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ON-LINE PREDICTIVE LINEAR REGRESSION1

BY VLADIMIR VOVK, ILIA NOURETDINOV AND ALEX GAMMERMAN

Royal Holloway, University of London

We consider the on-line predictive version of the standard problem of
linear regression; the goal is to predict each consecutive response given the
corresponding explanatory variables and all the previous observations. The
standard treatment of prediction in linear regression analysis has two draw-
backs: (1) the classical prediction intervals guarantee that the probability of
error is equal to the nominal significance level ε, but this property per se
does not imply that the long-run frequency of error is close to ε; (2) it is
not suitable for prediction of complex systems as it assumes that the number
of observations exceeds the number of parameters. We state a general result
showing that in the on-line protocol the frequency of error for the classical
prediction intervals does equal the nominal significance level, up to statistical
fluctuations. We also describe alternative regression models in which infor-
mative prediction intervals can be found before the number of observations
exceeds the number of parameters. One of these models, which only assumes
that the observations are independent and identically distributed, is popular in
machine learning but greatly underused in the statistical theory of regression.

1. Introduction. Let yn, n = 1,2, . . . , be the sequence of response variables
to be predicted, and let xn = (xn,1, . . . , xn,K), n = 1,2, . . . , be the correspond-
ing vectors of explanatory variables. The standard assumption of linear regression
analysis is that the explanatory vectors xn are deterministic and

yn = α + β · xn + ξn,(1)

where α is an unknown coefficient, β ∈ R
K is an unknown vector of coefficients,

and ξn, n = 1,2, . . . , are IID (independent and identically distributed) Gaussian
random variables with mean 0 and unknown variance σ 2 > 0 [we will write ξn ∼
N(0, σ 2)]. The model (1) will be called the Gauss linear model. It is the standard
textbook model.

The standard classes of problems associated with the Gauss linear model are
parameter estimation, testing hypotheses about parameters and prediction. In this
paper we will be concerned only with prediction, mainly in the form of prediction
intervals rather than point predictions.
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A major drawback of the Gauss linear model is that the corresponding pre-
diction intervals are uninformative (i.e., coincide with the whole real line) unless
the number of observations exceeds the number of parameters. The responses of
a complex system cannot be realistically expected to be modeled using a small
number of parameters, whereas the number of observations can be very limited.
This motivates consideration of three other models in this paper, none of which
requires that the number of observations should exceed the number of parameters.

Perhaps the most important of these models is what we call the IID model: it
is only assumed that the sequence of pairs (xn, yn) is IID. This model is nonpara-
metric, effectively involving infinitely many parameters. Despite this, the model
does allow one to obtain informative prediction intervals. The IID model, how-
ever, also has a fundamental limitation: informative prediction intervals become
possible only when the number of observations reaches 1/ε, where ε is the chosen
significance level.

Our third regression model combines the assumption (1) with the assumption
that xn are independent (between themselves and of ξ1, ξ2, . . .) and identically dis-
tributed Gaussian random vectors. We call it the MVA model, with MVA referring
to “multivariate analysis.” It has also been widely discussed in the statistical liter-
ature; for example, Sampson’s (1974) “two regressions” refers to the Gauss linear
model and the MVA model. This model is narrower than both Gauss linear and IID
models, and its strong assumptions ensure that informative prediction intervals can
be produced almost right away.

Finally, we consider the combination of the Gauss linear and IID models, which
we call the IID–Gauss model: in addition to (1) we assume that the explanatory
vectors xn, n = 1,2, . . . , are random and IID (not necessarily Gaussian, as in the
MVA model) and that the sequence ξ1, ξ2, . . . is independent of the explanatory
vectors. This model, however, appears to be of secondary importance. Empirically,
it allows informative prediction intervals at significance level ε soon after the num-
ber of observations exceeds the minimum of 1/ε and the number of parameters.

All the models considered in this paper are shown in Figure 1, with arrows
leading from more general to more specific models. In this paper we begin (in
Section 5) with the IID model. This is the most common model used in mod-
ern day statistics and it does not involve the often unrealistic assumption that the

FIG. 1. The four models considered in this paper (the three main models are given in boldface).
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noise variables ξn are Gaussian or that the explanatory vectors xn are Gaussian.
An important advantage of the classical Gauss linear model, considered in Sec-
tion 6, is that the explanatory vectors are not assumed to be IID (in other words,
no “random design” is assumed). This model is essentially equivalent to making
no assumptions whatsoever about the distribution of xn and assuming that the ξn

in (1) are IID and distributed as N(0, σ 2) conditional on x1,x2, . . . . The Gauss
linear model (understood in this way) and the IID model are not comparable be-
tween themselves, but both contain the other two models: the IID–Gauss model
(Section 8), which is the intersection of the IID and Gauss linear models, and the
MVA model (Section 7), which makes the further assumption that the explanatory
vectors are Gaussian.

Fisher (1973), Section IV.3, emphatically defended the use of the Gauss linear
model even in the case where the distribution of the explanatory vectors is known
(with or without parameters). There is also a view in the literature that the Gauss
linear model and the MVA model are “essentially equivalent” [for a review of some
results in this direction, see Sampson (1974)]. Our conclusion, however, is similar
to Brown’s (1990): when the MVA model is true, it can be far more useful for
prediction; in particular, it can start giving informative prediction intervals long
before the number of observations reaches the number of parameters K (or the
inverse significance level 1/ε).

This paper uses a general method of prediction called conformal prediction.
The method is reviewed in detail in the monograph by Vovk, Gammerman and
Shafer (2005) and introduced in the work leading up to that monograph. For each
of the four models in Figure 1 we define a suitable confidence predictor, that is, a
strategy for producing prediction intervals or, more generally, prediction regions.
For the IID model we follow Vovk, Gammerman and Shafer (2005) and for the
Gauss linear model we use Fisher’s classical confidence predictor. The confidence
predictors for the MVA and IID–Gauss models are new.

We are interested in two criteria of quality of confidence predictors, which we
call “validity” and “accuracy.” For valid confidence predictors, the probability of
error equals the nominal significance level ε (or at least never exceeds ε, in which
case we will refer to them as “conservatively valid,” or just “conservative,” confi-
dence predictors). The second criterion is applied only to valid confidence predic-
tors: we want the prediction intervals to be as narrow as possible; in this paper we,
somewhat arbitrarily, measure the narrowness of a prediction interval [a, b] by its
length b − a. In particular, we want the prediction intervals to become bounded as
soon as possible.

