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We consider the problem of reliably finding filaments in point clouds.
Realistic data sets often have numerous filaments of various sizes and shapes.
Statistical techniques exist for finding one (or a few) filaments but these meth-
ods do not handle noisy data sets with many filaments. Other methods can be
found in the astronomy literature but they do not have rigorous statistical
guarantees. We propose the following method. Starting at each data point we
construct the steepest ascent path along a kernel density estimator. We lo-
cate filaments by finding regions where these paths are highly concentrated.
Formally, we define the density of these paths and we construct a consistent
estimator of this path density.

1. Introduction. The motivation for this paper stems from the problem of
finding filaments from point process data. Filaments are one-dimensional curves
embedded in a point process or random field. Identifying filamentary structures is
an important problem in many applications. In medical imaging, filaments arise
as networks of blood vessels in tissue and need to be identified and mapped. In
remote sensing, river systems and road networks are common filamentary struc-
tures of critical importance [Lacoste, Descombes and Zerubia (2005) and Stoica,
Descombes and Zerubia (2004)]. In seismology, the concentration of earthquake
epicenters traces the filamentary network of fault lines. This paper is motivated by
a cosmological application: the detection of filaments of matter in the universe.

Figures 1 and 2 show two examples. The first example is a cosmology data set
showing positions of galaxies. The second is a synthetic example. In each case, the
upper left plot shows the data, which exhibits an apparent filamentary structure.
A density estimate reveals this structure more clearly. In particular, the steepest
ascent paths of the density estimate—the paths from each point that follows the
gradient—tend to concentrate along the filaments. The upper right plot in each
figure shows the collection of paths, and the lower left plot trims off the early
iterations. The result, on the bottom right in the figures, shows a high density of
paths around the filaments. The empirical observation that the steepest ascent paths
concentrate around the filaments motivates our approach in this paper. Specifically,
we characterize the density of steepest ascent path—what we call the path density
below—and construct a consistent estimator of the path density using the steepest
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FIG. 1. Cosmological data: data set (plot A), steepest ascent paths of all data points (plot B),
paths after cutting the first five iterations (plot C) and level set at 90% quantile of the estimated path
density (plot D).

ascent paths of a density estimator. Our purpose in this paper is to explore this
idea in detail. We apply this idea to the filament problem by showing that the path
density is high near filaments and that the set where the estimated path density is
large essentially capture the filaments.

There are existing techniques for finding one (or a few) filaments. Exam-
ples from statistics and machine learning include Arias-Castro, Donoho and Huo
(2006), Kegl et al. (2000), Sandilya and Kulkarni (2002) and Tibshirani (1992).
But none of these methods are practical for noisy data sets with large numbers of
complicated filaments. Other methods can be found in the astronomy literature:
see Stoica et al. (2005), Eriksen et al. (2004), Novikov, Colombi and Doré (2006),
Sousbie et al. (2006) and Barrow, Bhavsar and Sonoda (1985). But these methods
do not have rigorous statistical guarantees. Thus the problem of reliably finding
many filaments simultaneously remains largely unsolved. Hence our search for
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FIG. 2. Simulated example: data set (plot A), steepest ascent paths of all data points (plot B),
paths after cutting the first three iterations (plot C) and level set at 90% quantile of the estimated
path density (plot D).

new methods. We would like to emphasize that the methods proposed here are still
very far from being a complete methodology for filament analysis. Rather our re-
sults are a modest first step toward a novel and promising methdology. A recent
paper on estimating integral curves is Koltchinskii (2007), although the setting and
methodology are quite different.

Let us now give a heuristic description of the basic problem we study. Let
X1, . . . ,Xn be a sample from a distribution μX with density gX . We estimate the
function

p(x) = lim
r→0

P(P (X) intersects B(x, r))

r
,

where P(X) is the steepest ascent path defined by gX starting at X and B(x, r) =
{y :‖y − x‖ < r}. We use balls here because they are simple, but any suitably rich
collection of open neighborhoods yields the same function.
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Our main results are as follows. Theorem 6 explicitly characterizes the path
density p(x). Theorem 3 constructs an estimator p̂n such that

sup
x

|p̂n(x) − p(x)| = OP

(√
log(1/hn)

nh4
n

)
+ OP

(√
logn

nνn

)
+ O(νn) + O(h2

n),

where hn and νn are appropriately chosen bandwidth parameters. We then apply
these ideas to the problem of identifying filaments from point-process data and
show, in Theorem 4, that the level sets of the path density concentrate around the
filaments.

1.1. Notation. We assume a probability space (�,S,P) on which all our ran-
dom variables are defined. We consider random variables taking values in R

2.
Throughout the paper, U0 denotes a large, fixed compact subset of R

2 whose prop-
erties are specified later.

Let B(x, r) denote the open ball of radius r centered on x. Denote the closure
of B(x, r) by B(x, r) and its boundary by ∂B(x, r). For any set A, define the
r-dilation by

B(A, r) = ⋃
x∈A

B(x, r).(1)

We use 1A(x) as the indicator function of the set A.
If f : Rn → R

m, then we use Df , D2f , Dif to denote various total and partial
derivatives. Specifically, Df is a linear map from R

n → R
m, D2f denotes the

Hessian matrix of f , and Dif is the partial derivative of f with respect to the ith
argument. When m = 1, Df is a gradient, which is convenient to view as a vector
in R

n. For this purpose, we use ∇f to denote the column vector (Df )T .
We use φ to denote the univariate standard normal density and � the cor-

responding distribution function. For σ > 0, φσ and �σ are the corresponding
N(0, σ 2) functions. In R

d for d ≥ 2, we use ϕ for the d-dimensional standard
normal density and ϕσ for the N(0,diag(σ 2, . . . , σ 2)) density.

1.2. Outline. In Section 2, we define and characterize the path density func-
tion. In Section 3, we define an estimator of the path density function and find
its rate of convergence. Section 4 describes the problem of identifying filaments
from point-process data, showing that the path density is large near filaments and
small elsewhere. Proofs are relegated to Sections 5 through 7. We close with some
general remarks in Section 8.

2. Integral curves and path densities.

2.1. Flows and the local group. If V is a smooth (Cζ for ζ ≥ 1) vector field
on R

2, then we might imagine putting a test particle at any x ∈ R
2 and letting it

flow with velocity given by the vector field.
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It is known [the Picard–Lindelof theorem, Irwin (2001)] that this idea is well
defined. The paths followed by the test particle starting at different points fit to-
gether in a consistent way. In particular, in any neighborhood U of x ∈ R

2, there
is a neighborhood U1 ⊂ U , an interval I ⊂ R containing 0 and a Cζ mapping
ψ : I × U1 → U such that (i) ψ(0, x) = x, (ii) ∂

∂t
ψ(t, x) = V (ψ(t, x)), and (iii)

if s, t, s + t ∈ I , ψ(s + t, x) = ψ(s,ψ(t, x)). For each t , we define a mapping
ψtx ≡ ψ(t, x) that gives the point obtained by following the flow from x for
time t . In these terms, property (iii) becomes ψs+t = ψs ◦ ψt , giving a group-like
structure with composition as the product. Because of this, the mappings ψt are
called the local one parameter group of diffeomorphisms generated by V . More-
over, the paths t 
→ ψtx, called integral curves or local flows of the vector field,
are unique in the sense that integral curves are equal where their domains overlap.
Thus, the integral curves create an equivalence relation on R

2, where two points
are equivalent if they are on the same integral curve.

In certain cases, these local flows can be extended to a global flow, a mapping
ψ : R × R

2 → R
2 satisfying properties (i), (ii) and (iii) above with I = R. The

mappings ψt : R2 → R
2 are Cζ diffeomorphisms that form a group under compo-

sition. Such global flows exist, for instance, when the domain of the vector field is
compact, when V has compact support or when the domain is a Banach space [see
Theorem 3.39 in Irwin (2001)], which is the case for R

2.
We derive a vector field from the gradient of the density gX . A critical point

of gX is one where the gradient of gX equals 0. Any other point is called a regular
point of gX . We make the following assumption in what follows.

ASSUMPTION 1. gX is a Cζ+1 function on R
2 for 2 < ζ ≤ ∞.

ASSUMPTION 2. All the critical points of gX are nondegenerate, meaning that
the Hessian is nonsingular.

ASSUMPTION 3.

lim
d→∞ inf

B
diam(B)=d

sup
∂B

∣∣∣∣ ∇gX

‖∇gX‖ − nB

∣∣∣∣ = 0,(2)

where the infimum is over closed balls in R
2 of given diameter d and where nB is

the outward pointing, unit normal vector field defined on ∂B .

The importance of Assumption 2 is that the behavior of gX around nondegener-
ate critical points is locally quadratic. See Remark 3 below. Nondegenerate critical
points are necessarily isolated. Moreover, by Assumption 3, all gX’s critical points
lie in a compact set. These facts together with Assumption 2 imply that the critical
points of gX are finite in number.
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Assumption 3 ensures that the gradient of gX is nearly radial far enough out
from some point. This condition is satisfied by a wide variety of common distri-
butions whose critical points lie within a compact set. For example, in Section 4,
we show that the results extend to quite general mixtures of normal distributions.
A stronger alternative assumption that is easier to understand is that gX has com-
pact support, which is certainly sufficient for the results that follow.

