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ESTIMATION OF TREND IN STATE-SPACE MODELS:
ASYMPTOTIC MEAN SQUARE ERROR AND

RATE OF CONVERGENCE

BY PRABIR BURMAN AND ROBERT H. SHUMWAY

University of California, Davis

The focus of this paper is on trend estimation for a general state-space
model Yt = μt + εt , where the dth difference of the trend {μt } is assumed
to be i.i.d., and the error sequence {εt } is assumed to be a mean zero station-
ary process. A fairly precise asymptotic expression of the mean square error
is derived for the estimator obtained by penalizing the dth order differences.
Optimal rate of convergence is obtained, and it is shown to be “asymptotically
equivalent” to a nonparametric estimator of a fixed trend model of smooth-
ness of order d − 0.5. The results of this paper show that the optimal rate of
convergence for the stochastic and nonstochastic cases are different. A crite-
rion for selecting the penalty parameter and degree of difference d is given,
along with an application to the global temperature data, which shows that a
longer term history has nonlinearities that are important to take into consid-
eration.

1. Introduction. Trend estimation for time series data has a long history, and
the literature, understandably, is quite vast. The basic statistical model and the es-
timation problem are quite easy to describe. The observed series {Yt : t = 1, . . . , n}
is modeled as

Yt = μt + εt ,(1.1)

where the error series {εt } is assumed to be a mean zero stationary process. In some
cases, the error series may have variances that change with time, but we will not
worry about that issue here. The goal is to estimate the trend {μt } on the basis of the
observed data. In the literature, two types of structures of the trend are assumed:
fixed and stochastic. Asymptotic analysis of the estimator of the random trend
model (a version of the state-space model) is the focus of this paper. We derive
the expression for the asymptotic mean square error of the trend estimate obtained
by penalizing finite differences and then obtain its rate of convergence. The main
asymptotic results presented in this paper are not in terms of upper bounds, rather
they are asymptotic expressions, which are correct up to first order with bounds on
the second order terms.
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In the fixed trend model, it is usually assumed that the trend is of the form
μt = μ(t/n), where μ is an unknown function (presumably smooth) on the inter-
val [0,1]. Various methods, such as kernel [Altman (1990) and Truong (1991)],
local polynomial [Beran and Feng (2001)], spline [Burman (1991)] and wavelets
[Johnstone and Silverman (1997)], have been employed in order to estimate the
trend. Asymptotic properties of such methods, rates of convergence and issues on
smoothing parameter selection have been well investigated by many authors [see,
e.g., Eubank (1988), Fan and Yao (2003), Tran et al. (1996) and Robinson (1997)].
The literature is vast, and the recent book by Fan and Yao is a good source on this
topic and the relevant references.

The stochastic trend models are quite popular in the time series literature [see
Chapter 9 in Box, Jenkins and Reinsel (1994), Chapter 3 in Durbin and Koop-
man (2001), Harvey (1991) and Chapter 4 in Shumway and Stoffer (2000)]. While
deterministic trends may sometimes have simpler expressions, it is the belief of
many time series analysts that a stochastic trend model is more realistic in real
applications. A discussion on deterministic versus stochastic trend can be found in
Chapter 4.1 in the book by Box, Jenkins and Reinsel (1994). For the random trend
model, it is assumed that the dth order differences

∇dμt = γt(1.2a)

are mean zero i.i.d. variables with variance σ 2
γ , where d > 0 may or may not be an

integer. The usual application in the literature assumes that d is a known positive
integer. Independence of {∇dμt } is not really necessary, stationarity is enough (see
Remark 1 in Section 2). In this paper, we restrict our attention to the case when d

is an integer. In a forthcoming paper, we will deal with the general case d > 0 in
detail. An alternative representation for the random trend is

μt = ∑
0≤j≤d−1

βj t
j−1 + ∑

1≤j≤t

(−1)t−j

( −d

t − j

)
γj ,(1.2b)

where βj ’s, the coefficients of the polynomial, can be taken to be fixed or ran-
dom. Chan and Palma (1998) have investigated finite approximations to the log-
likelihood for state-space models in the long memory (fractional difference) case.
State-space models have been quite popular among many statisticians, and efficient
algorithms such as EM and MCMC have been developed for estimation of the trend
[see, e.g., Shumway and Stoffer (2000) and Durbin and Koopman (2001)]. How-
ever, not much is known about the asymptotic properties of the estimators, even
though there is a strong parallel with the method of smoothing splines [see, e.g.,
Wahba (1978), Wecker and Ansley (1983) and Kohn, Ansley and Wong (1992)].

Assuming that {εt } are i.i.d. N(0, σ 2
ε ) and {∇dμt } are i.i.d. N(0, σ 2

γ ), we note
that (1.1) and (1.2a) define a special case of the state space model, where (1.1) is
the observation equation and (1.2) is the state equation. If the errors are not i.i.d.
but stationary, a second state equation defining {εt } as a stationary autoregressive
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process can be added. For the i.i.d. error case, the estimator of the trend is obtained
by maximizing the Gaussian likelihood; that is, by minimizing∑

1≤t≤n

(Yt − μt)
2 + ν

∑
d+1≤t≤n

(∇dμt )
2(1.3)

with respect to μ = (μ1, . . . ,μn)
′, where ν = σ 2

ε /σ 2
γ . The estimate, for fixed ν

and d , is given by μ̂t = E(μt |Y1, . . . , Yn), which can also be computed as the
Kalman smoothers. Note that, restricting the class to linear estimators, the above
minimization problem is still valid without the Gaussian assumptions on {εt }
and {γt }, and the resulting estimator in such a case can be described as the best
linear unbiased predictor (BLUP) of {μt } [Kimeldorf and Wahba (1970)].

Wahba (1978) established a connection to spline smoothing. Suppose that the
trend is given by

μt = ∑
0≤j≤d−1

θj t
j + τ

∫ t

0
(t − u)d−1 dW(u),(1.4)

where W is a standard Brownian motion and θ = (θ0, . . . , θd−1)
′ is multivariate

normal Nd(a, kI ). Assuming a diffuse prior for θ , that is, if k → ∞, then mini-
mizing

∑
1≤t≤n

(Yt − μt)
2 + ν

∫ t

0

{
∂dμu

∂ud

}2

du(1.5)

with respect to μ1, . . . ,μn leads to the estimator μ̂t = E(μt |Y1, . . . , Yn), which
is precisely the same estimator as one obtains for the state-space model [see
Wahba (1978) and Green and Silverman (1994) for details]. In other words, un-
der the diffuse prior model of (1.4), the smoothing spline estimate of μt obtained
by minimizing (1.5) coincides with the estimator obtained by a criterion that in-
volves penalizing finite differences. However, the properties of the latter estimator
are still not well understood.

As mentioned in the first paragraph, this paper is devoted to the asymptotic study
of the estimator μ̂ obtained by minimizing (1.3) (and its weighted least squares
variant). Specifically, we obtain an asymptotic expression of the mean square error
under fairly general assumptions. We only assume that {εt } is mean zero stationary
whose spectral density at zero is positive and that {∇dμt } are i.i.d. Note that no as-
sumption of Gaussianity is needed for our results to hold. We show that the small-
est mean square error is constant times n2(d−0.5)/(2d). This rate of convergence is
the same as one obtains for the fixed trend case when the order of smoothness is
d − 0.5. It may be worthwhile to point out that the rates for the stochastic and non-
stochastic cass are different. For the nonstochastic case, the rate of convergence
would be of order n2d/(2d+1). The penalized least squares method proposed here
does not require the knowledge of whether the underlying trend is deterministic or
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stochastic. So, if the underlying trend is stochastic, but one mistakes it be deter-
ministic and applies the method proposed here, all the results given in this paper
remain valid. However, if the underlying trend is deterministic, then it is reason-
able to believe (following the theory of nonparametric function estimation) that
the optimal rate associated with our procedure is of order n2d/(2d+1).

In Section 2, we state the main results where the asymptotic expressions for the
mean square error of the trend estimates for the state-space model are obtained.
We discuss two types of estimates: ordinary least squares and the weighted least
squares. In Section 3, we present a criterion for estimating the penalty parameter ν

and order of difference d along with a numerical example. Finally in the Appendix
we present the proofs of the results of Section 2. The proofs of the results depend
on the properties of Toeplitz, Hankel and circulant matrices.