Correspondingly, this paper uses two kinds of entities that one might want to
call “models.” The first kind is “hard models,” such as the four models in Figure 1.
These are the usual statistical models: our working hypothesis is that the data set
was generated by one of the probability distributions in the model. In particular,
the validity of our confidence predictors is allowed to depend on the hard model.
By default, the word “model” means “hard model.”
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In addition to the accepted hard model, one often has other a priori information
about the data-generating distribution: for example, only a few parameters might
provide the bulk of the information relevant to prediction. Whereas we might hesi-
tate to include such a priori information in the hard model explicitly, since it might
destroy the validity of our confidence predictor if this information happened to
be far from the truth, we might still be able to use such information in designing
accurate confidence predictors provided our model is flexible enough. A running
example in this paper, introduced in Section 4, will be a linear system with 100 pa-
rameters ten of which are felt to be especially important. This will be our “soft
model” (not defined formally); whether it is true or not affects only the accuracy,
but not validity, of our confidence predictors.

Separation of the available information about the data-generating distribution
into the hard model and soft model increases robustness of confidence predictors
with respect to modeling errors. If such an error occurs in the soft model, the
validity of predictions is not affected. At worst the predictions will become useless,
but they will not become misleading (with high probability under any distribution
in the hard model). For a further discussion and empirical study, see Gammerman
and Vovk (2007), Section 4.

The property of validity of conformal predictors can be stated in an especially
strong form in the on-line prediction protocol. It turns out that the true responses
fall outside the corresponding prediction regions independently for different obser-
vations. In combination with the law of large numbers this implies that, with high
probability, the frequency of error is approximately equal to the nominal signif-
icance level. Surprisingly, even for the classical prediction intervals in the Gauss
linear model this property had been unknown prior to the work leading up to Vovk,
Gammerman and Shafer (2005).

Two recent reviews of the theory of conformal prediction are Gammerman and
Vovk (2007) and Shafer and Vovk (2008). Parts of these papers are devoted to
regression problems.

Section 2 formally introduces the on-line prediction protocol, with a more de-
tailed discussion postponed until Section 9. In Section 3 we describe the method
of conformal prediction and state two key results (proved in the Appendix): one
asserts the strong validity and the other universality of conformal predictors. Sec-
tion 4 describes an artificial data set used in later sections for illustrating the per-
formance of various conformal predictors. The following Sections 5–8 apply the
method of conformal prediction to the IID, Gauss linear, MVA and IID–Gauss
models, in this order. Section 10 concludes.

2. On-line protocol, part I. In our prediction protocol, the task is to sequen-
tially predict yn, n = 1,2, . . . , from xn and (xi , yi), i = 1, . . . , n − 1. This on-line
protocol is popular in machine learning [see, e.g., Cesa-Bianchi and Lugosi (2006)
and references therein], but most statistical research (except some work on sequen-
tial analysis) is still done in the “off-line,” or “batch,” framework, where one starts
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from a complete sample (x1, y1), . . . , (xN,yN). One of the few statisticians advo-
cating the on-line protocol (under the name “prequential,” or predictive sequential)
has been Dawid (1984).

Weak and strong validity and median accuracy. To explain what precisely we
mean by validity and accuracy, the two criteria of predictive performance men-
tioned in Section 1, we will need the notation introduced in the following descrip-
tion of the on-line prediction protocol.

ON-LINE PREDICTION PROTOCOL

FOR n = 1,2, . . .:
Predictor observes xn ∈ R

K ;
Predictor outputs �ε

n ⊆ R for all ε ∈ (0,1);
Predictor observes yn ∈ R;
errεn := Iyn /∈�ε

n
for all ε ∈ (0,1);

Lε
n := sup�ε

n − inf�ε
n for all ε ∈ (0,1)

END FOR.

(As usual, IF is defined to be 1 if the condition F holds and 0 if not.) At each
step and for each significance level ε, Predictor outputs a prediction region (usu-
ally, although not necessarily, an interval) �ε

n ⊆ R. We require that, for all n, the
family �ε

n of prediction regions should be nested: �
ε1
n ⊆ �

ε2
n whenever ε1 > ε2.

An error is registered, errεn = 1, if the prediction region fails to contain the true
response yn, and the accuracy of this particular prediction is measured by the
length Lε

n of the corresponding prediction interval co�ε
n (coE standing for the

convex hull of the set E).
Let Errεn := errε1 +· · ·+errεn be the cumulative number of errors made up to, and

including, step n. In the following sections, we will find it convenient to distinguish
between two notions of validity, “weak validity” and “strong validity.”

DEFINITION 1. A confidence predictor is defined to be a measurable predic-
tion strategy �ε

n = �ε(x1, y1, . . . ,xn−1, yn−1,xn) in the on-line prediction proto-
col.

DEFINITION 2. A confidence predictor is weakly valid in some statistical
model if the probability that errεn = 1 is ε, for each ε ∈ (0,1) and each n under
any probability distribution in the model.

The definition of weak validity is standard [cf. Cox and Hinkley (1974), (75) on
page 243]. Weak validity by itself does not imply that Errn/n is likely to be close
to ε for large n.

DEFINITION 3. A confidence predictor is strongly valid if it is weakly valid
and, for each ε ∈ (0,1), the events errεn = 1, n = 1,2, . . . , are independent.
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Figure 3 below shows the plot of Errεn against n for a specific confidence predic-
tor considered in this paper; it is typical of our predictors that the slopes of the plots
of Errεn are close to the corresponding significance levels ε (we use the significance
levels 5%, 1% and 0.5% in all our figures, represented by the corresponding con-
fidence levels 1 − ε in the legends). This is the only figure in this paper illustrating
the validity of our confidence predictors; such figures, in view of the mathematical
results guaranteeing validity, tend to be uninformative.

We will measure the accuracy of the predictions made for the first n observations
by the median Mε

n of the sequence Lε
1, . . . ,L

ε
n; again, this measure is arbitrary, to

a large degree. A plot of Mε
n against n will be called the median-accuracy plot;

examples of such plots are given in Figures 2 and 4–6.
Unfortunately, the simple notions of validity introduced earlier have to be ex-

tended to become useful for our purpose. This is needed because, for example, the
classical prediction intervals are uninformative before the number of observations
reaches the number of parameters, and so for small n the error probability is zero
rather than ε. Let N be a set of positive integer numbers (we are mainly interested
in the case where N has the form {m,m + 1, . . .}).

DEFINITION 4. We say that a confidence predictor is weakly valid for n ∈ N
in a statistical model if the probability is ε that it makes an error, errεn = 1, at step n

under any probability distribution in the model and for all n ∈ N and ε ∈ (0,1).
It is strongly valid for n ∈ N if, in addition, errεn, n ∈ N , are independent for any
fixed ε.

