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Bayesian estimation of the basic reproduction

number in stochastic epidemic models

Damian Clancy∗ and Philip D. O’Neill†

Abstract. In recent years there has been considerable activity in the develop-
ment and application of Bayesian inferential methods for infectious disease data
using stochastic epidemic models. Most of this activity has employed computa-
tionally intensive approaches such as Markov chain Monte Carlo methods. In
contrast, here we address fundamental questions for Bayesian inference in the
setting of the standard SIR (Susceptible-Infective-Removed) epidemic model via
simple methods. Our main focus is on the basic reproduction number, a quantity
of central importance in mathematical epidemic theory, whose value essentially
dictates whether or not a large epidemic outbreak can occur. We specifically con-
sider two SIR models routinely employed in the literature, namely the model with
exponentially distributed infectious periods, and the model with fixed length in-
fectious periods. It is assumed that an epidemic outbreak is observed through
time. Given complete observation of the epidemic, we derive explicit expressions
for the posterior densities of the model parameters and the basic reproduction
number. For partial observation of the epidemic, when the entire infection process
is unobserved, we derive conservative bounds for quantities such as the mean of
the basic reproduction number and the probability that a major epidemic out-
break will occur. If the time at which the epidemic started is observed, then linear
programming methods can be used to derive suitable bounds for the mean of the
basic reproduction number and similar quantities. Numerical examples are used
to illustrate the practical consequences of our findings. In addition, we also ex-
amine the implications of commonly-used prior distributions on the basic model
parameters as regards inference for the basic reproduction number.

Keywords: Basic reproduction number; Bayesian inference; Epidemics; Linear
programming; Stochastic epidemic models

1 Introduction

In recent years there has been considerable activity in both the methodological de-
velopment and application of methods for Bayesian data analysis of infectious disease
outbreak data using stochastic epidemic models. Almost all of this literature employs
Markov chain Monte Carlo (MCMC) methodology, which offers enormous power and
flexibility compared to other approaches (see e.g. Gibson and Renshaw, 1998; O’Neill
and Roberts, 1999; O’Neill et al., 2000; Streftaris and Gibson, 2004; Neal and Roberts,
2005). The methods have been applied to many different human, animal and plant
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pathogens and diseases, examples of which include pneumococcal carriage (Auranen
et al., 2000), measles (Li et al., 2002), swine fever (Höhle et al., 2005), influenza
(Cauchemez et al., 2004; Demiris and O’Neill, 2005), norovirus (O’Neill and Marks,
2005) and nosocomial infections (McBryde et al., 2006).

Despite the advances mentioned above, one notable absence in the current literature
is any treatment of Bayesian inference for one of the most basic stochastic epidemic
models, namely the SIR (Susceptible-Infective-Removed) model, without recourse to
MCMC methods. This situation is in stark contrast to the classical case, where esti-
mation methods for the SIR model, at least in the case where the model is Markov,
are long-established (see e.g. Becker, 1989, Chapter 7; Andersson and Britton, 2000,
Chapters 9 and 10). It is therefore of interest to see what can be achieved without
computationally intensive methods such as MCMC.

An additional and important motivation for our study is that Bayesian analysis of
the SIR model provides insights that are useful in the analysis of more complex and
realistic models. SIR models themselves are frequently used as components of more
complex epidemic models, for example those featuring populations divided into house-
holds (Demiris and O’Neill, 2005) or epidemics on networks (Andersson and Britton,
2000, Chapter 7). An example of such an insight, described in detail below, is the
extent to which apparently natural (and commonly used) prior distributions for model
parameters can affect the resulting inference.

In this paper, our attention generally focuses on the basic reproduction number R0,
informally defined as the average number of secondary cases caused by a single infective
individual in a large susceptible population. This quantity is of enormous importance
within epidemic modelling because, roughly speaking, if R0 ≤ 1 then an epidemic is
highly unlikely to occur. Estimation of R0, or equivalent parameters in more complex
models, can usually be achieved via MCMC methods. Among other things, we derive
a closed-form expression for the posterior density of R0 given suitably complete data,
and bounds on various quantites (e.g. the mean) for other data scenarios.

The paper is organised as follows. Section 2 describes the standard SIR epidemic
model and recalls some results required in the sequel. Sections 3 and 4 consider two
different special cases of the SIR model, corresponding to exponential and constant
infectious periods, respectively. In Section 5 we apply our methods to three example
data sets from the literature. Some brief concluding comments are given in Section 6.

2 Preliminaries

2.1 The standard SIR model

We begin by recalling the definition of the standard SIR (Susceptible-Infective-Removed)
stochastic epidemic model (see e.g. Andersson and Britton, p.11). Consider a pop-
ulation of N individuals, assumed to mix together homogeneously. At each time
t ≥ 0, every individual in the population is either susceptible, infective or removed,
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with the numbers in each category denoted S(t), I(t) and R(t), respectively, so that
S(t) + I(t) +R(t) = N . At time t = 0, the population contains only infectives and sus-
ceptibles, so that S(0) ≥ 1, I(0) ≥ 1 and R(0) = 0. Each infective individual remains
so for a period of time (called the infectious period) having an arbitrary but specified
distribution TI , before becoming removed. Removed individuals play no further part in
the epidemic. The infectious periods of different individuals are assumed to be mutually
independent. During its infectious period, an infective individual has infectious contacts
with each susceptible individual at times given by the points of a homogeneous Pois-
son process of rate β/N , with these processes being mutually independent. Each such
contact results in the susceptible immediately becoming infective. Since the number of
susceptible-infective pairs at time t ≥ 0 is S(t)I(t), it follows that the overall rate of
infection at time t is βS(t)I(t)/N . The epidemic ends as soon as there are no more
infectives left in the population.

2.2 The basic reproduction number

A quantity of major importance within mathematical epidemic theory is the basic re-
production number R0, heuristically defined as the average number of new infections
caused by a single infective in a large susceptible population (see e.g. Dietz, 1993).
This quantity is important because roughly speaking, in a large population, a large
epidemic outbreak can occur if and only if R0 > 1. When R0 > 1 the epidemic is said
to be above threshold. Knowledge of the value of R0 makes it possible to calculate the
proportion of a population that should be vaccinated in order to prevent an epidemic
from occurring. Both the definition and threshold interpretation of R0 can be made
mathematically precise by allowing the population size to tend to infinity, so that R0

essentially becomes the mean offspring size of a branching process of new infections (see
e.g. Andersson and Britton, 1999, p. 22.) For the standard SIR model defined above,
R0 = βE[TI ].