From the assumptions above it follows that V = ∇gX gives a Cζ -vector field
on R

2 and therefore generates a unique global flow ψ . Here, the flow ψtx moves
along the direction of steepest ascent. If the support of gX is not necessarily com-
pact, as in Section 4, we can restrict to a compact set U0 containing all critical
points of gX . Restriction to U0 requires that we define an interval Ix = [ax, bx]
such that ψtx ∈ U0 whenever t ∈ Ix . If Assumption 3 holds, the interval is the
entire real line, but we maintain the interval notation in the proofs to facilitate
extension of the results in later sections.

The global flow ψ on R
2 generates an equivalence relation on U0 (or R

2 for
that matter). For x, y ∈ U0, say that x ∼ y if ψty = x for some t ∈ R. We say
that x precedes y, x � y (x ≺ y), if ψ−t y = x for t ≥ 0 (t > 0) and y succeeds x,
y � x (y � x), if ψty = x for t ≥ 0 (t > 0). Here precedence and succession refer
to the flow in directions of increase of gX , that is, along the vector field V . For any
A ⊂ U0, define the reverse evolution of A under the flow by

V(A) = {y ∈ U0 :y � x, x ∈ A},(3)

the set of points in U0 that precede a point in A. With minor abuse of notation, we
also write V(x) = V({x}).

A simple example may clarify these definitions. Let g(x) = −1
2‖x‖2, a simple

quadratic. The gradient of g is a vector field that at each point x gives the direction
of steepest ascent ∇g(x) = −x. This vector field specifies differential equations
at every point x : γ̇ (t) = −γ (t) with γ (0) = x, where γ = (γ1, γ2) is a curve, that
is, a function from R to R

2. This is the integral curve. The mapping ψ packages
together all these integral curves, and in this example, ψtx = (x1e

−t , x2e
−t ). Fig-

ure 3 illustrates the flows in a generic case.
As we will see in Theorem 4, the integral curves of the flow ψ concentrate

near the filaments. We would thus expect that following the flow induced by the
gradient of gX will carry a collection of random points near to the filaments. This
is the idea behind the estimators described in the first section. We quantify this
concentration through the path measure π , which we define to be the probability
that the flow from a random point hits a given set. That is, for A ⊂ U0,

π(A) = μX(V(A)).(4)

This is a sub-additive set function (in fact, an infinitely-alternating Choquet capac-
ity), and does not have a density in the Radon–Nikodym sense. However, we show
below that the following density is well defined.
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FIG. 3. Flow lines in a typical gradient field, moving toward a local maximum.

DEFINITION 1. The path density associated with gX is the function p : R2 →
[0,∞] defined by

p(x) = lim
r→0

π(B(x, r))

r
.(5)

REMARK 1. One might have expected the denominator in the expression
above to be r2 since we are working in R

2 but, as it turns out, π(B(x, r)) is order r .

REMARK 2. To clarify, π is a set function with π(A) giving the probability
that for a random point drawn from gX , the flow from that point hits A. The path
density p is a function on R

2 with p(x) describing the π -probability in infinitesi-
mal neighborhoods of x. See Figure 4.

The next theorem gives the main features of the path density. A more detailed
characterization of p is given by Theorem 6 in Section 6. Let M denote the set of
local maxima of gX and H denote the set of saddlepoints of gX .

THEOREM 1. Under Assumptions 1–3, the path density p is an upper-
semicontinuous function with the following properties:

1. if x is a local minimum of gX , p(x) = 0;
2. if x is a local maximum of gX , p(x) = ∞;
3. p is continuous on (M ∪ H)c and bounded on Mc.

REMARK 3. The result of Theorem 1 depends on the nondegeneracy of gX’s
critical points. While nondegenerate critical points are isolated, degenerate criti-
cal points need not be. For example, a density with a linear ridge can produce a
line of local maxima. A mixture of normals over two closely spaced, parallel lines
would generate a similar ridge between the lines. In such cases, the local behavior
of the function around critical points need not be local quadratic as it must around
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FIG. 4. A set A represented by the white disk and the set of points whose flow lines hit A, the union
of A and the shaded gray region. π(A) is the probability content of the latter set. The path density is
the limit of these probabilities, suitably normalized, as A shrinks.

nondegenerate critical points. Near a ridge, for instance, the flow lines from two
neighboring points will proceed in parallel toward the ridge rather than converg-
ing on a local maximum. As such, p is finite at any point on the ridge, although
π(B(R, r))/r → ∞ as r → 0 where R is the set of points on the ridge.

The good news is that degeneracy is rare in the sense that functions without
degenerate critical points are dense in the space of smooth functions. The proof
of this follows from Sard’s theorem by adding to gX a linear function that is ar-
bitrarily small over U0; the linear function changes the locations of the critical
points without changing the Hessian and almost every linear function eliminates
the nondegeneracy. [See Guillemin and Pollack (1974) for further discussion of
this point.]

The next theorem gives a more precise approximation of the path measure in
terms of the path density. It will be used extensively in what follows.

THEOREM 2. Let x be a regular point of gX . Then, the following hold:

1. As r → 0,

π(B(x, r)) = rp(x) + O(r2).(6)

2. There exists a curve γ , parameterized by arc length, such that

π(B(x, r)) = 1

2

∫ r

−r
p(γ (t)) dt + O(r2).(7)
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3. Estimating the path density. Recall that X1, . . . ,Xn are independent ob-
servations from the distribution μX with density gX . Our goal is to estimate the
path density p.

First we estimate gX using the kernel estimator

ĝn(x) = 1

n

n∑
i=1

1

h2 K

(‖x − Xi‖
h

)
.

Given an arbitrary point x ∈ R
2, let P(x) = {ψtx : 0 ≤ t ≤ ∞} denote the integral

curve starting at x and let P̂ (x) denote the integral curve obtained by replacing
gX with ĝn. [Recall that ψtx is the point obtained by starting at x at time 0 and
following the vector field until time t . The integral curve P(x) shows the whole
path going forward in time.] We define the path density estimator

p̂n(x) = 1

n

n∑
i=1

1

ν
K

( infz∈P̂ (Xi)
‖x − z‖

ν

)
.(8)

Thus, p̂n(x) is essentially a weighted count of how many observed paths
P̂ (X1), . . . , P̂ (Xn) get close to x. It is not necessary to use the same kernel K

for ĝn and p̂n, but for simplicity we shall take them to be the same up to a normal-
izing constant.

REMARK 4. A numerical approximation to P̂ (x) can be obtained using the
mean shift algorithm [Fukunaga and Hostetler (1975) and Cheng (1995)]. Given
an arbitrary point x ∈ R

2, the mean shift algorithm defines a sequence ŝ(x) =
(x0 = x, x1, x2, . . .), where

xk+1 =
∑n

i=1 XiK(1/h‖xk − Xi‖)∑n
i=1 K(1/h‖xk − Xi‖) .(9)

The sequence ŝ(x) converges to a mode of ĝn. Conversely, for each mode of ĝn

there exists a point x such that ŝ(x) converges to that mode. A smooth interpolation
of the points in ŝ(x) can be regarded as a numerical approximation to P̂ (x).

We make the following assumptions about the kernel K .
(K1) K : [0,∞) → [0,∞) is a nonincreasing, bounded, square integrable func-

tion and has bounded derivative.
(K2) K satisfies the Giné and Guillou (2002) conditions, namely, K belongs to

the linear span of functions with the following property: the set {(s, u) :K(s) ≥ u}
can be represented as a finite number of Boolean operations among sets of the form
{(s, u) :a(s, u) ≥ b(u)} where a is a polynomial and b is any real function.

(K3) K satisfies the following tail condition: as x → ∞
K(x) = O(xe−x).
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Condition (K2) is somewhat abstract but, unfortunately, such a technical condi-
tion appears to be necessary. The role (K2) plays in the proof is to ensures that the
VC-condition holds, thus allowing uniform control of an empirical process. The
good news, as Giné and Guillou (2002) point out, is that (K2) is satisfied by most
common kernels.

THEOREM 3. Suppose that K satisfies (K1)–(K3), and that the bandwidths
hn and νn satisfy the following conditions:

hn → 0,
nh4

n

| loghn| → ∞,
| loghn|
log logn

→ ∞, h2
n ≤ c1h

2
2n,

for some c1, and

νn → 0,
nνn

| logνn| → ∞,
| logνn|
log logn

→ ∞, νn ≤ c2ν2n,

for some c2. Further, assume that gX is bounded. Then,

sup
x

|p̂n(x) − p(x)| = OP

(√
log(1/hn)

nh4
n

)
+ OP

(√
logn

nνn

)
(10)

+ O(νn) + O(h2
n),

where the supx is taken over all regular points.

The best rate is obtained by setting hn � (logn)1/4/n1/8 and νn � logn/n1/3.

COROLLARY 1. Setting hn � (logn)1/4/n1/8 and νn � logn/n1/3 we have

sup
x

|p̂n(x) − p(x)| = OP

(√
logn

n1/4

)
,(11)

where the supx is taken over all regular points.

4. Filament detection. Galaxies, being large and bright and having a ten-
dency to cluster together, serve as tracers of matter. At large enough scales, the
universe looks the same in every direction, so astronomers were surprised when
their maps of the galaxy locations revealed complicated, systematic structures—
clusters, walls, sheets, and voids. But the most striking feature in these maps is
the vast network of filaments, often called the “cosmic web.” Panel A in Figure 1
shows a map from one such survey, with the galaxy locations selected from a two-
dimensional slice of the universe. Astronomers want to identify the filaments to
help them characterize this large scale structure and in turn constrain the physics
of the universe’s evolution.