2. The main results. We now take up the issue of trend estimation in a state-
space model. Two methods will be discussed: first, the ordinary least squares and,
second, in Section 2.1, the weighted least squares. Clearly, these two methods
yield the same estimate when the error sequence is assumed to be i.i.d. Consider
the time series Yt = μt + εt , t = 1, . . . , n, where μt is the trend and εt is a mean
zero stationary process. We will assume that the dth difference of the trend is i.i.d.
In the literature, it is usually assumed that the errors εt are i.i.d. Gaussian and the
dth differences of the trend ∇dμt = γt are also i.i.d. Gaussian variables. In such a
case, the trend can be estimated by minimizing the negative of the log-likelihood;
that is, by minimizing (1.3) with respect to μt ’s, σε and σγ . There are a few points
to be noted here. The assumption of normality can be dispensed with, and, in such
a case, we can treat this as a problem of obtaining the best prediction of linear
predictor (BLUP) of the random effects γt ’s for the mixed linear model. Through-
out this paper, the error sequence {εt } is assumed to be stationary. So, instead of
minimizing the penalized ordinary least squares criterion given in (1.3), we should
perhaps minimize a weighted least squares criterion, and this is taken up in Sec-
tion 2.1. In this subsection, we still deal with the ordinary least squares criterion
given in (1.3) in the presence of stationary error series {εt }. In the next section, we
will describe a method for estimating ν (and the degree of difference d).

Before we begin, it is important to note that we would like the average signal-
to-noise ratio E‖μ‖2/(nσ 2

ε ) to be bounded between two positive constants. This
can be guaranteed if the quantity E‖μ‖2/n stays bounded between two positive
constants. This requirement is met if the dth order difference γt = ∇dμt has a
variance of the form

σ 2
γ = τ 2/n2d−1(2.1)

for some positive constant τ . In order to see why this is true, we need to rewrite
the random trend in (1.2b) as

μt = ∑
0≤j≤d−1

βj (t/n)j−1 + ∑
1≤j≤t

(−1)t−j

( −d

t − j

)
γj = μ1t + μ2t say.
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First, let us consider the polynomial part. If the coefficients βj ’s are norandom
and are bounded in absolute values by a constant independent of n, then ‖μ1‖2/n

is finite. If βj ’s are random with finite means and variances (which do not de-
pend on n), then E‖μ1‖2/n is also finite. Now, let us consider the purely ran-
dom part μ2t of the trend. By Stirling’s approximation, (−1)l

(−d
l

)
is approxi-

mately equal to (
(d))−1ld−1 for a positive integer l not small, where 
 is the
usual Gamma function. Then, a fairly straightforward calculation will show that
E‖μ2‖2/n is approximately equal to constant times n2d−1σ 2

γ , when n is not small.
The statistical model, which we assume to be correct throughout, is

Yt = μt + εt with ∇dμt = γt , where

{εt } is mean zero stationary,
(2.2)

{γt } are i.i.d. with mean zero and variance τ 2/n2d−1,

{εt } and {γt } are independent.

We have discussed, above, that the trend consists of a polynomial part μ1t and a
purely random part μ2t . It is important to point out that the purely random part μ2t

is a nonnegligible one. This can be seen once we note that μ2t has zero mean
and E(μ2

2t ) approximately equal to a constant times (t/n)2d−1. Thus, the purely
random part of the trend is nonnegligible except when t is small.

We will now find a matrix representation of the estimate of μ obtained by min-
imizing (1.3). For d > 0, the summation and difference operators on Rn denoted
by Sd and S−d , respectively, are defined as follows: for any x in Rn,

(Sdx)(t) = ∑
1≤j≤t

(−1)t−j

( −d

t − j

)
xj , (S−dx)(t)

(2.3)

= ∑
1≤j≤t

(−1)t−j

(
d

t − j

)
xj .

It can be shown that SdS−d = I and S0 = I . Properties of summation and differ-
ence operators can be found in Burman (2006). Note that the difference operator
S−d is a lower triangular band matrix with element (t, j) is (−1)t−j

( d
t−j

)
, t ≥ j .

Let the (n − d) × n matrix obtained by deleting the first d rows of S−d be denoted
by S−d as follows. Then, with Y = (Y1, . . . , Yn)

′, we can rewrite (1.3) as

SSE(μ, ν, d) = ‖Y − μ‖2 + νμ′S′
−dS−dμ.(2.4)

Hence, minimizing the expression in (2.4) with respect to μt ’s leads to the estimate

μ̂ = μ̂(ν) = (I + νS
′
−dS−d)−1Y.(2.5)

The estimate μ̂ given above in (2.5) is rather easy to calculate, even for large n,
since I + νS

′
−dS−d is a band matrix. It should also be emphasized that this matrix
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representation eliminates the need for deciding the intitial values for the Kalman
iterations.

It is possible to construct a pointwise prediction interval for μt under Gaussian
assumption when the errors {εt } are assumed to be i.i.d., and the variances σ 2

ε

and σ 2
γ are known. In such a case, we can express the model as Y = Xβ + Zγ + ε,

where element (t, j) of the matrix X is (t/n)j−1, j = 1, . . . , d , Z is a lower tri-
angular matrix of order n whose element (t, j) is (−1)t−j

(−d
t−j

)
. The conditional

distribution of μ given Y is normal with mean

E(μ|Y) = Xβ + (
I + ν∗(Z′Z)−1)−1

(Y − Xβ)

and variance–covariance matrix

D = σ 2
ε

(
I + ν∗(ZZ′)−1)−1

,

where ν∗ = σ 2
ε /σ 2

γ . It can be shown that the estimate given in (2.5) is μ̂(ν) =
Xβ̂ + (I + ν∗(Z′Z)−1)−1(Y − Xβ̂), where β̂ is the estimate of β obtained by the
weighted least squares criterion (Y − Xβ)′(σ 2

ε I + σ 2
γ ZZ′)−1(Y − Xβ). Since β̂

is a
√

n-consistent estimate of β , the conditional mean of μ given Y is well esti-
mated by μ̂(ν). An approximate (1 − α)100% prediction interval of μt is given
by μ̂t ± zαDtt , where zα is the critical value from the standard normal distribution
and {Dtt } are the diagonal elements of the variance–covariance D matrix of the
conditional distribution of μ given Y . In practice, however, σε and ν∗ = σ 2

ε /σ 2
γ

are unknown and have to be estimated from the data. In Section 3, we will discuss
these issues. The matrix D is not as formidable as it looks. It is a banded matrix,
since Z−1 is a banded lower triangular matrix whose element (t, j) is given by
(−1)t−j

( d
t−j

)
, 0 ≤ t − j ≤ d .

It is not unusual to have time series data with missing observations. If a large
block of consecutive observations are missing, then nothing can be done to esti-
mate the trend during those periods of time. Suppose, for the case of simplicity, that
all the observations between time periods n1 and n2 are missing, where n1 = np1
and n2 = np2, and 0 < p1 < p2 < 1. Then, the methods of this paper can be used to
estimate the trend μt for 1 ≤ t ≤ n1 and n2 ≤ t ≤ n, and all the results will be valid
with appropriate modifications. However, the more difficult case is when the ober-
vations are sporadically missing. In such a case, the entire trend {μt : t = 1, . . . , n}
should be estimable. A reasonable approach for estimating the trend would be to
minimize ∑

t∈J

(Yt − μt)
2 + νμ′S′

−dS−dμ

with respect to μ where J is set of time indices at which the observations are
available. In such a case, the estimate of μ would be μ̂ = (Ĩ + νS

′
−dS−d)−1Y ,

where Ĩ is a diagonal matrix whose t th diagonal element is 1 or 0 depending on
whether the observation is available or missing. We have not yet investigated this
estimate and its properties, and this issue needs further research.
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2.1. Asymptotic mean square error of the estimate of the random trend.
Let us denote the conditional mean of the estimate, given the trend as μt =
E(μ̂t |μ1, . . . ,μn). If we view μt − μt as the bias of the estimate μ̂t , then we can
decompose the mean the square error as in the usual variance-bias decomposition

E‖μ̂ − μ‖2 = E‖μ̂ − μ‖2 + E‖μ − μ‖2.