2.3 Data and notation

In the following, we focus on an epidemic outbreak that results in a total of n removals,
where 1 ≤ n ≤ N . Our main interest will be in making inference about the parameters
of the epidemic, and in particular R0, given observation of the removal process alone.
However, to begin with it is fruitful to consider inference given complete observation
of the epidemic process, i.e. observing both infections and removals. In some settings
such a detailed level of observation is not that unrealistic, e.g. animal experiments in
which the animals are regularly tested for exposure to the pathogen in question.

We start with some notation. Suppose that the epidemic begins with a single infec-
tion at time i1, so that (S(i1), I(i1), R(i1)) = (N−1, 1, 0). Subsequent infections occur at
times i2 ≤ i3 ≤ . . . ≤ in, where i2 ≥ i1, and removals occur at times r1 ≤ r2 ≤ . . . ≤ rn.
We suppose that the period of observation is [i1, rn], so that it is assumed that the
entire epidemic is observed, and define τ := rn. We write r = (r1 r2 . . . rn) and
i = (i2 i3 . . . in).
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It is important to note that the infection and removal times must satisfy the in-
equalities ik+1 ≤ rk for k = 1, 2, . . . , n − 1. In particular, this constraint ensures that
the number of infectives does not reach zero until the time of the last removal, rn. For
a given r define Er to be the set of all infection times (i1, i) satisfying ik ≤ ik+1 ≤ rk
for k = 1, 2, . . . , n − 1. Thus Er contains all possible configurations of infection times
for a given set of ordered removal times r.

2.4 Ratio of independent Gamma distributions

In the sequel we will make some use of the following facts (see e.g. Bhoj and Schiefer-
mayr, 2001). Denote by Γ(a, b) a Gamma random variable with shape and scale pa-
rameters a and b, respectively (i.e. with mean and variance a/b and a/b2; our choice
of parameterisation is for later convenience). Let X ∼ Γ(a, b) and Y ∼ Γ(c, d) be inde-
pendent, and define W = X/Y . Then W has a scaled F-distribution with probability
density function given by

fW (w) =

(
b

d

)a
Γ(a+ c)

Γ(a)Γ(c)

wa−1

( bw
d + 1)a+c

, w ≥ 0,

and

E[W k] =

(
d

b

)k
Γ(a+ k)Γ(c− k)

Γ(a)Γ(c)
, k = 1, 2, . . . [c],

where [c] denotes the largest integer less than or equal to c. Furthermore, W has mode
0 ∨ d(a− 1)/b(c+ 1), where ∨ denotes maximum, and distribution function

FW (w) =

(
b

d

)a
Γ(a+ c)

Γ(a)Γ(c)

wa

a
2F1(a+ c, a; a+ 1;−bw/d), w ≥ 0, (1)

where pFq(n1, . . . , np;m1, . . . ,mq ;x) denotes the hypergeometric function defined by

pFq(n1, . . . , np;m1, . . . ,mq ;x) =

∞∑

k=0

xk

k!

(n1)k(n2)k . . . (np)k

(m1)k(m2)k . . . (mq)k
,

where (x)0 = 1 and for k = 1, 2, . . ., (x)k = (x)(x + 1) . . . (x+ k − 1).

3 Exponential infectious period

In this section we suppose that the infectious period distribution is exponential with
mean E[TI ] = γ−1. This model is often known as the general stochastic epidemic, and is
the most widely-studied SIR stochastic epidemic model. This model is also the natural
analogue of the deterministic SIR epidemic model, defined in terms of differential equa-
tions (see e.g. Bailey, 1975, p. 82), which is itself a component of many deterministic
epidemic models studied in the literature.
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3.1 Likelihood

The likelihood of the infection and removal times given the model parameters β, γ and
i1 is

π(i, r|β, γ, i1) =




n∏

j=2

βN−1S(ij−)I(ij−)






n∏

j=1

γI(rj−)




× exp

(
−

∫ τ

i1

βN−1S(t)I(t) + γI(t) dt

)
�

{(i1,i)∈Er}
, (2)

where S(t−) = lims↑t S(s), etc., see for example O’Neill and Roberts (1999).

3.2 Parameter prior distributions

Suppose that β and γ are, a priori, independent and respectively distributed as Γ(mβ , λβ)
and Γ(mγ , λγ). As recalled below, this choice of prior distributions is convenient in terms
of Bayesian inference due to conjugacy (O’Neill and Roberts, 1999). Furthermore, the
flexibility of the Gamma distribution means that it is frequently used in practice as a
prior distribution for rate parameters in epidemic models (see e.g. Auranen et al., 2000;
Cauchemez et al., 2004; Streftaris and Gibson, 2004). However, the induced prior for
R0 is rarely mentioned in the literature, and we now consider this for the current model.

Since R0 = β/γ, applying the results in Section 2.4 yields that R0 has prior density

f(R0) =

(
λβ

λγ

)mβ Γ(mβ +mγ)

Γ(mβ)Γ(mγ)

R
mβ−1
0

(
λβR0

λγ
+ 1)mβ+mγ

, R0 ≥ 0,

and prior mean, mode and variance given, when they exist, by

E[R0] =
mβλγ

(mγ − 1)λβ
, mode(R0) =

λγ(mβ − 1)

λβ(mγ + 1)
∨ 0,

var[R0] =
mβ(mβ +mγ − 1)

(mγ − 1)2(mγ − 2)

(
λγ

λβ

)2

.

In practice, it is often the case that uninformative Γ(m,λ) prior distributions are as-
signed, popular choices being (m,λ) = (1, ε) or (m,λ) = (ε, ε) where ε is a small positive
number, or zero. In the present case, we note that if mγ ≤ 1 then R0 has infinite mean
a priori, and if mγ ≤ 2 then R0 has infinite prior variance. In other words, such vague
priors on β and γ yield a vague prior for R0.