Astronomers have substantial literature on the problem of estimating filaments.
Early efforts involved the use of standard spatial techniques, including high-order
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correlations, shape statistics from Luo and Vishniac (1995) and Minkowski func-
tionals. [See the book by Martinez and Saar (2002) for an overview of such ap-
proaches.] Barrow, Bhavsar and Sonoda (1985) applied minimal spanning trees to
the problem, but these trees give primarily local descriptors of neighorhood rela-
tions. The skeleton method [Stoica et al. (2005), Eriksen et al. (2004), Novikov,
Colombi and Doré (2006) and Sousbie et al. (2006)] involves smoothing the point
distribution to estimate the skeleton: a network connecting saddlepoints to local
maxima of the point density with edges parallel to the gradient of the density. Sto-
ica et al. (2005) develops an automated method for tracing a filamentary network
based on marked point processes; Stoica, Martinez and Saar (2007) extends this to
three-dimensional networks.

In the statistics literature, filaments are similar to, but distinct from, principal
curves [Hastie and Stuetzle (1989)]. Hastie and Stuetzle (1989) define a principal
curve c by the self-consistency relation c(t) = E(X|πc(X) = t) where πc(x) is
the projection of x onto c. Modified definitions are given by Kegl et al. (2000)
and Sandilya and Kulkarni (2002). They call c a principal curve if c minimizes
E‖X −πc(X)‖2 subject to c lying in a prespecified set of curves such as all curves
of length bounded by some constant or with bounded curvature. In either case,
they show that there exist estimators of a filament with convergence rate O(n−1/3).
However, as noted by Hastie and Stuetzle (1989), the principal curve c is not equal
to the filament.

Recently, Arias-Castro, Donoho and Huo (2006), considered the problem of
finding a single filament in a noisy background. They obtain precise minimax
bounds on how sparse a filament can be and still be detectable. However, their
method does not easily extend to the case where there are many filaments. Also,
they can only detect the presence of a filament but they do not produce an estimate
of the filament itself.

4.1. A model for filaments. We assume that the data are a realization of an
inhomogeneous Poisson process on U0 such that conditional on the number of
observations, n, we have n i.i.d. draws X1, . . . ,Xn from the density gX on U0. We
model gX as a mixture of three types of components: filaments, clusters and the
background.

A filament is a smooth, nonself-intersecting curve f : [a, b] → U0. We consider
a finite collection of C2 filaments f1, . . . , fmF

of lengths 1, . . . , mF
, which are

allowed to be positioned arbitrarily within U0, including the possibility that distinct
filaments intersect. Because our inferences are independent of how the curve is pa-
rameterized, we parameterize the curve by arclength, taking a = 0 and b = (f ),
the length of f in R

2. Define F = ⋃mF

i=1 range(fi) to be the filament set. Clusters
are concentrations of points around a cluster center z. We consider a finite collec-
tion of clusters which we denote C = {zmF +1, . . . , zm}. The background generates
points that are not on filaments or in clusters, and we model it as a homogeneous
Poisson process.
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Specifically, gX takes the following form:

gX(x) = α0
1U0(x)

L(U0)
+

mF∑
i=1

αi

∫ i

0
wi(s)ϕσi

(
x − fi(s)

)
ds

(12)

+
m∑

i=mF +1

αiϕσi
(x − zi),

where L denotes the Lebesgue measure and each wi , i = 1, . . . ,mF , is a strictly
positive probability density on [0, i]; σ1, . . . , σm > 0, and 0 ≤ α1, . . . , αm ≤ 1
with

∑
i αi = 1. Recall that ϕσ denotes the symmetric normal distribution over R

2.
We define μX to be the probability measure on R

2 with density gX . Generally we
take all σi equal to a common value σ .

Our model for the filament data is a generalization of the model in Tibshirani
(1992): select a random point along the filament and generate from a normal cen-
tered on that point. Note that clusters are zero-length filaments, with the corre-
sponding wi equal to a delta function at 0.

When α0 = 0, we say that gX is background free. In this case, gX is a C∞
function on all of R

2. Our results from Section 2 apply to the background-free
case, but they extend directly to the case where α0 > 0 because ∇gX is a scaled
version of the background-free gradient on U0. We can either restrict the global
flow to U0 or adapt it to U0 by constructing a C∞ function ω with compact support
that equals 1 on U0 and is zero outside a small dilation of U0. Our results carry over
immediately when R

2 is replaced by S2, the two sphere, because S2 is a compact,
two-dimensional manifold.

Under model (12), we can without loss of generality take U0 large enough to
contain all the critical points. This is true because, in the background-free case,
solving ∇gX(x) = 0 gives

x =
(

mF∑
i=1

αi

∫ i

0
fi(s)wi(s)ϕσi

(
x − fi(s)

)
ds +

m∑
i=mF +1

ziαiϕ
(
σi(x − zi)

))
(13)

×
(

mF∑
i=1

αi

∫ i

0
wi(s)ϕσi

(
x − fi(s)

)
ds +

m∑
i=mF +1

αiϕ
(
σi(x − zi)

))−1

,

where the terms come from (12), and so x must lie in the convex hull of F ∪ C,
which is compact. (A background does not change the gradient on U0, leading to
the same conclusion.) By Assumption 2, all critical points of gX are isolated, and
therefore M and H and the set of local minima are all finite.

Note that under our filament model, gX does not have compact support. How-
ever, because the filaments are contained in a compact set, gX has normal tails
in all directions outside large enough balls. In particular, ‖ ∇gX‖∇gX‖ − n‖ → 0 uni-
formly as the ball radius increases, where n is the outward pointing normal to the
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ball’s boundary. This ensures that any contribution to the path density from points
outside U0 is negligible.

4.2. Capturing filaments. Now we show that the flow lines concentrate near
the filaments. We do that by showing that the sets on which p exceeds some value λ

lies in a set that is close to the filaments and getting closer as λ grows. Two com-
plications are the local maxima, at which p(x) = ∞ and thus exceeds any λ, and
saddle points at which p(x) is roughly four times the value of p in a neighborhood
around x. Define σ = maxi σi and

d(λ) = σ

√
2 log(1/2πσ 2λ).(14)

THEOREM 4. Let A = F ∪ C ⊂ U0, the set of points that are on a filament or
at a cluster center. Let H denote the set of saddle points of gX . Define

Eλ = {x ∈ U0 :p(x) > λ}.(15)

Then, for all ε > 0 and all λ ≥ ε,

Eλ ∩ Mc ⊂ B
(
A, d(λ) + ε

) ∪ (
H ∩ B

(
A, d(4λ) + ε

))
,(16)

Eλ ∩ Mc ∩ Hc ⊂ B
(
A, d(λ) + ε

)
.(17)

Theorems 1 and 4 together imply that {x :λ < p(x) < ∞} ⊂ B(A, d(4λ) + ε)

and that {x :λ < p(x) < ∞} ∩ Hc ⊂ B(A, d(λ) + ε).

COROLLARY 2. There exists Aσ such that Aσ ⊂ A,

Aσ ⊂ Eλ ⊂ B(Aσ , d(λ))

and dH (Aσ ,A) → 0 as σ → 0. Hence, for every ξ > 0 there exists λ such that
dH (A,Eλ) < ξ + O(σ).

This corollary says that, as long as the noise level σ is small, the level sets
approximate the filaments.

We make use of results in Cuevas and Fraiman (1997). A set S is standard if for
every λ > 0 there exists 0 < δ < 1 such that

L
(
B(x, ε) ∩ S

) ≥ δL(B(x, ε))

for every x ∈ S, 0 < ε ≤ λ.

THEOREM 5. Suppose that K satisfies conditions (K1)–(K3), and that Eλ is
standard. Let F̂ = {x : p̂(x) ≥ λ + cn} where cn ≥ 0 and cn → 0. Suppose that
βn → ∞, βnνn → ∞, and βnνn/cn is bounded. Then,

βnd(Eλ, Êλ)
a.s.→ 0.

Hence, for every ξ > 0, there exists λ > 0 such that dH (Aσ , Êλ) = OP (σ + ξ).
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REMARK 5. The theorem shows that the level sets approximate Aσ which is
itself and approximation to A. We know that Aσ is close to A but a more precise
statement would require specific assumptions on the shape of the filaments.

4.3. Examples. In this section we briefly consider an example based on galaxy
data and a synthetic example.

EXAMPLE 1. For the simulated example, the vertices of a pentagon have
been randomly selected over [0,1]2. On each side of the pentagon, points were
drawn according to a Beta(1

2 , 1
2) distribution. The total of n = 500 points is di-

vided among the sides proportionally to the side lengths. The resulting data set,
shown in Figure 2A, was obtained adding a bivariate normal perturbation (with
σ = 0.03) to the points.

Figure 2B and C shows that all the steepest ascent paths move toward the
perimeter of the pentagon and then along it until they reach a mode. The level
set at the 90th percentile of the estimated path density seems to be a good approx-
imation to the pentagon perimeter (see Figure 2D).

To see the effect of noisy background, 500 uniform points in [0,1]2 were added
to the data set. The whole procedure was implemented again on the augmented
data set. Figure 8 shows that the presence of background introduces some noise,
but the procedure still catches the filaments.

EXAMPLE 2. The filament estimation procedure has been tested also on cos-
mological data. The data set analyzed is part of the mini “SDSS ugriz” cata-
logue, produced by Croton et al. (2006) and publicly available online at www.mpa-
garching.mpg.de/galform/agnpaper/. Along with other information, the catalogue
gives the position of all galaxies in the cubic box [0, 62.5 Mpc/h]3. To deal with a
two-dimensional data set, we selected the galaxies whose z-coordinate is in the in-
terval [20,25] Mpc/h and considered only the first two coordinates. The resulting
data set, shown in Figure 1A, contains the (x, y)-coordinates of n = 2435 galax-
ies. Plots B, C and D in Figure 1 show a reasonably satisfactory behavior of the
filament detection procedure.