Theorems given below tell us the asymptotic values of the bias and the variance.
We will provide an outline of the results here. If we write b = ν1/(2d)/n and assume
that b → 0 and nb → ∞ as n → ∞, then it turns out that

E‖μ̂ − μ‖2/n = c1(nb)−1[1 + O((nb)−1) + O(b)],
E‖μ − μ‖2/n = c2b

2d−1[1 + O((nb)−1) + O(b)],
where c1 and c2 are constants, the expressions for which are to be found in Theo-
rems 1 and 2 given below. Note that the results look very much like the asymptotic
expressions of the variance and bias-square components for estimating a regres-
sion function using a kernel method with bandwidth b. Also, note that the bias
looks like that of a function (nonrandom), which is d − 1 times differentiable with
the (d − 1)st derivative satisfying a Lipschitz condition of order 0.5. Hence, we
can obtain the value of b = b∗ at which the mean square error is minimized and
calculate the minimum mean square error explicitly. More discussion of the results
are given below after the theorems have been stated.

The first result given below is on the asymptotic expression of the variance. The
proofs of both the theorems need to employ the theories of Toeplitz, Hankel and
circulant matrices.

THEOREM 1. Assume that the conditions given in (2.2) hold and that∑
1≤j<∞ j |ρε(j)| < ∞, where ρε(j) is the covariance of the stationary process

of lag j for the error process {εt }. Assume that gε(0) > 0, where gε(u) =∑
−∞<j<∞ ρε(j)eiju is the spectral density function of the error process. Then,

assuming ν → ∞ and ν/n2d → 0 as n → ∞, we have

E‖μ̂ − μ‖2/n = c1ν
−1/(2d)[1 + O

(
ν−1/(2d)) + O

(
ν1/(2d)/n

)]
,

where c1 = gε(0)Beta(1/(2d),2 − 1/(2d))/(2dπ).

The following result gives an asymptotic expression for the bias.

THEOREM 2. Assume that the conditions given in (2.2) hold. Assuming that
ν → ∞ and ν/n2d → 0 as n → ∞, we have

E‖μ − μ‖2/n = c2
(
ν1/(2d)/n

)2d−1[
1 + O

(
ν−1/(2d)) + O

(
ν1/(2d)/n

)]
,

where c2 = τ 2 Beta(1 + 1/(2d),1 − 1/(2d))/(2dπ).
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REMARK 1. We have so far assumed that the dth difference {γt = ∇dμt }
of the trend consists of i.i.d. random variables with mean zero and variance
σ 2

γ = τ 2/n2d−1. Are Theorems 1 and 2 valid when {∇dμt } are not i.i.d.? The
answer is yes, if we assume that {γt = ∇dμt } is a mean zero stationary process
with autocovariances Cov(γt+j , γt ) = σ 2

γ ργ (j), −∞ < j < ∞. In such a case,
Theorem 1 is exactly the same as before. Theorem 2 is also the same as before ex-
cept for the constant that appears in the expression of E‖μ−μ‖2/n. Let gγ be the
spectral density of the process {γt/σγ } and assume that

∑
1≤j<∞ j |ργ (j)| < ∞.

A modification of the proof of Theorem 2 will show

E‖μ − μ‖2/n = c2gγ (0)
(
ν1/(2d)/n

)2d−1[
1 + O

(
ν−1/(2d)) + O

(
ν1/(2d)/n

)]
,

where c2 is the same constant as in Theorem 2. Note that the constant involved in
the expression of E‖μ − μ‖2/n now includes the value of the spectral density gγ

at zero. Clearly, for the case when {∇dμt } is stationary, all the discussion below
about the optimal mean square error in estimating the trend remains valid with
appropriate constants.

REMARK 2. Note that the mean square error

D(ν) = E‖μ̂ − μ‖2/n = [
c1ν

−1/(2d) + c2ν
1−1/(2d)n−2d+1](

1 + o(1)
)

is minimized at

ν∗ = n2d−1(2d − 1)−1(c1/c2)
(
1 + o(1)

)
and the smallest mean square error is

D(ν∗) = n(2d−1)/(2d)c3
(
1 + o(1)

)
,

where c3 = c1(c2/c1)
1/(2d)2d(2d − 1)−1+1/(2d).

REMARK 3. We consider, here, the Euclidean distance between the true ran-
dom trend μ and its estimate μ̂. Such a distance has been considered by many for
time-dependent observations [see, e.g., Altman (1990), Burman (1991), Johnstone
and Silverman (1997) and Truong (1991)]. However, it is of interest to consider
the distance (μ̂−μ)′R−1

ε (μ̂−μ), where Rε is the n× n variance–covariance ma-
trix of the error process {εt }. If the spectral density function of this process stays
bounded between two positive constants, which is the case for the usual ARMA
model, then the theory of Toeplitz matrices tells us that all the eigenvalues of the
matrix Rε stay between two positive constants [Grenander and Szego (1958)]. In
such a case, we can find two positive constants k1 and k2 such that

k1‖μ̂ − μ‖2 ≤ (μ̂ − μ)′R−1
ε (μ̂ − μ) ≤ k2‖μ̂ − μ‖2.

Consequently, all of the rates of convergence results for the Euclidean distance
‖μ̂ − μ‖2 are also valid when the distance is taken to be (μ̂ − μ)′R−1

ε (μ̂ − μ).
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We will conclude this subsection by comparing the optimal mean square error
as discussed above with the optimal rate of convergence associated with nonpara-
metric function estimation problems. A function f on [0,1] is defined to be in
the smoothness class p = r + β , where r is a nonnegative integer and 0 < β ≤ 1,
if f is r times differentiable and the r th derivative of f is Lipschitz of order β .
Now, if the trend is a nonrandom function and is modeled as μt = μ(t/n), and
the function μ is of smoothness class p, then the optimal rate of convergence for
estimating the trend is given by n−2p/(2p+1) [see Stone (1982), Eubank (1988)
and Fan and Yao (2003)]. Theorems 1 and 2 and the subsequent discussion tell us
that, for the state-space model as given in (2.2), the optimal rate of convergence is
n−(2d−1)/(2d). This corresponds to the rate of p = d − 0.5 for the nonrandom case.

What is the rate when the order of difference in unknown? We now examine
the performance of the estimated stochastic trend when the true order of difference,
which we assume to be d0, is unknown, but a dth order differencing scheme is be-
ing employed to estimate the trend. It may be worthwhile to point out that the order
of difference d controls the smoothness of the estimated trend. Since, in the time
series literature, it is assumed that the true order of difference is known, we may
turn to the literature on nonparametric function estimation for some guidance. For
nonparametric function estimation, it has been pointed out by many authors that,
from a practical point of view, the penalty parameter (or the smoothing parameter
in general) is far more important than the order of differencing d employed in the
estimation procedure [see Beran (2005), Eubank (1988) and Wahba (1990)]. For
instance, in his analysis of multi-way tables, Beran finds that there is not much of
a difference in the estimated risk when the order of difference is taken to be any
integer between 1 and 4.

However, for the sake of theoretical completeness, we will present the results
when the true difference order d0 is unknown, and we are employing a dth order
differencing in order to obtain the estimate of the stochastic trend. Before we state
the result, let us point out that, when d ≥ d0, the rate remains the same though the
constant associated with the rate depends on d . However, the constant is the small-
est when d = d0. When d < d0, a different rate comes into play, and this rate is the
same as in the usual nonparametric function estimation [see, e.g., Eubank (1988),
Stone (1982) and Wahba (1990)].

It should be pointed out that Theorem 1 remains valid even when d �= d0. How-
ever, Theorem 2 is no longer valid when d �= d0. We will write the results for the
bias part (i.e., analogue of Theorem 2). When d < d0, we can only obtain a bound
for the bias part. But, for the case d ≥ d0, we can obtain an asymptotic expresssion.

THEOREM 3. Assume that the model as given in (2.2) holds with d replaced
by d0. The estimate of μ is obtained by minimizing the expression given in (1.3):

(a) When d < d0,

E{‖μ − μ‖2}/n = O
(
(ν/n)2d)

.
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(b) When d ≥ d0,

E{‖μ − μ‖2}/n = c4
(
ν1/(2d)/n

)2d0−1[1 + o(1)],
where c4 = τ 2 Beta((2d0 − 1)/(2d),2 − (2d0 − 1)/(2d))/(2dπ).

Even though we obtain an upper bound for the case d < d0, we believe it is not
possible to improve the rate, and that is certainly true when d = 1, the case for
which the exact expressions for the eigenvalues and eigenvectors for the matrix
S

′
−dS−d are known. Note that the optimal mean square error E{‖μ̂ − μ‖2}/n is

O(n−2d/(2d+1))(1 + o(1)), which is known to be the rate for nonparametric func-
tion estimation for the nonstochastic case.