The role of the on-line protocol. The exposition of this paper is based on the
on-line protocol, but the majority of our findings are not constrained to this specific
protocol. For example, the fact that valid and informative prediction intervals can
become feasible in the MVA model before the number of observations exceeds the
number of parameters does not depend on the prediction protocol. In the absence
of the on-line protocol, however, “validity” should be understood in the standard
sense of weak validity.

3. Conformal prediction. In this section we define a class of confidence pre-
dictors, called conformal predictors, and state results about their validity and uni-
versality, in a certain sense.

Notions of sufficiency. Fix some observation space Z. We will be interested
in the space Z = R

K × R of pairs (x, y); in general, Z is a measurable space
assumed to be Luzin, to ensure the existence of regular conditional probabilities.
To define conformal predictors, we will need not only a statistical model on Z∞ but
also a sequence of sufficient statistics Sn :Zn → �n, n = 1,2, . . .; we will always
assume that �n = Sn(Z

n). We will need a strengthened form of sufficiency; in our
definitions we mainly follow Lauritzen (1988), Section II.2.
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The sequence (Sn) is algebraically transitive if there exists a sequence of mea-
surable functions Fn :�n−1 × Z → �n, n = 2,3, . . . , such that

Sn(ζ1, . . . , ζn−1, ζn) = Fn(Sn−1(ζ1, . . . , ζn−1), ζn)

for all (ζ1, . . . , ζn−1, ζn) ∈ Zn. Intuitively, Sn(ζ1, . . . , ζn) is the summary of the
first n observations, and the condition of algebraic transitivity means that the sum-
mary can be updated on-line.

The sequence (Sn) is totally sufficient for a statistical model P on Z∞ if, for
each n = 1,2, . . .:

• Sn is sufficient for P ;
• ζ1, . . . , ζn and ζn+1, ζn+2, . . . are conditionally independent given Sn(ζ1, . . . ,

ζn), where (ζ1, ζ2, . . .) ∼ P , for any P ∈ P .

The second condition ensures that Sn(ζ1, . . . , ζn) carries all information in
ζ1, . . . , ζn that can be used for predicting the future observations ζn+1, ζn+2, . . . .

A sequence of statistics that is both algebraically transitive and totally sufficient
will be called an ATTS sequence. In the rest of this paper we will often say “model”
to mean a statistical model P equipped with an ATTS sequence (Sn). This makes
the word “model” ambiguous as we often omit “statistical” in “statistical model,”
but this should not lead to misunderstandings.

Each of the four statistical models considered in this paper (see Figure 1) will be
complemented with an ATTS sequence; in all four cases the observation space Z

will be R
K × R.

Testing conformity. The main ingredient of conformal prediction is statistical
testing of conformity of a new observation ζn to the old observations ζ1, . . . , ζn−1.
In general, our statistical tests will be randomized.

Fix a statistical model P with an ATTS sequence Sn :Zn → �n. Define �0 to be
a fixed one-element set. Any sequence of measurable functions An :�n−1 × Z →
R, n = 1,2, . . . , is called a nonconformity measure; An will be our test statistics.
Given a nonconformity measure (An), for each sequence ζ1, ζ2, . . . of observations
and each sequence τ1, τ2, . . . ∈ [0,1]∞ we define the p-values

pn = pn(ζ1, . . . , ζn, τn)

:= P(Arnd
n > Aobs

n | Srnd
n = Sobs

n ) + τnP(Arnd
n = Aobs

n | Srnd
n = Sobs

n ),(2)

n = 1,2, . . . ,

where Arnd
n := An(Sn−1(ξ1, . . . , ξn−1), ξn) and Srnd

n := Sn(ξ1, . . . , ξn) are the “ran-
dom” values, Aobs

n := An(Sn−1(ζ1, . . . , ζn−1), ζn) and Sobs
n := Sn(ζ1, . . . , ζn) are

the “observed” values, and the probabilities are taken with respect to (ξ1, ξ2, . . .) ∼
P for some P ∈ P . Since Sn are sufficient statistics, pn do not depend on P ∈ P
(at least for a suitable choice of regular conditional probabilities). We will be in-
terested in two cases: deterministic, where τn = 1 for all n, and randomized, where
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τ1, τ2, . . . are generated independently from the uniform distribution U on [0,1]
(such τ1, τ2, . . . model the output of a random numbers generator).

THEOREM 1. Suppose that the sequence of observations (ζ1, ζ2, . . .) ∈ Z∞
is generated from a probability distribution P ∈ P and that the random numbers
(τ1, τ2, . . .) ∼ U∞ are independent of the observations. The p-values (2) are then
independent and distributed uniformly on [0,1]:

(p1,p2, . . .) ∼ U∞.

For a proof of this theorem, see the Appendix. The fact that pn ∼ U is well known,
at least in the continuous case [see, e.g., Cox and Hinkley (1974), page 66; (2) is
a version of Cox and Hinkley’s (1)].

Conformal prediction. We start by extending, and spelling out in a greater
detail, the notion of a confidence predictor: in the general theory of this section and
in its application to the IID model in Section 5 we will need an element (typically
quite small) of randomization in confidence predictors.

DEFINITION 5. A randomized confidence predictor is a measurable function
which maps every significance level ε ∈ (0,1), every data sequence x1, y1, . . . ,

xn−1, yn−1, every vector xn of explanatory variables, and every number τ ∈ [0,1]
to a set �ε

n = �ε(x1, y1, . . . ,xn−1, yn−1,xn, τ ) ⊆ R. We will use the notation �ε
n

when the data sequence, the vector of explanatory variables, and the number τ are
clear from the context.

Let the observation space be Z = R
K × R. Once the p-values (2) are defined,

we can use them for confidence prediction [this is a standard procedure; cf. Cox
and Hinkley (1974), (76) on page 243]: we set

�ε(x1, y1, . . . ,xn−1, yn−1,xn, τn)
(3)

:= {y ∈ R :pn((x1, y1), . . . , (xn−1, yn−1), (xn, y), τn) > ε}.

DEFINITION 6. The randomized confidence predictor defined by (3) is called
the smoothed conformal predictor determined by the nonconformity measure (An).
A smoothed conformal predictor is a smoothed conformal predictor determined by
some nonconformity measure.

The following statement immediately follows from Theorem 1 and asserts that
smoothed conformal predictors are strongly valid.

COROLLARY 1. If the sequence of observations (xn, yn), n = 1,2, . . . , is gen-
erated by a probability distribution P ∈ P and a smoothed conformal predictor
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is fed with random numbers (τ1, τ2, . . .) ∼ U∞ independent of the observations,
the error sequence errε1, errε2, . . . at any significance level ε is a sequence of IID
Bernoulli random variables with parameter ε.

