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Exact distribution theory for belief net

responses

Peter M. Hooper∗

Abstract. Bayesian belief networks provide estimates of conditional probabilities,
called query responses. The precision of these estimates is assessed using posterior
distributions. This paper discusses two claims and a conjecture by Kleiter (1996)
concerning the exact posterior distribution of queries. The two claims provide
conditions where a query has an exact beta distribution. The first claim is clarified
by the following generalization. Assuming a BDe prior and complete data, a query
has the same distribution under equivalent network structures. If the query can
be represented as a network parameter under an equivalent structure, it must
then have a beta distribution. Kleiter’s second claim is contradicted by a counter-
example. His conjecture, concerning finite mixtures of beta distributions, is also
disproved.

Keywords: Bayesian network, BDe prior, belief network, beta distribution, Dirich-
let distribution, query response.

1 Introduction

Bayesian networks (belief networks) are concise models of joint probability distributions.
These models can be used to estimate the probability of an event of interest given
partial information. As a simple example, consider three binary variables: A indicates
the presence a1 or absence a2 of a medical condition while B and C each indicate
the presence/absence of a symptom. Suppose the two symptoms are known to occur
independently of one another among those who have the medical condition and also
among those who do not; i.e., B and C are conditionally independent given A. This
assumption is represented by the network {B ← A→ C}, where A is called the parent
of B and C. Suppose we want to estimate the probability that a subject has the medical
condition given that the subject exhibits both symptoms. Such probabilities are called
query responses, or simply queries. Put θa = P{A = a}, θb|a = P{B = b |A = a}, etc.
Applying Bayes Theorem, we have

P{A = a1 |B = b1, C = c1} =
θa1θb1|a1

θc1|a1

θa1θb1|a1
θc1|a1

+ θa2θb1|a2
θc1|a2

. (A.1)

The θ probabilities are the parameters in the model. These parameters are estimated
using data from a sample of subjects, then expression (A.1) is applied to estimate the
query.

The precision of estimates is usually evaluated via the Bayesian paradigm; i.e., prior
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information is combined with data to obtain a posterior distribution for the parame-
ters. The usual prior distributions assume that vectors of θ probabilities (summing to
one) are independent Dirichlet random vectors. If we have complete data (i.e., all three
variables are observed for each subject in the sample) then the posterior distribution
has the same form as the prior. In this case, each θ parameter has a beta distribution.
The joint distribution of the parameters determines a distribution for each query. This
distribution is usually not analytically tractable, but can often be approximated to an
acceptable degree of accuracy by a beta distribution. Kleiter (1996) describes a stochas-
tic simulation technique to carry out this approximation. Van Allen, Singh, Greiner,
and Hooper (2008) present a more direct approach, using a delta-rule approximation of
the query variance, and prove that the beta approximation is asymptotically valid.

Kleiter (1996) also presents several claims concerning the exact distribution of queries.
The present paper provides a critical analysis of this work. One claim is generalized
using properties of BDe priors and equivalent network structures. This generalization
clarifies how the choice of a prior distribution affects whether a query has an exact beta
distribution. A counter-example is constructed for a second claim. The query in expres-
sion (A.1) typically does not have a beta distribution, contrary to Kleiter’s Theorem
6. A conjecture concerning finite mixtures of beta distributions is also shown to be
false. The paper is organized as follows: section 2 introduces notation and assumptions,
section 3 presents the generalization, and section 4 discusses Kleiter’s work.

2 Notation and assumptions

Let (V ,A) denote a Bayesian network, where V is a set of random variables (nodes)
and A is a directed acyclic graph (DAG) structure encoding dependence assertions;
i.e., a node is conditionally independent of its non-descendants given its parents. De-
note variables by upper-case roman letters, realized values by lower-case, and vectors
by boldface. Vectors (i.e., sets of variables listed in some order) are represented by
concatenation; e.g., Y = AB and y = ab. Vectors are sometimes treated as sets of
variables; e.g., A ∈ Y . Domains of network variables and vectors are denoted by D;
e.g., DY = DA × DB . All such domains are assumed to be finite. When a vector is
expressed in terms of subvectors, say X = ABC, it is implicitly assumed that the
subvectors are pairwise disjoint.