When d ≥ d0, Theorem 1 and part (b) of Theorem 3 tell us that the mean square
error is of the form c(d)n−(2d0−1)/(2d0) when

c(d) = [
gε(0)2d0−1τ 2(2d0 − 1)

(
Beta

(
1/(2d) − 2 − 1/(2d)

)2d0−1

× Beta
(
(2d0 − 1)/(2d),2 − (2d0 − 1)/(2d)

)]1/(2d0).

It can be shown that c(d) is minimized when d = d0. In other words, the optimal
rate of covergence is still n−(2d0−1)/(2d0) as long as d ≥ d0, but the constant associ-
ated with the rate depends on d and the minimum value of the constant is acheived
at d = d0.

2.2. Weighted least squares estimate of the trend. In this subsection, we will
discuss a weighted least squares estimator of the trend and its asymptotic proper-
ties. Since the arguments needed to prove the results given in this subsection are
similar to those for Theorems 1 and 2, we will merely state the results. We will
first discuss the case when the variance–covariance matrix Rε of {εt : t = 1, . . . , n}
is assumed to be known. A weighted least squares estimate μ̃(wls) of μ may be
obtained by minimizing

(Y − μ)′R−1
ε (Y − μ) + ν

∑
d+1≤t≤n

(∇dμt )
2(2.6)

instead of minimizing the quantity given in (1.3). Clearly, then

μ̃(wls) = (R−1
ε + νS

′
−dS−d)−1R−1

ε Y.(2.7)

In practice, of course, the matrix R−1
ε is unknown and has to be estimated from

data. If R̂ε is an estimate of Rε , then a practical weighted least squares estimate
of the trend is given by replacing Rε in (2.7) by R̂ε , and we denote the resulting
estimator by μ̂(wls). We will obtain, below, analogues of Theorems 1 and 2 for
μ̃(wls) and also show that the difference μ̂(wls) − μ̃(wls) is small in the probabilistic
sense under appropriate conditions.

We will assume that the error process {εt } is AR(p) [or ARMA(p, q)]. Using a
preliminary estimate μ̂+ of μ, we can estimate p (via a model selection criterion
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such as AIC or BIC) and the parameters of the error process by using the residuals
Yt −μ̂+

t . Clearly, an estimate of the variance–covariance matrix Rε can be obtained
from the estimated model of the error process. Moreover, the estimated variance–
covariance matrix R̂ε is a

√
n consistent estimate of Rε; that is, ‖R̂ε − Rε‖ =

OP (n−1/2), where ‖ · ‖ is the usual matrix norm (i.e., the maximum of singular
values).

For the following results on the asymptotics of the weighted least squares, for
any x in Rn, we define ‖x‖2

R−1
ε

to be equal to x′R−1
ε x.

THEOREM 4. Assume that the conditions given in (2.2) holds and that the
error process {εt } is AR(p). Let μ(wls) = E[μ̃(wls)|μ]. Then, as ν → ∞ and
ν/n2d → 0, the following results are true:

(a) E
[∥∥μ̃(wls) − μ(wls)∥∥2

R−1
ε

]
/n = c4ν

−1/(2d)[1 + O
(
ν−1/(2d)) + O

(
ν1/(2d)/n

)]
,

where c4 = gε(0)−1/(2d) Beta(1/2d,2 − 1/(2d))/(2dπ);

(b) E
[∥∥μ(wls) − μ

∥∥2
R−1

ε

]
/n

= c5ν
1−1/(2d)n−2d+1[

1 + O
(
ν−1/(2d)) + O

(
ν1/(2d)/n

)]
,

where c5 = τ 2gε(0)−1/(2d) Beta(1 + 1/(2d),1 − 1/(2d))/(2dπ);
(c) The mean square error is given by

E
[∥∥μ̃(wls) − μ

∥∥2
R−1

ε

]
/n

= [
c4ν

−1/(2d) + c5ν
1−1/(2d)n−2d+1][

1 + O(ν−1/d) + O
(
ν1/(2d)/n

)]
.

THEOREM 5. Assume that the conditions for Theorem 3 hold. Moreover, as-
sume that the fourth moment of the error process εt is finite and ‖R̂ε − Rε‖ =
OP (n−1/2). Then,∥∥μ̃(wls) − μ

∥∥2
R−1

ε
/n − ∥∥μ̂(wls) − μ

∥∥2
R−1

ε
/n = OP (1/n).

REMARK 4. There are a number of consequences that follow from Theorems
3 and 4. First, from the asymptotic expression of the mean square error for the
weighted least squares estimator μ̃(wls) of μ for a known Rε , we can obtain the
optimal rate of convergence. Note that the minimum mean square errors, for the
weighted least squares estimate μ̃(wls) and the ordinary least squares estimate μ̂

given in Section 2.1, differ only in constants. Moreover, Theorem 4 guarantees
that the weighted least squares estimate μ̂(wls) for unknown Rε has the same mean
square error as μ̃(wls) in the asymptotic sense.

REMARK 5. Even though Theorem 3 is stated for the case when the error
process {εt } follows AR(p), this result is true for any stationary error process as
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long as its spectral density function is bounded away from 0 and ∞. Theorem 4
holds as long as the error process has a finite-dimensional model such as AR(p)

or an invertible ARMA(p, q).

3. Data dependent selection of ν and d . In this section, we will discuss the
issue of selecting the smoothing parameter ν and the degree of differences d for the
ordinary least squares estimate μ̂ given in Section 2.1. Criterion for selection of ν

and d can be developed for the weighted least squares estimate μ̂(wls) by following
similar arguments given in this section. However, we will not address that issue
here. The main idea rests on minimizing the expected distance between μ and its
estimate μ̂ = μ̂(ν), given by

D(ν, d) = E‖μ̂ − μ‖2/n = E‖μ̂ − μ‖2/n + E‖μ − μ‖2/n,

where μ = μ(ν) = E[μ̂(ν)|μ]. Ideally we would like to minimize D with respect
to ν (and d). However, it is unknown, and so we try the route of estimating D by
following the arguments given by Akaike and Mallows.

Now, the expected value of the residual sum of squares is

E(SSE(ν, d)) = E‖Y − μ̂‖2

= nσ 2 + E‖μ̂ − μ‖2 + E‖μ − μ‖2 − 2 tr
(
(I + νS

′
−dS−d)−1Rε

)
,

where σ 2 = E(ε2
t ) and variance–covariance matrix of the error series {εt } is Rε .

So, an unbiased estimate of D(ν, d) is given by

D̃(ν, d) = SSE(ν, d)/n + 2 tr
(
(I + νS

′
−dS−d)−1Rε

)
/n − σ 2.(3.1)

Since the last term in the expression of D̃ does not depend on ν (and d), we can
safely ignore it. Using the same arguments as in Theorem 1, we can show that

tr
(
(I + νS

′
−dS−d)−1Rε

) = ∑
gε(πj/n)/

(
1 + νs(πj/n)

) + O(1),

where gε is the spectral density of the process {εt }, s(u) = (2 − 2 cosu)d , and

c6(d) = π−1
∫ ∞

0
1/(1 + u2d) du = Beta

(
1/(2d),1 − 1/(2d)

)
/(2dπ).

If we can get a reasonable estimate ĝε of the gε , as in the method given below,
then, by ignoring the term involving σ 2 in (3.1), we can arrive at the following
criterion function

φ(ν, d) = SSE(ν)/n + (1/n)
∑

ĝε(πj/n)/
(
1 + νs(πj/n)

)
or(3.2a)

φ(ν, d) = SSE(ν)/n + 2ν−1/(2d)ĝε(0)c6(d).(3.2b)

The first criterion given in (3.2a) is preferable, since the second one in (3.2b) is an
approximation to the first when both n and ν are large.
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We will now concentrate on how to find a reasonable estimate of the spectral
density of the error process {εt } at zero. Let us assume that the error sequence is
AR(p), an autoregressive process of order p, where p is unknown and needs to be
estimated. Consider the local linear estimator μ̂+

t of μt on the basis of observa-
tions Yt−k, . . . , Yt+k , where k is approximately equal to

√
n/2. If t < k + 1, then

the estimator is based on Y1, . . . , Yt+k , and a similar modification is done when
t > n − k. Using a selection criterion such as AIC or BIC we can select an autore-
gressive model using the estimated error sequence ε̃t = Yt − μ̂+

t . Let ĝε(0) be the
estimate of the spectral density of the error sequence at zero on the basis of the
estimated autoregressive process.

