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FAST LEARNING RATES IN STATISTICAL INFERENCE
THROUGH AGGREGATION
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Université Paris Est

We develop minimax optimal risk bounds for the general learning task
consisting in predicting as well as the best function in a reference set G up
to the smallest possible additive term, called the convergence rate. When the
reference set is finite and when n denotes the size of the training data, we

provide minimax convergence rates of the form C(
log |G|

n )v with tight eval-
uation of the positive constant C and with exact 0 < v ≤ 1, the latter value
depending on the convexity of the loss function and on the level of noise in
the output distribution.

The risk upper bounds are based on a sequential randomized algorithm,
which at each step concentrates on functions having both low risk and low
variance with respect to the previous step prediction function. Our analysis
puts forward the links between the probabilistic and worst-case viewpoints,
and allows to obtain risk bounds unachievable with the standard statistical
learning approach. One of the key ideas of this work is to use probabilistic
inequalities with respect to appropriate (Gibbs) distributions on the prediction
function space instead of using them with respect to the distribution generat-
ing the data.

The risk lower bounds are based on refinements of the Assouad lemma
taking particularly into account the properties of the loss function. Our key
example to illustrate the upper and lower bounds is to consider the Lq -
regression setting for which an exhaustive analysis of the convergence rates
is given while q ranges in [1;+∞[.

1. Introduction. We are given a family G of functions and we want to learn
from data a function that predicts as well as the best function in G up to some ad-
ditive term called the convergence rate. Even when the set G is finite, this learning
task is crucial since:

• any continuous set of prediction functions can be viewed through its covering
nets with respect to (w.r.t.) appropriate (pseudo-)distances and these nets are
generally finite;

• one way of doing model selection among a finite family of submodels is to
cut the training set into two parts, use the first part to learn the best prediction
function of each submodel and use the second part to learn a prediction function
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which performs as well as the best of the prediction functions learned on the
first part of the training set.

From this last item, our learning task for finite G is often referred to as model
selection aggregation. It has two well-known variants. Instead of looking for a
function predicting as well as the best in G, these variants want to perform as
well as the best convex combination of functions in G or as well as the best linear
combination of functions in G. These three aggregation tasks are linked in several
ways (see [45] and references within).

Nevertheless, among these learning tasks, model selection aggregation has rare
properties. First, in general an algorithm picking functions in the set G is not opti-
mal (see, e.g., [9], Theorem 2, [40], Theorem 3, [21], page 14).

This means that the estimator has to look at an enlarged set of prediction func-
tions. Second, in the statistical community, the only known optimal algorithms are
all based on a Cesaro mean of Bayesian estimators (also referred to as progres-
sive mixture rule). Third, the proof of their optimality is not achieved by the most
prominent tool in statistical learning theory: bounds on the supremum of empirical
processes (see [48], and refined works as [13, 17, 37, 42] and references within).

The idea of the proof, which comes back to Barron [11], is based on a chain rule
and appeared to be successful for least square and entropy losses [12, 19–21, 53]
and for general loss in [34].

In the online prediction with expert advice setting, without any probabilistic
assumption on the generation of the data, appropriate weighting methods have
been shown to behave as well as the best expert up to a minimax-optimal additive
remainder term (see [26, 43] and references within). In this worst-case context,
amazingly sharp constants have been found (see in particular [24, 25, 33, 54]).
These results are expressed in cumulative loss and can be transposed to model se-
lection aggregation to the extent that the expected risk of the randomized procedure
based on sequential predictions is proportional to the expectation of the cumulative
loss of the sequential procedure (see Lemma 4.3 for precise statement).

This work presents a sequential algorithm, which iteratively updates a prior dis-
tribution put on the set of prediction functions. Contrary to previously mentioned
works, these updates take into account the variance of the task. As a consequence,
posterior distributions concentrate on simultaneously low risk functions and func-
tions close to the previously drawn prediction function. This conservative law is
not surprising in view of previous works on high-dimensional statistical tasks, such
as wavelet thresholding, shrinkage procedures, iterative compression schemes [5]
and iterative feature selection [1].

The paper is organized as follows. Section 2 introduces the notation and the
existing algorithms. Section 3 proposes a unifying setting to combine worst-case
analysis tight results and probabilistic tools. It details our sequentially random-
ized estimator and gives a sharp expected risk bound. In Sections 4 and 5, we
show how to apply our main result under assumptions coming respectively from
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sequential prediction and model selection aggregation. While all this work concen-
trates on stating results when the data are independent and identically distributed,
Section 4.2 shows that the argument underlying the main theorem can be applied
for sequential predictions in which no probabilistic assumption is made and in
which the data points come one by one (i.e., not in a batch manner). Section 6
contains algorithms that satisfy sharp standard-style generalization error bounds.
To the author’s knowledge, these bounds are not achievable with a classical sta-
tistical learning approach based on supremum of empirical processes. Here the
main trick is to use probabilistic inequalities w.r.t. appropriate distributions on the
prediction function space instead of using them w.r.t. the distribution generating
the data. Section 7 presents an improved bound for Lq -regression (q > 1) when
the noise has just a bounded moment of order s ≥ q . This last assumption is
much weaker than the traditional exponential moment assumption. Section 8 re-
fines Assouad’s lemma in order to obtain sharp constants and to take into account
the properties of the loss function of the learning task. We illustrate our results
by providing lower bounds matching the upper bounds obtained in the previous
sections and by improving significantly the constants in lower bounds concerning
Vapnik–Cervonenkis classes in classification. Section 9 summarizes the contribu-
tions of this work and lists some related open problems.

2. Notation and existing algorithms. We assume that we observe n pairs
Z1 = (X1, Y1), . . . ,Zn = (Xn,Yn) of input–output and that each pair has been
independently drawn from the same unknown distribution denoted P . The input
and output space are denoted respectively X and Y, so that P is a probability
distribution on the product space Z � X×Y. The target of a learning algorithm is
to predict the output Y associated with an input X for pairs (X,Y ) drawn from the
distribution P . In this work, Zn+1 will denote a random variable independent of
the training set Zn

1 � (Z1, . . . ,Zn) and with the same distribution P . The quality
of a prediction function g :X → Y is measured by the risk (also called expected
loss or regret):

R(g) � EZ∼P L(Z,g),

where L(Z,g) assesses the loss of considering the prediction function g on the
data Z ∈ Z. The symbol � is used to underline that the equality is a definition.
When there is no ambiguity on the distribution that a random variable has, the ex-
pectation w.r.t. this distribution will simply be written by indexing the expectation
sign E by the random variable. For instance, we can write R(g) � EZ L(Z,g).

More generally, when they are multiple sources of randomness, EZ means that we
take the expectation with respect to the conditional distribution of Z knowing all
other sources of randomness.

We use L(Z,g) rather than L[Y,g(X)] to underline that our results are not
restricted to nonregularized losses, where we call nonregularized loss a loss that
can be written as �[Y,g(X)] for some function � :Y × Y → R.
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For any i ∈ {0, . . . , n}, the cumulative loss suffered by the prediction function g

on the first i pairs of input–output, denoted Zi
1 for short, is

�i(g) �
i∑

j=1

L(Zj , g),

where by convention we take �0 identically equal to zero. The symbol ≡ is used
to underline when a function is identical to a constant (e.g., �0 ≡ 0). With slight
abuse, a symbol denoting a constant function may be used to denote the value of
this function.

We assume that the set, denoted Ḡ, of all prediction functions has been equipped
with a σ -algebra. Let D be the set of all probability distributions on Ḡ. By defin-
ition, a randomized algorithm produces a prediction function drawn according to
a probability in D . Let P be a set of probability distributions on Z in which we
assume that the true unknown distribution generating the data lies. The learning
task is essentially described by the 3-tuple (G,L,P ) since we look for a possibly
randomized estimator (or algorithm) ĝ such that

sup
P∈P

{
EZn

1
R(ĝZn

1
) − min

g∈G
R(g)

}

is minimized, where we recall that R(g) � EZ∼P L(Z,g). To shorten notation,
when no confusion can arise, the dependence of ĝZn

1
w.r.t. the training sample Zn

1
will be dropped and we will simply write ĝ. This means that we use the same sym-
bol for both the algorithm and the prediction function produced by the algorithm
on a training sample.

We implicitly assume that the quantities we manipulate are measurable; in par-
ticular, we assume that a prediction function is a measurable function from X to Y,
the mapping (x, y, g) 	→ L[(x, y), g] is measurable, the estimators considered in
our lower bounds are measurable, . . . .

The n-fold product of a distribution μ, which is the distribution of a vector
consisting of n i.i.d. realizations of μ, is denoted μ⊗n. For instance, the distribution
of (Z1, . . . ,Zn) is P ⊗n.

The symbol C will denote some positive constant whose value may differ from
line to line. The set of nonnegative real numbers is denoted R+ = [0;+∞[. We
define �x� as the largest integer k such that k ≤ x. To shorten notation, any finite
sequence a1, . . . , an will occasionally be denoted an

1 . For instance, the training set
is Zn

1 .
To handle possibly continuous set G, we consider that G is a measurable space

and that we have some prior distribution π on it. The set of probability distribu-
tions on G will be denoted M. The Kullback–Leibler divergence between a distri-
bution ρ ∈ M and the prior distribution π is

K(ρ,π) �

⎧⎨
⎩Eg∼ρ log

(
ρ

π
(g)

)
, if ρ 
 π ,

+∞, otherwise,
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where ρ
π

denotes the density of ρ w.r.t. π when it exists (i.e., ρ 
 π ). For any
ρ ∈ M, we have K(ρ,π) ≥ 0 and when π is the uniform distribution on a finite
set G, we also have K(ρ,π) ≤ log |G|. The Kullback–Leibler divergence satis-
fies the duality formula (see, e.g., [22], page 160): for any real-valued measurable
function h defined on G,

inf
ρ∈M

{Eg∼ρh(g) + K(ρ,π)} = − log Eg∼πe−h(g),(2.1)

and that the infimum is reached for the Gibbs distribution

π−h(dg) � e−h(g)

Eg′∼πe−h(g′) · π(dg).(2.2)

Intuitively, the Gibbs distribution π−h concentrates on prediction functions g that
are close to minimizing the function h :G → R.

For any ρ ∈ M, Eg∼ρg :x 	→ Eg∼ρg(x) = ∫
g(x)ρ (dg) is called a mixture of

prediction functions. When G is finite, a mixture is simply a convex combination.
Throughout this work, whenever we consider mixtures of prediction functions, we
implicitly assume that Eg∼ρg(x) belongs to Y for any x so that the mixture is a
prediction function. This is typically the case when Y is an interval of R.

We will say that the loss function is convex when the function g 	→ L(z, g) is
convex for any z ∈ Z, equivalently L(z,Eg∼ρg) ≤ Eg∼ρL(z, g) for any ρ ∈ M
and z ∈ Z. In this work, we do not assume the loss function to be convex except
when it is explicitly mentioned.

The algorithm used to prove optimal convergence rates for several different
losses (see, e.g., [12, 16, 19–21, 34, 53]) is the following:

ALGORITHM A. Let λ > 0. Predict according to 1
n+1

∑n
i=0 Eg∼π−λ�i

g, where
we recall that �i maps a function g ∈ G to its cumulative loss up to time i.

In other words, for a new input x, the prediction of the output given by Al-
gorithm A is 1

n+1
∑n

i=0
∫

g(x)e−λ�i(g)π(dg)/
∫

e−λ�i(g)π(dg). Algorithm A has
also been used with the classification loss. For this nonconvex loss, it has the same
properties as the empirical risk minimizer on G [38, 39]. To give the optimal con-
vergence rate, the parameter λ and the distribution π should be appropriately cho-
sen. When G is finite, the estimator belongs to the convex hull of the set G.

From Vovk, Haussler, Kivinen and Warmuth works [33, 51, 52] and the link
between cumulative loss in online setting and expected risk in the batch setting
(see Lemma 4.3), an “optimal” algorithm is:

ALGORITHM B. Let λ > 0. For any i ∈ {0, . . . , n}, let ĥi be a prediction func-
tion such that

∀ z ∈ Z L(z, ĥi) ≤ −1

λ
log Eg∼π−λ�i

e−λL(z,g).



1596 J.-Y. AUDIBERT

If one of the ĥi does not exist, the algorithm is said to fail. Otherwise it predicts
according to 1

n+1
∑n

i=0 ĥi .

In particular, for appropriate λ > 0, this algorithm does not fail when the loss
function is the square loss (i.e., L(z, g) = [y − g(x)]2) and when the output space
is bounded. Algorithm B is based on the same Gibbs distribution π−λ�i

as Al-
gorithm A. Besides, in [33], Example 3.13, it is shown that Algorithm A is not
in general a particular case of Algorithm B, and that Algorithm B will not gener-
ally produce a prediction function in the convex hull of G, unlike Algorithm A. In
Sections 4 and 5, we will see how both algorithms are connected to the SeqRand
algorithm presented in the next section.

3. The algorithm and its generalization error bound. The aim of this sec-
tion is to build an algorithm with the best possible minimax convergence rate.
The algorithm relies on the following central condition for which we recall that G
is a subset of the set Ḡ of all prediction functions and that M and D are the sets of
all probability distributions on respectively G and Ḡ.

For any λ > 0, let δλ be a real-valued function defined on Z×G× Ḡ that satisfies
the following inequality, which will be referred to as the variance inequality:

∀ρ ∈ M ∃π̂(ρ) ∈ D

sup
P∈P

{
EZ∼P Eg′∼π̂(ρ) log Eg∼ρeλ[L(Z,g′)−L(Z,g)−δλ(Z,g,g′)]} ≤ 0.

The variance inequality is our probabilistic version of the generic algorithm
condition in the online prediction setting (see [51], proof of Theorem 1, or more
explicitly in [33], page 11), in which we added the variance function δλ. Our results
will be all the sharper as this variance function is small. To make the variance
inequality more readable, let us say for the moment that:

• Without any assumption on P , for several usual “strongly” convex loss func-
tions, we may take δλ ≡ 0 provided that λ is a small enough constant (see Sec-
tion 4).

• The variance inequality can be seen as a “small expectation” inequality.
The usual viewpoint is to control the quantity L(Z,g) by its expectation w.r.t.
Z and a variance term. Here, roughly, L(Z,g) is mainly controlled by L(Z,g′),
where g′ is appropriately chosen through the choice of π̂(ρ), plus the additive
term δλ. By definition this additive term does not depend on the particular prob-
ability distribution generating the data and leads to empirical compensation.

• In the examples we will be interested in throughout this work, π̂(ρ) will be equal
either to ρ or to a Dirac distribution on some function, which is not necessarily
in G.

• For any loss function L, any set P and any λ > 0, one may choose δλ(Z,g, g′) =
λ
2 [L(Z,g) − L(Z,g′)]2 (see Section 6).
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Input: λ > 0 and π a distribution on the set G.
1. Define ρ̂0 � π̂(π) in the sense of the variance inequality and draw a function

ĝ0 according to this distribution. Let S0(g) = 0 for any g ∈ G.
2. For any i ∈ {1, . . . , n}, iteratively define

Si(g) � Si−1(g) + L(Zi, g) + δλ(Zi, g, ĝi−1) for any g ∈ G.(3.1)

and

ρ̂i � π̂(π−λSi
) in the sense of the variance inequality

and draw a function ĝi according to the distribution ρ̂i .
3. Predict with a function drawn according to the uniform distribution on the finite

set {ĝ0, . . . , ĝn}.
Conditionally to the training set, the distribution of the output prediction

function will be denoted μ̂.

FIG. 1. The SeqRand algorithm.

Our results concern the sequentially randomized algorithm described in Fig-
ure 1, which for sake of shortness we will call the SeqRand algorithm.