5. Discussion. Our results are a first step toward developing methods for find-
ing filaments without imposing strong assumptions about those filaments. How-
ever, much work needs to be done to turn the theory into practical methodology.

First, we need good, data-driven methods for choosing the bandwidths hn

and νn. We conjecture that cross-validation methods could be quite effective.
Second, extracting the filaments from the path density estimator p̂n is obvi-

ously very important. To find high local concentrations of paths, one can trim the
observed paths or choose high level sets, as we did in the examples. These ap-
proaches, and possibly others, deserve careful examination.

http://www.mpa-garching.mpg.de/galform/agnpaper/
http://www.mpa-garching.mpg.de/galform/agnpaper/
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Third, we conjecture that these methods will generalize to three dimensions.
The main challenge in doing so lies in the characterization of the path density,
which requires handling an additional class of singular points and generalizing
part of the proof from using closed curves to using closed surfaces. Both steps are
straightforward but tedious. Generalization to higher dimensions remains an open
but interesting problem; related problems in computational topology have proven
difficult in high dimensions in some cases.

Finally, we think that the mathematical methods we have developed could be
useful in other problems as well.

6. Proofs for Section 2. We begin with an explicit characterization of the path
density p that includes the statement of Theorem 1. Throughout, we let U = R

2

and let U0 ⊂ U be a large compact set that contains all the critical points of gX in
its interior.

THEOREM 6. Under Assumptions 1–3, the path density p is an upper-
semicontinuous function with the following properties:

1. If x is a local minimum of gX , p(x) = 0.
2. If x is a local maximum of gX , p(x) = ∞.
3. If x is a saddlepoint of gX , then 0 < p(x) < ∞ and there exist four sequences

of regular points (x
j
k ), for j = 1, . . . ,4, all converging to x such that

p(x) = lim
n→∞

4∑
j=1

p(xj
n).(18)

4. If x is a regular point of gX , then the following hold:
(a)

p(x) = lim
r→0

π(∂B(x, r))

r
.(19)

(b) For all sufficiently small r > 0, there exists a curve γ of and αr < 0 <

βr such that (i) length(γ [αr,0]) = r + O(r2), (ii) length(γ [0, βr ]) = r +
O(r2) and (iii)

p(x) = lim
r→0

π(γ ([αr,βr ]))
r

.(20)

(c) There exists a smooth function h :U × R → [0,∞) such that for any regu-
lar point x of gX

p(ψ−t x) =
∫ ∞

0
gX(ψ−t−sx)h(x, t + s) ds.(21)

5. p is continuous on (M ∪ H)c and bounded on Mc.
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To prove Theorem 6 we need two lemmas whose proofs are reported at the end
of this section. Let D2gX(x) denote the Hessian matrix of gX at x.

LEMMA 1. For x ∈ U0, let r0 > 0 be small enough so that B(x, r0) contains
no critical points of gX , other than possibly x itself. Then, for r ≤ r0, there exists
a constant C > 0 such that for y ∈ B(x, r)∣∣gX(y) − gX(x) − ∇gX(x) · (y − x) − 1

2(y − x)T D2gX(x)(y − x)
∣∣ ≤ Cr3,

‖∇gX(y) − ∇gX(x) − D2gX(x)(y − x)‖ ≤ Cr2,

where C is independent of r and y but possibly dependent on r0.

LEMMA 2. Let γ : [−1,1] → U0 be a nonintersecting curve such that
γ ([−t, t]) has length t and such that γ (t) is a regular point of gX for every
−1 ≤ t ≤ 1. Then, there exists a 0 < t ≤ 1 such that, for all 0 < s < t ,

L(V(γ ([−s, s]))) ≤ Cs + O(2
s ),(22)

where C > 0 is independent of s but possibly dependent on x and t .

PROOF OF THEOREM 6. 1. The idea of the proof is to show that in small
enough balls around x, the integral curves closely approximate those from a
quadratic function around x. If gX were quadratic at x, then the flows ψ−t carry
every point in B(x, r) radially toward x. Hence, π(B(x, r)) ≤ μX(B(x, r)) =
O(r2). The details that follow require some careful arguments because we make
minimal assumptions about gX other than smoothness.

We begin by constructing two small open balls W0 ⊂ V around x with four
properties: (i) V contains no critical points of gX other than x, (ii) the Lapla-
cian ∇2gX > 0 on V , (iii) gX is locally quadratic on V in the sense that gX(y) =
gX(x) + h2

1(y) + h2
2(y), for a smooth function h, and (iv) the reverse evolution of

W0 remains within V , V(W0) ⊂ V .
Note first that ψtx = x for all t ∈ R. Because the Laplacian ∇2gX is continuous

and positive at local minimum x, there is an open ball V1 around x on which
∇2gX > 0. By Morse’s theorem [Milnor (1963)], there is a neighborhood V2 of x

and a Cζ diffeomorphism h from V2 to an open ball A around 0 in R
2 such that

h(x) = 0 and for y ∈ V2,

gX(y) = gX(x) + h2
1(y) + h2

2(y).(23)

Note V2 satisfies (i). Let V be an open ball around x contained in V1 ∩V2. Then V

satisifies properties (i), (ii) and (iii) above.
To find W0 satisfying (iv) we need to get close enough so that the quadratic

behavior dominates any wandering of the integral curves outside of V . Define
q :A → R by q(z) = ‖h−1(z) − x‖2. This is a Cζ function with q(0) = 0 and
hence Lipschitz. Thus, there exists an open ball A1 ⊂ A such that q(z) ≤ c‖z‖
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on A1, for some constant c. Hence, there is an open ball W0 ⊂ h−1(A1) around x

such that V(W0) ⊂ V .
Next we show that for any open ball W ⊂ W0 around x, its reverse evolution

must stay within its closure, V(W) ⊂ W . This is equivalent to showing that integral
curves from within W cannot cross the boundary ∂W . To do this, we will use the
following result. Let C ⊂ V be any region bounded by a piecewise smooth closed
curve. By Stokes’s theorem and by property (ii) of V above,∫

∂C
(−∇gX) · n̂ =

∫
C
(−∇2gX) < 0,(24)

where n̂ is an outward pointing, unit vector normal to ∂C. (The application of
Stokes’s theorem comes by defining the differential form ω = −v2 dx + v1 dy,
where v = −∇gy . Then, dω = −∇2gX dx ∧ dy and

∫
C ω = ∫

v · n̂.)
Apply (24) with C = W . If the integrand on the left, (−∇gX) · n̂, is ever positive

on ∂W , it must, by continuity, be positive on some arc (a1, a2) ⊂ ∂W . Suppose
then that the integrand on the left is nonnegative on such an arc (a1, a2). We will
construct a closed curve bounding a region C ⊂ V to which we will apply (24).
Construct the closed curve by jointing the following three curves, in order: a curve
from x to a1 obtained by t ∈ [0,1] 
→ h−1(th(a1)), the arc (a1, a2) and the curve
from a2 to x obtained by t ∈ [0,1] 
→ h−1((1− t)h(a2)). Note that the first and last
of these curves have two important properties: (i) their image is contained in V ,
and (ii) they follow integral curves of ψ in one direction or the other. The latter is
implied directly by (23). As a result, the integrand on the left-hand side of (24) is
zero over the first and last segments and nonnegative over the middle one, which
is a contradiction equation (24).

As a result, for sufficiently small r > 0, an open ball B(x, r) satisfies V(B(x,

r)) ⊂ B(x, r), and thus

p(x) = lim
r→0

π(B(x, r))

r
≤ lim

r→0

O(r2)

r
= 0.(25)

2. We can apply the same argument as in item 1 except with Morse’s theorem
giving the representation

gX(y) = gX(x) − h2
1(y) − h2

2(y)(26)

and thus reversing the sign of the Laplacian. This shows that for sufficiently small
r0 > 0, an open ball B(x, r0) satisfies V(B(x, r0)) ⊃ B(x, r0). Moreover, this im-
plies that for any r < r0, V(B(x, r)) ⊃ B(x, r0). Hence,

p(x) = lim
r→0

π(B(x, r))

r
≥ lim

r→0

μX(B(x, r0))

r
= ∞.(27)

3. Note again that ψtx = x for all t ∈ R and again that Morse’s theorem implies
the existence of a neighborhood U of x and a diffeomorphism h from U to an open
ball A around 0 in R

2 such that h(x) = 0 and for y ∈ U ,

gX(y) = gX(x) − h2
1(y) + h2

2(y).(28)
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Define ξ as the global flow generated by the vector field V ⊥ = R∇gX , where R is
a fixed 90-degree rotation matrix.