A second approach is to minimize the innovations log likelihood for the state
space model defined by the observation equation (1.1) and the state equations (1.2)
and

εt = φ1εt−1 + φ2εt−2 + δt ,(3.3)

where {δt } are mean zero i.i.d. with variance δ2
d . Again, AIC or BIC can be used to

estimate the order p of the autoregressive process. The estimators for μ, say μ̂, are
the usual Kalman smoothers, produced as a by-product when using the EM algo-
rithm to estimate the unknown parameters φ1, φ2 and σ 2

δ . The Kalman smoothers
also produce the estimated mean square error of E‖μ̂−μ‖2, which can be used to
set pointwise uncertainty limits for the smoothed trend.

We have used both methods above to obtain an estimate of the trend of the global
temperature data, as given in Jones et al. (2000). Figure 1 shows the yearly aver-
age of land and marine temperature stations beginning in 1856 and ending in 2000.
We have chosen a relatively long time span that indicates that the assumption of
linearity, often made on the basis of temperature series beginning in 1900, may
not be realistic over the long term. The first model selection criterion described
above selected an AR(2) model for the error process {εt } with parameter esti-
mates φ̂1 = 0.3784, φ̂ = −0.1660, σ̂ 2

δ = 0.0096. The selected order of difference
and the penalty parameters turned out be d̂ = 2 and ν̂ = 219.8. Applying max-
imum likelihood (the second approach) yielded comparable values φ̂1 = 0.3882,
φ̂2 = −0.1641 and σ̂ 2

δ = 0.0095. As a matter of fact, the trend estimates for these
methods turned out to be indistinguishable. The fitted trend and data are plotted in
Figure 1, and we note that the estimated trend conforms more to a nonlinear func-
tion with two periods of relative stable global temperatures and the two periods of
rather steep increases, the last beginning at about 1975.

3.1. Simulations. We have done simulations in order to check the suitability of
our criterion for sample sizes n = 100 and n = 300 with different signal-to-noise
ratios (SNR). We have tried two cases when the true value of d is either 1 or 2. So,
the model we have tried is

Yt = μt + εt , t = 1, . . . , n,
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FIG. 1. Yearly temperature anamalies (1856–2000) in degrees centigrade relative to the 1961–1990
mean. Solid lines are the fitted trend and the upper and lower point-wise 95% posterior probability
points based on assuming normality of μ̂ − μ and parameters fixed at their likelihood estimates.

where {εt } are i.i.d. N(0,1), μt = ∑
1≤j≤t (−1)t−j

(−d
t−j

)
γj , where {γj } are i.i.d.

N(0, σ 2
γ ). We choose σ 2

γ in such a way that the signal-to-noise ratio is either 2, 5
or 9. We have used the criterion given in (3.2a) and (3.2b) in order to estimate ν

and d . Since the errors in the simulation are taken to be i.i.d., there are many ways
to estimate its variance. We have used a fairly simple estimate here. The estimate
used here is half times the average of the squares of the first differences of the ob-
servations. We have calculated the ratio R = infd,ν ‖μ̂(d, ν ) − μ‖/‖μ̂(d̂, ν̂) − μ‖
where the minimum in the numerator is over ν > 0 and d in {1,2}, and (ν̂, d̂)

are obtained by minimizing the criterion function discussed above. We have cal-
culated the mean, standard deviation and median of R for various combinations
of d and SNR. All of the calculations are based on 400 repeats. How well we can
estimate the underlying trend depends on the signal to noise ratio. The higher the
SNR value, the better the estimate. The simulation results given in Table 1 show
that the estimation methods proposed here work reasoanably well.
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TABLE 1
Simulated values of the performance ratio R

n = 100 n = 300

Mean(SD) Median Mean(SD) Median

d = 1 SNR = 2 0.9381 (0.0603) 0.9532 0.9599 (0.0387) 0.9698
SNR = 5 0.9411 (0.0488) 0.9511 0.9726 (0.0306) 0.9830
SNR = 9 0.9367 (0.0460) 0.9435 0.9728 (0.0285) 0.9830

d = 2 SNR = 2 0.7833 (0.1839) 0.8231 0.8343 (0.1582) 0.8768
SNR = 5 0.8175 (0.1531) 0.8502 0.8424 (0.1548) 0.8923
SNR = 9 0.8377 (0.1451) 0.8735 0.8696 (0.1335) 0.9142

APPENDIX

We will begin this section with a number of notations and definitions which will
be used in the proofs.

NOTATION 1. For any square matrix A of order n, we will denote its singu-
lar values by σ1(A), . . . , σn(A) and its eigenvalues by λ1(A), . . . , λn(A) (singular
values of A are the positive square roots of the eigenvalues of A′A).

NOTATION 2. The function 1 − eiu, −π ≤ u ≤ π , will be dented by s0(u) and
|s0(u)|2 = 2 − 2 cos(u) will be denoted by s(u).

It is important to note that the dth order finite difference matrix as given in (2.3)
is a Toeplitz matrix with symbol sd

0 . The Toeplitz matrices asociated with sd
0 and sd

will be used often in the proofs. There are a number of different matrix norms that
will come into play, and we will define them here.

DEFINITION 1. Let σj (A), j = 1, . . . , n, be the singular values of the ma-
trix A. The following three norms are used widely:

(i) Spectral radius norm. ‖A‖ = maxσj (A);
(ii) Trace norm. ‖A‖1 = ∑

σj (A);
(iii) Frobenius norm. ‖A‖2 = {∑σ 2

j (A)}1/2.

DEFINITION 2. A matrix T = ((bjk)) is of Toeplitz type if bjk = bj−k . If
bj−k is given by

∫ π
−π exp(i(j − k)u)f (u)du/(2π), then the function f is called

the symbol of the Toeplitz matrix and often the notation T (f ) is used to denote
the Toeplitz matrix. The submatrix consisting of the first n rows and columns will
be denoted by Tn(f ).
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DEFINITION 3. A matrix H = ((bjk)) is of Hankel type if bjk is of the form
bj+k . If bj+k is given by

∫ π
−π exp(i(j + k)u)f (u)du/(2π), then f is called the

symbol of the Hankel matrix and often the notation H(f ) is used to denote the
Hankel matrix. The submatrix consisting of the first n rows and columns will be
denoted by Hn(f ).

We will now define another special type of matrices called the circulants. The
circulants can be used to approximate Toeplitz matrices. Let P0 be the n×n cycli-
cal permutation matrix whose element (j, k) is 1 if j − k = 1[modn] and 0 other-
wise. Then, P0 has the form given below:

P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · · 1
1 0 0 · · · · 0
0 1 0 · · · · 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · 0 0
0 · 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(A.1)

DEFINITION 4. A square matrix Cn = ((bjk)) of order n is called a circulant
if bjk = bj−k[modn]. If bj ’s are given by f (u) = −∑

−r≤j≤r bj e
iju, then the cir-

culant Cn is said to be generated by the symbol f , and we write Cn(f ) to denote
it. If P0 is the cyclical permutation matrix as given above in (A.1), then we can
express Cn(f ) = ∑

−r≤j≤r bjP
j
0 .

We will first write down a few important lemmas, the proofs of which will be
given after those of Theorems 1 and 2. We begin with an interlacing theorem due
to Weyl [see Theorem 4.3.6 in Horn and Johnson (1985)].

THEOREM 6. Let A and B be two real symmetric matrices so that A − B

has rank at most r . Let λ1(A) ≤ · · · ≤ λn(A) and λ1(B) ≤ · · · ≤ λn(B) be the
eigenvalues of the matrices A and B . Then:

(a) λj (A) ≤ λj+r (B), j = 1, . . . , n − r ,
(b) λj (B) ≤ λj+r (A), j = 1, . . . , n − r .

The next result on singular values, which is analogous to the previous one, fol-
lows from the result given on page 423 in Horn and Johnson (1985).

THEOREM 7. Let A and B be two matrices of order n × n, and the matrix
A − B has rank at most r . Let σ1(A) ≥ σ2(A) ≥ · · · be the singular values of A,
and, similarly, let σ1(B) ≥ σ2(B) ≥ · · · be the singular values of B . Then:
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(a) σj+r (A) ≤ σj (B), j = 1, . . . , n − r ,
(b) σj+r (B) ≤ σj (A), j = 1, . . . , n − r.