REMARK 3.1. When δλ(Z,g, g′) does not depend on g, we recover a more
standard-style algorithm to the extent that we then have π−λSi

= π−λ�i
. Precisely

our algorithm becomes the randomized version of Algorithm A. When δλ(Z,g, g′)
depends on g, the posterior distributions tend to concentrate on functions hav-
ing small risk and small variance term. In Section 6, we will take δλ(Z,g, g′) =
λ
2 [L(Z,g) − L(Z,g′)]2. This choice implies a conservative mechanism: roughly,
with high probability, among functions having low cumulative risk �i , ĝi will be
chosen close to ĝi−1.

For any i ∈ {0, . . . , n}, the quantities Si , ρ̂i and ĝi depend on the training data
only through Zi

1, where we recall that Zi
1 denotes (Z1, . . . ,Zi). Besides they

are also random to the extent that they depend on the draws of the functions
ĝ0, . . . , ĝi−1.

The SeqRand algorithm produces a prediction function, which has three causes
of randomness: the training data, the way ĝi is obtained (step 2) and the uniform
draw (step 3). For fixed Zi

1 (i.e., conditional to Zi
1), let 	i denote the joint distrib-

ution of ĝi
0 = (ĝ0, . . . , ĝi). The randomizing distribution μ̂ of the output prediction

function by SeqRand is the distribution on Ḡ corresponding to the last two causes
of randomness. From the previous definitions, for any function h : Ḡ → R, we have
Eg∼μ̂h(g) = Eĝn

0 ∼	n

1
n+1

∑n
i=0 h(ĝi). Our main upper bound controls the expected

risk EZn
1
Eg∼μ̂R(g) of the SeqRand procedure.
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THEOREM 3.1. Let 
λ(g, g′) � EZ∼P δλ(Z,g, g′) for g ∈ G and g′ ∈ Ḡ,
where we recall that δλ is a function satisfying the variance inequality. The ex-
pected risk of the SeqRand algorithm satisfies

EZn
1
Eg′∼μ̂R(g′)

(3.2)

≤ min
ρ∈M

{
Eg∼ρR(g) + Eg∼ρEZn

1
Eg′∼μ̂
λ(g, g′) + K(ρ,π)

λ(n + 1)

}
.

In particular, when G is finite and when the loss function L and the set P are such
that δλ ≡ 0, by taking π uniform on G, we get

EZn
1
Eg∼μ̂R(g) ≤ min

G
R + log |G|

λ(n + 1)
.(3.3)

PROOF. Let E denote the expected risk of the SeqRand algorithm:

E � EZn
1
Eg∼μ̂R(g) = 1

n + 1

n∑
i=0

EZi
1
Eĝi

0∼	i
R(ĝi).

We recall that Zn+1 is a random variable independent of the training set Zn
1 and

with the same distribution P . Let Sn+1 be defined by (3.1) for i = n+1. To shorten
formulae, let π̂i � π−λSi

so that by definition we have ρ̂i = π̂(π̂i). The variance
inequality implies that

Eg′∼π̂(ρ)R(g′) ≤ −1

λ
EZEg′∼π̂(ρ) log Eg∼ρe−λ[L(Z,g)+δλ(Z,g,g′)].

So for any i ∈ {0, . . . , n}, for fixed ĝi−1
0 = (ĝ0, . . . , ĝi−1) and fixed Zi

1, we have

Eg′∼ρ̂i
R(g′) ≤ −1

λ
EZi+1Eg′∼ρ̂i

log Eg∼π̂i
e−λ[L(Zi+1,g)+δλ(Zi+1,g,g′)].

Taking the expectations w.r.t. (Zi
1, ĝ

i−1
0 ), we get

EZi
1
Eĝi

0
R(ĝi) = EZi

1
E

ĝi−1
0

Eg′∼ρ̂i
R(g′)

≤ −1

λ
E

Zi+1
1

Eĝi
0

log Eg∼π̂i
e−λ[L(Zi+1,g)+δλ(Zi+1,g,ĝi )].

Consequently, by the chain rule (i.e., cancellation in the sum of logarithmic terms;
[11]) and by intensive use of Fubini’s theorem, we get

E = 1

n + 1

n∑
i=0

EZi
1
Eĝi

0
R(ĝi)

≤ − 1

λ(n + 1)

n∑
i=0

E
Zi+1

1
Eĝi

0
log Eg∼π̂i

e−λ[L(Zi+1,g)+δλ(Zi+1,g,ĝi )]
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= − 1

λ(n + 1)
E

Zn+1
1

Eĝn
0

n∑
i=0

log Eg∼π̂i
e−λ[L(Zi+1,g)+δλ(Zi+1,g,ĝi )]

= − 1

λ(n + 1)
E

Zn+1
1

Eĝn
0

n∑
i=0

log
(

Eg∼πe−λSi+1(g)

Eg∼πe−λSi(g)

)

= − 1

λ(n + 1)
E

Zn+1
1

Eĝn
0

log
(

Eg∼πe−λSn+1(g)

Eg∼πe−λS0(g)

)

= − 1

λ(n + 1)
E

Zn+1
1

Eĝn
0

log Eg∼πe−λSn+1(g).

Now from the following lemma, we obtain

E ≤ − 1

λ(n + 1)
log Eg∼πe

−λE
Z

n+1
1

Eĝn
0
Sn+1(g)

= − 1

λ(n + 1)
log Eg∼πe

−λ[(n+1)R(g)+EZn
1
Eĝn

0

∑n
i=0 
λ(g,ĝi )]

= min
ρ∈M

{
Eg∼ρR(g) + Eg∼ρEZn

1
Eĝn

0

∑n
i=0 
λ(g, ĝi)

n + 1
+ K(ρ,π)

λ(n + 1)

}
.

LEMMA 3.2. Let W be a real-valued measurable function defined on a prod-
uct space A1 × A2 and let μ1 and μ2 be probability distributions on respectively
A1 and A2 such that Ea1∼μ1 log Ea2∼μ2e

−W(a1,a2) < +∞. We have

−Ea1∼μ1 log Ea2∼μ2e
−W(a1,a2) ≤ − log Ea2∼μ2e

−Ea1∼μ1W(a1,a2).

PROOF. By using twice (2.1) and Fubini’s theorem, we have

−Ea1 log Ea2∼μ2e
−W(a1,a2) = Ea1 inf

ρ
{Ea2∼ρW(a1, a2) + K(ρ,μ2)}

≤ inf
ρ

Ea1{Ea2∼ρW(a1, a2) + K(ρ,μ2)}

= − log Ea2∼μ2e
−Ea1W(a1,a2). �

Inequality (3.3) is a direct consequence of (3.2). �

Theorem 3.1 bounds the expected risk of a randomized procedure, where the
expectation is taken w.r.t. both the training set distribution and the randomizing
distribution. From the following lemma, for convex loss functions, (3.3) implies

EZn
1
R(Eg∼μ̂g) ≤ min

G
R + log |G|

λ(n + 1)
,(3.4)

where we recall that μ̂ is the randomizing distribution of the SeqRand algorithm
and λ is a parameter whose typical value is the largest λ > 0 such that δλ ≡ 0.
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LEMMA 3.3. For convex loss functions, the doubly expected risk of a random-
ized algorithm is greater than the expected risk of the deterministic version of the
randomized algorithm; that is, if ρ̂ denotes the randomizing distribution, we have

EZn
1
R(Eg∼ρ̂g) ≤ EZn

1
Eg∼ρ̂R(g).

PROOF. The result is a direct consequence of Jensen’s inequality. �

In [24], the authors rely on worst-case analysis to recover standard-style statis-
tical results such as Vapnik’s bounds [49]. Theorem 3.1 can be seen as a comple-
ment to this pioneering work. Inequality (3.4) is the model selection bound that is
well known for least square regression and entropy loss, and that has been recently
proved for general losses in [34].

Let us discuss the generalized form of the result. The right-hand side (r.h.s.) of
(3.2) is a classical regularized risk, which appears naturally in the PAC-Bayesian
approach (see, e.g., [7, 22, 56]). An advantage of stating the result this way is to
be able to deal with uncountable infinite G. Even when G is countable, this formu-
lation has some benefit to the extent that for any measurable function h :G → R,
minρ∈M{Eg∼ρh(g) + K(ρ,π)} ≤ ming∈G{h(g) + logπ−1(g)}.

Our generalization error bounds depend on two quantities λ and π which are
the parameters of our algorithm. Their choice depends on the precise setting. Nev-
ertheless, when G is finite and with no particular structure a priori, a natural choice
for π is the uniform distribution on G.

Once the distribution π is fixed, an appropriate choice for the parameter λ is the
minimizer of the r.h.s. of (3.2). This minimizer is unknown by the statistician, and
it is an open problem to adaptively choose λ close to it.

4. Link with sequential prediction. This section aims at providing examples
for which the variance inequality holds, at stating results coming from the online
learning community in our batch setting (Section 4.1) and at providing new results
for the sequential prediction setting in which no probabilistic assumption is made
on the way the data are generated (Section 4.2).

4.1. From online to batch. In [33, 51, 52], the loss function is assumed to
satisfy: there are positive numbers η and c such that

∀ρ ∈ M, ∃gρ :X → Y, ∀x ∈ X, ∀y ∈ Y
(4.1)

L[(x, y), gρ] ≤ − c

η
log Eg∼ρe−ηL[(x,y),g].

REMARK 4.1. If g 	→ e−ηL(z,g) is concave, then (4.1) holds for c = 1 (and
one may take gρ = Eg∼ρg).
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Assumption (4.1) implies that the variance inequality is satisfied both for
λ = η and δλ(Z,g, g′) = (1 − 1/c)L(Z,g′) and for λ = η/c and δλ(Z,g, g′) =
(c−1)L(Z,g), and we may take in both cases π̂(ρ) as the Dirac distribution at gρ .
This leads to the same procedure that is described in the following straightforward
corollary of Theorem 3.1.

COROLLARY 4.1. Let gπ−η�i
be defined in the sense of (4.1) (for ρ = π−η�i

).
Consider the algorithm which predicts by drawing a function in {gπ−η�0

, . . . ,

gπ−η�n
} according to the uniform distribution. Under assumption (4.1), its ex-

pected risk EZn
1

1
n+1

∑n
i=0 R(gπ−η�i

) is upper bounded by

c min
ρ∈M

{
Eg∼ρR(g) + K(ρ,π)

η(n + 1)

}
.(4.2)

This result is not surprising in view of the following two results. The first one
comes from worst-case analysis in sequential prediction.

THEOREM 4.2 ([33], Theorem 3.8). Let G be countable. For any g ∈ G, let
�i(g) = ∑i

j=1 L(Zj , g) (still) denote the cumulative loss up to time i of the expert
which always predicts according to function g. Under assumption (4.1), the cumu-
lative loss on Zn

1 of the strategy in which the prediction at time i is done according
to gπ−η�i−1

in the sense of (4.1) (for ρ = π−η�i−1 ) is bounded by

inf
g∈G

{
c�n(g) + c

η
logπ−1(g)

}
.(4.3)

The second result shows how the previous bound can be transposed into our
model selection context by the following lemma.

LEMMA 4.3. Let A be a learning algorithm which produces the prediction
function A(Zi

1) at time i + 1, that is, from the data Zi
1 = (Z1, . . . ,Zi). Let L be

the randomized algorithm which produces a prediction function L(Zn
1 ) drawn ac-

cording to the uniform distribution on {A(∅),A(Z1), . . . ,A(Zn
1 )}. The (doubly)

expected risk of L is equal to 1
n+1 times the expectation of the cumulative loss of A

on the sequence Z1, . . . ,Zn+1.

PROOF. By Fubini’s theorem, we have

ER[L(Zn
1 )] = 1

n + 1

n∑
i=0

EZn
1
R[A(Zi

1)]

= 1

n + 1

n∑
i=0

E
Zi+1

1
L[Zi+1,A(Zi

1)]

= 1

n + 1
E

Zn+1
1

n∑
i=0

L[Zi+1,A(Zi
1)]. �
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TABLE 1
Value of c(η) for different loss functions

Output space Loss L(Z, g) c(η)

Entropy loss Y = [0;1] Y log( Y
g(X)

) c(η) = 1 if η ≤ 1

[33], Example 4.3 +(1 − Y ) log( 1−Y
1−g(X)

) c(η) = ∞ if η > 1

Absolute loss game Y = [0;1] |Y − g(X)| η
2 log[2/(1+e−η)]

[33], Section 4.2 = 1 + η/4 + o(η)

Square loss Y = [−B,B] [Y − g(X)]2 c(η) = 1 if η ≤ 1/(2B2)

[33], Example 4.4 c(η) = +∞ if η > 1/(2B2)

Lq -loss Y = [−B,B] |Y − g(X)|q c(η) = 1

(see Theorem 4.4) q > 1 if η ≤ q−1
qBq (1 ∧ 22−q)

Here B denotes a positive real.

For any η > 0, let c(η) denote the infimum of the c for which (4.1) holds. Under
weak assumptions, Vovk [52] proved that the infimum exists and studied the behav-
ior of c(η) and a(η) = c(η)/η, which are key quantities of (4.2) and (4.3). Under
weak assumptions, and in particular in the examples given in Table 1, the opti-
mal constants in (4.3) are c(η) and a(η) ([52], Theorem 1) and we have c(η) ≥ 1,
η 	→ c(η) nondecreasing and η 	→ a(η) nonincreasing. From these last properties,
we understand the trade-off which occurs to choose the optimal η.

Table 1 specifies (4.2) in different well-known learning tasks. For instance, for
bounded least square regression (i.e., when |Y | ≤ B for some B > 0), the gener-
alization error of the algorithm described in Corollary 4.1 when η = 1/(2B2) is
upper bounded by

min
ρ∈M

{
Eg∼ρR(g) + 2B2 K(ρ,π)

n + 1

}
.(4.4)

The constant appearing in front of the Kullback–Leibler divergence is much
smaller than the ones obtained in unbounded regression setting even with Gaussian
noise and bounded regression function (see [19, 34] and [22], page 87). The dif-
ferences between these results partly come from the absence of boundedness as-
sumptions on the output and from the weighted average used in the aforementioned
works. Indeed the weighted average prediction function, that is, Eg∼ρg, does not
satisfy (4.1) for c = 1 and η = 1/(2B2) as was pointed out in [33], Example 3.13.
Nevertheless, it satisfies (4.1) for c = 1 and η ≤ 1/(8B2) (by using the concav-
ity of x 	→ e−x2

on [−1/
√

2;1/
√

2] and Remark 4.1), which leads to similar but
weaker bound [see (4.2)].

Case of the Lq -losses. To deal with these losses, we need the following slight
generalization of the result given in Appendix A of [35].
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THEOREM 4.4. Let Y = [a;b]. We consider a nonregularized loss function,
that is, a loss function such that L(Z,g) = �[Y,g(X)] for any Z = (X,Y ) ∈ Z and
some function � :Y×Y → R. For any y ∈ Y, let �y be the function [y′ 	→ �(y, y′)].
If for any y ∈ Y:

• �y is continuous on Y,
• �y decreases on [a;y], increases on [y;b] and �y(y) = 0,
• �y is twice differentiable on the open set (a;y) ∪ (y;b),

then (4.1) is satisfied for c = 1 and

η ≤ inf
a≤y1<y<y2≤b

�′
y1

(y)�′′
y2

(y) − �′′
y1

(y)�′
y2

(y)

�′
y1

(y)[�′
y2

(y)]2 − [�′
y1

(y)]2�′
y2

(y)
,(4.5)

where the infimum is taken w.r.t. y1, y and y2.

PROOF. See Section 10.1. �

REMARK 4.2. This result simplifies the original one to the extent that �y does
not need to be twice differentiable at point y and the range of values for y in the
infimum is (y1;y2) instead of (a;b).

COROLLARY 4.5. For the Lq -loss, when Y = [−B;B] for some B > 0, con-
dition (4.1) is satisfied for c = 1 and

η ≤ q − 1

qBq
(1 ∧ 22−q).