Choose r > 0 such that B(x, r) ⊂ U and B(x, r) contains no critical points
other than x. For every 0 < t ≤ r , let St = h(∂B(x, t)). This is a smooth closed
curve around 0 in A. In the h coordinate system in A, the integral curves of the
vector field are hyperbolas of the form h1h2 = c for some constant c, with the
reversed (negative gradient) flow traveling from large |h2| and small |h1| to small
|h2| and large |h1|. (Here we are treating h1 and h2 as the coordinates under the
change of variables induced by the diffeomorphism h.) Specifically, in A, the flow
through a point (h1, h2) takes the parametric form s 
→ (h1e

2s, h2e
−2s). It follows

that there is at least one point in each quadrant where the product |h1h2| attains
its maximum on St , and that the set of such points in each quadrant is a closed
set (by continuity). It follows that if there is more than one such point, they must
all be on the same contour and that therefore, because the set is compact, there
must be a unique point that succeeds the others under the partial order �. Let
zi(t) ∈ St , for i = 1, . . . ,4, denote these points, and let yi(t) = h(zi) ∈ ∂B(x, t).
In addition, let z+(t) and z−(t) denote the points at which St intersects the positive
and negative h1 axis, respectively, and let y+(t) = h(z+(t)) and y−(t) = h(z−(t)).
Here, the subscripts 1, . . . ,4 indicate the associated quadrant and the subscripts
+ and − indicate association with the positive and negative h1 axis, respectively.
Take z(0) = 0 and y(0) = x in each case.

The six curves in the original space y1, y2, y3, y4, y−, y+ are smooth and pa-
rameterized by arclength. Moreover, since the integral curves are tangent at each
of the points yi(r), for i = 1, . . . ,4, each curve yi traces an integral curve of the
flow ξ .

From these, we construct four closed curves, γ1, γ2, γ3 and γ4, one per quad-
rant, as follows. The first travels along y1 from x to y1(r), then along the arc of
∂B(x, r) to y+(r), then along y+ from y+(r) back to x. The rest are analogous,
traveling x → y+(r) → y2(r) → x, x → y4(r) → y−(r) → x and x → y−(r) →
y3(r) → x. We choose the time index along the circular arcs so that the γi’s are
parameterized by arclength. Note that the range of γi is restricted to quadrant i by
construction.

Let C denote the region (including the boundary) enclosed by γ curves. This
consists of two “lobes,” one joining the region enclosed by the two γ curves that
intersect along the range of y+ and the other joining the regions enclosed by the
two γ curves that intersect along the range of y−. The two lobes intersect only at x.
Partition B(x, r) = Z + L + R, where Z = B(x, r) ∩ h−1({(u,0) ∈ A :u �= 0}) is
the image of the h1 axis; L = B(x, r)∩(C−Z) is the union of the two lobes minus
the axis; and R = B(x, r) − L − Z is everything else. The construction of the yi ’s
shows that these sets satisfy the following: (i) every point in R preceeds a point
[which is neither x nor the yi(r)’s] on one of the yi curves; (ii) Z is the image of
a curve (and thus a set of measure 0), so every point in Z precedes (under �) one
of the two points in {y+(r), y−(r)}; (iii) every point in L is succeded (under �)
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by a point (which is neither x nor the yi ’s) on one yi piece of the corresponding
curve. Note that the integral curves from each yi piece do not cross the “axis”
h({(u,0) ∈ A :u �= 0}). (These facts are easiest to see in the transformed space A,
even though the curves need not be radial or arc-like in that space. The zi’s are the
latest points on the highest integral curves. Z is the image of the h1 axis which
creates two integral curves.)

It follows then that

V(B(x, r)) = {x} ∪ V(γ1((0, r])) ∪ · · · ∪ V(γ4((0, r])) ∪ R ∪ V(Z),(29)

where this union is disjoint. Moreover, L(R) ≤ πr2 and L(V(Z)) = 0, so neither
component contributes to p(x). Because the yi ’s follow the integral curves of ξ ,
for any 0 < t < r , p(yi(t)) = limδ→0 π(yi((t − δ, t + δ)))/δ by Theorem 6(4b)—
proved below, independently of these results—and for disjoint intervals along yi ,
the corresponding reverse evolutions are disjoint. For integer n > 0, let � = r/n,
then,

π(yi((0, r))) =
n∑

j=1

π
(
yi

(
(j − 1)�, j�

))

=
n∑

j=1

π(yi((j − 1)�, j�))

�
�(30)

→
∫ r

0
p(yi(s)) ds

as n → ∞. The convergence is justified by the dominated convergence theorem
as each of the functions fn(t) = π(yi(t−�/2,t+�/2))

�
converges pointwise to the

bounded function p(y(t)). It follows then that

lim
r→0

π(yi((0, r)))

r
= lim

r→0

1

r

∫ r

0
p(yi(s)) ds = lim

r→0
p(yi(r)).

And therefore,

p(x) =
4∑

i=1

lim
r→0

p(yi(r)),(31)

which proves the claim.
For the upper semicontinuity proof below, note that any sequence xn → x is

eventually all regular points, and each xn can lie in only one “quadrant” (rela-
tive to A), so lim supn p(xn) is no greater than the maximum of the lim sup over
any subsequence lying in one quadrant. Hence, p(x) ≥ lim supn→∞ p(xn), so p is
upper-semicontinuous at x.

(4a) For small enough r , B(x, r) contains no critical points of gX . Partition
∂B(x, r) into two sets Cin and Cout, where Cout contains all points on ∂B(x, r),
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whose paths do not cross the interior of B(x, r). Every point in Cin = ∂B(x, r) −
Cout either precedes or succeeds a point in B(x, r). So, V(Cin) ⊂ V(B(x, r)) ∪
∂B(x, r). Because the flow is smooth with a bounded derivative on U0 and because
∂B(x, r) is compact, Cout equals an at most countable union of points and arcs on
which the flow is tangent to the circle. Each such piece produces a single curve
under V , so it follows that L(V(Cout)) = 0, which in turn implies that π(Cout) = 0.
Because the symmetric difference of V(B(x, r)) and V(∂B(x, r)) is contained in
B(x, r) ∪ V(Cout), we have that π(B(x, r)) = π(∂B(x, r)) + O(r2) as r → 0.

(4b) For convenience, let u = ∇gX : R2 → R
2 denote the gradient function. Let

u0 = u(x) and let H be the Hessian of gX , with eigenvalues λ1 > λ2. Pick δ > 0
small. Choose r0 > 0 such that:

(i) B(x, r0) contains no critical points of gX;
(ii) r0

λ1−λ2
2‖u0‖ ≤ 1/4;

(iii) r0
λ1+λ2
2‖u0‖ ≤ 3/4;

(iv) ‖u(y) − u(x) − H(y − x)‖ ≤ δ(‖y − x‖/r0)
2 via Lemma 1.

Then, let r < r0.
The plan of the proof is to construct the curve γ explicitly in the case where u

is linear and show that the perturbation caused by the addition of higher order
terms causes only a small change to the curve, consistent with the statement of the
theorem. The range of the curve will generate the same set under V as the open
ball around x, up to an O(r2) term. Consider points along the circles around x

where the gradient u is tangent to the circle. Connecting these points will cut all the
integral curves within the ball. Note that because the vector field ∇gy is curl free, it
follows from Stokes’ theorem that there must exist at least two tangent points. That
is, because the line integral around S is zero, there must be a sign change of the
tangent vectors, but this requires at least two zeros on the circle. [The application
of Stokes’ theorem comes by defining the differential form ω = v1 dx + v2 dy,
where v = ∇gy . This form is closed, that is, dω = (D1v2 − D2v1) dx ∧ dy = 0,
and so 0 = ∫

C ω = ∫
v(C(t)) · dC

dt
(t).]

Let B0 = B(x, r0), B = B(x, r) and S = ∂B . We begin by showing that when u

is linear, it is tangent to S at exactly two isolated points for every r < r0. We show
further that the component of u normal to S is small only in a small neighborhood
of these tangent points, which will be used to show that such tangent points lie on
two small arcs for general u.

So, for the moment, assume that u(y) = u(x) + H(y − x) on B0. Recall that
u �= 0 on B0. Because H is symmetric, there are two orthogonal, unit vectors v1
and v2 and two real numbers λ1 ≥ λ2 (possibly zero) such that H(β1v1 + β2v2) =
β1λ1v1 + β2λ2v2. For every y ∈ B , y − x can be written as β1v1 + β2v2 for β2

1 +
β2

2 ≤ r2 and vice versa. Hence, we can write, with some abuse of notation,

u(β1, β2) = u(0,0) + λ1β1v1 + λ2β2v2,(32)
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where u(β1, β2) = u(x + β1v1 + β2v2). Let α1, α2 be such that u(0,0) ≡ u(x) =
α1v1 + α2v2. We have by assumption of regularity at x that ‖α‖ =

√
α2

1 + α2
2 > 0.