The next lemma finds the bounds on the singular values and the trace norm of a
Hankel matrix.

LEMMA 1. Let H = ((bj+k)) be a n × n real Hankel matrix. Let σ1(H) ≥
· · · ≥ σn(H) be the singular values of H . Then:

(a) σj (H) ≤ ∑
j+1≤t≤2n |bt |,

(b) ‖H‖1 = ∑
1≤j≤n |σj (H)| ≤ 2

∑
1≤l≤2n l|bl |.

The following important lemma tells us how a Toeplitz matrix can be approxi-
mated by a circulant matrix.

LEMMA 2. Let Tn(f ) be a Toeplitz matrix with the symbol f (u) =∑
−N≤j≤N bje

−iju, where N < n/2. Let Cn(f ) be the circulant matrix given by∑
−N≤j≤N bjP

j
0 , where the generator permutation matrix is as given in (A.1).

For 1 ≤ j ≤ n, consider the vector ej whose t th element is n−1/2 exp(−i2πjt/n),
1 ≤ t ≤ n. Then, e1, . . . , en are orthonormal. The following results hold:

(a) When bj = b−j , the eigenvalues (unordered) and the corresponding eigenvec-
tors of the circulant Cn(f ) are given by f (2πj/n) with the corresponding
eigenvectors ej ;

(b) rank(Cn(f ) − Tn(f )) ≤ 2N ;
(c) ‖Cn(f ) − Tn(f )‖1 ≤ 2

∑
1≤j≤N(j + 1)|bj |;

(d) The circulant matrix Cn(f ) can written as
∑

1≤j≤n f (2πj/n)ej e
∗
j .

The next result compares the sum of squares of the singular values of a matrix A

to the sum of the singular values of a another matrix B when the matrix A − B

is of finite rank. The proof is omitted as it an easy consequence of the interlacing
theorem.

LEMMA 3. Let A and B be two square matrices of order n, and the rank of
matrix A − B does not depend on n. Then,∑

1≤j≤n

σ 2
j (A) − ∑

1≤j≤n

σ 2
j (B) = O(1)

(
σ 2

1 (A) + σ 2
1 (B)

)
.

We will present a few known results without proofs. These results will be use-
ful in our proofs. The first result [Theorem 1.1 in Böttcher and Grudsky (2000)]
obtains an upper bound of the norm of a Teeplitz matrix in terms of the supremum
norm of its symbol.
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THEOREM 8. Let Tn(f ) be a Toeplitz matrix with symbol f . Let |f |∞ be the
supremum norm of f . Then,

‖Tn(f )‖ ≤ |f |∞.

The following result tells us that the matrix S
′
−dS−d does not differ much from

the Toeplitz matrix Tn(s
d).

LEMMA 4. All the elements of the matrix S
′
−dS−d − Tn(s

d) are zero except
for the first and the last principal submatrices of order d .

PROOF OF THEOREM 1. In the proofs, we will assume that, for any real sym-
metric matrix C of order n, its eigenvalues denoted by λ1(C), . . . , λn(C) are or-
dered from the smallest to the largest. Also note that the unordered eigenvalues
of a circulant Cn(f ) are given by f (2πj/n), j = 1, . . . , n. Hence, it possible that
λj (Cn(f )) �= f (2πj/n) for some (or even all) values of j . For notational simplic-
ity, we will denote the matrix S

′
−dS−d by U .

First, note that the estimate μ̂ is given by (I + νS
′
−dS−d)−1Y = (I + νU)−1Y

[see (2.5)] and μ = (I + νS
′
−dS−d)−1μ = (I + νU)−1μ. Since gε is the spectral

density function of the process {εt }, the variance–covariance matrix of {εt : t =
1, . . . , n} is given by the Toeplitz matrix Tn(gε). Hence, we have

E‖μ̂ − μ‖2/n = tr
(
(I + νU)−2Tn(g)

)
/n.(A.2)

The main idea behind the proof is to use approximate S
′
−dS−d = U and Tn(gε) by

circulants and then use the well-known theory of circulants to get the result.
Recall that the spectral density function of the error process {εt } is given

by gε(u) = ∑
−∞<t<∞ ρε(t)e

−itu, where the covariances satisfy the condition∑
1≤t<∞ t |ρε(t)| < ∞.
Let N = [n/4], the integer part of n/4, and define gεN(u) = ∑

|t |≤N ρε(t)e
−itu.

Then,

‖gεN − gε‖∞ ≤ ∑
|t |>N

|ρε(t)| ≤ N−1
∑

|t |>N

t |ρε(t)| = o(1/n).

Now, define gεN(u) = max(gεN(u),0). Since gε is a nonnegative function, ‖gεN −
gε‖∞ = o(1/n). From Theorem 8, we have

‖Tn(gε − gεN)‖ ≤ ‖gε − gεN‖∞ = o(1/n).

Hence, ∣∣tr((I + νU)−2Tn(gε)
) − tr

(
(I + νU)−2Tn(gεN)

)∣∣
= ∣∣tr((I + νU)−2Tn(gε − gεN)

)∣∣(A.3)

≤ tr
(
(I + νU)−2)‖Tn(gε − gεN)‖ = o(1/n) tr

(
(I + νU)−2) = o(1).
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Now, using part (c) of Lemma 2, we get∣∣tr((I + νU)−2Cn(gεN)
) − tr

(
(I + νU)−2Tn(gεN)

)∣∣
≤ ‖(I + νU)−2‖‖Cn(gεN) − Tn(gεN)‖1(A.4)

≤ O(1)
∑

1≤t≤N

(t + 1)|ρε(t)| < ∞.

So, combining (A.3) and (A.4), we get

tr
(
(I + νU)−2Tn(gε)

) = tr
(
(I + νU)−2Cn(gεN)

) + O(1).(A.5)

Note that gε is differentiable because of the assumption
∑

1≤t<∞ t |ρε(t)| < ∞.
Since gε is assumed to be positive on [π,π ], we can assume that gεN is also
positive as N → ∞. Now, the eigenvalues (unordered) of the circulant Cn(gεN) are
given by gεN(2πj/n), and they are all nonnegative. Consequently, we can define
a positive square root of the matrix Cn(gεN), and it is given by Cn(gεN)1/2 =∑

gεN(2πj/n)1/2ej e
∗
j , where ej ’s are the eigenvectors given in Lemma 2.

Consider the matrices

B = (I + νU)−1Cn(gεN)1/2 and
(A.6)

A = (
I + νCn(s

d)
)−1

Cn(gεN)1/2,

where s(u) = 2 − 2 cosu is as defined in Notation 2 at the beginning of this sec-
tion.

So, from (A.5) and (A.6), we have

tr
(
(I + νU)−2Tn(gε)

) = tr(B ′B) + O(1) = ∑
1≤j≤n

σj (B)2 + O(1).(A.7)

Now, note that

A = B + ν
(
I + νCn(s)

)−1(
U − Cn(s)

)(
I + νCn(gεN)

)−1
Cn(gεN)1/2.

Lemma 4 tells us Tn(s
d) − U has rank at most 2d . Since Tn(s

d) is a banded
matrix, by part (b) of Lemma 2 we see that the rank of Cn(s

d) − Tn(s
d) is at

most 2d . So, the rank of Cn(s
d) − U is at most 4d . Consequently, the rank of

the matrix A − B is no larger than 4d . Now, note that eigenvalues of the ma-
trix A′A = Cn(gεN)1/2(I + νCn(s

d))−2Cn(gεN)1/2 and B ′B = Cn(gεN)1/2(I +
νU)−2Cn(gεN)1/2 are bounded above by a positive constant, which is indepen-
dent of n and ν. Hence, by Lemma 3,

tr(B ′B) = ∑
1≤j≤n−4d

σj (A)2 + O(1).
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Note that the unordered eigenvalues of the matrix A′A are (1 + νs(2πj/n)d)−2 ×
gεN(2πj/n), j = 1, . . . , n. Hence, we can conclude that

tr(B ′B) = ∑
1≤j≤n

σj (A)2 + O(1)

(A.8)
= ∑

1≤j≤n

gεN(2πj/n)
(
1 + νs(2πj/n)d

)−2 + O(1).