As recalled in Section 2.2, the question of whether or not R0 > 1 is often of interest.
Suppose now that β and γ are assigned the same prior distribution, so that m = mβ =
mγ , λ = λβ = λγ ; a typical case in practice would be m = 1, λ some small positive
number. However, it then follows that E(R0) > 1. This suggests some need for caution
in using the posterior mean of R0 as the sole means of assessing whether or not an
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epidemic is above threshold, a point that we shall return to in the sequel. However,
here it is also the case that P (R0 > 1) = 0.5, so that a priori the epidemic is equally
likely to be above or below threshold. Of course, the posterior mean of R0 is still of
interest in its own right. First, it is a frequently-cited and convenient summary measure
of the epidemic which gives a natural indication of how fast the epidemic spreads.
Additionally, knowledge of R0 is important to inform control measures - for example,
the minimum vaccination coverage required to prevent epidemics is a function of R0 -
and so knowledge of the posterior mean of R0 is useful in determining how such control
measures should be implemented.

3.3 Parameter posterior distributions

By Bayes’ Theorem, the joint posterior density of β and γ given i, r and i1 is defined
by π(β, γ|i, r, i1) ∝ π(i, r|β, γ, i1)π(β)π(γ). It follows from (2) that

π(β|i, r, i1) ∼ Γ
(
n+mβ − 1, λβ +N−1ξSI

)
, (3)

π(γ|i, r, i1) ∼ Γ (n+mγ , λγ + ξI ) (4)

where

ξI =

∫ τ

i1

I(t) dt, ξSI =

∫ τ

i1

S(t)I(t) dt,

see O’Neill and Roberts (1999). Moreover, the posterior densities of β and γ are inde-
pendent, and thus the distribution of R0 given i, r and i1 is a ratio of two independent
Gamma random variables. It follows that

π(R0|i, r, i1) =

(
λβ +N−1ξSI

λγ + ξI

)n+mβ−1

×
Γ(2n+mβ +mγ − 1)

Γ(n+mβ − 1)Γ(n+mγ)

R
n+mβ−2
0((

λβ+N−1ξSI

λγ+ξI

)
R0 + 1

)2n+mβ+mγ−1 , R0 ≥ 0, (5)

E[R0|i, r, i1] =

(
n+mβ − 1

n+mγ − 1

)(
λγ + ξI

λβ +N−1ξSI

)
, (6)

mode[R0|i, r, i1] =

(
n+mβ − 2

n+mγ + 1

)(
λγ + ξI

λβ +N−1ξSI

)
∨ 0, (7)

and, for n+mγ > 2,

var[R0|i, r, i1] =
(2n+mβ +mγ − 2)(n+mβ − 1)

(n+mγ − 1)2(n+mγ − 2)

(
λγ + ξI

λβ +N−1ξSI

)2

. (8)

Note from (5) that the posterior density of R0 is only dependent on the infection
and removal times via the quantity (λγ + ξI )/(λβ + N−1ξSI). This is in accord with
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the estimator of R0 given by the ratio of the maximum likelihood estimators of β and γ
given i1, i and r, namely R̂0 = N(n− 1)ξI/nξSI (Andersson and Britton, 2000, p. 93).

Now since S(t) ≤ N − 1 for i1 < t ≤ τ , it follows that ξSI ≤ (N − 1)ξI < NξI (the
final inequality requires i1 < τ , which we shall assume true). It follows from (6) that if
the prior distributions of β and γ are identical then E[R0|i, r, i1] > 1. Such a conclusion
seems to be an artefact of the choice of gamma distributions as priors for β and γ, along
with the induced prior distribution on R0 as discussed in Section 3.2, and reinforces
the need for caution in interpreting the posterior mean of R0. Arguing similarly for the
posterior mode of R0 defined in (7) yields that mode[R0|i, r, i1] > (n+m−2)/(n+m+1),
where m = mβ = mγ , while the classical estimator R̂0 mentioned above satisfies R̂0 >
(n− 1)/n.

3.4 Bounding the posterior mean of R0

In practice, infection times are rarely observed, and so we now turn our attention to
summary measures of R0 given data on removal times alone. We assume initially that
the start time of the epidemic, i1, is also known, but this assumption is relaxed later.
Without loss of generality, we set i1 = 0.

We now show how to compute bounds on the posterior mean of R0. First note that

min
i
E[R0|i, r, i1] ≤ E[R0|r, i1] ≤ max

i
E[R0|i, r, i1],

and thus we can obtain bounds by minimising or maximising (6) over all possible infec-
tion times i. This is equivalent to minimising or maximising the function h (i) defined
(for given r, and i1 = 0) by

h (i) =
λγ + ξI

λβ +N−1ξSI
. (9)

In fact, maximising h (i) is relatively straightforward in some cases, as follows. For
i1 ≤ t ≤ τ we have S(t) ≥ N − n, so that ξSI ≥ (N − n)ξI , and hence

h (i) ≤
λγ + ξI

λβ + ((N − n)/N)ξI
. (10)

It is straightforward to show that the right hand side of (10) is non-decreasing in ξI if
and only if (λβ/λγ) ≥ (N − n)/N . Now ξI is maximised when all infections occur at
time i1 = 0, in which case ξI =

∑n
k=1 rk. It follows that, for (λβ/λγ) ≥ (N − n)/N ,

h (i) ≤
λγ +

∑n
k=1 rk

λβ + ((N − n)/N)
∑n

k=1 rk
, (11)

and moreover this bound is attained in the ‘soon as possible’ scenario i2 = i3 = · · · =
in = 0.
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It is tempting to conjecture that the ‘late as possible’ scenario, in which ik+1 = rk
for k = 1, 2, . . . , n−1, will provide the minimal value of h(i), at least when λβ = λγ = 0
corresponding to vague priors. That this is not the case is demonstrated by the following
explicit counterexample.

N = 11; n = 7; r = (3, 4, 5, 6, 7, 8, 11); λβ = λγ = 0.

In this case the ‘late as possible’ process has infection times i = (3, 4, 5, 6, 7, 8), giving
h(i) = 11/7. If instead we take i = (1, 2, 5, 6, 7, 8) then we find that h(i) = 165/106 <
11/7. Note that this example also shows that the minimal infection-time-vector depends
on the entire course of the epidemic, since the ‘late as possible’ process does minimise
the ratio of interest for 0 ≤ t ≤ 3.

To find the minimal value of h (i), it is helpful first to express the integrals ξI and
ξSI in terms of the removal times and infection times. Clearly,

ξI =

n∑

k=1

(rk − ik) .