The adjective “smoothed” refers to using random numbers; if we take τn = 1
for all n = 1,2, . . . , we will obtain the definition of a “deterministic conformal
predictor,” or just “conformal predictor,” and in this case we omit τn from our
notation.

DEFINITION 7. A conformal predictor is the confidence predictor defined by

�ε(x1, y1, . . . ,xn−1, yn−1,xn)

:= {y ∈ R :pn((x1, y1), . . . , (xn−1, yn−1), (xn, y),1) > ε},
where the p-values pn are defined by (2).

Notice that when a conformal predictor makes an error, the corresponding
smoothed conformal predictor also makes an error. In combination with Corol-
lary 1, we can see that conformal predictors are conservative, in the sense that,
for each ε, their error sequence errε1, errε2, . . . is dominated by a sequence of
IID Bernoulli random variables with parameter ε. In particular, whereas we
have limn→∞(Errεn/n) = ε a.s. for smoothed conformal predictors, we only have
lim supn→∞(Errεn/n) ≤ ε a.s. for conformal predictors.

We will see that there is no difference between conformal predictors and the
corresponding smoothed conformal predictors for the Gauss linear model and n ≥
K + 3 since the second addend on the right-hand side of (2) is then zero. There
is also no difference for the MVA model and n ≥ 3; however, the difference is
important (although usually barely noticeable on error and accuracy plots) for the
IID model.

A natural question is whether there are other ways to achieve validity, except
conformal prediction. The following theorem will give a negative answer to a ver-
sion of this question.

DEFINITION 8. A confidence predictor � is invariant if �ε
n, n > 1, depends on

the first n − 1 observations only through the value of Sn−1 on those observations.

The use of invariant confidence predictors is natural in view of the sufficiency
principle; see, for example, Cox and Hinkley (1974), Section 2.3(ii). Let N be a set
of positive integers. We say that a confidence predictor �† is at least as accurate
as another confidence predictor � for n ∈ N if

(�†)ε(x1, y1, . . . ,xn−1, yn−1,xn) ⊆ �ε(x1, y1, . . . ,xn−1, yn−1,xn)

for all ε, all n ∈ N , and P -almost all x1, y1, . . . ,xn−1, yn−1,xn, under any proba-
bility distribution P ∈ P .
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Recall that a statistic S taking values in a measurable space � is said to be
boundedly complete (with respect to the statistical model P ) if, for any bounded
measurable function f :� → R, the following condition is satisfied: the expected
value EP (f (S)) of f (S) is zero under all P ∈ P only if f (S) = 0 P -almost surely
for all P ∈ P .

THEOREM 2. Let N be a set of positive integers. Suppose the ATTS statis-
tics Sn are boundedly complete for n ∈ N . If a confidence predictor � is invariant
and weakly valid for n ∈ N , then there is a conformal predictor that is at least as
accurate as � for n ∈ N .

This theorem is also proved in the Appendix. An important step toward its proof
was made by Takeuchi (1975), page 31.

The condition of bounded completeness holds for the Gauss linear model and
the MVA model by the standard completeness result for exponential statistical
models [see, e.g., Theorem 4.1 in Lehmann (1986)], and it is also known to
hold for the IID model [see the theorem on page 797 in Bell, Blackwell and
Breiman (1960)].

4. Data set. We will illustrate the accuracy of various confidence predic-
tors using the following artificially generated data set with 600 observations and
K = 100 explanatory variables. The components xn,k of xn are independently gen-
erated from N(0,1), and the responses yn are generated according to (1) with
ξn ∼ N(0,1) independent between themselves and of all xn,k , with α = 100 and
with the following components βk of β:

βk :=
{

(−1)k−110, k = 1, . . . ,10,
(−1)k−1, k = 11, . . . ,100.

The probability distribution generating this data set belongs to all four models
considered in this paper (Figure 1). It is natural to expect that more specific models,
when true, will lead to better predictions. In one respect this is true: more general
models allow informative predictions later, as shown in Table 1 (to be explained in
later sections). However, soon after the threshold given in the table is reached, the
quality of prediction becomes very similar on our data set.

The (informal) soft model guiding the choice of the nonconformity measure will
include the assumption of linearity (1) and the knowledge, or guess, that the first
10 explanatory variables are much more important than the rest.

Relationship (1) between the response and explanatory variables can be written
as

yn = γ · zn + ξn,(4)

where

γ :=
(

α

β

)
∈ R

K+1 and zn :=
(

1
xn

)
∈ R

K+1.



1576 V. VOVK, I. NOURETDINOV AND A. GAMMERMAN

TABLE 1
Steps at which informative prediction becomes possible for the four

models; ε is the significance level (ε < 1/2 is assumed) and
K is the number of parameters

The first step at which prediction intervals
Model can become informative

IID model 	1/ε

Gauss linear model K + 3
MVA model 3
IID–Gauss model min(	1/ε
,K + 3)

For l = 1,2, . . . , let Zl be the l × (K + 1) matrix whose rows are z′
i , i = 1, . . . , l,

and yl be the vector whose ith element is yi , i = 1, . . . , l. We will sometimes refer
to the first column of Zl as the dummy column.

5. The IID model. The statistical model considered in this section is nonpara-
metric: we simply assume that the observations (xn, yn) are IID. Notice that this
does not involve the assumption of linearity of the “true” regression function or the
assumption of a Gaussian noise. Linearity is, however, an important component of
the soft model used for choosing a suitable nonconformity measure.

The ATTS statistics are

Sn := �(x1, y1), . . . , (xn, yn)�,

where we use �a1, . . . , an� to denote the bag, or multiset, consisting of a1, . . . , an

(some of these elements may coincide). For each n, the conditional distribution of
(ξ1, . . . , ξn) given that

�ξ1, . . . , ξn� = �(x1, y1), . . . , (xn, yn)�,

where ξi are IID random elements taking values in R
K × R, assigns (with proba-

bility one) the same probability, 1/n!, to every ordering (xπ(1), yπ(1)), . . . , (xπ(n),

yπ(n)) of the bag �(x1, y1), . . . , (xn, yn)�.
The IID model is typical in that there is a great flexibility in choosing a non-

conformity measure for use in conformal prediction. Suppose, for example, that
the number of explanatory variables K is too large for us to estimate all the βk

and α in the soft model (1). We believe, however, that the first K†
n � K of the

explanatory variables are especially important, and it is feasible to estimate the
corresponding βk , k = 1, . . . ,K†

n , and α.
Fix temporarily a positive integer number n. We will write y for yn, Z for Zn

and K† for K†
n . Let U be the submatrix of Z consisting of the first K† +1 columns

of Z: those that correspond to the explanatory variables deemed to be useful at this
stage plus the dummy column 1. To test the conformity of the nth observation to
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the first n−1 observations, we will first fit a hyperplane to all n observations using
the relevant explanatory variables. Applying a small “ridge coefficient” a > 0 to
avoid the need to invert singular matrices, we obtain the vector of residuals

e := y − U(U′U + aI)−1U′y,(5)

whose components will be denoted e1, . . . , en.
We will be interested in the conformal predictor determined by the nonconfor-

mity measure

An(Sn−1(x1, y1, . . . ,xn−1, yn−1), (xn, yn)) := |en|.(6)