Let X be a vector consisting of all variables in V . The joint distribution of X

is determined as a product of conditional probabilities of variables C given parents
pa(C) = F . These probabilities, denoted θc|f , are often presented in two-way ta-
bles (CPtables θC|F ), with rows indexed by DF and columns indexed by DC . Denote
CPtable rows by θC|f and let Θ = 〈θC|pa(C), C ∈ V〉 be a vector comprising all CPtable
parameters. We express uncertainty about parameters by modeling Θ as a random vec-
tor. Uncertainty propagates to query responses; i.e., the probability of a hypothesis
H = h given evidence E = e. Queries are denoted

qh|e = qh|e(Θ) = P (H = h |E = e,Θ). (A.2)
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We allow E = the empty set, writing qh = P (H = h |Θ). The notation in (A.2)
emphasizes the fact that a query is a function of Θ, hence a random variable.

The posterior distribution of qh|e depends on whether one assumes that the data
supporting the posterior distribution of Θ include the partial observation E = e. The
inclusion of E is appropriate when making a prediction based on observed evidence,
but not when making an inference about a probability of merely potential interest.
Our focus here is on the inferential problem. The addition of a partial observation
typically has little effect on the query distribution, and has no effect at all when qh|e

can be represented as a CPtable parameter under an equivalent network structure; see
Section 3. There is a well-known formula that involves both conditioning frameworks:
the mean of the query distribution (with Θ conditioned on E) is obtained by replacing
parameters by their expected values (not conditioned on E) before evaluating the query;
i.e., E{qh|e(Θ) |E = e} = qh|e(E{Θ}). This result is implicit in Spiegelhalter and
Lauritzen (1990) and explicit in Cooper and Herskovits (1992).

Now consider three assumptions; see Table 1 for an example.

Dirichlet prior. The prior distribution is assumed to have the usual properties: dif-
ferent CPtables are independent (global independence), rows within a CPtable are in-
dependent (local independence), and each row has a Dirichlet distribution:

θC|f ∼ Dir(αC|f ) for each f ∈ Dpa(C), (A.3)

where αC|f is a vector of positive weights αc|f . It is convenient to indicate summation
by replacing an index with a dot. The sum α·|f =

∑

c αc|f provides a measure of
precision concerning the parameters, since (A.3) implies that each parameter has a beta
distribution

θc|f ∼ Beta(αc|f , α·|f − αc|f ) (A.4)

with mean µ = αc|f/α·|f and variance µ(1− µ)/(1 + α·|f ). If C is binary, then (A.4) is
equivalent to (A.3) since the probabilities sum to one. The stronger Dirichlet assumption
(A.3) is needed for general results concerning variables with finite domain.

BDe constraints. This assumption places restrictions on the prior weights so that prior
information is equivalent to a weighted likelihood from a (possibly fictitious) sample of
complete observations. Assume there exists a vector αX = 〈αx, x ∈ DX〉 of positive
weights such that the prior Dirichlet weights αc|f are obtained by summing αx over
all x ∈ DX with C and pa(C) fixed at c and f . We refer to the αx as BDe weights,
to distinguish them from the Dirichlet weights αc|f . In practice, BDe weights might
be specified as αx =

∑

wiI(ỹi = x), where wi > 0, I is the 0/1 indicator function,
and each ỹi ∈ DX is a (fictitious) complete observation. The BDe weights need not be
uniquely determined from the Dirichlet weights unless X = AB with pa(B) = A. BDe
constraints were originally formulated to facilitate the learning of network structure
(Heckerman, Geiger and Chickering, 1995).

Complete data. The posterior distribution is obtained from a sample of n complete
observations, where n = 0 is allowed. Let ncf denote the number of cases with C = c
and pa(C) = f . Given a Dirichlet prior and complete data, the posterior distribution
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Table 1: Example of prior and posterior weights, both BDe and corresponding Dirichlet.
The DAG structure is A = {B ← A → C} with A and C binary, B ternary. The prior
assigns non-uniform weights for B, indicating an expectation that b1 is most likely and
b3 is least likely, with total weight equivalent to a sample of six observations. The
posterior weights are consistent with a sample of 100 observations. Sample frequencies
are given by the difference in BDe weights (posterior minus prior). If the arc B → C
were to be added, then αc|a would be replaced by αc|ab = αabc.