PROOF. We apply Theorem 4.4. By simple computations, the r.h.s. of (4.5) is

inf−B≤y1<y<y2≤B

(q − 1)(y2 − y1)

q(y − y1)(y2 − y)[(y − y1)q−1 + (y2 − y)q−1]
= q − 1

q(2B)q
inf

0<t<1

1

t (1 − t)[tq−1 + (1 − t)q−1] .
For 1 < q ≤ 2, the infimum is reached for t = 1/2 and (4.5) can be written as
η ≤ q−1

qBq . For q ≥ 2, since the previous infimum is larger than inf0<t<1
1

t (1−t)
= 4,

(4.5) is satisfied at least when η ≤ 4(q−1)
q(2B)q

. �

4.2. Sequential prediction. First note that using Corollary 4.5 and Theo-
rem 4.2, we obtain a new result concerning sequential prediction for Lq -loss. Nev-
ertheless this result is not due to our approach but to a refinement of the argument
in [35], Appendix A. In this section, we will rather concentrate on giving results
for sequential prediction coming from the arguments underlying Theorem 3.1.

In the online setting, the data points come one by one and there is no probabilis-
tic assumption on the way they are generated. In this case, one should modify the
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Input: λ > 0 and π a distribution on the set G.
1. Define ρ̂0 � π̂(π) in the sense of the online variance inequality and draw a

function ĝ0 according to this distribution. For data Z1, predict according to ĝ0.
Let S0(g) = 0 for any g ∈ G.

2. For any i ∈ {1, . . . , n − 1}, define

Si(g) � Si−1(g) + L(Zi, g) + δλ(Zi, g, ĝi−1) for any g ∈ G,

and

ρ̂i � π̂(π−λSi
) in the sense of the online variance inequality

and draw a function ĝi according to the distribution ρ̂i . For data Zi+1, predict
according to ĝi .

FIG. 2. The online SeqRand algorithm.

definition of the variance function into: for any λ > 0, let δλ be a real-valued func-
tion defined on Z × G × Ḡ that satisfies the following online variance inequality:

∀ρ ∈ M, ∃π̂(ρ) ∈ D, ∀z ∈ Z

Eg′∼π̂(ρ) log Eg∼ρeλ[L(z,g′)−L(z,g)−δλ(z,g,g′)] ≤ 0.

The only difference with the variance inequality defined in Section 3 is the removal
of the expectation with respect to Z. Naturally if δλ satisfies the online variance
inequality, then it satisfies the variance inequality. The online version of the Se-
qRand algorithm is described in Figure 2. It satisfies the following theorem whose
proof follows the same line as the one of Theorem 3.1.

THEOREM 4.6. The cumulative loss of the online SeqRand algorithm satisfies
n∑

i=1

Eĝi−1L(Zi, ĝi−1)

≤ min
ρ∈M

{
Eg∼ρ

n∑
i=1

L(Zi, g) + Eg∼ρE
ĝn−1

0

n∑
i=1

δλ(Zi, g, ĝi−1) + K(ρ,π)

λ

}
.

In particular, when G is finite, by taking π uniform on G, we get
n∑

i=1

Eĝi−1L(Zi, ĝi−1)

≤ min
g∈G

{
n∑

i=1

L(Zi, g) + E
ĝn−1

0

n∑
i=1

δλ(Zi, g, ĝi−1) + log |G|
λ

}
.
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Up to the online variance function δλ, the online variance inequality is the
generic algorithm condition of [33], page 11. So cases where δλ are equal to
zero are already known. Now new results can be obtained by using that for any
loss function L and any λ > 0, the online variance inequality is satisfied for
δλ(Z,g, g′) = λ

2 [L(Z,g)−L(Z,g′)]2 (proof in Section 10.2). The associated dis-
tribution π̂(ρ) is then just ρ. In spirit, the result associated with these choices is
similar to the ones obtained in [27], Section 4, to the extent that it gives a bound
with second-order terms. Nevertheless, we do not know how to properly choose
the parameter λ whereas the aforementioned work solves this problem. More dis-
cussion on this topic can be found in [8], Section 4.2.

5. Model selection aggregation under Juditsky, Rigollet and Tsybakov as-
sumptions [34]. The main result of [34] relies on the following assumption on
the loss function L and the set P of probability distributions on Z in which we
assume that the true distribution lies. There exist λ > 0 and a real-valued function
ψ defined on G × G such that for any P ∈ P⎧⎨

⎩
EZ∼P eλ[L(Z,g′)−L(Z,g)] ≤ ψ(g′, g), for anyg,g′ ∈ G,

ψ(g, g) = 1, for anyg ∈ G,

the function [g 	→ ψ(g′, g)] is concave for any g′ ∈ G.

(5.1)

Theorem 3.1 gives the following result.

COROLLARY 5.1. Consider the algorithm which draws uniformly its predic-
tion function in the set {Eg∼π−λ�0

g, . . . ,Eg∼π−λ�n
g}. Under assumption (5.1), its

expected risk EZn
1

1
n+1

∑n
i=0 R(Eg∼π−λ�i

g) is upper bounded by

min
ρ∈M

{
Eg∼ρR(g) + K(ρ,π)

λ(n + 1)

}
.(5.2)

PROOF. We start by proving that the variance inequality holds with δλ ≡ 0,
and that we may take π̂(ρ) as the Dirac distribution at the function Eg∼ρg. By
using Jensen’s inequality and Fubini’s theorem, assumption (5.1) implies that

Eg′∼π̂(ρ)EZ∼P log Eg∼ρeλ[L(Z,g′)−L(Z,g)]

= EZ∼P log Eg∼ρe
λ[L(Z,Eg′∼ρg′)−L(Z,g)]

≤ log Eg∼ρEZ∼P e
λ[L(Z,Eg′∼ρg′)−L(Z,g)]

≤ log Eg∼ρψ(Eg′∼ρg′, g)

≤ logψ(Eg′∼ρg′,Eg∼ρg)

= 0,

so that we can apply Theorem 3.1. It remains to note that in this context the Se-
qRand algorithm is the one described in the corollary. �
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In this context, the SeqRand algorithm reduces to the randomized version of
Algorithm A. From Lemma 3.3, for convex loss functions, (5.2) also holds for the
risk of Algorithm A. Corollary 5.1 also shows that the risk bounds for Algorithm A
proved in [34], Theorem 3.2, and the examples of [34], Section 4.2, hold with the
same constants for the SeqRand algorithm (provided that the expected risk w.r.t.
the training set distribution is replaced by the expected risk w.r.t. both training set
and randomizing distributions).

On assumption (5.1) we should say that it does not a priori require the function
L to be convex. Nevertheless, any known relevant examples deal with “strongly”
convex loss functions and we know that in general the assumption will not hold
for the Support Vector Machine (or hinge loss) function and for the absolute loss
function. Indeed, without further assumption, one cannot expect rates better than
1/

√
n for these loss functions (see Section 8.3).

By taking the appropriate variance function δλ(Z,g, g′), it is possible to prove
that the results in [34], Theorem 3.1, and [34], Section 4.1, hold for the SeqRand
algorithm (provided that the expected risk w.r.t. the training set distribution is re-
placed by the expected risk w.r.t. both training set and randomizing distributions).
The choice of δλ(Z,g, g′), which for sake of shortness we do not specify, is in
fact such that the resulting SeqRand algorithm is again the randomized version of
Algorithm A.

6. Standard-style statistical bounds. This section proposes new results of
a different kind. In the previous sections, under convexity assumptions, we were
able to achieve fast rates. Here we have assumption neither on the loss function
nor on the probability generating the data. Nevertheless we show that the SeqRand
algorithm applied for δλ(Z,g, g′) = λ[L(Z,g) − L(Z,g′)]2/2 satisfies a sharp
standard-style statistical bound.

This section contains two parts: the first one provides results in expectation (as
in the preceding sections) whereas the second part provides deviation inequalities
on the risk that require advances on the sequential prediction analysis.

6.1. Bounds on the expected risk.

6.1.1. Bernstein’s type bound.

THEOREM 6.1. Let V (g,g′) = EZ{[L(Z,g) − L(Z,g′)]2}. Consider the
SeqRand algorithm applied with δλ(Z,g, g′) = λ[L(Z,g) − L(Z,g′)]2/2 and
π̂(ρ) = ρ. Its expected risk EZn

1
Eg∼μ̂R(g), where we recall that μ̂ denotes the

randomizing distribution, satisfies

EZn
1
Eg′∼μ̂R(g′)

(6.1)

≤ min
ρ∈M

{
Eg∼ρR(g) + λ

2
Eg∼ρEZn

1
Eg′∼μ̂V (g, g′) + K(ρ,π)

λ(n + 1)

}
.
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PROOF. See Section 10.2. �

To make (6.1) more explicit and to obtain a generalization error bound in which
the randomizing distribution does not appear in the r.h.s. of the bound, the fol-
lowing corollary considers a widely used assumption relating the variance term
to the excess risk (see Mammen and Tsybakov [41, 47], and also Polonik [44]).
Precisely, from Theorem 6.1, we obtain:

COROLLARY 6.2. If there exist 0 ≤ γ ≤ 1 and a prediction function g̃ (not
necessarily in G) such that V (g, g̃) ≤ c[R(g)−R(g̃)]γ for any g ∈ G, the expected
risk E = EZn

1
Eg∼μ̂R(g) of the SeqRand algorithm used in Theorem 6.1 satisfies:

• When γ = 1,

E − R(g̃) ≤ min
ρ∈M

{
1 + cλ

1 − cλ
[Eg∼ρR(g) − R(g̃)] + K(ρ,π)

(1 − cλ)λ(n + 1)

}
.

In particular, for G finite, π the uniform distribution, λ = 1/(2c), when g̃ be-
longs to G, we get E ≤ ming∈G R(g) + 4c log |G|

n+1 .

• When γ < 1, for any 0 < β < 1 and for R̃(g) � R(g) − R(g̃),

E − R(g̃) ≤
{

1

β
min
ρ∈M

(
Eg∼ρ[R̃(g) + cλR̃γ (g)] + K(ρ,π)

λ(n + 1)

)}

∨
(

cλ

1 − β

)1/(1−γ )

.

PROOF. See Section 10.3. �

To understand the sharpness of Theorem 6.1, we have to compare this result
with the following one that comes from the traditional (PAC-Bayesian) statistical
learning approach which relies on supremum of empirical processes. In the follow-
ing theorem, we consider the estimator minimizing the uniform bound, that is, the
estimator for which we have the smallest upper bound on its generalization error.

THEOREM 6.3. We still use V (g,g′) = EZ{[L(Z,g) − L(Z,g′)]2}. The gen-
eralization error of the algorithm which draws its prediction function according to
the Gibbs distribution π−λ�n satisfies

EZn
1
Eg′∼π−λ�n

R(g′)

≤ min
ρ∈M

{
Eg∼ρR(g) + K(ρ,π) + 1

λn
+ λEg∼ρEZn

1
Eg′∼π−λ�n

V (g, g′)(6.2)

+ λ
1

n

n∑
i=1

Eg∼ρEZn
1
Eg′∼π−λ�n

[L(Zi, g) − L(Zi, g
′)]2

}
.
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Let ϕ be the positive convex increasing function defined as ϕ(t) � et−1−t
t2 and

ϕ(0) = 1
2 by continuity. When supz∈Z,g∈G,g′∈G |L(z, g′) − L(z, g)| ≤ B , we also

have

EZn
1
Eg′∼π−λ�n

R(g′)

≤ min
ρ∈M

{
Eg∼ρR(g) + λϕ(λB)Eg∼ρEZn

1
Eg′∼π−λ�n

V (g, g′)(6.3)

+ K(ρ,π) + 1

λn

}
.

PROOF. See Section 10.4. �

As in Theorem 6.1, there is a variance term in which the randomizing distrib-
ution is involved. As in Corollary 6.2, one can convert (6.3) into a proper gener-
alization error bound, that is, a nontrivial bound EZn

1
Eg∼π−λ�n

R(g) ≤ B(n,π,λ)

where the training data do not appear in B(n,π,λ).
By comparing (6.3) and (6.1), we see that the classical approach requires the

quantity supg∈G,g′∈G|L(Z,g′) − L(Z,g)| to be uniformly bounded and the un-
pleasing function ϕ appears. In fact, using technical small expectations theorems
(see, e.g., [4], Lemma 7.1), exponential moments conditions on the above quantity
would be sufficient.

The symmetrization trick used to prove Theorem 6.1 is performed in the pre-
diction functions space. We do not call on the second virtual training set currently
used in statistical learning theory (see [49]). Nevertheless both symmetrization
tricks end up to the same nice property: we need no boundedness assumption on
the loss functions. In our setting, symmetrization on training data leads to an un-
wanted expectation and to a constant four times larger (see the two variance terms
of (6.2) and the discussion in [5], Section 8.3.3).

In particular, deducing from Theorem 6.3 a corollary similar to Corollary 6.2 is
only possible through (6.3) and provided that we have a boundedness assumption
on supz∈Z,g∈G,g′∈G |L(z, g′)−L(z, g)|. Indeed one cannot use (6.2) because of the
last variance term in (6.2) (since �n depends on Zi).

Our approach has nevertheless the following limit: the proof of Corollary 6.2
does not use a chaining argument. As a consequence, in the particular case when
the model has polynomial entropies (see, e.g., [41]) and when the assumption in
Corollary 6.2 holds for γ < 1 (and not for γ = 1), Corollary 6.2 does not give
the minimax optimal convergence rate. Combining the better variance control pre-
sented here with the chaining argument is an open problem.

6.1.2. Hoeffding’s type bound. Contrary to generalization error bounds com-
ing from Bernstein’s inequality, (6.1) does not require any boundedness assump-
tion. For bounded losses, without any variance assumption (i.e., roughly when
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the assumption used in Corollary 6.2 does not hold for γ > 0), tighter results are
obtained by using Hoeffding’s inequality, that is: for any random variable W sat-
isfying a ≤ W ≤ b, then for any λ > 0

Eeλ(W−EW) ≤ eλ2(b−a)2/8.

THEOREM 6.4. Assume that for any z ∈ Z and g ∈ G, we have a ≤ L(z, g) ≤
b for some reals a, b. Consider the SeqRand algorithm applied with δλ(Z,g, g′) =
λ(b − a)2/8 and π̂(ρ) = ρ. Its expected risk EZn

1
Eg∼μ̂R(g), where we recall that

μ̂ denotes the randomizing distribution, satisfies

EZn
1
Eg∼μ̂R(g) ≤ min

ρ∈M

{
Eg∼ρR(g) + λ(b − a)2

8
+ K(ρ,π)

λ(n + 1)

}
.(6.4)

In particular, when G is finite, by taking π uniform on G and λ =
√

8 log |G|
(b−a)2(n+1)

, we

get

EZn
1
Eg∼μ̂R(g) − min

g∈G
R(g) ≤ (b − a)

√
log |G|

2(n + 1)
.(6.5)

PROOF. From Hoeffding’s inequality, we have

Eg′∼π̂(ρ) log Eg∼ρeλ[L(Z,g′)−L(Z,g)] = log Eg∼ρe
λ[Eg′∼π̂(ρ)L(Z,g′)−L(Z,g)]

≤ λ2(b − a)2

8
,

hence the variance inequality holds for δλ ≡ λ(b−a)2/8 and π̂(ρ) = ρ. The result
directly follows from Theorem 3.1. �

The standard point of view (see Appendix A.2) applies Hoeffding’s inequality
to the random variable W = L(Z,g′) − L(Z,g) for g and g′ fixed and Z drawn
according to the probability generating the data. The previous theorem uses it on
the random variable W = L(Z,g′)− Eg∼ρL(Z,g) for fixed Z and fixed probabil-
ity distribution ρ but for g′ drawn according to ρ. Here the gain is a multiplicative
factor equal to 2 (see Appendix A.2).