Deleted and, especially, studentized residuals would also be a natural choice [see,
e.g., Vovk, Gammerman and Shafer (2005), pages 34–35]. In our experience,
however, the difference is not significant, and we stick to the simplest choice.
The confidence predictor obtained from this conformal predictor by replacing the
prediction regions �ε

n with the prediction intervals co�ε
n will be called the IID

predictor (cf. the comments at the end of this section).
The IID predictor can be implemented fairly efficiently. First notice that for the

IID model the formula (2) for p-values can be simplified to

pn = |{i :αi > αn}| + τn|{i :αi = αn}|
n

,(7)

where αi := An(�ζ1, . . . , ζi−1, ζi+1, . . . , ζn�, ζi), i ranges over {1, . . . , n}, and |E|
stands for the size of the set E. In the case of the nonconformity measure (6),
αi = |ei |. The residuals (5) can be written in the form

e = y − U(U′U + aI)−1U′y = Cy,

where C is the matrix I − U(U′U + aI)−1U′, not depending on the response vari-
ables. If we fix the first n − 1 response variables yi and vary the last one, y, the
residuals ei = ei(y), i = 1, . . . , n, become linear functions of y (this fact will also
be used in Section 7). By (7) with τn := 1, the p-value is the fraction of i = 1, . . . , n

satisfying |ei(y)| ≥ |en(y)|; therefore, as y varies from −∞ to ∞, the p-value can
change only at the at most 2n−2 points (called critical points) which are solutions
to the linear equations ei(y) = en(y) and ei(y) = −en(y). This divides the real line
into at most 4n − 3 intervals: the critical points, considered as degenerate closed
intervals, the open intervals bounded on both sides by adjacent critical points, and
the two unbounded open intervals to the left of the leftmost critical point and to
the right of the rightmost critical point; if there are no critical points, this collapses
into one unbounded open interval R. We can compute the p-value for one point
in each of these intervals and then compute �ε

n as the union of the intervals with
p-values exceeding ε. The computation of the IID prediction interval co�ε

n can
be simplified if we notice that the set �ε

n is closed (which is opposite to what we
will have for the Gauss linear and MVA models): assuming that the set of critical
points is nonempty, co�ε

n is bounded if and only if the two unbounded intervals
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have p-values at most ε, in which case the end-points of co�ε
n can be found as the

leftmost and rightmost critical points with p-values exceeding ε. Computing �ε
n

and co�ε
n from scratch (e.g., without using the results of computations from the

previous steps of the on-line protocol) takes time O(n logn) [see Vovk, Gammer-
man and Shafer (2005), page 33].

For use in our experiments with the artificial data set described in Section 4, we
take

K†
n :=

{
10, if n < 103,
100, otherwise,

(8)

and so define U as the first 11 columns of Z if n < 103 and as the full Z other-
wise. Our chosen value for the threshold, 103, appeared to us slightly less arbitrary
than other choices, since it is the first step when the classical prediction intervals
[see (10)] become bounded. However, the quality of the estimates of α and the
100 components of β is still poor when n is close to 103. This affects the quality
of our prediction intervals but does not show on the median-accuracy plots. The
value of the ridge coefficient is always a = 0.01.

As Figure 2 shows, the IID predictor works well for our data set if the signifi-
cance level is not too demanding: it can be seen from (7) (with τn := 1) that for the
IID prediction interval co�ε

n to be bounded the number of observations n has to
be at least 1/ε (as Table 1 says). For example, for the significance level ε = 0.5%,
the IID predictor requires 200 observations to produce bounded predictions, and
this shows on the median-accuracy plot at n = 399 (since for n < 399 at least half
of the observed prediction intervals are infinitely wide).

The IID model is nonparametric but we can see that it still admits valid con-
fidence predictors (or conservative confidence predictors if one insists on using
deterministic predictors). The threshold 1/ε can be said to play the role of the
number of parameters, and the nonparametric nature of the model is reflected in

FIG. 2. The median-accuracy plot for the IID predictor. The three significance levels used in this
and all the following figures are ε = 0.05,0.01,0.005, shown in the form 100(1 − ε)% (the corre-
sponding confidence levels) in the legends.
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FIG. 3. The cumulative numbers of errors made by the IID predictor: Errεn is plotted against n.

the fact that 1/ε → ∞ as ε → 0. Since 1/ε tends to ∞ relatively slowly, such
an infinite-dimensional model may be better for the purpose of prediction than a
K-dimensional model with a very large K .

Theorem 2 is not directly applicable to the IID model, since only smoothed
conformal predictors are valid, as the latter term is used in this paper. Vovk, Gam-
merman and Shafer (2005), Section 2.4, state two results of the same nature about
the IID model.

There are two sources of conservativeness for the IID predictor as described
above (and used for producing Figure 2). First, we used a deterministic predictor
(taking τn = 1 for all n), and second, we replaced each prediction region by its con-
vex hull. Our experiments (see, e.g., Figure 3) show that we still have approximate
validity.

For each model considered in this paper except the Gauss linear model we define
a nonconformity measure involving the matrix U defined earlier in this section. In
the case of the IID model, we have used the nonconformity measure (6) and called
the corresponding conformal predictor with �ε

n replaced by co�ε
n the IID predic-

tor [it was called “Ridge Regression Confidence Machine” in Vovk, Gammerman
and Shafer (2005)]. Of course, our brief term is somewhat misleading: it should
always be borne in mind that the conformal predictor leading to the IID predictor
is only one of many conformal predictors that can be defined in the IID model.
Similarly, in the following three sections we will introduce the Gauss predictor,
the MVA predictor and the IID–Gauss predictor, which will also correspond to
specific nonconformity measures.