Prior αabc αa = αa·· αb|a = αab· αc|a = αa·c

a1c1 a1c2 a2c1 a2c2 a1 a2 b1 b2 b3 c1 c2

b1 .75 .75 .75 .75 3.0 3.0 a1 1.5 1.0 0.5 a1 1.5 1.5
b2 .50 .50 .50 .50 a2 1.5 1.0 0.5 a2 1.5 1.5
b3 .25 .25 .25 .25

Posterior αabc αa = αa·· αb|a = αab· αc|a = αa·c

a1c1 a1c2 a2c1 a2c2 a1 a2 b1 b2 b3 c1 c2

b1 4.75 1.75 35.75 15.75 33.0 73.0 a1 6.5 21.0 5.5 a1 13.5 19.5
b2 7.50 13.50 5.50 5.50 a2 51.5 11.0 10.5 a2 47.5 25.5
b3 1.25 4.25 6.25 4.25

has the same form as the prior but with weights αc|f replaced by αc|f + ncf . If the
prior Dirichlet weights satisfy BDe constraints, then the posterior weights do as well.
Let yi ∈ DX denote the sample observations. Posterior BDe weights are obtained by
replacing the prior BDe weights αx with αx +

∑

I(yi = x). From now on αx and αc|f

denote the posterior BDe and Dirichlet weights, since only the posterior distribution is
relevant to our discussion.

3 Query distributions under equivalent DAG structures

The induced dependence model for a DAG structure A is defined as the subset of
triplets ABC ⊆ X with A and B conditionally independent given C. Two DAG
structures are said to be equivalent if they induce the same dependence model. In
general, a query can have different distributions under equivalent structures. However,
if the prior distribution under each structure satisfies BDe constraints with the same
BDe weight vector αX for all structures, then a query must have the same distribution
under equivalent structures. A query qh|e must then have a beta distribution if it can
be expressed as a parameter θh|e for an equivalent structure. This result is implicit
in theory showing that a metric associated with BDe constraints assigns equal support
to equivalent DAG structures (Heckerman et al., 1995) and is also closely related to
work by Geiger and Heckerman (1997) discussed below. For clarity, a separate proof is
provided here. Two preliminary results are needed.

The proof employs a well-known connection between gamma and Dirichlet distribu-
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tions; e.g., see Johnson and Kotz (1972), page 271. This connection is also used later
in Section 4. A random variable γ has a gamma distribution with shape parameter α
and scale parameter β if its density is exp(−g/β)gα−1β−α/Γ(α) for g > 0. The mean
and variance of γ are αβ and αβ2. If β = 1, then we write γ ∼ Gam(α).

Lemma 1. If γ1, . . . , γn are independent with γi ∼ Gam(αi), then γ· :=
∑

γi ∼
Gam(α·), η := 〈γ1/γ·, . . . , γn/γ·〉 ∼ Dir(α1, . . . , αn), and γ· and η are independent.
Conversely, if η and γ are independent with η := 〈η1, . . . , ηn〉 ∼ Dir(α1, . . . , αn) and
γ ∼ Gam(α·), then γi := γηi ∼ Gam(αi) with γ1, . . . , γn independent.

The proof also uses the following characterization of equivalent DAG structures
(Chickering (1995), Heckerman et al. (1995)).

Lemma 2. Given DAG A, put A = pa(B) and suppose B is a parent of C. The arc
B → C is said to be covered in A if pa(C) = AB. If B is obtained from A by replacing
the covered arc B → C with B ← C, then the two DAGs are equivalent. In general,
A and B are equivalent if and only if there exists a sequence of DAGs A1, . . . ,Am over
V such that A = A1, B = Am, and Ai+1 is obtained from Ai by reversing a single arc
that is covered in Ai.

Theorem 1. If we have complete data and Dirichlet priors satisfying BDe constraints
with common BDe weight vector αX , then a query qh|e has the same distribution under
equivalent DAG structures.

Proof. Let A and B be equivalent DAG structures. By Lemma 2, it suffices to consider
the case where B is obtained from A by reversing an arc B → C that is covered by
A. Fixing a ∈ DA, it then suffices to show that qBC|a := 〈qbc|a, bc ∈ DBC〉 has the
same joint distribution under both A and B. Write X = ABCZ, where Z includes
all other variables. Applying Lemma 1, we represent relevant parameters in terms of
independent random variables γbc ∼ Gam(αabc·); i.e., θb|a := γb·/γ··, θc|ab := γbc/γb·,
θc|a := γ·c/γ··, and θb|ac := γbc/γ·c . This representation satisfies all required joint
distributions. Under A, we have qbc|a = θb|aθc|ab with independent θB|a ∼ Dir(αaB··)
and θC|ab ∼ Dir(αabC·). Under B, we have qbc|a = θc|aθb|ac with independent θC|a ∼
Dir(αa·C·) and θB|ac ∼ Dir(αaBc·). Now qbc|a = γbc/γ·· and qBC|a ∼ Dir(αaBC·) under
both A and B.