Defining in+1 = in+2 = · · · = iN = ∞, then it can be shown (Neal and Roberts,
2005) that

ξSI =

n∑

k=1

N∑

j=1

(rk ∧ ij − ik ∧ ij) , (12)

where we use ∧ to denote minimum.

Recalling that ik ≤ ik+1 ≤ rk for k = 1, 2, . . . , n− 1 and using the fact that ik = ∞
for k ≥ n+ 1, we can re-write (12) as

ξSI =

n∑

k=1

n∑

j=1

rk ∧ ij +

n∑

k=1

(N − n)rk −

n∑

k=1

k∑

j=1

ij −

n∑

k=1

N∑

j=k+1

ik

=

n∑

j=1

ij +

n−1∑

k=1

k+1∑

j=1

ij +

n−2∑

k=1

n∑

j=k+2

rk ∧ ij +

n∑

k=1

(N − n)rk

−

n∑

j=1

n∑

k=j

ij −

n∑

k=1

(N − k)ik

=

n∑

j=1

ij − i1 +

n∑

j=1

(n− j + 1)ij +

n−2∑

k=1

n∑

j=k+2

rk ∧ ij +

n∑

k=1

(N − n)rk

−

n∑

j=1

(n− j + 1)ij −

n∑

k=1

(N − k)ik

=

n∑

k=1

(N − n)rk +

n∑

k=1

(k + 1 −N)ik +

n−2∑

k=1

n∑

j=k+2

rk ∧ ij ,
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since i1 = 0. Thus in the definition (9) of h(i), the numerator is an affine function of the
infection times i, while the denominator is an affine function of i together with the set
of variables {rk ∧ ij : k = 1, 2, . . . , n− 2, j = k + 2, k + 3, . . . , n}. In order to minimise
h(i), define

h(i,a)

=
λγ +

∑n
k=1 rk −

∑n
k=1 ik

λβ + (1 − (n/N))
∑n

k=1 rk + (1/N)
(∑n

k=1(k + 1 −N)ik +
∑n−2

k=1

∑n
j=k+2 akj

) , (13)

where a = {akj : k = 1, 2, . . . , n− 2, j = k + 2, k + 3, . . . , n}. Consider the following
linear fractional program.

[LFP]: Minimise h(i,a) subject to

ik ≤ ik+1, k = 1, 2, . . . , n− 1,
ik+1 ≤ rk, k = 1, 2, . . . , n− 1,
akj ≤ rk, k = 1, 2, . . . , n− 2, j = k + 2, . . . , n,
akj ≤ ij , k = 1, 2, . . . , n− 2, j = k + 2, . . . , n.





(14)

Suppose i,a satisfy the constraints (14) and are such that akj < rk ∧ ij for some
k, j. Then from the form of the right hand side of (13) it is clear that we can reduce the
value of h without violating any of the constraints (14) by increasing akj up to rk ∧ ij
while leaving i unchanged. Hence the minimum in [LFP] must be attained for some i,a
satisfying akj = rk ∧ ij for all k, j, and therefore provides a minimum of h (i) defined
by (9).

Before solving [LFP], we shall show that the minimal value of h(i) is attained for
some i with ik ∈ A = {i1, r1, r2, . . . , rn−1} for k = 2, 3, . . . , n. First, note that a
linear fractional program is known to attain its minimal value at a vertex of the feasible
region (Martos, 1965). Now consider a set of infection times i with ik /∈ A for some
k ∈ {2, 3, . . . , n}, and take akj = rk ∧ ij for all k, j. Take m = min {k : ik /∈ A}, and l =
max {k : ik = im}. Set q = im−1 ∨max {rk : rk < im} and p = il+1 ∧min {rk : im < rk}
(with the convention that in+1 = ∞). Define sets of infection times i′, i′′ as follows:

i′k = ik for 2 ≤ k ≤ m− 1; i′k = q for m ≤ k ≤ l; i′k = ik for l + 1 ≤ k ≤ n,
i′′k = ik for 2 ≤ k ≤ m− 1; i′′k = p for m ≤ k ≤ l; i′′k = ik for l + 1 ≤ k ≤ n.

We thus have i′ 6= i′′ and i = λi′ + (1 − λ)i′′ for some λ such that 0 < λ < 1 (in
fact, λ = (p− im) /(p− q) ). Further, setting a′kj = rk ∧ i′j and a′′kj = rk ∧ i′′j we also
have a = λa′ + (1 − λ)a′′. Hence any set of infection times with ik /∈ A for some k
(together with associated akj values) cannot lie at a vertex of the feasible region, and
so the minimum of [LFP] must be attained with ik ∈ A for all k, as claimed.

As an aside, it is also possible to show that for any values of λβ , λγ the maximum
value of h(i) is attained with ik ∈ A for all k using related methods (as opposed to
the direct argument we used previously under the condition that (λβ/λγ) ≥ (N −
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n)/N). Specifically, h(i) can be shown to be quasi-convex, from which it follows that
its maximum is attained at a vertex of the feasible region (see Martos, 1965).

Various methods exist for solving linear fractional programs (see Ibaraki, 1981). We
follow Charnes and Cooper (1962) in transforming our problem into a linear program-
ming problem, which can then be efficiently solved using the simplex method, software
for which is widely available. Thus we consider the problem

[LP]: Minimise g(c, b, t) = (λγ +
∑n

k=1 rk) t−
∑n

k=1 ck subject to

(
λβ + (1 − (n/N))

n∑

k=1

rk

)
t+ (1/N)




n∑

k=1

(k + 1 −N)ck +

n−2∑

k=1

n∑

j=k+2

bkj


 = 1,

c1 = 0,
ck ≤ ck+1, k = 1, 2, . . . , n− 1,

ck+1 ≤ rkt, k = 1, 2, . . . , n− 1,
bkj ≤ rkt, k = 1, 2, . . . , n− 2, j = k + 2, . . . , n,
bkj ≤ cj , k = 1, 2, . . . , n− 2, j = k + 2, . . . , n,

t ≥ 0, bkj ≥ 0, k = 1, 2, . . . , n− 2, j = k + 2, . . . , n.