6. The Gauss linear model. Let γ̂ l := (Z′
lZl)

−1Z′
lyl be the least-squares es-

timate of the parameter vector γ in (4) from the first l observations. For simplicity,
we will assume that the matrix Zl has full rank [i.e., rank Zl = min(l,K + 1)] for
all l; this implies that γ̂ l is well defined for l ≥ K + 1.
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Let ŷn be the least-squares prediction γ̂ n−1 · zn for yn and

σ̂ 2
l := 1

l − K − 1
(yl − Zl γ̂ l)

′(yl − Zl γ̂ l)

be the standard estimate of σ 2 from Zl and yl . It is well known that in the Gauss
linear model the ratio

Tn := yn − ŷn√
1 + z′

n(Z
′
n−1Zn−1)−1znσ̂n−1

, n = K + 3,K + 4, . . . ,(9)

has the t-distribution with n − K − 2 degrees of freedom. This gives the classical
weakly valid prediction interval for the nth response,

�ε
n := {

y ∈ R : |y − ŷn| < t
ε/2
n−K−2

√
1 + z′

n(Z
′
n−1Zn−1)−1znσ̂n−1

}
,

(10)
n ≥ K + 3,

where tδm is the upper δ point of the t-distribution with m degrees of freedom. [See,
e.g., Seber and Lee (2003), (5.27).] We set �ε

n to R when n < K + 3.
Later in this section we will see that Corollary 1 implies the following property

of the classical prediction intervals for the Gauss linear model.

COROLLARY 2. Let ε ∈ (0,1). The events yn /∈ �ε
n, n = K + 3,K + 4, . . . ,

are independent. In particular, the confidence predictor (10) is strongly valid for
n ≥ K + 3.

REMARK. We have not seen Corollary 2 stated explicitly in the literature,
but some closely related facts are known. Lemma 1 in Brown, Durbin and
Evans (1975) asserts that (9) with σ̂n−1 removed are independent N(0, σ 2) ran-
dom variables; this can be used for prediction when the standard deviation σ is
known. Seillier-Moiseiwitsch [(1993), Example 1] shows that the statistics Tn are
independent when K = 0. It is interesting that both papers use the independence
of Tn for testing rather than for prediction.

Let us now see that some conformal predictor outputs the classical prediction
intervals (10). This will demonstrate that Corollary 2 is indeed a special case of
Corollary 1.

The ATTS statistics for the Gauss linear model are

Sn(x1, y1, . . . ,xn, yn) :=
(

x1, . . . ,xn,

n∑
i=1

yi,

n∑
i=1

yixi ,

n∑
i=1

y2
i

)
.

(It is natural to have x1, . . . ,xn as components of Sn, although they are superfluous
under our original definition, in which x1,x2, . . . are deterministic.) The prediction
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intervals (10) are precisely the prediction regions output by the conformal predictor
corresponding to the nonconformity measure

An(Sn−1(x1, y1, . . . ,xn−1, yn−1), (xn, yn))
(11)

:= |yn − ŷn|√
1 + z′

n(Z
′
n−1Zn−1)−1znσ̂n−1

[cf. (9); the goodness of the definition follows from the formulas given at the be-
ginning of this section]. The expression on the right-hand side of (11) can be re-
placed by other natural expressions, such as |yn − ŷn|. See Vovk, Gammerman and
Shafer (2005), Section 8.5, for further details.

According to our general convention, the conformal predictor (10) is called the
Gauss predictor (although its discoverer was Fisher rather than Gauss).

We have already mentioned that the classical confidence predictor, �ε
n given

by (10), does not work when there are many parameters; in particular, it is re-
quired that n ≥ K + 3. Theorem 2 shows that there is hardly any way to use the
knowledge that the first 10 explanatory variables are the important ones without
abandoning the Gauss linear model: no weakly valid confidence predictor in a
very wide and natural class can produce informative prediction intervals unless
n ≥ K + 3. Indeed, since the conditional distribution of the first n observations
given Sn is concentrated at one point for n ≤ K +1 and at two points for n = K +2
with probability one, no conformal predictor and, therefore, no weakly valid invari-
ant confidence predictor can give a bounded prediction region �ε

n for ε < 0.5 and
n ≤ K + 2.

REMARK. A common reaction to the importance of the condition n ≥ K + 3
is that one can use only a subset of explanatory variables when n < K + 3. We are,
however, interested in confidence predictors that are valid under the Gauss linear
model (1), not under some other model that is only “approximately true,” in some
ill-defined sense.

Figure 4 gives the median-accuracy plot for the confidence predictor (10); the
predictor works very well soon after the number of observations reaches K + 3 =
103. Since the median is plotted, the good quality of the prediction intervals shows
only from n = 205: indeed, for n < 205 at least half of the observed prediction
intervals are infinitely wide.

7. The MVA model. Remember that the MVA model assumes, besides (1),
that xn are generated independently from the same unknown multivariate Gaussian
distribution on R

K , with the noise random variables ξ1, ξ2, . . . independent of
x1,x2, . . . . The ATTS statistics in the MVA model are

Sn :=
(

n∑
i=1

xi ,

n∑
i=1

yi,

n∑
i=1

xix′
i ,

n∑
i=1

yixi ,

n∑
i=1

y2
i

)
;
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FIG. 4. The median-accuracy plot for the classical prediction intervals.

equivalently, the ATTS statistics can be defined to be the empirical means and
covariances of all variables, that is, the response and the explanatory variables.

Let y := yn, Z := Zn, K† := K†
n and U be as in Section 5. Suppose the value of

the statistic Sn is known. The vector of residuals (5) can now be written as

e := y − U(U′U + aI)−1U′y = y − Uc,(12)

where c := (U′U + aI)−1U′y is a known vector. Since the joint distribution of y
and the nondummy columns of U is invariant with respect to rotations around the
vector 1, the distribution of e will also be invariant with respect to such rotations. It
might help the reader’s intuition to notice that knowing the value of Sn is equivalent
to knowing the lengths of and the angles between the following K + 2 vectors: the
K + 1 columns of Z and y.

In the rest of this section we will assume n ≥ 3 (with arbitrary conventions for
n = 1,2). Let e1, . . . , en be the components of the vector (12) of residuals and en−1
be the average of e1, . . . , en−1. A standard statistical result [Fisher (1925)] allows
us to conclude that √

n − 1

n

en − en−1√
(1/(n − 2))

∑n−1
i=1 (ei − en−1)2

(13)

has the t-distribution with n − 2 degrees of freedom.
Let us see how to implement the conformal predictor corresponding to the non-

conformity measure

An(Sn−1(x1, y1, . . . ,xn−1, yn−1), (xn, yn)) := en − en−1√∑n−1
i=1 (ei − en−1)2

,(14)

which is proportional to (13); the fact that the right-hand side of (14) depends on
the first n − 1 observations only through the value of Sn−1 can be seen from the
representation (12), where c is a known vector. First we replace the true value yn
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by variable y ranging over R. Each residual ei becomes a linear [according to (12),
where c also depends on y] function ei(y) of y, and the prediction region can be
written as

�ε
n :=

{
y ∈ R :

√
n − 1

n

|en(y) − en−1(y)|√
(1/(n − 2))

∑n−1
i=1 (ei(y) − en−1(y))2

< t
ε/2
n−2

}
.