Then, any y ∈ S corresponds to β = (r cos θ, r sin θ) for some θ ∈ [0,2π), and

u(β1, β2) = (α1 + λ1r cos θ)v1 + (α2 + λ2r sin θ)v2.(33)

Because u is nonzero on B0, we have that for y ∈ S, u(y) is tangent to S if
u(β1, β2) · (β1, β2) = 0, or more explicitly,

0 = [(α1 + λ1r cos θ)v1 + (α2 + λ2r sin θ)v2]T (
r cos(θ)v1 + r sin(θ)v2

)
(34)

= r(α1 cos θ + λ1r cos2 θ) + r(α2 sin θ + λ2r sin2 θ),

which implies, canceling r > 0, that

α1 cos θ + α2 sin θ + r

(
λ1 − λ2

2
cos 2θ + λ1 + λ2

2

)
= 0.(35)

Because ‖u0‖ = ‖u(x)‖ = ‖α‖ > 0, there exists η ∈ [0,2π) such that cosη =
α1/‖α‖ and sinη = α2/‖α‖. Then, solutions of the above equation correspond
to crossings of the purely imaginary axis of the following complex curve
c : [0,2π) → C:

c(θ) = ei(θ−η) + r
λ1 − λ2

2‖α‖ ei2θ + r
λ1 + λ2

2‖α‖ .(36)

This is a generalized epicycloid with phase η and offset r λ1+λ2
2‖α‖ along the real

axis. Write c1 = Re(c), c2 = Im(c), w = r λ1−λ2
2‖u0‖ ≥ 0 and v = r λ1+λ2

2‖u0‖ . Following
Brannen (2001) and treating (c1 − v, c2) as a plane curve, we see that the curve
has no cusps if the curvature never changes sign and no loops if the vector cross-
product of the curves position and velocity never changes sign. The sign of the
curvature equals the sign of

c′
1c

′′
2 − c′′

1c′
2 = 8w2 + 1 + 6w cos(θ + η)(37)

and the sign of the vector cross-product equals the sign of

(c1 − v)c′
2 − c′

1c2 = 2w2 + 1 + 2w cos(θ + η).(38)

Taking 0 ≤ w ≤ 1 and using the fact that the cosine terms are between −1 and 1,
we see that the former keeps the same sign if w ≤ 1/4 or w ≥ 1/2, and the latter
keeps the same sign if (2w − 1)(w − 1) ≥ 0, which requires w ≤ 1/2. The curve is
thus locally convex whenever w ≤ 1/4. Moreover, the (c1 − v)2 + c2

2 ≥ (1 − w)2,
so the curve always lies outside a circle of radius 1 − w around v. Hence, if 0 ≤
w ≤ 1/4 and |v| < 1−w, the curve will intersect the imaginary axis exactly twice.
By assumption, then, the original vector field thus has exactly two isolated points
of tangency with each circle S.

By the implicit function theorem, the collection of these tangent points, together
with x, form the image of a smooth curve, γ , with γ (0) = x and γ ′(0) nonzero.
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Every point along this curve is perpendicular to the gradient flow, so this curve
is part of the integral curve through x for the flow ξ , so we can take γ (t) of
the form ξ tx. The angular separation between the two tangent points forming the
branches of γ can be determined by studying the curve c above. Direct calculation
shows that the arc length varies with θ along the curve as 1 + O(r2) relative to a
circle. It follows that the angle between the tangent points is π + O(r), and thus
the length of γ between the center of the circle and each point on the circle at
radius r has length r + O(r2). This proves the claim for the linear case.

In the general case, an error term of order r2 is added to linear term by the ap-
proximation Lemma 1. This perturbs the tangent points and can add or move them,
though as shown above there are always at least two. (We get them by following ξ

forward and backward until we leave the circle, which we do eventually because
there are no critical points in the neighborhood.) We show that these are confined
to two small arcs on the circle of length O(r4). To do this, note that the size of the
outward normal component of u(y) is |u(y) ·(y−x)/‖y−x‖| = |u(y) ·(y−x)|/r .
The numerator is the left-hand side of (35). The normal component might be zero
for any θ ∈ [0,2π) for which |Re(c(θ)/r)| ≤ Cr2, or equivalently |Re(c(θ))| ≤
Cr3. For a circle, this occurs over two arcs of angular size O(r3) and thus of length
O(r4) in U0. For the general epicycloid, the arc length over any segment can be at
most 1 + 2w times that of the circle, which again gives an arc length of O(r4).

The γ curve constructed above connects two tangent points, the remaining in-
tegral curves can cross the boundary in a curve of length O(r4) and hence by
Lemma 2,

L
(
V(B(x, r)) − V(γ ([αr,βr ]))) = O(r4),(39)

where αr and βr are the time indices at which each branch of γ strikes the circle
of radius r . The result follows.

It is worth noting that we can construct a curve γ̃ for which V(B(x, r)) equals V
applied to the image of the curve, except for part of B(x, r) itself. To do this, we
include all the tangent points on the two arcs of length O(r4) and then connect
opposite ends with a curve of minimal length through x. The resulting curve has
length 2r + O(r2) and hits every equivalence class in B(x, r).

(4c) By Theorem 6(4b) above, it is sufficient to work with V(γ ([ar, br ])) for
sufficiently small r > 0. This is generated by a curve of the form γ (s) = ξ sx

over the interval [ax(r), bx(r)]. Taking ax(0) = bx(0) = 0, note that ax and bx are
differentiable functions of r and continuous functions of x. Hence, we have the set
A = V(γ ([ax(r), bx(r)])). Construct a smooth bijection [0,∞) × [a(r), b(r)] to
A by z(t, s) = ψ−t ξ sx. It follows by the change of variables and Fubini theorems
that

π(V(γr([ar, br ]))
r

= 1

r

∫
A

gX(v) dv + O(r2)

(40)

= 1

r

∫ b(r)

a(r)

∫ ∞
0

gX(ψ−t ξ sx)J (x, t, s) dt ds + O(r2),
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where J (x, t, s) is the Jacobian determinant of z, which is a smooth function in x.
Taking limits as r → 0 yields

p(x) = (
b′
x(0) − a′

x(0)
) ∫ ∞

0
gX(ψ−t ξ0x)J (x, t,0) dt.(41)

Taking h(x, t) = (b′
x(0) − a′

x(0))J (x, t,0) gives the theorem for p(x). Now apply
the above to ψ−t x for any t ∈ R to get the formal statement.

Boundedness of p on U − M follows from showing uniform boundedness at
regular points of gX , by items 1 and 3 above. At a regular point x of gX and for
sufficiently small r > 0, there is by Theorem 6(4b) above and Lemma 2 a constant
K > 0 dependent only on gX such that π(γ ([ax(r), bx(r)])) ≤ Kr . It follows that
p(x) ≤ K as was to be proved.

Finally, to prove that p is upper semi-continuous it is sufficient to show that p

is continuous at regular points and local minima. The rest follows from items 1
and 2, and the proof of item 3 above.

Suppose x is a local minimum of gX and pick a0 > 0 small. Then by the proof of
item 1 above, there exists an a1 ≤ a0 such that a ≤ a1 implies that V(B(x, a)) ⊂
B(x, a). It follows from Lemma 2 that if y ∈ B(x, a), then for small r < a/2,
L(V(B(y, r))) ≤ Cra, the width of the ball times the scale of the set B(x, a),
where C > 0 is a constant independent of a but dependent possibly on a0. If we
choose a < a0/C, then π(B(y, r))/r ≤ a0 for r < a/2, showing that p(y) ≤ a0. It
follows that p(y) → 0 as y → x, which proves continuity of p at local minima.

To prove continuity at regular points, we apply Theorem 6(4c) above. Because
gX and the h in Theorem 6(4c) are continuous in x, they are bounded on U0. The
bounded convergence theorem thus allows an interchange of limit and integral.
Taking t = 0 and letting xn → x all be regular points of gX , we thus have that

p(x) = lim
n→∞

∫ ∞
0

gX(ψ−sxn)h(xn, s) ds = lim
n→∞p(xn).(42)

This proves that p is upper semi-continuous. This completes the proof. �

PROOF OF THEOREM 2. 1. By Theorem 6(4b) and (c), we can write

π(B(x, r)) =
∫ βr

αr

∫ ∞
0

H(ξsx, t) dt ds + O(r2),(43)

where by the proof of Theorem 6(4c), H is a smooth function and βr − αr = r +
O(r2). If D1H(y, t) denotes the derivative of H with respect to its first argument,
then Taylor’s theorem gives us that H(y, t) = H(x, t) + D1H(u(t, y), t) · (y − x)

for some points u(t, y) on the line between y and x. Because H(y, t) and
H(x, t) are integrable with respect to t , and y is arbitrary in U, it follows that
‖D1H(u(t, y), t)‖ is integrable as well. The integrals are bounded over U0 by
compactness. Hence, for s ∈ [αr,βr ],∣∣∣∣∫ ∞

0
H(ξsx, t) dt −

∫ ∞
0

H(x, t) dt

∣∣∣∣ ≤ Cr(44)
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for a constant C > 0 independent of x. The second term in the above absolute
value is just p(x), so

π(B(x, r)) =
∫ βr

αr

(
p(x) + O(r)

)
ds + O(r2) = rp(x) + O(r2),(45)

which proves the claim.
2. Let γ be the curve in Theorem 6(4b) centered at x and parameterized by

arc-length over the interval [a, b], where a < 0 < b, |a| = r + O(r2), and |b| =
r + O(r2). For positive integer m, pick index points tmk = a + (b − a)k/m, for
0 ≤ k ≤ m and cover γ ([a, b]) by open balls of radius (b−a)/2m centered at each
γ (tmk). It follows that

π(γ ([a, b])) =
m∑

k=0

π

(
B

(
γ (tmk),

1

2m

))
+ O(m−2)(46)

≈
m∑

k=0

p(tmk)
1

2m
+ O(m−2)(47)

→ 1

2

∫ b

a
p(γ (t)) dt(48)

= 1

2

∫ r

−r
p(γ (t)) dt + O(r2),(49)

where the limit is over m → ∞. The second line above follows by part 1. Because
π(B(x, r)) = π(γ ([a, b])) + O(r2), the result follows. �

PROOF OF LEMMA 1. This result follows directly from Taylor’s theorem
and the compactness of U0. For example, the remainder term in the gradient ap-
proximation (second equation in the theorem) can be written r2(uT A1(y, x)u,
uT A2(y, x)u)T , where u = (y − x)/‖y − x‖ and where the Ai(y, x)jk = ∫ 1

0 (1 −
t)∂3gX(x + t (y − x))/∂xi ∂xj ∂xk dt . Because the maximum eigenvalue of these
matrices is a continuous function of the matrix and thus continuous in y [Naulin
and Pabst (1994)], each component of this vector is bounded. �

PROOF OF LEMMA 2. To begin, suppose γ is a short segment of length r of a
curve of the form γ (s) = ξ sx, parameterized on the interval [a, b] with a < 0 < b.
Assume that every point along the curve is a regular point of gX . For sufficiently
small r , the indices a < 0 < b satisfy |b − a| ≤ κr because the derivative of ∇gX

is bounded above and below (in norm) in a small neighborhood of x.
Every point γ (s) can be classified according to whether limt→∞ ψ−t γ (s) is (i) a

point on the boundary of U0; (ii) a local minimum of gX; or (iii) a saddle point of
gX . If there are no points of class (iii) on the segment, then we can take r small
enough so that all points are of the same class. In general, under Assumption 2,
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there is at most a finite set of s ∈ [a, b] of class (iii), each of whose V(γ (s)) has
Lebesgue measure 0. So it suffices to assume that there are no class (iii) points on
[a, b] because without loss of generality, we could individually consider the finite
open intervals in [a, b] on which this is the case.