6.2. Deviation inequalities. For the comparison between Theorem 6.1 and
Theorem 6.3 to be fair, one should add that (6.3) and (6.2) come from deviation
inequalities that are not exactly obtainable to the author’s knowledge with the ar-
guments developed here. Precisely, consider the following adaptation of Lemma 5
of [55].
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LEMMA 6.5. Let A be a learning algorithm which produces the prediction
function A(Zi

1) at time i + 1, that is, from the data Zi
1 = (Z1, . . . ,Zi). Let L

be the randomized algorithm which produces a prediction function L(Zn
1 ) drawn

according to the uniform distribution on {A(∅),A(Z1), . . . ,A(Zn
1 )}. Assume that

supz,g,g′ |L(z, g) − L(z, g′)| ≤ B for some B > 0. Conditionally to Z1, . . . ,Zn+1,

the expectation of the risk of L w.r.t. to the uniform draw is 1
n+1

∑n
i=0 R[A(Zi

1)]
and satisfies: for any η > 0 and ε > 0, for any reference prediction function g̃, with
probability at least 1 − ε w.r.t. the distribution of Z1, . . . ,Zn+1,

1

n + 1

n∑
i=0

R[A(Zi
1)] − R(g̃)

≤ 1

n + 1

n∑
i=0

{L[Zi+1,A(Zi
1)] − L(Zi+1, g̃)}(6.6)

+ ηϕ(ηB)
1

n + 1

n∑
i=0

V [A(Zi
1), g̃] + log(ε−1)

η(n + 1)
,

where we still use V (g,g′) = EZ{[L(Z,g) − L(Z,g′)]2} for any prediction func-
tions g and g′ and ϕ(t) � et−1−t

t2 for any t > 0.

PROOF. See Section 10.5. �

We see that two variance terms appear. The first one comes from the worst-case
analysis and is hidden in

∑n
i=0{L[Zi+1,A(Zi

1)]−L(Zi+1, g̃)} and the second one
comes from the concentration result (Lemma 10.1). The presence of this last vari-
ance term annihilates the benefits of our approach in which we were manipulating
variance terms much smaller than the traditional Bernstein’s variance term.

To illustrate this point, consider for instance least square regression with boun-
ded outputs: from Theorem 4.2 and Table 1, the hidden variance term is null. In
some situations, the second variance term 1

n+1
∑n

i=0 V [A(Zi
1), g̃] may behave like

a positive constant; for instance, this occurs when G contains two very different
functions having the optimal risk ming∈G R(g). By optimizing η, this will lead to a
deviation inequality of order n−1/2 even though from (4.4) the procedure has n−1-
convergence rate in expectation. In [9], Theorem 3, in a rather general learning
setting, this deviation inequality of order n−1/2 is proved to be optimal.

To conclude, for deviation inequalities, we cannot expect to do better than the
standard-style approach since at some point we use a Bernstein’s type bound w.r.t.
the distribution generating the data. Besides procedures based on worst-case analy-
sis seem to suffer higher fluctuations of the risk than necessary (see [9], discussion
of Theorem 3).
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REMARK 6.1. Lemma 6.5 should be compared with Lemma 4.3. The latter
deals with results in expectation while the former concerns deviation inequalities.
Note that Lemma 6.5 requires the loss function to be bounded and makes a variance
term appear.

7. Application to Lq -regression for unbounded outputs. In this section, we
consider the Lq -loss: L(Z,g) = |Y − g(X)|q . As a warm-up exercise, we tackle
the absolute loss setting (i.e., q = 1). The following corollary holds without any
assumption on the output (except naturally that if EZ|Y | < +∞ to ensure finite
risk).

COROLLARY 7.1. Let q = 1. Assume that supg∈G EZ g(X)2 ≤ b2 for some
b > 0. There exists an estimator ĝ such that

ER(ĝ) − min
g∈G

R(g) ≤ 2b

√
2 log |G|
n + 1

.(7.1)

PROOF. Using EZ{[|Y − g(X)| − |Y − g′(X)|]2} ≤ 4b2 and Theorem 6.1, the
algorithm considered in Theorem 6.1 satisfies ER(ĝ) − ming∈GR(g) ≤ 2λb2 +
log |G|
λ(n+1)

, which gives the desired result by taking λ =
√

log |G|
2b2(n+1)

. �

Now we deal with the strongly convex loss functions (i.e., q > 1). Using The-
orem 3.1 jointly with the symmetrization idea developed in the previous section
allows to obtain new convergence rates in heavy noise situation, that is, when the
output is not constrained to have a bounded exponential moment.

COROLLARY 7.2. Let q > 1. Assume that⎧⎪⎪⎨
⎪⎪⎩

sup
g∈G,x∈X

|g(x)| ≤ b, for some b > 0,

E|Y |s ≤ A, for some s ≥ q and A > 0,
G finite.

Let π be the uniform distribution on G, C1 > 0 and

λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1

(
log |G|

n

)(q−1)/s

, when q ≤ s < 2q − 2,

C1

(
log |G|

n

)q/(s+2)

, when s ≥ 2q − 2.

The expected risk of the algorithm which draws uniformly its prediction function
among Eg∼π−λ�0

g, . . . , Eg∼π−λ�n
g is upper bounded by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min
g∈G

R(g) + C

(
log |G|

n

)1−(q−1)/s

, when q ≤ s ≤ 2q − 2,

min
g∈G

R(g) + C

(
log |G|

n

)1−q/s+2

, when s ≥ 2q − 2,
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for a quantity C which depends only on C1, b, A, q and s.

PROOF. See Section 10.6. �

REMARK 7.1. In particular, for q = 2, with the minimal assumption EY 2 ≤ A

(i.e., s = 2), the convergence rate is of order n−1/2, and at the opposite, when s

goes to infinity, we recover the n−1 rate we have under exponential moment con-
dition on the output. Inequalities with precise constants for least square loss can
also be found in the technical report [8], Section 7. For q > 2, low convergence
rates (i.e., n−γ with γ < 1/2) appear when the moment assumption is weak:
E|Y |s ≤ A for some A > 0 and q ≤ s < 2q − 2. Convergence rates faster than the
standard nonparametric rates n−1/2 are achieved for s > 2q − 2. Fast convergence
rates systematically occur when 1 < q < 2 since for these values of q , we have
s ≥ q > 2q − 2. Surprisingly, for q = 1, the picture is completely different (see
Section 8.3.2 for discussion and minimax optimality of the results of this section).

REMARK 7.2. Corollary 7.2 assumes that the prediction functions in G are
uniformly bounded. It is an open problem to have the same kind of results under
weaker assumptions such as a finite moment condition similar to the one used in
Corollary 7.1.

8. Lower bounds. The simplest way to assess the quality of an algorithm and
of its expected risk upper bound is to prove a risk lower bound saying that no
algorithm has better convergence rate. This section provides this kind of assertion.
The lower bounds developed here have the same spirit as the ones in [3, 14, 18],
([31], Chapter 15) and ([6], Section 5) to the extent that it relies on the following
ideas:

• The supremum of a quantity Q(P ) when the distribution P belongs to some
set P is larger than the supremum over a well-chosen finite subset of P , and
consequently is larger than the mean of Q(P ) when the distribution P is drawn
uniformly in the finite subset.

• When the chosen subset is a hypercube of 2m distributions (see Section 8.1),
the design of a lower bound over the 2m distributions reduces to the design of a
lower bound over two distributions.

• When a data sequence Z1, . . . ,Zn has similar likelihoods according to two dif-
ferent probability distributions, then no estimator will be accurate for both dis-
tributions: the maximum over the two distributions of the risk of any estimator
trained on this sequence will be all the larger as the Bayes-optimal prediction
associated with the two distributions are “far away.”

We refer the reader to [15] and [46], Chapter 2, for lower bounds not particularly
based on finding the appropriate hypercube. Our analysis focuses on hypercubes
since in several settings they afford to obtain lower bounds with both the right
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convergence rate and close to optimal constants. Our contribution in this section
is:

• to provide results for general nonregularized loss functions (we recall that
nonregularized loss functions are loss functions which can be written as
L[(x, y), g] = �[y,g(x)] for some function � :Y × Y → R),

• to improve the upper bound on the variational distance appearing in Assouad’s
argument,

• to generalize the argument to asymmetrical hypercubes which, to our knowl-
edge, is the only way to find the lower bound matching the upper bound of
Corollary 7.2 for q ≤ s ≤ 2q − 2,

• to express the lower bounds in terms of similarity measures between two distri-
butions characterizing the hypercube,

• to obtain lower bounds matching the upper bounds obtained in the previous
sections.

REMARK 8.1. In [33], the optimality of the constant in front of the (log |G|)/n

has been proved by considering the situation when both |G| and n go to infinity.
Note that this worst-case analysis constant is not necessarily the same as our batch
setting constant. This section shows that the batch setting constant is not “far” from
the worst-case analysis constant.

Besides Lemma 4.3, which can be used to convert any worst-case analysis up-
per bounds into a risk upper bound in our batch setting, also means that any lower
bounds for our batch setting lead to a lower bound in the sequential prediction set-
ting (the converse is not true). Indeed the cumulative loss on the worst sequence of
data is bigger than the average cumulative loss when the data are taken i.i.d. from
some probability distribution. As a consequence, the bounds developed in this sec-
tion partially solve the open problem introduced in [33], Section 3.4, consisting in
developing tight nonasymptotical lower bounds. For least square loss and entropy
loss, our bounds are off by a multiplicative factor smaller than 4 (see Remarks 8.5
and 8.4).

This section is organized as follows. Section 8.1 defines the quantities that char-
acterize hypercubes of probability distributions and details the links between them.
It also introduces a similarity measure between probability distributions coming
from f -divergences (see [28]). We give our main lower bounds in Section 8.2.
These bounds are illustrated in Section 8.3.

8.1. Hypercube of probability distributions and f-similarities.

DEFINITION 8.1. Let m ∈ N∗. A hypercube of probability distributions is a
family of 2m probability distributions on Z{

Pσ̄ : σ̄ � (σ1, . . . , σm) ∈ {−;+}m}
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FIG. 3. Representation of a probability distribution of the hypercube. Here the hypercube is
symmetrical (p− = 1 − p+) with m = 8 and the probability distribution is characterized by
σ̄ = (+,−,+,−,−,+,+,−).

having the same first marginal, denoted μ,

Pσ̄ (dX) = P(+,...,+)(dX) � μ(dX) for any σ̄ ∈ {−;+}m,

and such that there exist:

• a partition X0, . . . ,Xm of X with μ(X1) = · · · = μ(Xm),
• h1 �= h2 in Y,
• 0 ≤ p− < p+ ≤ 1,

for which for any j ∈ {1, . . . ,m}, for any x ∈ Xj , we have

Pσ̄ (Y = h1|X = x) = pσj
= 1 − Pσ̄ (Y = h2|X = x),(8.1)

and for any x ∈ X0, the distribution of Y knowing X = x is independent of σ̄ (i.e.,
the 2m conditional distributions are identical).

In particular, (8.1) means that for any x ∈ X − X0, the conditional probability
of the output knowing the input x is concentrated on two values, and that, under
the distribution Pσ̄ , the disproportion between the probabilities of these two values
is all the larger as pσj

is far from 1/2 for j the integer such that x ∈ Xj .
An example of a hypercube is illustrated in Figure 3.

REMARK 8.2. The use of hypercubes in which p+ and p− are functions from
X−X0 to [0;1] and not just constants can be required when smoothness assump-
tions are put on the regression function η :x 	→ P(Y = 1|X = x). This is typically
the case in works on plug-in classifiers [2, 10]. For general hypercubes handling
these kinds of constraints, we refer the reader to [8], Section 8.1.
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Let h1 and h2 be distinct output values. For any p ∈ [0;1] and y ∈ Y, consider

ϕp(y) � p�(h1, y) + (1 − p)�(h2, y).(8.2)

This is the risk of the prediction function identically equal to y when the distrib-
ution generating the data satisfies P [Y = y1] = p = 1 − P [Y = y2]. Through this
distribution, the quantity

φ(p) � inf
y∈Y

ϕp(y)(8.3)

can be viewed as the risk of the best constant prediction function.
For any q+ and q− in [0;1], introduce

ψq+,q−(α) � φ[αq+ + (1 − α)q−] − αφ(q+) − (1 − α)φ(q−).(8.4)

DEFINITION 8.2. Let {Pσ̄ : σ̄ � (σ1, . . . , σm) ∈ {−;+}m} be a hypercube of
distributions.

1. The positive integer m is called the dimension of the hypercube.
2. The probability w � μ(X1) = · · · = μ(Xm) is called the edge probability.
3. The characteristic function of the hypercube is the function ψ̃ : R+ → R+ de-

fined as

ψ̃(u) = mw

2
(u + 1)ψp+,p−

(
u

u + 1

)
.(8.5)

4. The edge discrepancy of type I of the hypercube is

dI � ψ̃(1)

mw
= ψp+,p−(1/2)(8.6)

5. The edge discrepancy of type II of the hypercube is defined as

dII �
(√

p+(1 − p−) −
√

(1 − p+)p−
)2

.(8.7)

6. A probability distribution P0 on Z satisfying P0(dX) = μ(dX) and for any
x ∈ X − X0, P0[Y = h1|X = x] = 1

2 = P0[Y = h2|X = x] will be referred to
as a base of the hypercube.

7. Let P0 be a base of the hypercube. Consider distributions P[σ ], σ ∈ {−,+} ad-
mitting the following density w.r.t. P0:

P[σ ]
P0

(x, y) =
⎧⎨
⎩

2pσ , when x ∈ X1 and y = h1,
2[1 − pσ ], when x ∈ X1 and y = h2,
1, otherwise.

The distributions P[−] and P[+] will be referred to as the representatives of the
hypercube.
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8. When the functions p+ and p− satisfy p+ = 1−p− on X−X0, the hypercube
will be said to be symmetrical. In this case, the function 2p+−1 will be denoted
ξ so that

p+ = 1 + ξ

2
,

(8.8)

p− = 1 − ξ

2
.

Otherwise it will be said to be asymmetrical.
9. A (m̃, w̃, d̃II)-hypercube is a constant and symmetrical m̃-dimensional hyper-

cube with edge probability w̃ and edge discrepancy of type II equal to d̃II.

Let us now give some properties of the quantities that have just been defined.
The function φ is concave since it is the infimum of concave (affine) functions.
Consequently, ψq+,q− is concave and nonnegative on [0;1]. Therefore ψ̃ is con-
cave and nonnegative on R+ with ψ̃(0) = 0, hence ψ̃ is nondecreasing and satisfies

ψ̃(u) ≥ (u ∧ 1)ψ̃(1) = mwdI(u ∧ 1).(8.9)

The edge discrepancies are both nonnegative quantities that are all the smaller
as p− and p+ become closer. When the function φ is twice differentiable on ]0;1[,
the edge discrepancy dI can be written through

ψp+,p−(1/2)

(8.10)

= (p+ − p−)2

2

∫ 1

0
[t ∧ (1 − t)]|φ′′[tp+ + (1 − t)p−]|dt,

which is proved by integration by parts.
For a (m̃, w̃, d̃II)-hypercube, we have m = m̃, w = w̃, dII = d̃II, ξ ≡ √

dII,
p− ≡ (1 − √

dII)/2 and p+ ≡ (1 + √
dII)/2. So when φ is twice differentiable

on ]p−;p+[,
dI = dII

2

∫ 1

0
[t ∧ (1 − t)]

∣∣∣∣φ′′
(

1 − √
dII

2
+ √

dIIt

)∣∣∣∣dt.(8.11)

DEFINITION 8.3. When a probability distribution P is absolutely continuous
w.r.t. another probability distribution Q, that is, P 
 Q, P

Q
denotes the density of

P w.r.t. Q. Let R+ = [0;+∞[. For any concave function f : R+ → R+, we define
the f -similarity between two probability distributions as

Sf (P,Q) =
⎧⎨
⎩

∫
f

(
P

Q

)
dQ, if P 
 Q,

f (0), otherwise.
(8.12)

We call it f -similarity in reference to f -divergence (see [28]) to which it is
closely related. Here we use f -similarities since they are the quantities that natu-
rally appear in our lower bounds.
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8.2. Generalized Assouad’s lemma. We recall that the n-fold product of a dis-
tribution P is denoted P ⊗n. We start this section with a general lower bound for
hypercubes of distributions. This lower bound is expressed in terms of a similarity
between n-fold products of representatives of the hypercube.