Example 1. Consider three equivalent DAG structures obtained via Lemma 2.

A→ B → C A← B → C A← B ← C

Each structure induces the dependence model with A and C conditionally independent
given B. Given common BDe weights αabc, there are three equivalent representations
of the joint distribution: qabc = θaθb|aθc|b = θa|bθbθc|b = θa|bθb|cθc . The parameters
within each product are independent and each parameter has a beta distribution; e.g.,
θb|c ∼ Beta(α·bc, α··c − α·bc). This example can be generalized in several ways: extend
the length of the chain, add common parents to the three variables, and add children
to any or all variables. There is no restriction on structure among the added parents or
children.

Geiger and Heckerman (1997) obtain a more fundamental result that relates beta-
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distributed queries directly to structural hypotheses without requiring the assumption
of a Dirichlet prior; i.e., they show that global independence, local independence, and
invariance to representation of equivalent structures together imply a Dirichlet prior
with BDe constraints. For the simplest nontrivial case, consider three assumptions for
a network with X = AB.

(i) The |DA| + 1 random vectors {qA, qB|a, a ∈ DA} are mutually independent; the
|DB |+ 1 random vectors {qB, qA|b, b ∈ DB} are mutually independent; and (after
removing redundancies from variables summing to one) each set of variables has
a strictly positive probability density function.

(ii) qAB has a Dirichlet distribution.

(iii) The network has structure A→ B, global independence, local independence, and
Dirichlet prior with BDe constraints.

Geiger and Heckerman prove the equivalence of (i) and (ii). The equivalence of (ii) and
(iii) is well-known and easily derived; e.g., follow the proof of Theorem 1 above. These
equivalences can be generalized by replacing {A → B} with a totally connected set C

of variables covered by common parents D. The assumption that qC|d has a Dirichlet
distribution is equivalent to generalizations of (i) and (iii); see Theorem 3 in Geiger and
Heckerman (1997).

4 Discussion of Theorems 5, 6, and 7 in Kleiter (1996)

With BDe constraints, information about all variables is characterized in terms of com-
plete “data” (real and/or fictitious). Kleiter (1996) introduces similar constraints to
express this idea for subsets of network variables. Suppose we have a Dirichlet prior
and complete data. Let A be a parent of C. Write pa(C) = ABD and pa(A) = BE,
where B, D, and E are pairwise disjoint and may be empty. Vector B represents par-
ents of both A and C. Vector E cannot include C. We have θC|abd ∼ Dir(αC|abd) and
θA|be ∼ Dir(αA|be). The variable C is said to be a natural child of A if

∑

cbd
αc|abd =

∑

be
αa|be for all a ∈ DA. (A.5)

The network satisfies natural child constraints if (A.5) holds for all pairs AC with
A ∈ pa(C).

Theorem 2. BDe constraints imply natural child constraints. The converse holds for
networks with just two variables.

Proof. Write X = ABCDEZ, where Z includes all other variables. Given BDe
constraints with weight vector 〈αabcdez〉, we have αc|abd = αabcd·· and αa|be = αab··e· .
It follows that both sides of (A.5) equal αa····· . If X = AC, then “natural child” implies
BDe with weights αac = αc|a .
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The converse does not hold in general. E.g., suppose X = ABC and A = {A →
B → C, A → C}. The natural child constraints are

∑

ca αc|ab =
∑

a αb|a ,
∑

cb αc|ab =
αa , and

∑

b αb|a = αa . Equivalently, setting αabc := αc|ab, we have αa = αa·· ,
∑

b αb|a =
αa·· , and

∑

a αb|a = α·b· . “Natural child” constrains only the marginal totals of table
αB|A. BDe constrains the entire table. A similar argument shows that the converse
fails for larger networks with complete structure (i.e., where every pair of variables is
connected by an arc). An application of Theorem 1 shows that, given complete data,
Dirichlet prior, BDe constraints, and complete structure, we have qX ∼ Dir(αX) and
so every query has a beta distribution. This conclusion can fail if BDe is replaced with
natural child constraints.