Denoting by cmin, bmin, tmin the (not necessarily unique) values of c, b, t for which
the minimum of [LP] is attained, then the minimal value of h(i) is attained at i =
cmin/tmin and is given by g

(
cmin, bmin, tmin

)
/tmin.

3.5 Bounds when the initial infection time is unobserved

So far, we have assumed that the initial infection time i1 is known, and fixed a time
origin by taking i1 = 0. In practice it is likely that the initial infection event will not be
observed, as illustrated in Section 5 below. Thus we now allow i1 to take any value, and
seek bounds on h(i1, i) under this relaxation of our assumptions. It should be noted
that in most applications, plausible bounds on i1 will be available, and so the bounds
derived below are conservative. Note also that our analysis takes no account of the
influence of a prior density on i1, which from (2) is required to estimate E[R0|r] itself
(see O’Neill and Roberts, 1999). However, as described below, the bounds we derive
are still surprisingly good.

The upper bound (11) remains valid, except that each removal time rk must now be
replaced by rk − i1. If (N − n)λγ ≤ Nλβ then (11) implies that h(i1, i) ≤ N/(N − n),
and this bound is attained in the limit as i1 → −∞ with i2 = i3 = · · · = in = i1.

For the lower bound, note that S(t) ≤ N − 1 on the interval (i1, τ), so that ξSI ≤
(N − 1)ξI and hence

h (i1, i) ≥
λγ + ξI

λβ + ((N − 1)/N)ξI

=
N

N − 1
+
λγ − (N/(N − 1))λβ

λβ + ((N − 1)/N)ξI
.
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For (N − 1)λγ ≥ Nλβ this implies that h(i1, i) ≥ N/(N − 1), and this lower bound
is attained in the limit as i1 → −∞ with i2, i3, . . . , in held fixed.

Note that the bounds of this section do not depend upon the observed removal times.
The upper bound depends only upon the final size n of the epidemic, while the lower
bound does not depend on the progress of the epidemic at all but only upon the total
population size N .

In the case of non-informative priors λβ = λγ = 0, mβ = mγ = 1, we have

N

N − 1
≤ E [R0|r] ≤

N

N − n
.

Note in particular that we always have E[R0|r] > 1, and that if only one removal is
observed, so n = 1, then E[R0|r] = N/(N − 1).

3.6 Distributional bounds

From equation (8), it is clear that bounding the integral ratio h(i) allows us to bound
not only the posterior mean of R0, but also the posterior variance. Furthermore, we
now show that we can bound the whole posterior distribution of R0 in the sense of
likelihood ratio ordering of distributions.

We have observed previously that the posterior density of R0 is dependent on the
infection and removal times only via the quantity h defined by equation (9). Thus we
can write the posterior density (5) in the form

π(R0|h) =
Γ(2n+mβ +mγ − 1)

Γ(n+mβ − 1)Γ(n+mγ)

h1−n−mβR
n+mβ−2
0

(h−1R0 + 1)2n+mβ+mγ−1 , R0 ≥ 0.

For R01, R02 > 0, with h fixed, we have the likelihood ratio

π (R01|h)

π (R02|h)
=

(R01/R02)
n+mβ−2

[(R01 + h) / (R02 + h)]
2n+mβ+mγ−1 ,

so that for h1, h2 > 0,

π (R01|h1)

π (R02|h1)

/
π (R01|h2)

π (R02|h2)
=

(
(R01 + h2) (R02 + h1)

(R01 + h1) (R02 + h2)

)2n+mβ+mγ−1

.

If R01 > R02 and h1 > h2, then (R01 + h1) (R02 + h2) < (R01 + h2) (R02 + h1), and
so

π (R01|h1)

π (R02|h1)
>

π (R01|h2)

π (R02|h2)
.

That is, R0|h2 ≤LR R0|h1, where ≤LR denotes likelihood ratio ordering of distri-
butions.
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Likelihood ratio ordering implies the standard stochastic ordering between distribu-
tions (see Kijima and Seneta, 1991), so that for any r0 > 0 and h1 > h2 we have

P (R0 ≤ r0|h1) ≤ P (R0 ≤ r0|h2) ,

and for any non-decreasing real-valued function θ (R0),

E [θ (R0) |h1] ≥ E [θ (R0) |h2] .

In particular, if hmin, hmax are the minimal and maximal possible values, respec-
tively, of h given the observed data, then the probability that the epidemic is below
threshold may be bounded by

P (R0 ≤ 1|hmax) ≤ P (R0 ≤ 1|r) ≤ P
(
R0 ≤ 1|hmin

)
.

From (1), taking λβ = λγ = 0 and mβ = mγ = 1 to give non-informative priors, we
have

P (R0 ≤ 1|h) =
Γ(2n+ 1)

Γ(n)Γ(n+ 1)

2F1

(
2n+ 1, n;n+ 1;−h−1

)

nhn
.

When the removal times r are observed, but the initial infection time i1 is not, then
with these non-informative priors we have seen that hmin = N/(N − 1) and hmax =
N/(N − n).

4 Constant infectious period

In this section we briefly consider the standard SIR model in which the infectious period
is simply a constant, so that TI = c almost surely. Such a choice of infectious period
is often more realistic than the exponential infectious period considered in the previous
section. In this case, the basic reproduction number is R0 = βc.

For this model, and a given set of removal times r1 ≤ r2 ≤ . . . ≤ rn, we have
ik = rk − c, k = 1, . . . , n, which automatically implies the required ordering ik ≤ ik+1,
k = 1, . . . , n − 1. However, a necessary and sufficient condition for (i1, i) ∈ Er (in
other words, for the epidemic to contain at least one infective during (i1, τ)) is that
c ≥ r̄ := max1≤k≤n−1(rk+1 − rk). To see this, note that the condition implies that
ik+1 = rk+1−c ≤ rk for k = 1, . . . , n−1, so that (i1, i) ∈ Er . Conversely if c < rk+1−rk
for some 1 ≤ k ≤ n− 1 then we have ik+1 > rk .