THEOREM 8.1. Let P be a set of probability distributions containing a hy-
percube of distributions of characteristic function ψ̃ and representatives P[−] and
P[+]. For any training set size n ∈ N∗ and any estimator ĝ, we have

sup
P∈P

{
ER(ĝ) − min

g
R(g)

}
≥ Sψ̃

(
P ⊗n

[+] ,P
⊗n
[−]

)
,(8.13)

where the minimum is taken over the space of all prediction functions and ER(ĝ)

denotes the expected risk of the estimator ĝ trained on a sample of size n: ER(ĝ) =
EZn

1 ∼P ⊗nR(ĝZn
1
) = EZn

1 ∼P ⊗nE(X,Y )∼P �[Y, ĝZn
1
(X)].

PROOF. See Section 10.7. �

This theorem provides a lower bound holding for any estimator and expressed
in terms of the hypercube structure. To obtain a tight lower bound associated with
a particular learning task, it then suffices to find the hypercube in P for which the
r.h.s. of (8.13) is the largest possible. By providing lower bounds of Sψ̃ (P ⊗n

[+] ,P
⊗n
[−] )

that are more explicit w.r.t. the hypercube parameters, we obtain the following
results that are more in a ready-to-use form than Theorem 8.1.

THEOREM 8.2. Let P be a set of probability distributions containing a hy-
percube of distributions characterized by its dimension m, its edge probability w

and its edge discrepancies dI and dII (see Definition 8.2). For any estimator ĝ and
training set size n ∈ N∗, the following assertions hold:

1. We have

sup
P∈P

{
ER(ĝ) − min

g
R(g)

}
≥ mwdI

(
1 − √

1 − [1 − dII]nw
)

(8.14)
≥ mwdI

(
1 − √

nwdII
)
.

2. When the hypercube satisfies p+ ≡ 1 ≡ 1 − p−, we also have

sup
P∈P

{
ER(ĝ) − min

g
R(g)

}
≥ mwdI(1 − w)n.(8.15)

PROOF. See Section 10.8. �

The lower bound (8.15) is less general than (8.14) but provides results with tight
constants when convergence rate of order n−1 has to be proven (see Remarks 8.5
and 8.4).
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REMARK 8.3. The previous lower bounds consider deterministic estimators
(or algorithms), that is, functions from the training set space

⋃
n≥0 Zn to the predic-

tion function space Ḡ. They still hold for randomized estimators, that is, functions
from the training set space to the set D of probability distributions on Ḡ.

8.3. Examples. Theorem 8.2 motivates the following simple strategy to obtain
a lower bound for a given set P of probability distributions and a reference set G
of prediction functions: it consists in looking for the hypercube contained in the
set P and for which:

• the lower bound is maximized,
• for any distribution of the hypercube, G contains a best prediction function, that

is, mingR(g) = ming∈GR(g).

In general, the order of the bound is given by the quantity mwdI and the quanti-
ties w and dII are taken such that nwdII is of order 1. This section illustrates this
strategy by:

• providing learning lower bounds matching up to multiplicative constants the
upper bounds developed in the previous sections,

• significantly improving the constants in classification lower bounds for Vapnik–
Cervonenkis classes,

• showing that there is no uniform universal consistency for general loss func-
tions.

8.3.1. Lq -regression with bounded outputs. We consider Y = [−B;B] and
�(y, y′) = |y − y′|q , q ≥ 1. The learning task is to predict as well as the best
prediction function in a finite set G of cardinal denoted |G|. The results of this
section are roughly summed up in Figure 4, which represents the minimax optimal
convergence rate for Lq -regression.

• Case 1 ≤ q ≤ 1 +
√ �log2 |G|�

4n
∧ 1. From (6.5), there exists an estimator ĝ such

that

ER(ĝ) − min
g∈G

R(g) ≤ 2(2q−1)/2Bq

√
log |G|

n
.(8.16)

The following corollary of Theorem 8.2 shows that this result is tight.

THEOREM 8.3. Let B > 0 and d ∈ N∗. For any training set size n ∈ N∗ and
any input space X containing at least �log2 d� points, there exists a set G of d

prediction functions such that: for any estimator ĝ there exists a probability distri-
bution on the data space X × [−B;B] for which

ER(ĝ) − min
g∈G

R(g) ≥
⎧⎪⎨
⎪⎩ cqBq

√
�log2 |G|�

n
, if |G| < 24n+1,

2cqBq, otherwise,
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FIG. 4. Influence of the convexity of the loss on the optimal convergence rate. Let c > 0. We con-

sider Lq -losses with q = 1 + c(
log |G|

n )u for u ≥ 0. For such values of q , the optimal convergence

rate of the associated learning task is of order (
log |G|

n )v with 1/2 ≤ v ≤ 1. This figure represents
the value of u in abscissa and the value of v in ordinate. The value u = 0 corresponds to constant q

greater than 1. For these q , the optimal convergence rate is of order n−1 while for q = 1 or “very
close” to 1, the convergence rate is of order n−1/2.

where

cq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

4
, if q = 1,

q

40
, if 1 < q ≤ 1 +

√
�log2 |G|�

4n
∧ 1.

PROOF. See Section 10.9. �

Case q > 1 +
√ �log2 |G|�

4n
∧ 1. We have seen in Section 4 that there exists an

estimator ĝ such that

ER(ĝ) − min
g∈G

R(g) ≤ q(1 ∧ 2q−2)Bq

q − 1
(log 2)

log2 |G|
n

.(8.17)

The following corollary of Theorem 8.2 shows that this result is tight.

THEOREM 8.4. Let B > 0 and d ∈ N∗. For any training set size n ∈ N∗ and
input space X containing at least �log2(2d)� points, there exists a set G of d

prediction functions such that: for any estimator ĝ there exists a probability distri-
bution on the data space X × [−B;B] for which

ER(ĝ) − min
g∈G

R(g) ≥
(

q

90(q − 1)
∨ e−1

)
Bq

(�log2 |G|�
n + 1

∧ 1
)
.

PROOF. See Section 10.9. �
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REMARK 8.4. For least square regression (i.e., q = 2), Remark 8.5 holds pro-
vided that the multiplicative factor becomes 2e log 2 ≈ 3.77. More generally, the
method used here gives close to optimal constants but not the exact ones. We
believe that this limit is due to the use of the hypercube structure. Indeed, the
reader may check that for hypercubes of distributions, the upper bounds used in
this section are not constant-optimal since the simplifying step consisting in using
minρ∈M · · · ≤ ming∈G · · · is loose.

The above analysis for Lq -losses can be generalized to show that there are
essentialy two classes of bounded losses: the ones which are not convex or not
enough convex (typical examples are the classification loss, the hinge loss and
the absolute loss) and the ones which are sufficiently convex (typical examples
are the least square loss, the entropy loss, the logit loss and the exponential loss).
For the first class of losses, the edge discrepancy of type I is proportional to

√
dII

for constant and symmetrical hypercubes and (8.14) leads to a convergence rate
of

√
(log |G|)/n. For the second class, the convergence rate is (log |G|)/n and the

lower bound can be explained by the fact that, when two prediction functions are
different on a set with low probability (typically n−1), it often happens that the
training data have no input points in this set. For such training data, it is impossi-
ble to consistently choose the right prediction function.

This picture of convergence rates for finite models is rather well known, since:

• similar bounds (with looser constants) were known before for some cases (e.g.,
in classification; see [30, 50]),

• mutatis mutandis, the picture exactly matches the picture in the individual se-
quence prediction literature: for mixable loss functions (similar to “sufficiently
convex”), the minimax regret is O(log |G|)/n, whereas for 0/1-type loss func-
tions, it is O(

√
(log |G|)/n) (see, e.g., [33]).

8.3.2. Lq -regression for unbounded outputs having finite moments. The fra-
mework is similar to the one of Section 8.3.1 except that “|Y | ≤ B for some B > 0”
is replaced with “E|Y |s ≤ A for some s ≥ q and A > 0.”

Case q = 1. From (7.1), when supg∈GEZg(X)2 ≤ b2 for some b > 0, there
exists an estimator for which

ER(ĝ) − min
g∈G

R(g) ≤ 2b
√

(2 log |G|)/n.

The following corollary of Theorem 8.2 shows that this result is tight.

THEOREM 8.5. For any training set size n ∈ N∗, positive integer d , positive
real number b and input space X containing at least �log2 d� points, there ex-
ists a set G of d prediction functions uniformly bounded by b such that: for any
estimator ĝ there exists a probability distribution for which E|Y | < +∞ and

ER(ĝ) − min
g∈G

R(g) ≥ b

4

√
�log2 |G|�

n
∧ 1

4
.
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PROOF. Let m̃ = �log2 |G|�. We consider a (m̃,1/m̃,
√

m̃
4n

∧ 1)-hypercube

with h1 ≡ −b and h2 ≡ b. One may check that dI = b
√

dII so that (8.14) gives
that for any estimator there exists a probability distribution for which E|Y | < +∞
and

ER(ĝ) − min
g∈G

R(g) ≥ b

√
m̃

4n
∧ 1

(
1 −

√
1

4
∧ n

m̃

)
,

hence the desired result. �

Case q > 1. First let us recall the upper bound. In Corollary 7.2, under the
assumptions ⎧⎪⎪⎨

⎪⎪⎩
sup

g∈G,x∈X
|g(x)| ≤ b, for some b > 0,

E|Y |s ≤ A, for some s ≥ q and A > 0,
G finite,

we have proposed an algorithm satisfying

R(ĝ) − min
g∈G

R(g) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

(
log |G|

n

)1−(q−1)/s

, when q ≤ s ≤ 2q − 2,

C

(
log |G|

n

)1−q/(s+2)

, when s ≥ 2q − 2,

for a quantity C which depends only on b, A, q and s.
The following corollary of Theorem 8.2 shows that this result is tight and is

illustrated by Figure 5.

THEOREM 8.6. Let d ∈ N∗, s ≥ q > 1, b > 0 and A > 0. For any training
set size n ∈ N∗ and input space X containing at least �log2(2d)� points, there
exists a set G of d prediction functions uniformly bounded by b such that: for any
estimator ĝ there exists a probability distribution on the data space X × R for
which E|Y |s ≤ A and

ER(ĝ) − min
g∈G

R(g) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

(
log |G|

n
∧ 1

)1−(q−1)/s

,

C

(
log |G|

n
∧ 1

)1−q/(s+2)

,

for a quantity C which depends only on the real numbers b, A, q and s.

Both inequalities simultaneously hold but the first one is tight for q ≤ s ≤ 2q −2
while the second one is tight for s ≥ 2q − 2. They are both based on (8.14) applied
to a �log2 |G|�-dimensional hypercube. Contrary to other lower bounds obtained
in this work, the first inequality is based on asymmetrical hypercubes. The use of



1622 J.-Y. AUDIBERT

FIG. 5. Optimal convergence rates in Lq -regression when the output has a finite moment of order s

(see Theorem 8.6). The convergence rate is of order (
log |G|

n )v with 0 < v ≤ 1. The figure represents
the value of s in abscissa and the value of v in ordinate. Two cases have to be distinguished. For
1 < q ≤ 2 (figure on the top), v depends smoothly on q . For q > 2 (figure on the bottom), two stages
are observed depending whether s is larger than 2q − 2.

these kinds of hypercubes can be partially explained by the fact that the learning
task is asymmetrical. Indeed all values of the output space do not have the same
status since predictions are constrained to be in [−b;b] while outputs are allowed
to be in the whole real space (see the constraints on the hypercube in the proof
given in Section 10.10).

8.3.3. Entropy loss setting. We consider Y = [0;1] and �(y, y′) = K(y, y′),
where K(y, y′) is the Kullback–Leibler divergence between Bernoulli distri-
butions with respective parameters y and y′, that is, K(y, y′) = y log(

y
y′ )+

(1 − y) log(
1−y
1−y′ ). We have seen in Section 4 that there exists an estimator ĝ such
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that

ER(ĝ) − min
g∈G

R(g) ≤ log |G|
n

.(8.18)

The following consequence of (8.15) shows that this result is tight.

THEOREM 8.7. For any training set size n ∈ N∗, positive integer d and input
space X containing at least �log2(2d)� points, there exists a set G of d prediction
functions such that: for any estimator ĝ there exists a probability distribution on
the data space X × [0;1] for which

ER(ĝ) − min
g∈G

R(g) ≥ e−1(log 2)

(
1 ∧ �log2 |G|�

n + 1

)
.

PROOF. We use a (m̃, 1
n+1 ∧ 1

m̃
,1)-hypercube with m̃ = �log2 |G|� = � log |G|

log 2 �,
h1 ≡ 0 and h2 ≡ 1. Let H(y) denote the Shannon entropy of the Bernoulli distrib-
ution with parameter y, that is,

H(y) = −y logy − (1 − y) log(1 − y).(8.19)

Computations lead to: for any p ∈ [0;1],
φ(p) = H

(
ph1 + (1 − p)h2

) − pH(h1) − (1 − p)H(h2).

From (8.4) and Definition 8.2, we get

dI = ψ1,0,0,1(1/2) = φ0,1(1/2) = H(1/2) = log 2.

From (8.15), we obtain

ER(ĝ) − min
g∈G

R(g) ≥
(�log2 |G|�

n + 1
∧ 1

)
(log 2)

(
1 − 1

n + 1
∧ 1

�log2 |G|�
)n

.

Then the result follows from [1 − 1/(n + 1)]n ↘ e−1. �

REMARK 8.5. For |G| < 2n+2, the lower bound matches the upper bound
(8.18) up to the multiplicative factor e ≈ 2.718. For |G| ≥ 2n+2, the size of the
model is too large and, without any extra assumption, no estimator can learn from
the data. To prove the result, we consider distributions for which the output is de-
terministic when knowing the input. So the lower bound does not come from noisy
situations but from situations in which different prediction functions are not sep-
arated by the data to the extent that no input data fall into the (small) subset on
which they are different.
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8.3.4. Binary classification. We consider Y = {0;1} and l(y, y′) = 1y �=y′ .
Since the work of Vapnik and Cervonenkis [50], several lower bounds have been
proposed and the most achieved ones are given in [30], Chapter 14. The following
theorem provides an improvement of the constants of some of these bounds by a
factor greater than 1000.

THEOREM 8.8. Let L ∈ [0;1/2], n ∈ N and G be a set of prediction func-
tions of VC-dimension V ≥ 2. Consider the set PL of probability distributions on
X × {0;1} such that infg∈G R(g) = L. For any estimator ĝ:

• when L = 0, there exists P ∈ P0 for which

ER(ĝ) − inf
g∈G

R(g) ≥

⎧⎪⎪⎨
⎪⎪⎩

V − 1

2e(n + 1)
, when n ≥ V − 2,

1

2

(
1 − 1

V

)n

, otherwise,
(8.20)

• when 0 < L ≤ 1/2, there exists P ∈ PL for which

ER(ĝ) − inf
g∈G

R(g)

(8.21)

≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
L(V − 1)

32n
∨ 2(V − 1)

27n
, when

(1 − 2L)2n

V
≥ 4

9
,

1 − 2L

6
, otherwise,

• there exists a probability distribution for which

ER(ĝ) − inf
g∈G

R(g) ≥ 1

8

√
V

n
.(8.22)

SKETCH OF THE PROOF. For h1 �= h2, we have φ(p) = p ∧ (1 − p) and for
symmetrical hypercubes dI = √

dII/2. Then (8.20) comes from (8.15) and the use
of a (V − 1,1/(n + 1),1)-hypercube and a (V ,1/V,1)-hypercube.

To prove (8.21), from (8.14) and the use of a (V − 1, 2L
V −1 , V −1

8nL
)-hypercube,

a (V − 1, 4
9n(1−2L)2 , (1 − 2L)2)-hypercube and a (V ,1/V, (1 − 2L)2)-hypercube,

we obtain

ER(ĝ) − inf
g∈G

R(g)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
L(V − 1)

32n
, when

(1 − 2L)2n

V − 1
≥ L

2
∨ (1 − 2L)2

8L
,

2(V − 1)

27n(1 − 2L)
, when

(1 − 2L)2n

V − 1
≥ 4

9
,

1 − 2L

2

(
1 −

√
(1 − 2L)2n

V

)
, always,
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which can be weakened into (8.21). Finally, (8.22) comes from the last inequality
and by choosing L such that 1 − 2L = 1

2

√
V/n. �

In an asymptotical setting, [8], Section 8.4.3, provides a refinement of (8.22).