The inequality in this formula is quadratic in y, so �ε
n is easy to find. We can see

that the prediction region for yn is an interval (empirically, this is the typical case),
the union of two rays, the empty set, or the whole real line.

Replacing �ε
n by co�ε

n in the conformal predictor we have just defined gives the
MVA predictor. Our experiments with the artificial data set of Section 4 are carried
out as before [cf. (8)]: U is defined as the first 11 columns of Z if n < 103 and as
the full Z otherwise.

The median-accuracy plot for the MVA predictor and our artificial data set is
shown in Figure 5. Before the threshold 103 the predictor quickly learns α and the
first 10 parameters βk , and its performance more or less stabilizes before quickly
improving again when it starts learning the other parameters from n = 103 onward;
the second improvement in the performance shows on the median-accuracy plot
from n = 205.

The performance of the MVA predictor is better than the performance of any
other confidence predictor considered in this paper. Of course, this should not be
taken to mean that the other predictors are worse. Different predictors are based
on different information about the data set. None of the predictors “knows” that
the components of xn are realizations of independent standard Gaussian random
variables; even the MVA model, the narrowest model considered in this paper,
allows arbitrary means of and arbitrary correlations between different explanatory
variables for the same observation. The Gauss predictor does not know that the xn

are IID and Gaussian. The IID predictor only knows that the observations (xn, yn)

FIG. 5. The median-accuracy plot for the MVA predictor.
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are IID, and the IID–Gauss predictor, introduced in the next section, knows, in
addition, that the yn are generated by (1).

The median-accuracy plot for each of the four predictors is essentially deter-
mined by that for the MVA predictor and the threshold for the corresponding model
as shown in Table 1. It is convenient to represent each line on a median-accuracy
plot as the function that maps each value for the accuracy in the interval [0,150] to
the first step at which that accuracy is achieved (so the graph of this function is ob-
tained by rotating the page by 90◦ counterclockwise). Each of the three functions
in Figure 2 is, approximately, the maximum of 2	1/ε
 and the corresponding func-
tion in Figure 5. Similarly, each of the three functions in Figure 4 is, approximately,
the maximum of 2(K + 3) = 206 and the corresponding function in Figure 5. As
usual, the factor of 2 appears because of the use of median in our accuracy plots.

8. The IID–Gauss model. As defined in Section 1, the IID–Gauss model is
the combination of the Gauss linear and IID models: we assume both that the
observations are IID and that the responses are generated by (1) with ξ1, ξ2, . . .

independent of x1,x2, . . . . Correspondingly, the ATTS statistics are

Sn :=
(

�x1, . . . ,xn�,

n∑
i=1

yi,

n∑
i=1

yixi ,

n∑
i=1

y2
i

)
.

Using the nonconformity measure (6) and replacing the prediction regions out-
put by the corresponding conformal predictor with their convex hulls, we obtain
the IID–Gauss predictor. Its performance on our usual data set is shown in Fig-
ure 6. We do not know whether the IID–Gauss predictor can be implemented ef-
ficiently, and Figure 6 was produced using Monte-Carlo sampling from the con-
ditional distributions given Sn. However, comparing Figure 6 to Figures 2 (to the
left of n = 205) and 4 (to the right of n = 205), we can see that the following
simple confidence predictor will work almost as well as the IID–Gauss predictor
on our data set: predict using the IID predictor if n < 103 and predict using the

FIG. 6. The median-accuracy plot for the IID–Gauss predictor.
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Gauss predictor if n ≥ 103. As in all other cases in this paper where the threshold
n = K + 3 = 103 appears, the best switch-over point will be slightly greater than
K +3, but the question of when exactly to switch is outside the scope of this paper.

REMARK. The IID predictor and the IID–Gauss predictor use the same non-
conformity measure, (6), but still produce very different median-accuracy plots at
confidence level 99.5%. This happens because of the conditioning on the event
Srnd

n = Sobs
n in the definition (2). Since the ATTS statistics perform more radical

data compression in the case of the IID–Gauss model, the achievable values of
P(Arnd

n ≥ Aobs
n | Srnd

n = Sobs
n ) [corresponding to (2) with τn := 1] are much smaller

than the 1/n achievable under the IID model.

As in the previous section, there is a close connection between Figures 5
and 6: each of the three functions in Figure 6 is, approximately, the maximum
of 2 min(	1/ε
,K + 3) and the corresponding function in Figure 5. The distribu-
tive law of max over min now implies that each of the three functions in Figure 6
is the minimum of the corresponding functions in Figures 2 and 4.

9. On-line protocol, part II. In this section we will briefly discuss the rela-
tion of our results about the IID model to Wilks’s nonparametric prediction inter-
vals and mention some relaxations of the on-line protocol.

The univariate IID model. The construction of prediction and tolerance in-
tervals in the univariate IID model, which says that y1, y2, . . . form an IID se-
quence, was undertaken by many authors following the pioneering paper by
Wilks (1941). Wilks’s work was later extended to the multivariate case: see, for
example, Fraser (1957); this extension, however, is not directly related to our IID
predictors. For simplicity, let us assume in this subsection, as is customary in liter-
ature, that the distribution of one observation is continuous. Correspondingly, we
will assume that the realized values of yn, n = 1,2, . . . , are all different.

For each n = 1,2, . . . , define Tn ∈ {1,2, . . . , n} as the smallest i such that
yn < y(n−1,i), where y(n−1,1), . . . , y(n−1,n−1) is the sequence of the first n − 1
observations y1, . . . , yn−1 sorted in the ascending order; if yn > y(n−1,n−1), set
Tn := n. Each Tn is a “pivot,” being distributed uniformly on the set {1, . . . , n}.
Wilks suggested the following prediction intervals based on this fact: fix a num-
ber r ∈ {1,2, . . .} and define �

2r/n
n , n = 2r + 1,2r + 2, . . . , to be the interval

(y(n−1,r), y(n−1,n−r)); the probability of error, yn /∈ �
2r/n
n , is then 2r/n. Now The-

orem 1 implies that the whole random sequence (T1, T2, . . .) has a known distri-
bution: namely, it is distributed according to the product U1 × U2 × · · · of the
uniform distributions Un on {1, . . . , n}. In particular, Wilks’ prediction intervals
�

2r/n
n , n = 2r + 1,2r + 2, . . . , lead to independent errors.
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Relaxations of the on-line protocol. This paper concentrates on the on-line pre-
diction protocol. Smoothed conformal predictors lead to independent errors in the
on-line protocol, and Theorem 2 suggests that conformal predictors are the most
natural weakly valid confidence predictors. This is why we included the require-
ment of independence in the definition of strong validity, despite the fact that the
error frequency can be shown to approach the error probability ε with probability
approaching one even when the requirement of independence is relaxed in certain
ways.