Thus the likelihood is given by

π(i, r|β, c, i1) =




n∏

j=2

βN−1S(ij−)I(ij−)


 exp

(
−

∫ τ

i1

βN−1S(t)I(t) dt

)

×
�

{r̄≤c}
�

{ik=rk−c, k=1,...,n}.
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It follows that, if r, i and i1 are all observed, then inference for c is trivial. Specifically,
c is either a point mass at the value dictated by r, i and i1, or else the observations
have zero probability density and the model is inappropriate. If just the removals are
observed, then β ∼ Γ(mβ , λβ) a priori yields that, for c ≥ r̄,

π(β|r, c) ∼ Γ
(
n+mβ − 1, λβ +N−1ξSI

)
,

where here ξSI is dependent on the value of c. It follows that for c ≥ r̄,

π(R0|r, c) ∼ Γ
(
n+mβ − 1, (λβ +N−1ξSI)c

−1
)
. (15)

The posterior density π(R0|r) can in principle be obtained from (15) by integrating c
out of the product π(R0|r, c)π(c), where π(c) is the prior density for c. In general this
must be done numerically: analytical expressions are hard to obtain because of the way
that ξSI depends on c.

However, it is possible to show that R0 is stochastically non-decreasing in c, as
follows. Recall that for j = 1, . . . , n we have ij = rj − c, while if j ≥ n + 1 then
ij = rj = ∞. Substitution into (12) and a few lines of algebra yields that, for c ≥ r̄,

ξSI(c) = Nnc+
n∑

j=1

n∑

k=1

{[rk ∧ (rj − c)] − (rk ∧ rj)} , (16)

whence

c ξ′SI (c) = Nnc−

n∑

j=1

n∑

k=1

c
�

{rk>rj−c} (17)

(except at the finite set of values c = rj − rk for 1 ≤ j, k ≤ n, where the derivative is
undefined).

Next, for c ≥ r̄ define ψ(c) = c/[λβ +N−1ξSI(c)], and observe that if ψ(c) is non-
decreasing in c, then R0|r, c will be stochastically non-decreasing in c. Now for any
λβ ≥ 0, ψ′(c) ≥ 0 if ξSI(c) ≥ c ξ′SI(c). By (16) and (17), this last inequality holds if and
only if

n∑

j=1

n∑

k=1

c
�

{rk>rj−c} ≥
n∑

j=1

n∑

k=1

{(rk ∧ rj) − [rk ∧ (rj − c)]} .

Now for 1 ≤ j, k ≤ n, rk ≤ rj − c implies that (rk ∧ rj) − [rk ∧ (rj − c)] = rk − rk = 0,
and thus ξSI(c) ≥ c ξ′SI(c) if and only if

n∑

j=1

n∑

k=1

c
�

{rk>rj−c} ≥

n∑

j=1

n∑

k=1

{(rk ∧ rj) − [rk ∧ (rj − c)]}
�

{rk>rj−c}.

However, for 1 ≤ j, k ≤ n, rk > rj − c implies that 0 ≤ (rk ∧ rj) − [rk ∧ (rj − c)] ≤ c,
and the result follows.
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Now if c > rn − r1, we have that rk > rj − c for all 1 ≤ j, k ≤ n. It follows from
(16) that

ξSI (c) = (N − n)nc+
n∑

j=1

n∑

k=1

[rj − (rk ∧ rj)],

and in particular ξSI(c)/c → n(N − n) as c → ∞. Therefore, ψ(c) → N/[n(N − n)]
as c → ∞, which along with the fact that ψ(c) ≥ ψ(r̄) yields distributional bounds on
R0|r, c. For example, whatever the prior density for c, we have

r̄(n+mβ − 1)

λβ +N−1ξSI(r̄)
≤ E[R0|r] ≤

N(n+mβ − 1)

n(N − n)
, (18)

P (R0 ≤ 1|r, c = ∞) ≤ P (R0 ≤ 1|r) ≤ P (R0 ≤ 1|r, c = r̄). (19)

Note that the upper and lower bounds in (19) are straightforward to evaluate numeri-
cally via equation (15).

5 Numerical examples

In this section we illustrate our methods via three data sets, all of which have been
analysed before using MCMC methods. We compare our results with those previously
obtained for both identical models to those we consider and also more complex models.
We also demonstrate how our methods can be adapted for different settings.

5.1 Abakaliki Smallpox data

We begin with a widely-studied data set obtained from a smallpox outbreak in a closed
community of N = 120 individuals in Abakaliki, Nigeria (see Bailey, 1975, p125). The
use of the general stochastic epidemic to model these data is not entirely appropri-
ate, since smallpox has an appreciable latent period; however, we follow O’Neill and
Roberts (1999) in using these data to illustrate our methods. O’Neill and Roberts (1999)
used a Markov chain Monte Carlo approach to evaluate the joint posterior distribution of
(β, γ), treating the unknown infection times i and i1 as additional unknown parameters.

The data consist of the following 29 inter-removal times, measured in days:

13, 7, 2, 3, 0, 0, 1, 4, 5, 3, 2, 0, 2, 0, 5, 3, 1, 4, 0, 1, 1, 1, 2, 0, 1, 5, 0, 5, 5.

Note that for these data, the initial infection time i1 is not observed. Since O’Neill
and Roberts (1999) found the posterior mean of γ with non-informative priors to be
0.098, so that the mean infectious period is 1/0.098 ≈ 10.2 days, we shall assume for
purposes of illustration that the first removal occurs 10 days after the first infection.
With this assumption, the set of removal times become

r = (10, 23, 30, 32, 35, 35, 35, 36, 40, 45, 48, 50, 50, 52, 52, 57, 60, 61, 65, 65, 66, 67, 68,

70, 70, 71, 76, 76, 81, 86).
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For the case of exponential infectious periods we take non-informative priors, with
λβ = λγ = 0 and mβ = mγ = 1. Using the Matlab linprog command to solve
[LP] for the minimum, and reading off the maximum from (11), we find that 1.0804 ≤
E [R0|r, i1] ≤ 1.333, the maximal value being achieved with i2 = i3 = · · · = i30 = 0, the
minimal value with

i = (0, 0, 0, 10, 30, 35, 35, 36, 40, 45, 48, 50, 50, 52, 52, 57, 60, 61, 65, 65, 66, 67, 68,

70, 70, 71, 76, 76, 81).

If the initial infection time is assumed to be unknown, then we obtain the bounds
1.008 ≤ E[R0| r] ≤ 1.333. For comparison, Boys and Giles (2007) use MCMC methods
to obtain E[R0| r] = 1.24 for the present model. Regarding the probability that R0

exceeds unity, we find that 0.1616 ≤ P (R0 ≤ 1| r) ≤ 0.5384, while if the initial infection
time i1 is observed and such that r1 − i1 = 10 days, then we obtain the slightly tighter
bounds 0.1616 ≤ P (R0 ≤ 1| r, r1 − i1 = 10) ≤ 0.4319.