8.3.5. No uniform universal consistency for general losses. This type of result
is well known and tells that there is no guarantee of doing well on finite samples.
In a classification setting, when the input space is infinite, that is, |X| = +∞, by
using a (�nα�,1/�nα�,1)-hypercube with α tending to infinity, one can recover
that: for any training sample size n, “any discrimination rule can have an arbitrarily
bad probability of error for finite sample size” [29], precisely:

inf
ĝ

sup
P

{
P[Y �= ĝ(X)] − min

g
P[Y �= g(X)]

}
= 1/2,

where the infimum is taken over all (possibly randomized) classification rules.
For general loss functions, as soon as |X| = +∞, we can use (�nα�,1/�nα�,1)-
hypercubes with α tending to infinity and obtain

inf
ĝ

sup
P

{
ER(ĝ) − inf

g
R(g)

}
≥ sup

y1,y2∈Y
ψ1,0,y1,y2(1/2),(8.23)

where ψ is the function defined in (8.4).

9. Summary of contributions and open problems. This work has developed
minimax optimal risk bounds for the general learning task consisting in predicting
as well as the best function in a reference set. It has proposed to summarize this
learning problem by the variance function appearing in the variance inequality
(Section 3). The SeqRand algorithm (Figure 1) based on this variance function
leads to minimax optimal convergence rates in the model selection aggregation
problem, and our analysis gives a nice unified view to results coming from different
communities.

In particular, results coming from the online learning literature are recovered
in Section 4.1. The generalization error bounds obtained by Juditsky, Rigollet and
Tsybakov in [34] are recovered for a slightly different algorithm in Section 5.

Without any extra assumption on the learning task, we have obtained a Bern-
stein’s type bound which has no known equivalent form when the loss function is
not assumed to be bounded (Section 6.1.1). When the loss function is bounded, the
use of Hoeffding’s inequality w.r.t. Gibbs distributions on the prediction function
space instead of the distribution generating the data leads to an improvement by a
factor 2 of the standard-style risk bound (Theorem 6.4).

To prove that our bounds are minimax optimal, we have refined Assouad’s
lemma particularly by taking into account the properties of the loss function. The-
orem 8.2 is tighter than previous versions of Assouad’s lemma and easier to apply
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to a learning setting than Fano’s lemma (see, e.g., [46]); besides, the latter leads in
general to very loose constants. It improves the constants of lower bounds related
to Vapnik–Cervonenkis classes by a factor greater than 1000. We have also illus-
trated our upper and lower bounds by studying the influence of the noise of the
output and of the convexity of the loss function.

For the Lq -loss with q ≥ 1, new matching upper and lower bounds are given:
in the online learning framework under boundedness assumption (Corollary 4.5
and Section 8.3.1 jointly with Remark 8.1), in the batch learning setting under
boundedness assumption (Sections 4.1 and 8.3.1), in the batch learning setting for
unbounded observations under moment assumptions (Sections 7 and 8.3.2). In the
latter setting, we still do assume that the prediction functions are bounded. It is an
open problem to replace this boundedness assumption with a moment condition.

Finally this work has the following limits. Most of our results concern expected
risks and it is an open problem to provide corresponding tight exponential inequal-
ities. Besides we should emphasize that our expected risk upper bounds hold only
for our algorithm. This is quite different from the classical point of view that simul-
taneously gives upper bounds on the risk of any prediction function in the model.
To our current knowledge, this classical approach has a flexibility that is not re-
covered in our approach. For instance, in several learning tasks, Dudley’s chaining
trick [32] is the only way to prove risk convergence with the optimal rate. So a
natural question and another open problem is whether it is possible to combine
the better variance control presented here with the chaining argument (or other
localization argument used while exponential inequalities are available).

10. Proofs.

10.1. Proof of Theorem 4.4. First, by a scaling argument, it suffices to prove
the result for a = 0 and b = 1. For Y = [0;1], we modify the proof in Appendix A
of [35]. Precisely, claims 1 and 2, with the notation used there, become:

1. If the function f is concave in α([p;q]), then we have At(q) ≤ Bt(p).
2. If c ≥ R(z,p, q) for any z ∈ (p;q), then the function f is concave in α([p;q]).
Up to the missing α (typo), the difference is that we restrict ourselves to values
of z in [p;q]. The proof of claim 2 has no new argument. For claim 1, it suffices
to modify the definition of x ′

t,i into x′
t,i = q ∧ G−1[�(p, xt,i)] ∈ [p;q]. Then we

have L(p,x′
t,i ) ≤ L(p,xt,i) and L(q, x′

t,i) ≤ L(p,xt,i), hence α(x′
t,i ) ≥ α(xt,i)

and γ (x′
t,i ) ≥ γ (xt,i). Now one can prove that f is decreasing on α([p;q]). By

using Jensen’s inequality, we get


t(q) = −c log
n∑

i=1

vt,iγ (xt,i)

≥ −c log
n∑

i=1

vt,iγ (x′
t,i )
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= −c log
n∑

i=1

vt,if [α(x′
t,i )]

≥ −c logf

[
n∑

i=1

vt,iα(x′
t,i )

]

≥ −c logf

[
n∑

i=1

vt,iα(xt,i)

]

= L[q,G−1(
t(p))].
The end of the proof of claim 1 is then identical.

10.2. Proof of Theorem 6.1. To check that the variance inequality holds, it
suffices to prove that for any z ∈ Z

Eg′∼ρ log Eg∼ρeλ[L(z,g′)−L(z,g)]−λ2/2[L(z,g′)−L(z,g)]2 ≤ 0.(10.1)

To shorten formulae, let α(g′, g) � λ[L(z, g′) − L(z, g)]. By Jensen’s inequality
and the following symmetrization trick, (10.1) holds:

Eg′∼ρEg∼ρeα(g′,g)−α2(g′,g)/2

≤ 1
2Eg′∼ρEg∼ρeα(g′,g)−α2(g′,g)/2 + 1

2Eg′∼ρEg∼ρe−α(g′,g)−α2(g′,g)/2(10.2)

≤ Eg′∼ρEg∼ρ cosh(α(g, g′))e−α2(g′,g)/2 ≤ 1,

where in the last inequality we used the inequality cosh(t) ≤ et2/2 for any t ∈ R.
The result then follows from Theorem 3.1.

10.3. Proof of Corollary 6.2. To shorten the following formula, let μ denote
the law of the prediction function produced by the SeqRand algorithm (w.r.t. si-
multaneously the training set and the randomizing procedure). Then (6.1) can be
written as: for any ρ ∈ M,

Eg′∼μR(g′) ≤ Eg∼ρR(g) + λ

2
Eg∼ρEg′∼μV (g, g′) + K(ρ,π)

λ(n + 1)
.(10.3)

Define R̃(g) = R(g) − R(g̃) for any g ∈ G. Under the generalized Mammen and
Tsybakov assumption, for any g,g′ ∈ G, we have

1
2V (g,g′) ≤ EZ∼P {[L(Z,g) − L(Z, g̃)]2} + EZ∼P {[L(Z,g′) − L(Z, g̃)]2}

≤ cR̃γ (g) + cR̃γ (g′),
so that (10.3) leads to

Eg′∼μ[R̃(g′) − cλR̃γ (g′)] ≤ Eg∼ρ[R̃(g) + cλR̃γ (g)] + K(ρ,π)

λ(n + 1)
.(10.4)
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This gives the first assertion. For the second statement, let ũ � Eg′∼μR̃(g′)
and χ(u) � u − cλuγ . By Jensen’s inequality, the l.h.s. of (10.4) is lower
bounded by χ(ũ). By straightforward computations, for any 0 < β < 1, when
u ≥ ( cλ

1−β
)1/(1−γ ), χ(u) is lower bounded by βu, which implies the desired re-

sult.

10.4. Proof of Theorem 6.3. Let us prove (6.3). Let r(g) denote the empirical
risk of g ∈ G, that is, r(g) = �n(g)

n
. Let ρ ∈ M be some fixed distribution on G.

From [5], Section 8.1, with probability at least 1 − ε w.r.t. the training set distrib-
ution, for any μ ∈ M, we have

Eg′∼μR(g′) − Eg∼ρR(g)

≤ Eg′∼μr(g′) − Eg∼ρr(g) + λϕ(λB)Eg′∼μEg∼ρV (g, g′)

+ K(μ,π) + log(ε−1)

λn
.

Since the Gibbs distribution π−λ�n minimizes μ 	→ Eg′∼μr(g′)+ K(μ,π)
λn

, we have

Eg′∼π−λ�n
R(g′)

≤ Eg∼ρR(g) + λϕ(λB)Eg′∼π−λ�n
Eg∼ρV (g, g′)

+ K(ρ,π) + log(ε−1)

λn
.

Then we apply the following inequality:

EW ≤ E(W ∨ 0) =
∫ +∞

0
P(W > u)du =

∫ 1

0
ε−1P

(
W > log(ε−1)

)
dε

to the random variable

W = λn[Eg′∼π−λ�n
R(g′) − Eg∼ρR(g) − λϕ(λB)Eg′∼π−λ�n

Eg∼ρV (g, g′)]
− K(ρ,π).

We get EW ≤ 1. At last we may choose the distribution ρ minimizing the upper
bound to obtain (6.3). Similarly using [5], Section 8.3, we may prove (6.2).

10.5. Proof of Lemma 6.5. It suffices to apply the following adaptation of
Lemma 5 of [55] to

ξi(Z1, . . . ,Zi) = L[Zi,A(Zi−1
1 )] − L(Zi, g̃).

LEMMA 10.1. Let ϕ still denote the positive convex increasing function de-
fined as ϕ(t) � et−1−t

t2 . Let b be a real number. For i = 1, . . . , n+1, let ξi :Zi → R
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be a function uniformly upper bounded by b. For any η > 0, ε > 0, with probability
at least 1 − ε w.r.t. the distribution of Z1, . . . ,Zn+1, we have

n+1∑
i=1

ξi(Z1, . . . ,Zi) ≤
n+1∑
i=1

EZi
ξi(Z1, . . . ,Zi)

(10.5)

+ ηϕ(ηb)

n+1∑
i=1

EZi
ξ2
i (Z1, . . . ,Zi) + log(ε−1)

η
,

where EZi
denotes the expectation w.r.t. the distribution of Zi only.

REMARK 10.1. The same type of bounds without variance control can be
found in [23].

PROOF OF LEMMA 10.1. For any i ∈ {0, . . . , n + 1}, define

ψi = ψi(Z1, . . . ,Zi) �
i∑

j=1

ξj −
i∑

j=1

EZj
ξj − ηϕ(ηb)

i∑
j=1

EZj
ξ2
j ,

where ξj is the short version of ξj (Z1, . . . ,Zj ). For any i ∈ {0, . . . , n}, we trivially
have

ψi+1 − ψi = ξi+1 − EZi+1ξi+1 − ηϕ(ηb)EZi+1ξ
2
i+1.(10.6)

Now for any b ∈ R, η > 0 and any random variable W such that W ≤ b a.s., we
have

Eeη(W−EW−ηϕ(ηb)EW 2) ≤ 1.(10.7)

REMARK 10.2. The proof of (10.7) is standard and can be found, for exam-
ple, in [4], Section 7.1.1. We use (10.7) instead of the inequality used to prove
Lemma 5 of [55], that is, Eeη[W−EW−ηϕ(ηb′)E(W−EW)2] ≤ 1 for W − EW ≤ b′
since we are interested in excess risk bounds. Precisely, we will take W of
the form W = L(Z,g) − L(Z,g′) for fixed functions g and g′. Then we have
W ≤ supz,g L − infz,g L while we only have W − EW ≤ 2(supz,g L − infz,g L).
Besides, the gain of having E(W − EW)2 instead of EW 2 is useless in the appli-
cations we develop here.

By combining (10.7) and (10.6), we obtain

EZi+1e
η(ψi+1−ψi) ≤ 1.(10.8)
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By using Markov’s inequality, we upper bound the following probability w.r.t. the
distribution of Z1, . . . ,Zn+1:

P

(
n+1∑
i=1

ξi >

n+1∑
i=1

EZi
ξi + ηϕ(ηb)

n+1∑
i=1

EZi
ξ2
i + log(ε−1)

η

)

= P
(
ηψn+1 > log(ε−1)

)
= P(εeηψn+1 > 1)

≤ εEeηψn+1

≤ εEZ1

(
eη(ψ1−ψ0)EZ2

(· · · eη(ψn−ψn−1)EZn+1e
η(ψn+1−ψn)))

≤ ε,

where the last inequality follows from recursive use of (10.8). �

10.6. Proof of Corollary 7.2. We start with the following theorem concerning
general loss functions.

THEOREM 10.2. Let B ≥ b > 0 and Y = R. Consider a loss function L which
can be written as L[(x, y), g] = �[y,g(x)], where the function � : R × R → R

satisfies: there exists λ0 > 0 such that for any y ∈ [−B;B], the function
y′ 	→ e−λ0�(y,y′) is concave on [−b;b]. Let


(y) = sup
|α|≤b,|β|≤b

[�(y,α) − �(y,β)].

For λ ∈ (0;λ0], consider the algorithm that draws uniformly its prediction func-
tion in the set {Eg∼π−λ�0

g, . . . ,Eg∼π−λ�n
g}, and consider the deterministic version

of this randomized algorithm. The expected risk of these algorithms satisfies

EZn
1
R

(
1

n + 1

n∑
i=0

Eg∼π−λ�i
g

)

≤ EZn
1

1

n + 1

n∑
i=0

R(Eg∼π−λ�i
g)

(10.9)

≤ min
ρ∈M

{
Eg∼ρR(g) + K(ρ,π)

λ(n + 1)

}

+ E

{
λ
2(Y )

2
1λ
(Y )<1;|Y |>B +

[

(Y) − 1

2λ

]
1λ
(Y )≥1;|Y |>B

}
.

PROOF. The first inequality follows from Jensen’s inequality. Let us prove the
second. According to Theorem 3.1, it suffices to check that the variance inequality
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holds for 0 < λ ≤ λ0, π̂ (ρ) the Dirac distribution at Eg∼ρg and

δλ[(x, y), g, g′] = δλ(y) � min
0≤ζ≤1

[
ζ
(y) + (1 − ζ )2λ
2(y)

2

]
1|y|>B

= λ
2(y)

2
1λ
(y)<1;|y|>B +

[

(y) − 1

2λ

]
1λ
(y)≥1;|y|>B.

• For any z = (x, y) ∈ Z such that |y| ≤ B , for any probability distribution ρ and
for the above values of λ and δλ, by Jensen’s inequality, we have

Eg∼ρe
λ[L(z,Eg′∼ρg′)−L(z,g)−δλ(z,g,g′)]

= e
λL(z,Eg′∼ρg′)

Eg∼ρe−λ�[y,g(x)]

≤ e
λL(z,Eg′∼ρg′)(

Eg∼ρe−λ0�[y,g(x)])λ/λ0

≤ e
λ�[y,Eg′∼ρg′(x)]−λ�[y,Eg∼ρg(x)]

= 1,

where the last inequality comes from the concavity of y′ 	→ e−λ0�(y,y′). This
concavity argument goes back to [36], Section 4, and was also used in [19] and
in some of the examples given in [34].