Note that gε , and, hence, gεNI (gεN > 0) are differentiable with bounded first
derivatives because of the assumption

∑
1≤t<∞ t |ρε(t)| < ∞, and that ‖gε −

gεN‖∞ = o(n−1). From (A.8), we get

tr(B ′B) = ∑
1≤j≤n

gεN(2πj/n)
(
1 + νs(2πj/n)d

)−2 + O(1)

=
∫ n

0
gε(2πu/n)

(
1 + νs(2πu/n)d

)−2
du + O(1)

= n(2π)−1
∫ 2π

0
gε(u)

(
1 + νs(u)d

)−2 + O(1).

From the last expression and (A.2) and (A.8), we get

E‖μ̂ − μ‖2/n = n−1 tr(B ′B) + O(1/n)

= (2π)−1
∫ 2π

0
g(u)

(
1 + νs(u)d

)−2 + O(1/n)(A.9)

= π−1
∫ π

0
g(u)

(
1 + νs(u)d

)−2 + O(1/n).

Now, if we denote φ(u) = {sin(u/2)/(u/2)}2d , then we can write

s(u)d = (2 − 2 cosu)d = 4d sin(u/2)2d = u2dφ(u).(A.10)

Making a change of variable z = ν1/(2d)u, we get

E‖μ̂ − μ‖2/n

= π−1ν−1/(2d)
∫ πν1/(2d)

0
gε

(
zν−1/(2d))(1 + z2dφ

(
zν−1/(2d)))−2

dz(A.11)

+ O(1/n).

Now, note φ(0) = 1 and that the function gε and φ have bounded derivatives on
[0, π]. Consequently, the last expression yields

E‖μ̂ − μ‖2/n = (2π)−1ν−1/(2d)gε(0)

∫ ∞
0

(1 + z2d)−2 dz
(
1 + O

(
ν−1/(2d)))

+ O(1/n).
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The proof of this result is now complete, once we note that∫ ∞
0

(1 + z2d)−2 dz = Beta
(
1/(2d),2 − 1/(2d)

)
/(2d). �

PROOF OF THEOREM 2. As in the proof of Theorem 1, here, too, we will as-
sume that, for any real symmetric matrix C of order n, its eigenvalues, denoted by
λ1(C), . . . , λn(C), are ordered from the smallest to the largest. Unordered eigen-
values of a circulant Cn(f ) are given by f (2πj/n), j = 1, . . . , n, and it is possible
that λj (Cn(f )) �= f (2πj/n) for some (or even all) values of j . As in the proof of
the last theorem, we will denote S

′
−dS−d by U .

A matrix representation of μ̂ is given in (2.5). As a consequence, we have

μ − μ = (I + νU)−1μ − μ = −ν(I + νU)−1Uμ,

since

S−dμ = (∇dμd+1, . . . ,∇dμn)
′ = (γd+1, . . . , γn)

′,

where γj are i.i.d. with mean zero and variance σ 2
γ . Hence,

E‖μ − μ‖2 = ν2σ 2
γ tr

(
(I + νU)−2U

)
.(A.12)

Let ψ(u) = u/(1 + νu2), when u is a real number. Now, we can write the matrix
(I + νU)−2U as ψ(U). Hence, a re-expression of the relation (A.12) is given by

E‖μ − μ‖2 = ν2σ 2
γ tr(ψ(U)) = ν2σ 2

γ

∑
1≤j≤n

ψ(λj (U)),(A.13)

where λ1(U), . . . , λn(U) are the eigenvalues of the matrix U . As in the proof of
Theorem 1, we can now approximate U by the circulant matrix Cn(s

d). Now, note
that, for any j = 1, . . . , n, both ψ(λj (U)) and ψ(λj (Cn(s

d))) are bounded above
by ν−1. Since ψ is an increasing function on [0,∞), we can follow an argument
similar to the one given in the proof of Theorem 1 to show that

∑
1≤j≤n

ψ(λj (U)) = ∑
1≤j≤n

ψ(λj (Cn(s
d))) + O(ν−1).

Since the unordered eigenvalues of Cn(s
d) are s(2πj/n)d , j = 1, . . . , n, by

Lemma 2, from the last expression we have

∑
1≤j≤n

ψ(λj (U)) = ∑
1≤j≤n

ψ
(
s(2πj/n)d

) + O(ν−1).(A.14)
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Noting that the function ψ is bounded on [0,∞), we have∑
1≤j≤n

ψ
(
s(2πj/n)d

) =
∫ n

0
ψ

(
s(2πu/n)d

)
du + O(ν−1)

= n(2π)−1
∫ 2π

0
ψ(s(u)d) du + O(ν−1)(A.15)

= nπ−1
∫ π

0
ψ(s(u)d) du + O(ν−1).

From the relations (A.13), (A.14) and (A.15), we get

E‖μ − μ‖2/n = ν2σ 2
γ π−1

∫ π

0
ψ(s(u)d) du + O(ν/n2d).(A.16)

If we write s(u)d = u2dφ(u) as in (A.10), then, by a change of variable z =
ν1/(2d)u, we get∫ π

0
ψ(s(u)d) du =

∫ π

0
u2dφ(u)

(
1 + νu2dφ(u)

)−2
du

= ν−1−1/(2d)
∫ πν1/(2d)

0
z2dφ

(
zν−1/(2d))(A.17)

× (
1 + z2dφ

(
zν−1/(2d)))−2

dz.

Since φ(0) = 1 and φ has a bounded first derivative, calculations will show that∫ πν1/(2d)

0
z2dφ

(
zν−1/(2d))(1 + z2dφ

(
zν−1/(2d)))−2

dz

(A.18)
=

∫ ∞
0

z2d(1 + z2d)−2 dz
(
1 + O

(
ν−1/(2d))).

Combining (A.16), (A.17) and (A.18), we get

E‖μ − μ‖2/n = ν1−1/(2d)σ 2
γ π−1

∫ ∞
0

z2d(1 + z2d)−2 dz
(
1 + O

(
ν−1/(2d)))

+ O(ν/n2d).

This completes the proof of this result, once we note that∫ ∞
0

z2d(1 + z2d)−2 dz = Beta
(
1 + 1/(2d),1 − 1/(2d)

)
/(2d). �

PROOF OF THEOREM 3. From the proof of Theorem 2, we have

μ − μ = −ν(I + νU)−1Uμ = −ν(I + νU)−1U(μ1t + Sd0γ ),(A.19)

where U = S
′
−dS−d .
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(a) We will assume that the polynomial part is written in the form μ1t =∑
1≤j≤d0−1 βj (t/n)j and that the coefficients βj are constants. The proof for the

case when βj are random with finite mean and variance is the same. Note that

E{‖μ − μ‖2}/n = n−1ν2[‖(I + νU)−1Uμ1‖2

+ σ 2
γ tr

(
(I + νU)−1USd0S

′
d0

U(I + νU)−1)]
(A.20)

= n−1ν2[‖(I + νU)−1Uμ1‖2 + τ 2n−2d0 tr(AA′)],
where A = (I + νU)−1USd0 . Note that ‖S−dμ1‖ = O(n−d) and, hence,

‖(I + νU)−1Uμ1‖2 = O(n−2d)‖(I + νS
′
−dS−d)−1S

′
−d‖

(A.21)
= O(n−2dν−1).

Since S−dSd is a (n − d) × n is a parttioned matrix of the form [0 : I ] = Ĩ , where
the first matrix in the partition is a (n − d) × d matrix of zeros and the second
matrix is the identity matrix of order n − d . So the matrix S−dSd0 can be rewritten
as S−dSdSd0−d = Ĩ Sd0−d . It is known that the largest singular value of Sd0−d is of
order nd0−d [see Theorem 2 in Burman (2006)]. Hence,

tr(AA′) ≤ tr
(
(I + νS

′
−dS−d)−1S

′
−dS−d(I + νS

′
−dS−d)−1)‖Ĩ Sd0−d‖2

= tr
(
(I + νS

′
−dS−d)−1S

′
−dS−d(I + νS

′
−dS−d)−1)

O
(
n2(d0−d)).

The proof of Theorem 2 [(A.14) through (A.2.8)] shows that

tr
(
(I + νS

′
−dS−d)−1S

′
−dS−d(I + νS

′
−dS−d)−1) = O

(
nν−1−1/(2d)).

Hence, we get tr(AA′) = O(n−2dν−1−1/(2d)). Now, combining this result with
those from (A.20) and (A.21), we get

E{‖μ − μ‖2}/n = O(n−2dν−1) + O
(
nν−1−1/(2d)) = O(n−2dν−1).

(b) Since S−dμ1 = 0, from (A.20) we get

E{‖μ − μ‖2}/n = n−1ν2τ 2n−2d0 tr(AA′).