Let V denote the set V(γ ([a, b])) and let I = ⋃
a≤s≤b Iγ (s), where Ix is the

intervals of time indices for which the flow from x stays in U0. Define

V1 = {ψ−t ξ sx : s ∈ [a, b], t ∈ I } ⊂ U

and note that V ⊂ V1. Define a mapping h : [0, ] × I → V1 by h(s, t) = ψ−t ξ sx.
Note that if s1 �= s2, then the ξ si x are in different equivalence classes and so
h(s1, t) �= h(s2, t) for any t . Similarly, if t1 �= t2, then ψ−ti ξ sx lie at different
points along the integral curve. Hence, h is one to one. If y ∈ V1, then by con-
struction, y is equivalent to a unique ξ sx for s ∈ [a, b] with respect to the flow ψ .
Among all points in V1 equivalent to y with respect to ψ , each is obtained from the
corresponding ξ sx by ψ−t for a unique t (ψ−t is nonsingular with respect to t).
Thus, h has a one-to-one inverse. Moreover, h is differentiable because it is the
composition of differentiable functions. Thus, h is a smooth bijection.

It follows then, by a change of variables and Fubini’s theorem, that

L(V1) =
∫
V1

dL =
∫ b

a

∫
I
J (s, t) dt ds ≤ Cr,(50)

where J is the absolute Jacobian determinant, and C = κ|I | sups,t J (s, t) < ∞ by
the compactness of [a, b] × I .

Suppose now we take γ to be a general curve as stipulated in the theorem,
of length r > 0. Then, by taking r sufficiently small, Lemma 1 shows that the
gradients of gX along γ point in the same direction up to O(r). We can thus
find a segment of an integral curve of ξ within O(r) of γ that cuts across all the
equivalence classes that γ hits. The Lebesgue measure of V applied to the latter
curve is bounded by Cr , and the additional area between the curves is O(r2).

Having proved the result for sufficiently small segments, a general curve can
be decomposed into smaller segments for which the above arguments apply. The
measure of the V-induced set is then bounded above by a sum of the upper bounds
along the curve, which gives a bound of O(r) as was to be proved. �

7. Proofs for Section 3. Through this section, supx denotes the supremum
over all regular points, hence, the rates of convergence resulting from Theorem 3
and Corollary 1 are uniform over the set of regular points of gX .

To prove Theorem 3, we proceed as follows. Define

p∗
n(x) = 1

n

n∑
i=1

1

νn

K

(
inf

z∈P(Xi)

‖x − z‖
νn

)
.(51)

Then,

|p̂n(x) − p(x)| ≤ |p̂n(x) − p∗
n(x)| + |p∗

n(x) − E[p∗
n(x)]| + |E[p∗

n(x)] − p(x)|.
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We bound these terms using the following three results.

THEOREM 7. Under the assumptions in Theorem 3,

sup
x

|p̂n(x) − p∗
n(x)| = O

(√
log(1/hn)

nh4
n

)
+ O(h2

n) a.s.

THEOREM 8. Under the assumptions in Theorem 3,

sup
x

|p∗
n(x) − E[p∗

n(x)]| = OP

(√
logn

nνn

)
.

THEOREM 9. Under the assumptions in Theorem 3,

sup
x

|E[p∗
n(x)] − p(x)| = O(νn).

Theorem 3 follows by combining these results. Before proving these theorems,
we need a few preliminary results.

LEMMA 3. If (K1)–(K3) hold and nh2
n/ log(1/hn) → ∞, then

sup
x

|ĝn(x) − gX(x)| = O

(√√√√ logh−1
n

nh2
n

)
+ O(h2

n) a.s.

If, in addition, nh4
n/ log(1/hn) → ∞, then

sup
x

|∇ĝn(x) − ∇gX(x)| = O

(√√√√ logh−1
n

nh4
n

)
+ O(h2

n) a.s.

The first result above is Theorem 2.3 of Giné and Guillou (2002). The second
result may be proved similarly; see also Giné and Koltchinskii (2006).

Let

D(x,y) = inf
s∈P(y)

‖s − x‖, D̂n(x, y) = inf
s∈P̂ (y)

‖s − x‖.

LEMMA 4. If nh4
n/ log(1/hn) → ∞, then

sup
x

sup
y

|D(x,y) − D̂n(x, y)| = O

(√√√√ logh−1
n

nh4
n

)
+ O(h2

n) a.s.
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PROOF. Follows from compactness and Lemma 3. �

PROOF OF THEOREM 7. Note that

p̂n(x) − p∗
n(x) = 1

nνn

n∑
i=1

(
K

(
D̂n(x,Xi)/νn

) − K
(
D(x,Xi)/νn

))
.

Since K ′ is uniformly bounded, the result follows by Taylor expanding K(D̂n(x,

Xi)/νn) around D(x,Xi) and applying the previous lemma. �

Since K is nonincreasing, there exists a cumulative distribution function M with
support [0,∞) such that

K(x) =
∫ ∞

0

1

s
1[0,s](x) dM(s).

Note that K(x) = ∫ ∞
x

1
s
dM(s) and that condition (K3) above implies that all

moments of M are finite and that 1 − M(x) = O(x2e−x).
The path density estimator p∗

n in (51) can be written as

p∗
n(x) = 1

n

n∑
i=1

1

νn

K

(
D(x,Xi)

νn

)
= 1

n

n∑
i=1

1

νn

∫ ∞
0

1

s
1[0,s]

(
D(x,Xi)

νn

)
dM(s)

= 1

nνn

n∑
i=1

∫ ∞
0

1

s
1[0,sνn](D(x,Xi)) dM(s).

To prove Theorem 8 we will use Talagrand’s (1994) inequality. The version we
use is from Ginè and Guillou (2002). If � is a class of functions, let N(�,L2(P ), δ)

be the smallest number of balls of radius δ needed to cover � with respect to the

metric
√∫

(f (x) − g(x))2 dP (x), with f,g ∈ �.

THEOREM 10 (Ginè and Guillou). Let � be a class of uniformly bounded
functions such that there exist A ≥ 3

√
e and d ≥ 1 for which

sup
P

N

(
�,L2(P ), ε

√∫
G2(x) dP (x)

)
≤

(
A

ε

)d

,(52)

where G is an envelope for �, and the supremum is over all probability measures.
Let σ 2 ≥ supγ∈� Var(γ (X)) and U ≥ supγ∈� ‖γ ‖∞ and 0 < σ ≤ U . Then, there
exist constants B,C and L such that the following is true. If

ε ≥ C

n

(
U log

(
AU

σ

)
+ √

nσ

√
log

(
AU

σ

))
,
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then

P

(
sup
γ∈�

∣∣∣∣∣1

n

n∑
i=1

γ (Xi) − E(γ (Xi))

∣∣∣∣∣ > ε

)

≤ L exp
{
− nε

LU
log

(
1 + nεU

L(
√

nσ + U
√

log(AU/σ))2

)}
.

PROOF OF THEOREM 8. Let γx,s = 1[0,sνn](D(x, ·)) and write p∗
n as

p∗
n(x) = 1

nνn

n∑
i=1

∫ ∞
0

1

s
1[0,sνn](D(x,Xi)) dM(s)

=
∫ ∞

0

1

sνn

1

n

n∑
i=1

γx,s(Xi) dM(s).

Theorem 11 below shows that the class of functions

�n = {γx,s, x ∈ U0,0 ≤ s ≤ logn}
satisfies the covering condition (52), hence Talagrand’s inequality holds with
U = 1 and σ 2 = O(νn logn). Set Qn = √

logn. Then,

P

(
sup

γx,s∈�n

∣∣∣∣∣1

n

n∑
i=1

γx,s(Xi) − E[γx,s(X)]
∣∣∣∣∣ > Qn

√
νn logn

n

)

≤ L exp
{
−nQn

√
νn logn/n

L

× log
(

1 + nQn

√
νn logn/n

L(
√

nνn logn +
√

log(A/
√

νn logn))2

)}
= o(1)

so that—with probability tending to 1—we have

sup
γx,s∈�n

∣∣∣∣∣1

n

n∑
i=1

γx,s(Xi) − E[γx,s(X)]
∣∣∣∣∣ = O

(√
νn logn

n

)
.