• For any z = (x, y) ∈ Z such that |y| > B , for any 0 ≤ ζ ≤ 1, by using twice
Jensen’s inequality and then by using the symmetrization trick presented in Sec-
tion 6, we have

Eg∼ρe
λ[L(z,Eg′∼ρg′)−L(z,g)−δλ(z,g,g′)]

= e−δλ(y)Eg∼ρe
λ[L(z,Eg′∼ρg′)−L(z,g)]

≤ e−δλ(y)Eg∼ρe
λ[Eg′∼ρL(z,g′)−L(z,g)]

≤ e−δλ(y)Eg∼ρEg′∼ρeλ[L(z,g′)−L(z,g)]

= e−δλ(y)Eg∼ρEg′∼ρ

{
eλ(1−ζ )[L(z,g′)−L(z,g)]−1/2λ2(1−ζ )2[L(z,g′)−L(z,g)]2

× eλζ [L(z,g′)−L(z,g)]+1/2λ2(1−ζ )2[L(z,g′)−L(z,g)]2}
≤ e−δλ(y)Eg∼ρEg′∼ρ

{
eλ(1−ζ )[L(z,g′)−L(z,g)]−1/2λ2(1−ζ )2[L(z,g′)−L(z,g)]2

× eλζ
(y)+1/2λ2(1−ζ )2
2(y)}
≤ e−δλ(y)eλζ
(y)+(1/2)λ2(1−ζ )2
2(y).

Taking ζ ∈ [0;1] minimizing the last r.h.s., we obtain that

Eg∼ρe
λ[L(z,Eg′∼ρg′)−L(z,g)−δλ(z,g,g′)] ≤ 1.
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From the two previous computations, we obtain that for any z ∈ Z,

log Eg∼ρe
λ[L(z,Eg′∼ρg′)−L(z,g)−δλ(z,g,g′)] ≤ 0,

so that the variance inequality holds for the above values of λ, π̂(ρ) and δλ, and
the result follows from Theorem 3.1. �

To apply Theorem 10.2, we will first determine λ0 for which the function
ζ :y′ 	→ e−λ0|y−y′|q is concave. For any given y ∈ [−B;B], for any q > 1, straight-
forward computations give

ζ ′′(y′) = [λ0q|y′ − y|q − (q − 1)]λ0q|y′ − y|q−2e−λ0|y−y′|q

for y′ �= y, hence ζ ′′ ≤ 0 on [−b;b] − {y} for λ0 = q−1
q(B+b)q

. Now since the deriv-
ative ζ ′ is defined at the point y, we conclude that the function ζ is concave on
[−b;b], so that we may use Theorem 10.2 with λ0 = q−1

q(B+b)q
.

For any |y| ≥ b, we have

2bq(|y| − b)q−1 ≤ 
(y) ≤ 2bq(|y| + b)q−1.

As a consequence, when |y| ≥ b + (2bqλ)−1/(q−1), we have λ
(y) ≥ 1 and

(y) − 1/(2λ) can be upper bounded by C′|y|q−1, where the quantity C′ depends
only on b and q .

For other values of |y|, that is, when b ≤ |y| < b + (2bqλ)−1/(q−1), we have

λ
2(y)

2
1λ
(y)<1;|y|>B +

[

(y) − 1

2λ

]
1λ
(y)≥1;|y|>B

= min
0≤ζ≤1

[
ζ
(y) + (1 − ζ )2λ
2(y)

2

]
1|y|>B

≤ 1

2
λ
2(y)1|y|>B

≤ 2λb2q2(|y| + b)2q−21|y|>B

≤ C′′λ|y|2q−21|y|>B,

where C′′ depends only on b and q .
Therefore, from (10.9), for any 0 < b ≤ B and λ > 0 satisfying λ ≤ q−1

q(B+b)q
,

the expected risk is upper bounded by

min
ρ∈M

{
Eg∼ρR(g) + K(ρ,π)

λ(n + 1)

}
+ E

{
C′|Y |q−11|Y |≥b+(2bqλ)−1/(q−1);|Y |>B

}
(10.10)

+ E
{
C′′λ|Y |2q−21B<|Y |<b+(2bqλ)−1/(q−1)

}
.
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Let us take B = (
q−1
qλ

)1/q − b with λ small enough to ensure that b ≤ B ≤ b +
(2bqλ)−1/(q−1). This means that λ should be taken smaller than some positive
constant depending only on b and q . Then (10.10) can be written as

min
ρ∈M

{
Eg∼ρR(g) + K(ρ,π)

λ(n + 1)

}
+ E

{
C′|Y |q−11|Y |≥b+(2bqλ)−1/(q−1)

}
+ E

{
C′′λ|Y |2q−21((q−1)/(qλ))1/q−b<|Y |<b+(2bqλ)−1/(q−1)

}
.

The moment assumption on Y implies

αs−qE|Y |q1|Y |≥α ≤ A for any 0 ≤ q ≤ s and α ≥ 0.(10.11)

So we can upper bound (10.10) with

min
g∈G

R(g) + log |G|
λn

+ Cλ(s+1−q)/(q−1)

+ Cλ
(
λ(s−2q+2)/q1s≥2q−2 + λ(2−2q+s)(q−1)1s<2q−2

)
,

where C depends only on b, A, q and s. So we get

EZn
1

1

n + 1

n∑
i=0

R(Eg∼π−λ�i
g)

≤ min
g∈G

R(g) + log |G|
λn

+ Cλ(s+1−q)/(q−1) + Cλ(s−q+2)/q1s≥2q−2

≤ min
g∈G

R(g) + log |G|
λn

+ Cλ(s+1−q)/(q−1)1s<2q−2 + Cλ(s−q+2)/q1s≥2q−2,

since s+1−q
q−1 ≥ s−q+2

q
is equivalent to s ≥ 2q − 2. By taking λ of order of the

minimum of the r.h.s. (which implies that λ goes to 0 when n/ log |G| goes to
infinity), we obtain the desired result.

10.7. Proof of Theorem 8.1. The symbols σ1, . . . , σm still denote the coordi-
nates of σ̄ ∈ {−;+}m. For any r ∈ {−;0;+}, define

σ̄j,r � (σ1, . . . , σj−1, r, σj+1, . . . , σm)

as the vector deduced from σ̄ by fixing its j th coordinate to r . Since σ̄j,+ and σ̄j,−
belong to {−;+}m, we have already defined Pσ̄j,+ and Pσ̄j,− . Now we define the
distribution Pσ̄j,0 as Pσ̄j,0(dX) = μ(dX) and

1 − Pσ̄j,0(Y = h2|X) = Pσ̄j,0(Y = h1|X)

=
{ 1

2 , for any X ∈ Xj ,
Pσ̄ (Y = h1|X), otherwise.
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The distribution Pσ̄j,0 differs from Pσ̄ only by the conditional law of the output
knowing that the input is in Xj . We recall that P ⊗n denotes the n-fold product
of a distribution P . For any r ∈ {−;+}, introduce the likelihood ratios for the

data Zn
1 = (Z1, . . . ,Zn) :πr,j (Z

n
1 ) �

P ⊗n
σ̄j,r

P ⊗n
σ̄j,0

(Zn
1 ). This quantity is independent of

the value of σ̄ . Let ν be the uniform distribution on {−,+}, that is, ν({+}) =
1/2 = 1 − ν({−}). In the following, Eσ̄ denotes the expectation when σ̄ is drawn
according to the m-fold product distribution of ν, and EX = EX∼μ. We have

sup
P∈P

{
E

Zn
1 ∼P ⊗n

R(ĝ) − min
g

R(g)

}

≥ sup
σ̄∈{−;+}m

{
EZn

1 ∼P ⊗n
σ̄

EZ∼Pσ̄
�[Y, ĝ(X)] − min

g
EZ∼Pσ̄

�[Y,g(X)]
}

= sup
σ̄∈{−;+}m

{
EZn

1 ∼P ⊗n
σ̄

EX∼Pσ̄ (dX)

[
EY∼Pσ̄ (dY |X)�[Y, ĝ(X)]

− min
y∈Y

EY∼Pσ̄ (dY |X)�(Y, y)

]}

= sup
σ̄∈{−;+}m

{
EZn

1 ∼P ⊗n
σ̄

EX

[
m∑

j=0

1X∈Xj

(
ϕpσj

[ĝ(X)] − φ[pσj
])
]}

(10.12)

≥ Eσ̄ EZn
1 ∼P ⊗n

σ̄
EX

[
m∑

j=1

1X∈Xj

(
ϕpσj

[ĝ(X)] − φ[pσj
])
]

=
m∑

j=1

EX

{
1X∈Xj

Eσ̄ EZn
1 ∼P ⊗n

σ̄j,0

[
P ⊗n

σ̄

P ⊗n
σ̄j,0

(Zn
1 )

(
ϕpσj

[ĝ(X)] − φ[pσj
])]}

=
m∑

j=1

EX

{
1X∈Xj

Eσ1,...,σj−1,σj+1,...,σmEZn
1 ∼P ⊗n

σ̄j,0
Eσj∼νπσj ,j (Z

n
1 )

× (
ϕpσj

[ĝ(X)] − φ[pσj
])}.

The two inequalities in (10.12) are Assouad’s argument [3]. For any x ∈ X, intro-

duce αj (Z
n
1 ) = π+,j (Zn

1 )

π+,j (Zn
1 )+π−,j (Zn

1 )
. The last expectation in (10.12) is

Eσ∼νπσ,j (Z
n
1 )

(
ϕpσ [ĝ(X)] − φ[pσ ])

= 1

2
[π+,j (Z

n
1 ) + π−,j (Z

n
1 )]

× {αj (Z
n
1 )ϕp+[ĝ(X)] + [1 − αj (Z

n
1 )]ϕp−[ĝ(X)]

− αj (Z
n
1 )φ(p+) − [1 − αj (Z

n
1 )]φ(p−)}(10.13)
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= 1

2
[π+,j (Z

n
1 ) + π−,j (Z

n
1 )]{ϕαj (Zn

1 )p++[1−αj (Zn
1 )]p−[ĝ(X)]

− αj (Z
n
1 )φ(p+) − [1 − αj (Z

n
1 )]φ(p−)

}
≥ 1

2
[π+,j (Z

n
1 ) + π−,j (Z

n
1 )]{φ(

αj (Z
n
1 )p+ + [1 − αj (Z

n
1 )]p−

)
− αj (Z

n
1 )φ(p+) − [1 − αj (Z

n
1 )]φ(p−)

}
= 1

2
[π+,j (Z

n
1 ) + π−,j (Z

n
1 )]ψp+,p−[αj (Z

n
1 )]

= 1

mw
π−,j (Z

n
1 )ψ̃

(
π+,j (Z

n
1 )

π−,j (Z
n
1 )

)

so that

sup
P∈P

{
E

Zn
1 ∼P ⊗n

R(ĝ) − min
g

R(g)

}

≥ 1

mw

m∑
j=1

EX

{
1X∈Xj

Eσ̄ EZn
1 ∼P ⊗n

σ̄j,0

[
π−,j (Z

n
1 )ψ̃

(
π+,j (Z

n
1 )

π−,j (Z
n
1 )

)]}

= 1

mw

m∑
j=1

EX{1X∈Xj
Eσ̄Sψ̃ (P ⊗n

σ̄j,+,P ⊗n
σ̄j,−)}

= 1

m

m∑
j=1

Eσ̄Sψ̃ (P ⊗n
σ̄j,+,P ⊗n

σ̄j,−).

Now since we consider a hypercube, for any j ∈ {1, . . . ,m}, all the terms in the
sum are equal. Besides one can check that the last f -similarity does not depend
on σ̄ , and is equal to Sψ̃ (P ⊗n

[+] ,P
⊗n
[−] )where we recall that P[+] and P[−] denote the

representatives of the hypercube (see Definition 8.2) Therefore we obtain

sup
P∈P

{
ER(ĝ) − min

g
R(g)

}
≥ Sψ̃

(
P ⊗n

[+] ,P
⊗n
[−]

)
.

10.8. Proof of Theorem 8.2. First, when the hypercube satisfies p+ = 1 =
1 − p−, from the definition of dI given in (8.6), we have Sψ̃ (P ⊗n

[+] ,P
⊗n
[−] ) =

mwdI(1 − w)n so that Theorem 8.1 implies (8.15).
Inequality (8.14) is deduced from Theorem 8.1 by lower bounding the ψ̃-simila-

rity. Since u 	→ u ∧ 1 is a nonnegative concave function defined on R+, we may
define the similarity

S∧(P,Q) �
∫ (

P

Q
∧ 1

)
dQ =

∫
(dP ∧ dQ),

where the second equality introduces a formal (but intuitive) notation. From The-
orem 8.1, by using (8.9), we obtain
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COROLLARY 10.3. Let P be a set of probability distributions containing a
hypercube of distributions of characteristic function ψ̃ and representatives P[−]
and P[+]. For any estimator ĝ, we have

sup
P∈P

{
ER(ĝ) − min

g
R(g)

}
≥ mwdIS∧

(
P ⊗n

[+] ,P
⊗n
[−]

)
,(10.14)

where the minimum is taken over the space of prediction functions.

The following lemma and (10.14) imply (8.14).

LEMMA 10.4. We have

S∧
(
P ⊗n

[+] ,P
⊗n
[−]

) ≥ 1 − √
1 − [1 − dII]nw ≥ 1 − √

nwdII.(10.15)

PROOF. See Section 10.8.1. �

10.8.1. Proof of Lemma 10.4. For σ ∈ {−,+}, define Qσ as the probabil-
ity on {h1, h2} such that Qσ(Y = h1) = pσ = 1 − Qσ(Y = h2). The following
lemma relates the ∧-similarity between representatives of the hypercube and the
∧-similarity between Q+ and Q−.

LEMMA 10.5. Consider a convex function γ : R+ → R+ such that

γ (k) ≤ S∧(Q⊗k+ ,Q⊗k− )

for any k ∈ {0, . . . , n}, where by convention S∧(Q⊗0+ ,Q⊗0− ) = 1. For any estima-
tor ĝ, we have

S∧
(
P ⊗n

[+] ,P
⊗n
[−]

) ≥ γ (nw).

PROOF. For any points z1 = (x1, y1), . . . , zn = (xn, yn) in X × {h1, h2}, let
C(z1, . . . , zn) denote the number of zi for which xi ∈ X1. For any k ∈ {0, . . . , n},
let Bk = C−1({k}) denote the subset of (X×{h1, h2})n for which exactly k points
are in X1 × {h1, h2}. We recall that there are

(n
k

)
possibilities of taking k ele-

ments among n and the probability of X ∈ X1 when X is drawn according to μ

is w = μ(X1). Let Z1 = X1 × {h1, h2} and let Zc
1 denote the complement of Z1.

We have

S∧
(
P ⊗n

[+] ,P
⊗n
[−]

)

=
∫

1 ∧
(

P ⊗n
[+]

P ⊗n
[−]

(z1, . . . , zn)

)
dP ⊗n

[−] (z1, . . . , zn)

=
n∑

k=0

∫
Bk

1 ∧
(

P[+]
P[−]

(z1) · · · P[+]
P[−]

(zn)

)
dP[−](z1) · · · dP[−](zn)(10.16)
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=
n∑

k=0

(
n

k

)∫
(Z1)

k×(Zc
1)

n−k
1 ∧

(
P[+]
P[−]

(z1) · · · P[+]
P[−]

(zn)

)
dP ⊗n

[−] (z1, . . . , zn)

=
n∑

k=0

(
n

k

)∫
(Z1)

k×(Zc
1)

n−k
1 ∧

(
P[+]
P[−]

(z1) · · · P[+]
P[−]

(zk)

)
dP ⊗n

[−] (z1, . . . , zn)

=
n∑

k=0

(
n

k

)
μn−k(Zc

1)

×
∫
(Z1)

k
1 ∧

(
P[+]
P[−]

(z1) · · · P[+]
P[−]

(zk)

)
dP ⊗n

[−] (z1, . . . , zk)

=
n∑

k=0

(
n

k

)
μn−k(Zc

1)μ
k(Z1)S∧(Q⊗k+ ,Q⊗k− )

≥
n∑

k=0

(
n

k

)
(1 − w)n−kwkγ (k)

= Eγ (V ),

where V is a Binomial distribution with parameters n and w. By Jensen’s inequal-
ity, we have Eγ (V ) ≥ γ [E(V )] = γ (nw), which ends the proof. �

The interest of the previous lemma is to provide a lower bound on the similarity
between representatives of the hypercube from a lower bound on the similarities
between distributions much simpler to study. The following result lower bounds
these similarities.