Let

Cn(s
d0
0 )− = ∑

1≤j≤n−1

s0(2πj/n)−d0ej e
∗
j .

Then, Cn(s
d0
0 )− is generalized inverse of Cn(s

d0
0 ). We will approximate AA′ by

BB ′, where B = (I +νCn(s
d))−1Cn(s

d)Cn(s
d0/2)−. Since the rank of S′−d0

S−d0 −
Cn(s

d0) is no larger than 2d0, and the rank of Cn(s
d0
0 ) is n − 1, the rank of Sd0 −
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Cn(s
d0
0 )− = S−d0

−1 − Cn(s
d0
0 )− is at most 2d0 + 1. Also, note that the rank of

U − Cn(s
d) is at most 2d + 1. So, using Lemma 3, we get

E{‖μ − μ‖2}/n = τ 2ν2n−2d0 tr(AA′)
= τ 2ν2n−2d0 tr(BB∗) + O(ν2n−2d0)

(
σ1(A)2 + σ1(B)2)

.

We will later show that, in the last expression, the second term involving σ1(A)2

and σ1(B)2 is small in comparison to the first term; that is,

E{‖μ − μ‖2}/n = τ 2ν2n−2d0 tr(BB∗)[1 + o(1)].
Note that the smallest eigenvalue of BB∗ is zero and the rest of the eigenvalues
(unordered) are given by s(2πj/n)2d−d0/(1 + νs(2πj/n)d)2, j = 1, . . . , n − 1.

So,

τ 2ν2n−2d0 tr(BB∗) = τ 2n−2d0
∑

1≤j≤n−1

s(2πj/n)2d−d0/
(
1 + νs(2πj/n)d

)2
.

When d ≥ d0, an argument similar to the one used in the proof of Theorem 2 will
show that

τ 2ν2n−2d0 tr(BB∗)

= τ 2(
ν1/(2d)/n

)2d0−1

× Beta
(
(2d0 − 1)/(2d),2 − (2d0 − 1)/(2d)

)
/(2dπ)[1 + o(1)].

What is left to show is that

ν2n−2d0
(
σ1(A)2 + σ1(B)2) = o(1)

(
ν1/(2d)/n

)2d0−1
.

We will first prove the case for σ1(B)2. Recall that the smallest eigenvalue
of BB∗ is zero, and the rest of the eigenvalues (unordered) are given by ψj =
s(2πj/n)2d−d0/(1 + νs(2πj/n)d)2, j = 1, . . . , n− 1. Since the largest eigenvalue
of BB∗ is no larger that ν−2+d0/d , we have that

ν2n−2d0σ1(B)2 ≤ (
ν1/(2d))2d0 = o(1)

(
ν1/(2d)/n

)2d0−1
.

Now, let us find the bound for the term σ1(A)2. Let F = S′−1S−1. Calculations will
show that

S−dSd2S
′
d0

S
′
−d = S−d(S1S

′
1)

d0S
′
−d = S−dF−d0S

′
−d .

It can be shown that U = S
′
−dS−d ≤ (S′−1S−1)

d = Fd , where, for any two ma-
trices, the notation “C ≤ D” means that D − C is nonnegative definite. If C and
D are nonnegative definite and C ≤ D, then it can be shown that (I + C)−1C ≤
(I + D)−1D. Consequently, the largest eigenvalue of AA′ is no larger than the
largest eigenvalue of (I + νF d)−1FdF−d0Fd(I + νF d) = (I + νFd)−2F 2d−d0 .
By Gershgorin’s result, one can see that all the eigenvalues of F are bounded
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above by 4. So, the largest eigenvalue of (I + νFd)−2F 2d−d0 is bounded above by
ν−2+d0/d . Consequently, the largest eigenvalues of AA′ is no larger that ν−2+d0/d .
Hence, we conclude that

ν2n−2d0σ1(A)2 ≤ (
ν1/(2d))2d0 = o(1)

(
ν1/(2d)/n

)2d0−1
. �

PROOF OF LEMMA 1. (a) Since the singular values of H are the positive
square root of the eigenvalues of H ′H , by the Courant–Fischer minimax theo-
rem [Theorem 7.3.10 in Horn and Johnson (1985)], the square of the j th singular
value of H is

σ 2
j (H) = min

u1,...,uj−1 in Rn
max

x∈Rn,‖x‖=1,x⊥{u1,...,uj−1}
x′H ′Hx.

Now, take any vector x in Rn whose first j − 1 components are zero. In the case
we will be basically concerned with, the principal submatrix of H ′H consists of
the last n − j + 1 columns and rows. Applying Gersgorin’s theorem on the local-
ization of eigenvalues [see Theorem 6.1.1 in Horn and Johnson (1985)], the largest
eigenvalue of this principal submatrix is no larger than

max
j≤s≤n

∑
j≤t≤n

∣∣∣∣ ∑
1≤l≤n

bs+lbl+t

∣∣∣∣.
So, we have

σ 2
j (H) ≤ max

j≤s≤n

∑
j≤t≤n

∣∣∣∣ ∑
1≤l≤n

bs+lbl+t

∣∣∣∣
≤ max

j≤s≤n

∑
1≤l≤n

|bs+l|
{ ∑

l+j≤t≤n+l

|bt |
}

≤ max
j≤s≤n

∑
1≤l≤n

|bs+l|
{ ∑

l+j≤t≤n+l

|bt |
}

≤ max
j≤s≤n

∑
s+1≤l≤n+s

bl

( ∑
j+1≤t≤2n

|bt |
)

≤
( ∑

j+1≤t≤2n

|bt |
)2

.

(b) Using part (a), we have∑
1≤j≤n

|σj (H)| ≤ ∑
1≤j≤n

∑
j+1≤t≤2n

|bt | ≤
∑

1≤t≤2n

t |bt |

and this completes the proof. �

PROOF OF LEMMA 2. (a) This part follows from the well-known results on
circulant matrices [see Chapter 4 in Marcus and Minc (1992) or Tyrtyshnikov
(1996)].
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(b) and (c). Let Wn be the orthogonal matrix that has the property that, for any
x = (x1, . . . , xn)

′ in Rn, it flips it indexwise; that is, Wnx = (xn, . . . , x1)
′. In turns

out that Wn has the form

Wn =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 1
0 0 · · 1 0
0 0 · · 0 ·
0 0 · · 0 ·
0 1 · · 0 0
1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.(A.22)

Note that the matrix Cn(f ) − Tn(f ), the difference between a Toeplitz matrix
and its associated circulant, is a 90◦ clockwise rotation of the matrix Hn(f ) +
WnHn(f )Wn, where Hn(f ) is the Hankel matrix with symbol f and Wn is the flip
matrix as given in (A.22). Part (b) follows from the fact that all the elements of
Hn(f )+WnHn(f )Wn are zero except for the first and the last principal submatrix
of size N × N .

Now the singular values of Cn(f ) − Tn(f ) and Hn(f ) + WnHn(f )Wn are
the same. Since Wn is an orthogonal matrix, the singular values of Hn(f ) and
WnHn(f )Wn are the same. Now, part (c) follows from an application of part (b) of
Lemma 1. �

PROOF OF LEMMA 4. First note that element (j, k) of the matrix Tn(s
d) is

given by (−1)j−k
( 2d
d−|j−k|

)
. It is then enough to show that, for any d + 1 ≤ j, k ≤

n − d , element (j, k) of the matrix S
′
−dS−d is (−1)j−k

( 2d
d−|j−k|

)
.

It is not difficult to see that the following identity is valid:∑
0≤t≤l

(
d

t

)(
d

l − t

)
=

(
2d

l

)
.(A.23)

This identity follows from expanding (1 − z)2d as
∑

0≤t≤2d(−1)t
(d
t

)
zt . On the

other hand, we can expand (1 − z)2d as

(1 − z)d(1 − z)d =
{ ∑

0≤s≤d

(−1)s
(

d

s

)
zs

}{ ∑
0≤t≤d

(−1)t
(

d

t

)
zt

}
.

Note that element (j, k) of the matrix S
′
−dS−d is given by

∑
1≤t≤n−d

(−1)t−j

(
d

t − j

)
(−1)t−k

(
d

t − k

)

= (−1)j−k
∑

1≤t≤n−d

(
d

t − j

)(
d

t − k

)
.

Now, use of the identity (A.23) on the right-hand side of the last expression yields
the desired result. �
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