at the point

ξ = ξmed, we get after integration and simplification,

P [Xn1 < �Y ] � �0

(ξmed − μXn1

σXn1

)

− ξmed − μXn1

2
√

2πσ 2
Xn1

{
exp

[
−1

2

(ξmed − μXn1

σXn1

)2]}
σ 2

�Y
.

Furthermore, by using the normal approximation for the distribution of Yn1 , that
holds when n1 is sufficiently large, we obtain E(Yn1) = ξmed; thus,

P [Xn1 < �Y ]

� �0

(ξmed − μXn1

σXn1

)
(7.1)

− (ξmed − μXn1
)π Var(Yn1)

4m
√

2πσ 2
Xn1

{
exp

[
−1

2

(ξmed − μXn1

σXn1

)2]}
.

7.1 Partial check

To partially check the accuracy of the derived expression for P [Xn1 < �Y ], we
consider again the Satagopan et al. (2002) two-stage design test and the transmis-
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sion disequilibrium test. In Satagopan et al. (2002) case, we have μXn1
= n1μ,

ξmed = 0, μYn1
= 0, Var(Yn1) = n1 and σ 2

Xn1
= n1. The substitution of these values

into equation (7.1) yields

P [Xn1 < �Y ] � �0
(−√

n1μ
) + πn1μ

4
√

2πm
exp

[
−n1μ

2

2

]
.

Note that if we substitute μ = 0 in the above equation, we get P [Xn1 < �Y ] =
�0(0) = 1

2 as it should be since the score variables X and Y have the same dis-
tribution in such a case; thus, the probability to observe a value below the median
is 1

2 . On the other hand, for the studied case μ > 0 in the simulation of Satagopan
et al. (2002), P [Xn1 < �Y ] decreases as n1 or m increases and tends toward zero
when n1 → ∞. This agrees with the sign of μ. On the other hand, for μ < 0 we
have that P [Xn1 < �Y ] tends toward 1 as n1 → ∞. This agrees as well with the
fact that μ is negative.

Case of the transmission disequilibrium test. In this case, we have μXn1 =
2
√

p̃(1 − p̃)(p̃ − 0.5)
√

n1 + O(n−1/2), σ 2
Xn1

= 4p̃(1 − p̃) + O(n−1/2), ξmed �
μYn1

= 0.8 +O(n−1/2) and Var(Yn1) = 0.36 +O(n−1/2). After substitution of the
above values into equation (7.1), we get

P [Xn1 < �Y ] � �0

(
(0.8 − 2

√
p̃(1 − p̃)(p̃ − 0.5)

√
n1)

2
√

p̃(1 − p̃)

)
− ��′,

where

� = exp
[
−1

2

(
(0.8 − 2

√
p̃(1 − p̃)(p̃ − 0.5)

√
n1)

2
√

p̃(1 − p̃)

)2]

and

�′ = 0.36π [0.8 − 2
√

p̃(1 − p̃)(p̃ − 0.5)
√

n1]
16

√
2πmp̃(1 − p̃)

.

From above, we see that P [Xn1 < �Y ] → �0(−∞) = 0 as n1 → ∞ for p̃ > 1
2 ,

as it should be since the X value is almost surely above the Y values. Note that the
case p̃ > 1

2 is the most relevant one for the analysis presented here. Similarly, for
p̃ < 1

2 we obtain P [Xn1 < �Y ] → 1 when n1 gets sufficiently large; this is also
expected because the X value will tend to be much larger than the Y values in this
situation. Finally, if p̃ = 1

2 we get P [Xn1 < �Y ] = �0(0) = 1
2 which agrees with

the fact that X and Y are identically distributed in such case.
These results lead to the following.

Remark 4. The probability that the X marker takes a value below the sample
median decreases as the sample size or the number of markers increases. This
probability becomes negligible when the first stage is based on fairly large sample
sizes.
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8 Simulation results and discussion

To compare the performance of the two methods with the TDT statistic, we car-
ried out a simulation study for various values of n1, n2,m,p and p̃. To this
end, for fixed values of λ = n1

n1+n2
= 0.05, (0.1),0.95, p̃ = 0.50(0.05)1.0 and

p = 0.05;0.10, we have estimated the probability that the associated marker is
selected at the end of the study using both one-stage and two-stage methods. The
notation used p̃ = 0.50(0.05)1.0 is to state that p̃ starts at 0.50 and increases
steadily by 0.05 until reaching the value 1.0. For each configuration of the para-
metric space, we have used 5000 samples. Note that we could not use much larger
values for n and m because of computing power limitation. Nevertheless, our con-
sidered parametric values are sufficiently informative and provide us with a good
guideline. Overall, the analysis showed that the two-stage model performs as the
one-stage model for λ ≥ 0.25, and that the results are not significantly dependent
of p since m and n are fairly large. This agrees with the findings in Satagopan et
al. (2002) and also confirms the Remark 4 about the sensitivity of the performance
to the value of p. Therefore, we suggest taking a small value such as p = 5%.
Note that the asymptotic variance of the TDT statistic at the true marker is differ-
ent from the one at the null marker. In this case, the two statistics cannot be scaled
in order to have a common unit variance as in Satagopan et al. (2002). We dis-
play in Table 5 empirical values for the asymptotic mean and variance of the TDT
statistic in the case n1 = 10000 and p̃ = 0.5(0.1)0.9. These empirical values agree
with the derived corresponding formulas. Tables 1–4 displayed below, illustrate
the obtained results in the cases of p = 0.05, n = n1 + n2 = 500,1000,5000 and
m = 100,500. The last rows of the tables give the corresponding empirical value