LEMMA 10.6. For any nonnegative integer k, we have

S∧(Q⊗k+ ,Q⊗k− ) ≥ 1 −
√

1 − [1 − dII]k ≥ 1 − √
kdII.(10.17)

PROOF. To study divergences (or equivalently, similarities) between k-fold
product distributions, the standard way is to link the divergence (or similarity) of
the product with the ones of base distributions. This leads to tensorization equal-
ities or inequalities. To obtain a tensorization inequality for S∧, we introduce the
similarity associated with the square root function (which is nonnegative and con-
cave):

S√(P,Q) �
∫ √

dPdQ

and use the following lemmas:

LEMMA 10.7. For any probability distributions P and Q, we have

S∧(P,Q) ≥ 1 −
√

1 − S2√(P,Q).
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PROOF. Introduce the variational distance V (P,Q) as the f -divergence asso-
ciated with the convex function f :u 	→ 1

2 |u−1|. From Scheffé’s theorem, we have
S∧(P,Q) = 1 − V (P,Q) for any distributions P and Q. Introduce the Hellinger

distance H , which is defined as H(P,Q) ≥ 0 and 1 − H 2(P,Q)
2 = S√(P,Q) for

any probability distributions P and Q. The variational and Hellinger distances are
known (see, e.g., [46], Lemma 2.2) to be related by

V (P,Q) ≤
√

1 −
(

1 − H 2(P,Q)

2

)2

,

hence the result. �

LEMMA 10.8. For any distributions P(1), . . . ,P(k), Q(1), . . . ,Q(k), we have

S√(
P(1) ⊗ · · · ⊗ P(k),Q(1) ⊗ · · · ⊗ Q(k))
= S√(

P(1),Q(1)) × · · · × S√(
P(k),Q(k)).

PROOF. When it exists, the density of P(1) ⊗· · ·⊗P(k) w.r.t. Q(1) ⊗· · ·⊗Q(k)

is the product of the densities of P(i) w.r.t. Q(i), i = 1, . . . , k, hence the desired
tensorization equality. �

From the last two lemmas, we obtain

S∧(Q⊗k+ ,Q⊗k− ) ≥ 1 −
√

1 − S2k√ (Q+,Q−).

Now we have

S2√(Q+,Q−) = [√
p+ p− +

√
(1 − p+)(1 − p−)

]2

= 1 − [√
p+(1 − p−) −

√
(1 − p+)p−

]2

= 1 − dII.

So we get

S∧(Q⊗k+ ,Q⊗k− ) ≥ 1 − √
1 − (1 − dII)k ≥ 1 − √

kdII,(10.18)

where the second inequality follows from the inequality 1 − xk ≤ k(1 − x) that
holds for any 0 ≤ x ≤ 1 and k ≥ 1. This ends the proof of (10.17). �

By computing the second derivative of u 	→ √
1 − e−u, we obtain that this

function is concave. So for any a ∈ [0;1], the functions x 	→ 1 − √
1 − ax and

x 	→ 1 − √
ax are convex. The convexity of these functions and Lemmas 10.5

and 10.6 imply Lemma 10.4.

10.9. Proofs of Theorems 8.3 and 8.4. We consider a (m̃, w̃, d̃II)-hypercube
with

m̃ = �log2 |G|�,
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h1 = −B and h2 = B , and with w̃ and d̃II to be taken in order to (almost)
maximize the bound.

Case q = 1. Computations lead to

dI = |h2 − h1|
[∣∣∣∣p+ − 1

2

∣∣∣∣ ∧
∣∣∣∣p− − 1

2

∣∣∣∣
]

=
√

dII

2
|h2 − h1| = B

√
dII

so that, choosing w̃ = 1/m̃, (8.14) gives

sup
P∈H

{
ER(ĝ) − min

g
R(g)

}
≥ B

√
dII

(
1 −

√
ndII/m̃

)
.

Maximizing the lower bound w.r.t. dII, we choose dII = m̃
4n

∧ 1 and obtain the
announced result.

Case 1 < q ≤ 1 +
√

m̃
4n

∧ 1. Tedious computations put in Appendix A.1 lead
to: for any p ∈ [0;1],

φ(p) = p(1 − p)
|h2 − h1|q

[p1/(q−1) + (1 − p)1/(q−1)]q−1(10.19)

and

φ′′(p) = − q

q − 1
[p(1 − p)](2−q)/(q−1)

(10.20)

× |h2 − h1|q
[p1/(q−1) + (1 − p)1/(q−1)]q+1 .

From (8.11), for any 0 < ε ≤ 1, we get

dI ≥ dII

2

∫ (1+ε)/2

(1−ε)/2
[t ∧ (1 − t)]

∣∣∣∣φ′′
(

1 − √
dII

2
+ √

dIIt

)∣∣∣∣dt

≥ dII

2

ε(2 − ε)

4
inf

u∈[(1−ε
√

dII)/2;(1+ε
√

dII)/2]
|φ′′(u)|

≥ ε(2 − ε)

8
dII ×

∣∣∣∣φ′′
(

1 − ε
√

dII

2

)∣∣∣∣
≥ ε(2 − ε)

8
dII × q

q − 1

[
1 − ε2dII

4

](2−q)/(q−1) (2B)q

2q+1[(1 + ε
√

dII)/2](q+1)/(q−1)

≥ ε(2 − ε)

8
dII × 4qBq

q − 1

(
1 − ε

√
dII

)(2−q)/(q−1)(1 + ε
√

dII
)(1−2q)/(q−1)

= (1 − ε/2)qBq εdII

q − 1

(
1 − ε

√
dII

)(2−q)/(q−1)(1 + ε
√

dII
)(1−2q)/(q−1)

.



1640 J.-Y. AUDIBERT

Let K = (1 − ε
√

dII)
(2−q)/(q−1)(1 + ε

√
dII)

(1−2q)/(q−1). From (8.14), taking
w̃ = 1/m̃, we get

sup
P∈H

{
ER(ĝ) − min

g
R(g)

}
≥ (1 − ε/2)KqBq εdII

q − 1

(
1 −

√
ndII/m̃

)
.(10.21)

This leads us to choose dII = m̃
4n

∧ 1 and ε = (q − 1)
√

n
m̃

∨ 1
4 ≤ 1

2 and obtain

ER(ĝ) − min
g

R(g) ≥ 3qBq

8
K

{(
1

4

√
m̃

n

)
∨

(
1 −

√
n

m̃

)}
.

Since 1 < q ≤ 2 and ε
√

dII = q−1
2 , we may check that K ≥ 0.29 (to be compared

with limq→1 K = e−1 ≈ 0.37).

Case q > 1 +
√

m̃
4n

. We take w̃ = 1
n+1 ∧ 1

m̃
. From (8.4), (8.6) and (10.19), we

get dI = ψ1,0,−B,B(1/2) = φ−B,B(1/2) = Bq. From (8.15), we obtain

ER(ĝ) − min
g∈G

R(g) ≥
(�log2 |G|�

n + 1
∧ 1

)
Bq

(
1 − 1

n + 1
∧ 1

�log2 |G|�
)n

(10.22)

≥ e−1Bq

(�log2 |G|�
n + 1

∧ 1
)
,

where the last inequality uses [1 − 1/(n + 1)]n ↘ e−1.

Improvement when 1 +
√

m̃
4n

∧ 1 < q < 2. From (10.21), by choosing ε = 1/2

and introducing K ′ � (1 −√
dII/2)(2−q)/(q−1)(1 +√

dII/2)(1−2q)/(q−1), we obtain

sup
P∈H

{
ER(ĝ) − min

g
R(g)

}
≥ 3qBq

8
K ′ dII

q − 1

(
1 −

√
ndII/m̃

)
.

This leads us to choose dII = 4m̃
9n

∧ 1. Since
√

m̃
4n

∧ 1 < q − 1, we have
√

dII ≤
4
3(q − 1), hence K ′ ≥ (1 − 2

3(q − 1))(2−q)/(q−1)(1 + 2
3(q − 1))(1−2q)/(q−1). For

any 1 < q < 2, this last quantity is greater than 0.2. So we have proved that for

1 +
√

m̃
4n

∧ 1 < q < 2,

ER(ĝ) − min
g∈G

R(g) ≥ q

90(q − 1)
Bq �log2 |G|�

n
.(10.23)

Theorem 8.4 follows from (10.22) and (10.23).

10.10. Proof of Theorem 8.6.

10.10.1. Proof of the first inequality of Theorem 8.6. Let m̃ = �log2 |G|�.
Contrary to other lower bounds obtained in this work, this learning setting re-
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quires asymmetrical hypercubes of distributions. Here we consider a constant
m̃-dimensional hypercube of distributions with edge probability w̃ such that
p+ ≡ p, p− ≡ 0, h1 ≡ +B and h2 ≡ 0, where w̃, p and B are positive real pa-
rameters to be chosen according to the strategy described at the beginning of Sec-
tion 8.3. To have E|Y |s ≤ A, we need that m̃w̃pBs ≤ A. To ensure that a best
prediction function has infinite norm bounded by b, from the computations at the
beginning of Appendix A.1, we need that

B ≤ p1/(q−1) + (1 − p)1/(q−1)

p1/(q−1)
b.

This inequality is in particular satisfied for B = Cp−1/(q−1) for appropriate small
constant C depending on b and q . From the definition of the edge discrepancy
of type II, we have dII = p. In order to have the r.h.s. of (8.14) of order mwdI,
we want to have nw̃p ≤ C < 1. All the previous constraints lead us to take the
parameters w̃,p and B such that⎧⎨

⎩
B = Cp−1/(q−1),

m̃w̃pBs = A,

nw̃p = 1/4.

Let Q = m̃
n

∧ 1. This leads to p = CQ(q−1)/s , B = CQ−1/s and w̃ =
Cm̃−1Q1−(q−1)/s with C small positive constants depending on b, A, q and s.
Now from the definition of the edge discrepancy of type I and (8.10), we have

dI = p2

2

∫ 1

0
[t ∧ (1 − t)]|φ′′

0,B(tp)|dt

≥ p2

2

∫ 3/4

1/4

1

4
min[p/4;3p/4] |φ

′′
0,B(tp)|dt

≥ Cp2p(2−q)/(q−1)Bq

= C,

where the last inequality comes from (10.20). From (8.14), we get

sup
P∈P

{
ER(ĝ) − min

g∈G
R(g)

}
≥ CQ1−(q−1)/s .

10.10.2. Proof of the second inequality of Theorem 8.6. We still use m̃ =
�log2 |G|�. We consider a (m̃, w̃, d̃II)-hypercube with h1 ≡ −B and h2 ≡ +B ,
where w̃, d̃II and B are positive real parameters to be chosen according to the strat-
egy described at the beginning of Section 8.3. To have E|Y |s ≤ A, we need that
m̃w̃Bs ≤ A. To ensure that a best prediction function has infinite norm bounded
by b, from the computations at the beginning of Appendix A.1, we need that

B ≤ [1 + (d̃II)
1/2]1/(q−1) + [1 − (d̃II)

1/2]1/(q−1)

[1 + (d̃II)1/2]1/(q−1) − [1 − (d̃II)1/2]1/(q−1)
b.(10.24)
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For fixed q and b, this inequality essentially means that B ≤ Cd̃II
−1/2

since we
intend to take d̃II close to 0. In order to have the r.h.s. of (8.14) of order mwdI, we
want to have nw̃d̃II ≤ 1/4 where, once more, this last constant is arbitrarily taken.
The previous constraints lead us to choose⎧⎪⎨

⎪⎩
B = Cd̃II

−1/2
,

m̃w̃Bs = A,

nw̃d̃II = 1/4.

We still use Q = m̃
n

∧ 1. This leads to d̃II = CQ2/(s+2), B = CQ−1/(s+2) and
w̃ = Cm̃−1Qs/(s+2) with C small positive constants depending on b, A, q and s.
Now from (10.20), we have φ′′(t) ≥ CBq = CQ−q/(s+2) for t ∈ [p−;p+]. Using
(8.11) and (8.14), we obtain

sup
P∈P

{
ER(ĝ) − min

g∈G
R(g)

}
≥ CQ1−q/(s+2).

APPENDIX

A.1. Computations of the second derivative of φ for the Lq -loss. Let h1
and h2 be fixed. We start with the computation of φ. For any p ∈ [0;1], the quantity
ϕp(y) = p|y − h1|q + (1 − p)|y − h2|q is minimized when y ∈ [h1 ∧ h2;h1 ∨ h2]
and pq(y − h1)

q−1 = (1 − p)q(h2 − y)q−1. Introducing r = 1
q−1 and D = pr +

(1 − p)r , the minimizer can be written as y = prh1+(1−p)rh2
D

and the minimum is

φ(p) =
(
p

(1 − p)rq

Dq
+ (1 − p)

prq

Dq

)
|h2 − h1|q

= p(1 − p)
|h2 − h1|q

Dq−1 ,

where we use the equality rq = 1 + r . We get

1

|h2 − h1|q φ′(p) = 1 − 2p

Dq−1 + p(1 − p)(1 − q)rD−q[pr−1 − (1 − p)r−1]

= D−q{(1 − 2p)[pr + (1 − p)r ] − (1 − p)pr + p(1 − p)r ]}
= D−q{(1 − p)r+1 − pr+1},

hence
1

|h2 − h1|q φ′′(p) = −qrD−q−1[pr−1 − (1 − p)r−1][(1 − p)r+1 − pr+1]

−qrD−q−1[pr − (1 − p)r ]2

= −qrD−q−1pr−1(1 − p)r−1

= − q

q − 1

[p(1 − p)](2−q)/(q−1)

[p1/(q−1) + (1 − p)1/(q−1)]q+1 .
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A.2. Expected risk bound from Hoeffding’s inequality. Let λ′ > 0 and ρ be
a probability distribution on G. Let r(g) denote the empirical risk of a prediction
function g, that is, r(g) = 1

n

∑n
i=1 L(Zi, g). Hoeffding’s inequality applied to the

random variable W = Eg∼ρL(Z,g) − L(Z,g′) ∈ [−(b − a);b − a] for a fixed g′
gives

EZ∼P eη[W−EW ] ≤ eη2(b−a)2/2

for any η > 0. For η = λ′/n, this leads to

EZn
1
eλ′[R(g′)−Eg∼ρR(g)−r(g′)+Eg∼ρr(g)] ≤ e(λ′)2(b−a)2/(2n).

Consider the Gibbs distribution ρ̂ = π−λ′r . This distribution satisfies

Eg′∼ρ̂ r(g′) + K(ρ̂,π)/λ′ ≤ Eg∼ρr(g) + K(ρ,π)/λ′.

We have

EZn
1
Eg′∼ρ̂R(g′) − Eg∼ρR(g)

≤ EZn
1

{
Eg′∼ρ̂[R(g′) − Eg∼ρR(g) − r(g′) − Eg∼ρr(g)]

+ K(ρ,π) − K(ρ̂,π)

λ′
}

≤ K(ρ,π)

λ′ + EZn
1

1

λ′ log Eg′∼πeλ′[R(g′)−Eg∼ρR(g)−r(g′)−Eg∼ρr(g)]

≤ K(ρ,π)

λ′ + 1

λ′ log Eg′∼πEZn
1
eλ′[R(g′)−Eg∼ρR(g)−r(g′)−Eg∼ρr(g)]

≤ K(ρ,π)

λ′ + λ′(b − a)2

2n
.

This proves that for any λ > 0, the generalization error of the algorithm which
draws its prediction function according to the Gibbs distribution π−λ�n/2 satisfies

EZn
1
Eg′∼π−λ�n/2R(g′) ≤ min

ρ∈M

{
Eg∼ρR(g) + 2

[
λ(b − a)2

8
+ K(ρ,π)

λn

]}
,

where we use the change of variable λ = 2λ′/n in order to underline the difference
with (6.4).
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