As well as R0, our methods are easily adapted to provide bounds for other quantities.
For example, from (3) and (4) it is clear that the posterior distributions of β and γ can be
stochastically bounded by appropriate minimisation and maximisation of the integrals
ξSI and ξI , respectively. The latter integral is trivial to deal with, since it is maximised
when all the infection times equal i1, and minimised when infections occur as late as
possible, so that ik+1 = rk for k = 1, . . . , n− 1. Thus we have the bounds

rn − i1 ≤ ξI ≤

n∑

k=1

(rk − i1) .

To minimise ξSI , observe that since removal times are observed then the value of
S + I is known at all times. For any given value of the sum S + I , we can minimise the
product SI subject to I ≥ 1 by taking I = 1. Hence ξSI is minimised with ik+1 = rk
for k = 1, . . . , n− 1, giving

ξSI ≥ (N − n− 1) (rn − i1) +

n∑

k=1

(rk − i1) .

To maximise ξSI , observe that for k = 1, 2, . . . , n − 1, during the time interval
[rk, rk+1) the values of S, I must satisfy the constraints S+I = N−k and 1 ≤ I ≤ n−k.
Subject to these constraints, the product SI is maximised by taking I = d(N − k)/2e ∧
(n − k), where dxe denotes the smallest integer greater than or equal to x. Similarly,
within the interval [i1, r1) the product SI is maximised with I = dN/2e ∧ n. We can
achieve these maximal values of SI throughout the interval [i1, rn) by taking infection
times ik = i1 for 2 ≤ k ≤ k0 and ik = r2(k−k0) for k0 +1 ≤ k ≤ n, where k0 = dN/2e∧n.
In the special case when n ≤ (N + 1)/2 we have i2 = i3 = · · · = in = i1, giving the
bound

ξSI ≤
n∑

k=1

(N − n) (rk − i1) .
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For the Smallpox data, assuming the first removal occurs 10 days after the first
infection, we obtain the bounds 86 ≤ ξI ≤ 1, 012 and (observing that n ≤ (N + 1)/2
for these data) 9, 266 ≤ ξSI ≤ 145, 080. With prior parameters λβ = λγ = 0 and
mβ = mγ = 1 then we find from (3) and (4) that 0.0248 ≤ E [β | i, r, i1] ≤ 0.3885
and 0.0306 ≤ E [γ | i, r, i1] ≤ 0.3605. In both cases the bounds are rather wide, but
nevertheless they provide order-of-magnitude information. O’Neill and Roberts (1999)
found the posterior means of β and γ to be 0.108 and 0.098, respectively, both of which
lie within the bounds we have derived.

If the initial infection time is assumed unknown, then the integrals ξI , ξSI can each
be made arbitrarily large by appropriate choice of i1. For the lower bounds on these
integrals, we know that i1 ≤ r1, and so ξI ≥ rn − r1 and ξSI ≥ (N − n− 1) (rn − r1) +∑n

k=1 (rk − r1), which for the smallpox data gives ξi ≥ 76, ξSI ≥ 8, 076, and hence we
can bound the posterior means as 0 ≤ E [β | i, r] ≤ 0.4458, 0 ≤ E [γ | i, r] ≤ 0.4079.

Suppose now that the infectious period is fixed at length c. For these data we have
c ≥ r̄ = 13. Note that this value itself is considerably larger than typical estimates
of the mean infectious period in the exponential infectious period model. Assuming
mβ = 1 and λβ = 0, the values of E[R0|r, c] for c = 13, 14, 15 are, respectively, 1.1774,
1.1796 and 1.1817. From (18) we have the bounds 1.1774 ≤ E[R0| r] ≤ 1.333. Note
that this range of values lies within the corresponding bounds obtained above for the
exponential infectious period case, suggesting that inference for the mean of R0 is fairly
robust across the two different infectious period models. However, such a conclusion
does not apply to the probability that the epidemic is below threshold. Specifically,
for the constant infectious period model we obtain 0.07474 ≤ P (R0 ≤ 1|r) ≤ 0.2092,
which contrasts sharply with the range obtained previously for the exponential infectious
period. Such a marked difference can be explained in two ways. First, the posterior
distribution of R0 has a larger variance for the exponential infectious period model,
which itself is unsurprising since the model contains more inherent variability. Second,
recall that the extinction probability of an SIR epidemic model is defined, for R0 > 1,
as the smallest root of the equation f(s) = s in [0, 1], where f(s) = E[sR] is the
probability generating function of R, the number of new infections that an infective gives
rise to among infinitely many susceptibles (see e.g. Andersson and Britton, Theorem
3.1). In the present case, if the two models have the same R0 > 1 value, then it is
straightforward to show that the extinction probability of the exponential infectious
period model exceeds that of the constant infectious period model. For example, with
R0 = 4/3, the two extinction probabilities are 0.75 and 0.5456, respectively. Such
findings illustrate the need for caution when using R0 alone as a summary measure of
an epidemic.

5.2 Gastroenteritis data

Data from an outbreak of gastroenteritis on a hospital ward in South Carolina dur-
ing 1996 have previously been considered by Britton and O’Neill (2002) and Neal and
Roberts (2005). In both cases, the data were used to parameterise a Markov SIR model
incorporating a random network representing social structure, using MCMC methods.
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It is therefore of interest to see how inference for R0 obtained by such methods com-
pares with those presented here. The data comprise numbers of cases detected over
eight consecutive days, namely 1,0,4,2,3,3,10,5, so that n = 28, while N = 89. With no
knowledge of the initial infection time we find 1.011 ≤ E[R0| r] ≤ 1.459, while condi-
tioning on values of i1 varies the lower bound from 1.082 (with i1 = −1) to 1.019 (with
i1 = −100). Such results compare favourably to those obtained by Britton and O’Neill
(2002), who found E[R0| r] = 1.17 for the random network model.