The following example is related to Kleiter’s Theorems 5 and 7.

Example 2. Suppose X = AB and A = {A → B}. Assuming complete data
and Dirichlet prior (but not necessarily BDe constraints), we have θA ∼ Dir(αA),
θB|a ∼ Dir(αB|a), all CPtable rows are independent, and qa|b = θaθb|a/

∑

a′ θa′θb|a′ .
Applying Lemma 1, we represent θa as γa/γ·, where the γa are independent random
variables with γa ∼ Gam(αa). We also assume that 〈γa〉 is independent of θB|A. With
b fixed, put ζa = γaθb|a so that qa|b = ζa/ζ· . The ζa are independent random variables
and the conditional distribution of ζa given θb|a is gamma with shape parameter αa and
scale parameter θb|a. The unconditional distribution of ζa is thus a continuous scale
mixture of gamma distributions. Put ∆a = αa −

∑

b αb|a. If ∆a = 0 (i.e., we have
BDe constraints, equivalent to “natural child” here), then the second part of Lemma 1
shows that ζa ∼ Gam(αb|a) and consequently qa|b ∼ Beta(αb|a, αb|· − αb|a). This is a
restatement of Kleiter’s Theorem 5. Theorem 1 provides an interpretation of this result:
qa|b has a beta distribution because it is a parameter θa|b under the equivalent structure
{A← B}.

If ∆a is a positive integer, then the distribution of ζa can be expressed as a finite mix-
ture of gamma distributions with fixed scale parameter and varying shape parameter;
i.e.,

∑

wkGam(δk) where the mixing weights wk are Polya-Eggenberger (PE) proba-
bilities. The shape parameter δk varies by increments of 1 from αb|a to αb|a + ∆a.
A derivation of this result is provided in the Appendix. If ∆a is a nonnegative inte-
ger for each a ∈ DA, then it follows that the distribution of qa|b is a mixture of beta
distributions where the mixing weights are products of PE probabilities.

This beta mixture result constitutes part of Kleiter’s Theorem 7. His full Theo-
rem 7 makes a more general claim that the distribution of qa|b is a finite mixture of
beta distributions even if some or all ∆a are negative integers. For negative ∆a it is
claimed that the shape parameter δk varies by increments of 1 from max{0, αb|a + ∆a}
to min{αb|a, αa}. No proofs are given in Kleiter (1996) but further details are provided
by Kleiter and Kardinal (1995). Their result for ∆a < 0 is based on an an additional
assumption (an urn model sampling scheme), which is not needed for ∆a > 0. They
conjecture that the result for ∆a < 0 remains valid without this additional assumption.

Theorem 3 below implies that the beta mixture claim for ∆a < 0 is in fact not
possible given a Dirichlet posterior distribution. This suggests that the urn model sam-
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pling scheme may be incompatible with the Dirichlet assumption. Given the connection
between Dirichlet and gamma distributions, a finite mixture of beta distributions would
imply corresponding finite shape mixtures of gamma distributions, one for each a ∈ DA,
but this is possible only if the ∆a are nonnegative integers. The proof of Theorem 3 is
given in the Appendix.

Theorem 3. Suppose θ and γ are independent random variables with θ ∼ Beta(α1, α2)
and γ ∼ Gam(α3). Put ζ = γθ and ∆ = α3 − α1 − α2. The distribution of ζ is a finite
shape mixture of gamma distributions if and only if ∆ is a nonnegative integer. If
∆ = 0, then ζ ∼ Gam(α1).

Kleiter’s Theorem 6 makes the following claim. If B denotes all children of A, each
child of A is a natural child with respect to all of its parents, and all CPtable rows
are independent with Dirichlet distributions, then qa|b has a beta distribution. The
following example shows that the claim is not valid even with “natural child” replaced
by the stronger BDe constraints.

Example 3. Let X = ABC and A = {B ← A → C}. Assuming complete data,
Dirichlet prior, and BDe constraints with weights αabc, we have independent θA ∼
Dir(αA··), θB|a ∼ Dir(αaB·), and θC|a ∼ Dir(αa·C). Fixing bc ∈ DBC and following
the steps in Example 2, we obtain

qa|bc = θaθb|aθc|a/
∑

a′

θa′θb|a′θc|a′ = ζaθc|a/
∑

a′

ζa′θc|a′ .