It follows that

sup
x

|p∗
n(x) − E[p∗

n(x)]|

≤ sup
x

∫ ∞
0

1

sνn

∣∣∣∣∣1

n

n∑
i=1

γx,s(Xi) − E[γx,s(X)]
∣∣∣∣∣dM(s)

≤ sup
x

∫ logn

0

1

sνn

∣∣∣∣∣1

n

n∑
i=1

γx,s(Xi) − E[γx,s(X)]
∣∣∣∣∣dM(s) + 1

νn

∫ ∞
logn

1

s
dM(s)
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≤ sup
x

∫ logn

0

1

sνn

sup
s∈(0,logn)

∣∣∣∣∣1

n

n∑
i=1

γx,s(Xi) − E[γx,s(X)]
∣∣∣∣∣dM(s)

+ 1

νn

K(logn)

= sup
x

sup
s∈(0,logn)

∣∣∣∣∣1

n

n∑
i=1

γx,s(Xi) − E[γx,s(X)]
∣∣∣∣∣ 1

νn

∫ logn

0

1

s
dM(s)

+ 1

νn

K(logn)

≤ K(0)

νn

sup
γx,s∈�n

∣∣∣∣∣1

n

n∑
i=1

γx,s(Xi) − E[γx,s(X)]
∣∣∣∣∣ + K(logn)

νn

.

Hence,

sup
x

|p∗
n(x) − E[p∗

n(x)]| = K(0)

νn

OP

(√
νn logn

n

)
+ 1

νn

O

(
logn

n

)

= OP

(√
logn

νnn

)
. �

PROOF OF THEOREM 9. Note that D(x,Xi) ≤ sνn if and only if Xi ∈ V(B(x,

sνn)), hence

E
[
1[0,sνn](D(x,X))

] = μX(V(B(x, sνn))) = π(B(x, sνn)).

The expected value of p∗
n is

E[p∗
n(x)] − p(x) = 1

νn

E

∫ ∞
0

1

s
1[0,sνn](D(x,X)) dM(s) − p(x)

= 1

νn

∫ ∞
0

1

s
E

[
1[0,sνn](D(x,X))

]
dM(s) − p(x)

= 1

νn

∫ ∞
0

1

s
π(B(x, sνn)) dM(s) − p(x)

= 1

νn

∫ ∞
0

1

s
[π(B(x, sνn)) − sνnp(x)]dM(s)

= O(νn).

To verify that the last term is O(νn), note that the integrand is not greater than
1
s

+ νnp(x) and, from Theorem 2, there exists rx such that for sνn < rx the inte-
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grand is smaller than 1
s
Cs2ν2

n , so that

∣∣∣∣1

s
π(B(x, sνn)) − sνnp(x)

∣∣∣∣ ≤
⎧⎪⎨⎪⎩

Csν2
n, s <

rx

νn

,

νn

rx
+ νnp(x), s ≥ rx

νn

.

Also, r ≡ infx rx > 0. Hence∣∣∣∣ 1

νn

∫ ∞
0

1

s
[π(B(x, sνn)) − sνnp(x)]dM(s)

∣∣∣∣
≤

∫ r/νn

0
Csνn dM(s) +

∫ ∞
r/νn

(
1

r
+ p(x)

)
dM(s)

≤ Cνn

∫ ∞
0

s dM(s) +
(

1

r
+ p(x)

)(
1 − M

(
r

νn

))
,

which is O(νn), due to the tail condition on M and the existence of its moments.
Thus,

sup
x

|E[p∗
n(x)] − p(x)| = O(ν). �

THEOREM 11. Let k be the number of critical points of gX and let m ≤ k be
the number of modes. The VC dimension of the class of sets

R = {V(B(x, sνn)) :x ∈ U0,0 ≤ s ≤ logn}
is less than 4m. Hence, the covering condition (52) holds.

PROOF. Let b1, . . . , bm denote the modes of gX and let E(x) = {ψt(x),0 ≤
t ≤ ∞}. Note that E(x) is a smooth curve starting at x and ending at some mode
of gX . Partition U0 into sets U1, . . . ,Um where x ∈ Uj if ψ∞(x) = bj . Let F be a
finite set containing 4m points. Then there exists at least one Uj such that F ∩ Uj

has at least 4 points. Let G ⊂ F ∩Uj be a subset of size 4. So G = {x1, x2, x3, x4},
say. We will show that G cannot be shattered.

Step 1. If xk ∈ E(x)−{bj } for xk �= x (where xk, x ∈ G) then clearly G cannot
be shattered. Thus we can assume that Ek ∩ E = {bj } for each k �= .

Step 2. Let R = V(B(z, ρ)) ∈ R. We claim that R picks out A ⊂ G if and only
if

B(z,ρ) ∩ E(xj ) �= ∅ for each xj ∈ A(53)

and

B(z,ρ) ∩ E(xj ) = ∅ for each xj ∈ G − A.(54)

This follows since x ∈ V(B(z, ρ)) if and only if B(x,ρ)∩E(x) �= ∅. See Figure 5.
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FIG. 5. The set R = V(B(z,ρ)) picks out {x1, x2} (above) if and only if the forward evolutions
E(x1) and E(x2) hit the ball B(z,ρ) (below).

Step 3. Place a small ball around bj and renumber the points in G by the angle
of the vector from z to the intersection of E(xj ) with the boundary of the ball. See
Figure 6.

Step 4. We claim that if there exists an R that picks out A = {x1, x3} then there
does not exist an R′ that picks out {x2, x4}. Suppose R = B(z,ρ) picks out A.
Because of (53) and (54), both E(x1) and E(x3) pass through B(z,ρ) but neither
E(x2) and E(x4) pass through B(z,ρ). See Figure 7. Choose y1 ∈ E(x1) ∩ B(z,ρ)

and y2 ∈ E(x3) ∩ B(z,ρ). Define a closed curve C as follows. C begins at the
mode bj , follows E(x1) to y1, connects y1 to y2 by any smooth curve contained
in B(z,ρ) and the follows E(x2) back to bj . Now C encloses E(x2) and excludes
E(x4). Hence, there is no ball B(z′, ρ) satisfying (53) and (54) for A′ = {x2, x4}.
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FIG. 6. The curves E(x1), . . . ,E(x4) can be ordered by their intersection with a small disc
around bj .

Thus, there does not exist an R′ that picks out {x2, x4}. We conclude that G cannot
be shattered. �

8. Proofs for Section 4.

PROOF OF THEOREM 4. We prove the theorem in the background-free case.
The result follows in the general case because the gradient of gX on U0 changes
by a constant factor, yielding the same function p(x). Let D(x, r) denote the set
V(γ ([αr,βr ])) in Theorem 6(4b) within the ball of radius r around x.

Consider the following intermediate claims:
1. x � y implies gX(x) ≤ gX(y).
Let γ (t) = ψ−t y, t ≥ 0. Then, γ ′(t) = −∇gX(γ (t)) and there exists t1 > 0

such that γ (t1) = x. Let v(t) = gX(γ (t)). Then, v(0) = gX(y), v̇(t) = ∇gX(γ (t)) ·
γ ′(t) = −‖∇gX(γ (t))‖2 < 0. Hence, v(t) = v(0) + ∫ t

0 v̇(t) dt ≤ v(0), which
proves the claim.

2. gX(x) ≤ ϕσ (d(x,A)).
Let x̃ denote the point in A that is closest to x. Then, gX(x) is no greater than

g(x), where g is the normal mixture with all its mass at x̃. Thus, g(x) = ϕσ (x −
x̃) = ϕσ (d(x,A)), proving the claim.

3. If x ∈ B(A, d(λ) + ε)c and r < ε, every y ∈ V(B(x, r)) and every y ∈
V(D(x, r)) satisfies

gX(y) ≤ ϕσ (d(λ)).(55)

Every element of B(x, r) is farther than d(λ) from A, where d(λ) is defined
in (14), so the first claim follows by 1 and 2. By the construction in the proof of
Theorem 6, D(x, r) ⊂ B(x, r), so the second claim follows as well.

4. For regular points x of gX , L(V(D(x, r))) ≤ Cr +O(r2), for a constant that
depends only on U0.
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FIG. 7. If V(B(z,ρ)) picks out {x1, x3} then E(x1) and E(x2) hit the ball B(z,ρ) (top). We can
then join the two curves E(x1) and E(x2) forming a closed curve C that isolates x2 from x4. Note
that all E(xj ) must end at the mode (the large dot) since these points are all in the same element of
the partition Uj .

The claim follows pointwise directly from Lemma 2. The proof of that lemma
shows that because U0 is compact, the constants for each point are bounded.

Now we prove the main result. If x ∈ M, the local maxima of gX , then p(x) =
∞ by Theorem 6. If x ∈ H , then p(x) ≤ 4 supy p(y), where the supremum is over
any sufficiently small ball around x. Hence, if x ∈ B(A, d(4λ) + ε)c, the regular
points in a small enough ball around x will lie in B(A, d(4λ) + ε)c.

If x ∈ B(A, d(λ) + ε)c is a regular point of gX , then for small r > 0,
L(V(D(x, r))) ≤ Cr + O(r2), for a constant C independent of x. Hence,

μX(V(D(x, r))) ≤ Crφσ (d(λ)) + O(r2).(56)

Thus p(x) ≤ Cφσ (d(λ)) = λ, and the result follows. �
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FIG. 8. Simulated example with background noise: data set (plot A), steepest ascent paths of all
data points (plot B), paths after cutting the first seven iterations (plot C) and level set at 90% quantile
of the estimated path density (plot D).

PROOF OF THEOREM 5. The theorem follows directly from the previous re-
sults and from Theorem 3 of Cuevas and Fraiman (1997). �
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