Table 1 Empirical values for the probability that the X marker outperforms the Y markers as a
function of λ and p̃ in the case of one-stage and two-stage test procedures. The last row gives the
corresponding values obtained with the one-stage test procedure. n = 500 and m = 100

p̃ 0.50 0.55 0.60 0.65 0.70

λ

0.05 0.01 0.30 0.76 0.90 0.96
0.15 0.01 0.30 0.85 0.97 0.99
0.25 0.02 0.34 0.93 0.98 1.00
0.35 0.01 0.35 0.95 1.00 1.00
0.45 0.01 0.34 0.94 1.00 1.00
0.55 0.01 0.34 0.95 1.00 1.00
0.65 0.01 0.32 0.95 1.00 1.00
0.75 0.01 0.30 0.95 1.00 1.00
0.85 0.01 0.32 0.95 1.00 1.00
0.95 0.01 0.32 0.94 1.00 1.00
1.00 0.013 0.31 0.94 1.00 1.00
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Table 2 Empirical values for the probability that the X marker outperforms the Y markers as a
function of λ and p̃ in the case of one-stage and two-stage test procedures. The last row gives the
corresponding values obtained with the one-stage test procedure. n = 1000 and m = 100

p̃ 0.50 0.55 0.60 0.65 0.70

λ

0.05 0.01 0.51 0.82 0.96 0.98
0.15 0.01 0.59 0.96 1.00 0.99
0.25 0.01 0.62 0.99 1.00 1.00
0.35 0.01 0.62 0.99 1.00 1.00
0.45 0.01 0.62 0.99 1.00 1.00
0.55 0.01 0.62 1.00 1.00 1.00
0.65 0.01 0.63 1.00 1.00 1.00
0.75 0.01 0.63 0.99 1.00 1.00
0.85 0.01 0.64 1.00 1.00 1.00
0.95 0.01 0.64 1.00 1.00 1.00
1.00 0.01 0.62 0.99 1.00 1.00

Table 3 Empirical values for the probability that the X marker outperforms the Y markers as a
function of λ and p̃ in the case of one-stage and two-stage test procedures. The last row gives the
corresponding values obtained with the one-stage test procedure. n = 5000 and m = 100

p̃ 0.50 0.55 0.60 0.65 0.70

λ

0.05 0.01 0.51 0.82 0.96 0.97
0.15 0.01 0.58 0.96 0.98 1.00
0.25 0.02 0.66 0.99 1.00 1.00
0.35 0.01 0.67 1.00 1.00 1.00
0.45 0.01 0.65 1.00 1.00 1.00
0.55 0.01 0.66 1.00 1.00 1.00
0.65 0.01 0.68 1.00 1.00 1.00
0.75 0.01 0.66 1.00 1.00 1.00
0.85 0.01 0.66 1.00 1.00 1.00
0.95 0.01 0.68 1.00 1.00 1.00
1.00 0.02 0.69 1.00 1.00 1.00

obtained with the one-stage test procedure. Note that from Table 4, we see that the
probability values are smaller than their corresponding values given in the other
tables; this suggests that larger samples are needed when both m and n are of the
same large magnitude.

The case of correlated markers will be analyzed in a future paper using proper-
ties of a covariance matrix based upon the recombination rates between loci; see,
for example, Lessard and Mahdi (1995) and Mahdi and Lessard (1996).
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Table 4 Empirical values for the probability that the X marker outperforms the Y markers as a
function of λ and p̃ in the case of one-stage and two-stage test procedures. The last row gives the
corresponding values obtained with the one-stage test procedure. n = 500 and m = 500

p̃ 0.50 0.55 0.60 0.65 0.70

λ

0.05 0.00 0.19 0.75 0.84 0.92
0.15 0.00 0.20 0.82 0.99 0.98
0.25 0.00 0.20 0.88 0.99 1.00
0.35 0.00 0.21 0.89 1.00 1.00
0.45 0.00 0.21 0.89 1.00 1.00
0.55 0.00 0.15 0.88 1.00 1.00
0.65 0.00 0.17 0.85 1.00 1.00
0.75 0.00 0.17 0.85 1.00 1.00
0.85 0.00 0.15 0.84 1.00 1.00
0.95 0.00 0.15 0.85 1.00 1.00
1.00 0.00 0.17 0.89 1.00 1.00

Table 5 Empirical values for the asymptotic mean (μTDT) and
variance (σ 2

TDT) of the TDT statistic computed with n1 = 10000,
m = 1000 and p̃ = 0.5(0.1)0.9

p̃ μTDT σ 2
TDT

0.5 0.7948 0.3610
0.6 63.2501 0.9666
0.7 126.4886 0.8393
0.8 189.7367 0.6420
0.9 252.9794 0.3594
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