The ζa are independent random variables, ζa ∼ Gam(αab·), and 〈ζa〉 is independent of
〈θc|a〉. Put ∆a = αab·−αa·· . By Theorem 3, we need ∆a = 0 in order for ζaθc|a to have
a gamma distribution. Here we have ∆a < 0 for all a ∈ DA, since all αabc are positive.
The distribution of qa|bc is neither beta nor a finite mixture of betas. It is possible for
qa|bc to have a beta distribution given certain non-BDe constraints on the weights; e.g.,
αa =

∑

b αb|a and αb|a =
∑

c αc|a for all ab ∈ DAB . Such constraints are unlikely to
occur in posterior distributions.

5 Appendix: Proof of Theorem 3 on finite mixtures

The conditional distribution of ζ given θ is gamma with shape parameter α3 and scale
parameter θ, so the marginal density of ζ is

f(ζ) =

∫ 1

0

{

1

Γ(α3)θα3
ζα3−1 exp(−ζ/θ)

}{

Γ(α1 + α2)

Γ(α1)Γ(α2)
θα1−1(1− θ)α2−1

}

dθ .

Make the change of variable η = (1 − θ)/θ, so θ = (η + 1)−1 and dθ = −(η + 1)−2dη.
Some algebraic manipulation yields f(ζ) = g(ζ)h(ζ, α2, ∆), where ∆ = α3 − α1 − α2,

g(ζ) =
Γ(α1 + α2)

Γ(α1)Γ(α2)Γ(α3)
ζα3−1 exp(−ζ) ,

h(ζ, α2, ∆) =

∫ ∞

0

exp(−ζη) ηα2−1(η + 1)∆dη . (A.6)
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Now suppose f can be represented as a finite mixture of Gam(α∗
k) densities with mixing

weights wk . Define moments Mn(α3) = E(γn). A comparison of E(ζn) = E(θn)Mn(α3)
with wkMn(α∗

k) as n→∞ shows that each α∗
k must be strictly less than α3. It follows

that, without loss of generality, we may adopt the following parameterization:

α∗
k = α1 + ∆− βk ,

wk = ck
Γ(α1 + ∆− βk)

Γ(α1)

Γ(α2 + βk)

Γ(α2)

Γ(α1 + α2)

Γ(α1 + α2 + ∆)
, (A.7)

with k ranging over a finite set K, −α2 < βk < α1+∆, ck > 0, and
∑

wk = 1. Using this
parameterization, the mixture assumption is equivalent to the following representation
of h in (A.6):

∫ ∞

0

exp(−ζη) ηα2−1(η + 1)∆dη =
∑

ckΓ(α2 + βk)ζ−(α2+βk). (A.8)

Now observe that (A.8) is valid if and only if

(η + 1)∆ =
∑

ckηβk for all η > 0. (A.9)

Integration shows that (A.9) implies (A.8) and the converse follows from uniqueness
of the Laplace transform. If ∆ is a nonnegative integer, then (A.9) holds with K =
{0, . . . , ∆}, βk = k, and binomial coefficients ck = ∆!/{k!(∆− k)!}. The weights (A.7)
are then Polya-Eggenberger probabilities (Johnson and Kotz, 1977). Otherwise (A.9)
cannot hold (see below) and so f cannot be a finite gamma mixture.

If ∆ < 0, then (A.9) would imply ck = 0 for βk 6= 0. To see this, first note that
as η → 0 we have (η + 1)∆ → 1, ηβ → 0 for β > 0, and ηβ → ∞ at different rates
for different β < 0. Thus ck must be zero if βk < 0. Second, as η → ∞ we have
(η + 1)∆ → 0, ηβ → 0 for β < 0, and ηβ → ∞ at different rates for different β > 0.
Thus ck must be zero if βk > 0.

Suppose ∆ is positive and not an integer. If β < 0 or if β is not an integer then, as
η → 0, ηβ or one of its derivatives becomes unbounded (at different rates for different
β) while the function (η + 1)∆ and each of its derivatives remains bounded. Thus (A.9)
would require that all βk be nonnegative integers. On the other hand, an examination
of (η+1)∆η−β as η →∞ shows that the maximum βk must equal ∆. This contradiction
shows that (A.9) cannot hold.
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