5.3 Ebola data

Our final example illustrates how our methods can be adapted to more complex models.
Data from a well-documented outbreak of Ebola hemorrhagic fever in the Democratic
Republic of the Congo in 1995 have been used to parameterise an SEIR model (i.e.
an SIR model with an additional stage consisting of an ‘exposed’ period during which
individuals are infected but not yet infectious) by both Chowel et al. (2004) and Lekone
and Finkenstädt (2006), the latter using MCMC methods. In both cases the authors
assume that the infection rate β is time-dependent, being first constant and then de-
caying exponentially following the introduction of control measures. The data consist
of symptom appearance times of 291 individuals and death times for 236 individuals. It
is also known that there were a total of 316 cases, so that there are unobserved events
of both kinds. The symptom appearance time and time of death for an individual are
assumed to correspond to the start of that individual’s infectious period and their re-
moval time in the SEIR model, respectively. In what follows we refer to the former time
as an infection time, purely for convenience and consistency with the SIR terminology.

Here we consider estimation of R0, which in this setting is a summary characteristic
of the epidemic in the absence of intervention. We therefore focus primarily on the period
of time until intervention measures were introduced. First, note that it is straightforward
to write down a likelihood similar to (2) for the SEIR model given complete observation
of all exposure, infection and removal times, and furthermore it is possible to do so
given complete observation up until any fixed time during the epidemic outbreak (cf.
O’Neill and Roberts, 1999). It follows that, for example, if both latent and infectious
periods are exponentially distributed, then the corresponding rate parameters all have
gamma distributed full conditional distributions assuming gamma prior distributions,
similar to (3) and (4). Moreover,R0, which equals β/γ for this SEIR model, is once again
distributed as the ratio of independent gamma distributions, given complete observation
up until any fixed time. Given complete observation of, for instance, infection and
removal times, then as before it is possible to obtain bounds on summary measures of
the posterior distribution of R0 by optimisation over the unobserved exposure times.

Returning to the Ebola data, if T denotes the time at which control measures were
introduced then we find that E[R0|iT , rT , cT , i1] = hT (mβ +m−1)/(mγ +n), where (i)
iT , rT and cT denote infective period start, removal and exposure times during (i1, T ],
respectively; (ii) m and n denote the numbers of exposure events and removals during

(i1, T ] and (iii) hT = (λγ +
∫ T

i1
I(t)dt)/(λβ + N−1

∫ T

i1
S(t)I(t)dt). Both Chowel et al.
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(2004) and Lekone and Finkenstädt (2006) take N = 5, 363, 500, and thus if λβ = λγ we
find that hT ≈ 1. Thus if mβ = mγ = 1 we find that E[R0|iT , rT , cT , i1] ≈ m/(n+ 1),
and more generally inference about R0 comes down to knowing the number of exposure
and removal events during (i1, T ]. Regarding the latter, although we observe deaths in
the Ebola data set, it is also known that 80 removal events (whether actual deaths or not)
are unrecorded, so that only a proportion 236/316 = 0.75 of removal events are observed.
From the data set, 97 deaths are observed during (i1, T ] and so it is not unreasonable to
assume that the n ≈ 97/0.75 ≈ 129. For m we need more assumptions. The observed
number of infections before intervention is 169, providing a lower bound for m, but since
the exposure period for Ebola is known to be around 6 days we obtain an upper bound
by assuming that all observed infections for 6 days after T arose due to exposure events
prior to T . There are 48 such infections in the data, so a reasonable upper bound form is
169+48 = 217. We thus obtain the bounds 1.3 ≤ E[R0|iT , rT , cT , i1] ≤ 1.7. Lekone and
Finkenstädt (2006) report a posterior mean of R0 as 1.38, which lies within the bounds
we have obtained. Their model is not strictly comparable with our approach here, partly
because their SEIR model is discretised in time, but more importantly because the initial
infection rate parameter β is also a component of the post-intervention infection rate.
Nevertheless, it is interesting to see that our approach rapidly provides bounds that are
compatible with estimates derived from MCMC methods.

6 Conclusions

In this paper we have considered Bayesian inference for the standard SIR model, fo-
cussing particularly on the basic reproduction number in the case where the infectious
period is either exponentially distributed or non-random. These two choices of infectious
period distribution are of some practical interest. The exponential case is commonly
used by modellers, partly for mathematical convenience, and partly because it provides
a natural analogue to deterministic differential equation models, in which a constant
rate of removal corresponds to an exponentially distributed infectious period. The con-
stant infectious period case is of interest because, for many diseases, it gives a good
approximation to reality. For both models, we have provided either exact expressions
or bounds for the posterior distribution and summary statistics of R0, depending on the
assumed data.

It is natural to consider other choices of infectious period distribution, although in
general the approaches described in this paper will be harder to adopt. There are two
reasons for this. The main difficulty is that the posterior distribution for R0 given
complete observation will not, in general, have a closed form. For example, assuming
a Γ(α, δ) infectious period distribution gives R0 = βα/δ, which even in the case of
complete observation does not yield a tractable posterior distribution. Of course, this
limitation does not necessarily apply when considering inference for other quantities,
such as infection rates. A second drawback is that in general it is more natural to work
not with a set of ordered infection times i1 ≤ i2 ≤ . . . ≤ in, but instead define infection
time ik to be that of the individual removed at time rk for k = 1, 2, . . . , n. In this way,
the part of the likelihood that corresponds to the removal process is straightforward to
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write down as a product of terms such as f(rk − ik), where f is the probability density
function of the infectious period. However, in this setting the constraints on the set of
possible infection times that ensure there is always at least one infective present become
more complicated, since they now rely on the order statistics of the infection times.
Nevertheless the methods can, in principle, be applied.

The linear programming approach we have taken to bound certain posterior sum-
mary statistics can be applied to related problems. We have illustrated this by con-
sidering bounds for related model parameters (such as infection rates) and also by
considering different models (such as the SEIR epidemic). The methods are thus likely
to be applicable to a rather wider range of models and data sets than we have considered
here. An additional practical use of the methods is that they can provide an informal
MCMC diagnostic tool, in the sense that the more accurate estimates of model parame-
ters obtained by MCMC must lie within the bounds obtained by our methods. Finally,
we remark that our relatively simple approach can provide some indication of how the
assumptions of more complex models affect inference for basic model parameters. This
can be achieved by, for example, comparing MCMC estimates from such models to the
bounds obtained using our simpler models and methods.
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