The situation changes when we move outside the on-line protocol. The on-line
protocol is natural, but in one respect it is overly restrictive: the true response yn

becomes known before the prediction for the next response yn+1 is made. It can
be shown that the error frequency will still converge to ε if the true response is
only given for a small fraction of observations, and even for those observations
it can be given with a delay [Vovk, Gammerman and Shafer (2005), Section 4.3;
see also Vanderlooy, van der Maaten and Sprinkhuizen-Kuyper (2007) for a recent
empirical study]. The independence of errors, however, will be lost (we can still
have “approximate independence,” but this is a much more elusive notion than
ordinary independence).

10. Conclusion. In this paper we considered the problem of prediction in
three main regression models. One of these models, the Gauss linear model, is the
standard textbook one. The MVA model seems to have been somewhat neglected,
partly because of philosophical reasons: according to the conditionality principle
[Cox and Hinkley (1974), Section 2.3(iii)] one should condition on the observed
values of the explanatory variables to make the prediction (or estimate, etc.) more
relevant to the data at hand. In most of this paper we took a pragmatic approach,
studying which models permit one to produce informative prediction intervals in
different circumstances without being restricted a priori by general principles. We
did use the sufficiency principle in our interpretation of Theorem 2, but we ad-
mit this makes the theorem less convincing. Surprisingly, the IID model appears
to have been neglected in the field of regression, even in nonparametric statistics,
where the value of this model is in principle well understood.

APPENDIX: PROOFS OF THE THEOREMS

In this appendix we will prove the two main results stated in this paper, Theo-
rems 1 and 2. A version of Theorem 1 was proved in Section 8.7 of Vovk, Gam-
merman and Shafer (2005), but we reproduce the principal points of the proof to
make our exposition self-contained. A special case of Theorem 2 (namely, for the
IID model) was proved in Section 2.6 of Vovk, Gammerman and Shafer (2005).

Proof of Theorem 1. In this proof, ζ1, ζ2, . . . will be random observations
generated by P ∈ P , (ζ1, ζ2, . . .) ∼ P , and τ1, τ2, . . . will be random numbers,
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(τ1, τ2, . . .) ∼ U∞. For each n = 0,1, . . . let Gn be the σ -algebra generated by the
random elements

Sn(ζ1, . . . , ζn), ζn+1, τn+1, ζn+2, τn+2, . . . .

So G0 is the most informative σ -algebra and G0 ⊇ G1 ⊇ G2 ⊇ · · ·. It will be con-
venient to write PG(E) and EG(ξ) for the conditional probability P(E | G) and
expectation E(ξ | G), respectively, given a σ -algebra G.

LEMMA A.1. For any step n = 1,2, . . . and any ε ∈ (0,1),

PGn(pn ≤ ε) = ε.

PROOF. For a given value of the summary Sn(ζ1, . . . , ζn) of the first n obser-
vations, consider the conditional distribution function F of the random variable
η := An(Sn−1(ζ1, . . . , ζn−1), ζn) (because of the total sufficiency, it does not mat-
ter whether we further condition on ζn+1, τn+1, ζn+2, τn+2, . . .). Define F(x−) to
be supt<x F (t). Our task is to show that the conditional probability of the event

1 − F(η) + τn

(
F(η) − F(η−)

) ≤ ε(A.1)

is ε [since the left-hand side of (A.1) coincides with the right-hand side of the def-
inition (2)]. The latter fact is usually stated in statistics textbooks for continuous F

[see, e.g., Cox and Hinkley (1974), page 66], but it is also easy to check in gen-
eral. �

LEMMA A.2. For any step n = 1,2, . . . , pn is Gn−1-measurable.

PROOF. This follows from the definition: pn is defined in terms of ζn, τn and
the summary of the first n − 1 observations. �

Now we can easily prove the theorem. First we demonstrate that, for any n =
1,2, . . . and any ε1, . . . , εn ∈ (0,1),

PGn(pn ≤ εn, . . . , p1 ≤ ε1) = εn · · · ε1 a.s.(A.2)

The proof is by induction on n. For n = 1, (A.2) is a special case of Lemma A.1.
For n > 1 we obtain, from Lemmas A.1 and A.2, standard properties of conditional
expectations, and the inductive assumption:

PGn(pn ≤ εn, . . . , p1 ≤ ε1) = EGn(EGn−1(Ipn≤εnIpn−1≤εn−1,...,p1≤ε1))

= EGn(Ipn≤εnEGn−1(Ipn−1≤εn−1,...,p1≤ε1))

= EGn(Ipn≤εnεn−1 · · · ε1)

= εnεn−1 · · · ε1 a.s.
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The “tower property” of conditional expectations immediately implies

P(pn ≤ εn, . . . , p1 ≤ ε1) = εn · · · ε1.

Therefore, the distribution of the first n p-values p1, . . . , pn is Un, for all n =
1,2, . . . . This implies that the distribution of the infinite sequence p1,p2, . . .

is U∞.

Proof of Theorem 2. In this proof, Z := R
K × R and ζi stands for (xi , yi).

Let n ∈ N .
For each summary s ∈ �n let f (s) be the conditional probability given

Sn(ζ1, . . . , ζn) = s that � makes an error at a significance level ε when predict-
ing yn from ζ1, . . . , ζn−1 and xn, the observations ζ1, ζ2, . . . being generated from
P ∈ P . We know that the expected value of f (Sn(ζ1, . . . , ζn)) is ε under any
P ∈ P , and this, by the bounded completeness of Sn, implies that f (s) = ε for
almost all (under PS−1

n for any P ∈ P ) summaries s. Define E(s, ε) to be the set
of all pairs (s ′, ζ ) = (s′, (x, y)) ∈ �n−1 × Z such that Fn(s

′, ζ ) = s (where Fn is
the function from the definition of the algebraic transitivity of the Sn) and � makes
an error at the significance level ε when predicting y and fed with ζ1, . . . , ζn−1 sat-
isfying Sn−1(ζ1, . . . , ζn−1) = s′ and with x (since � is invariant, whether an error
is made depends only on s ′, not on the particular ζ1, . . . , ζn−1). It is clear that

ε1 ≤ ε2 �⇒ E(s, ε1) ⊆ E(s, ε2)

and

P
(
(Sn−1(ζ1, . . . , ζn−1), ζn) ∈ E(s, ε) | Sn(ζ1, . . . , ζn) = s

) = ε a.s.,

where (ζ1, ζ2, . . .) ∼ P ∈ P .
In this proof we say “conformity measure” to mean a nonconformity measure

which is used for computing p-values in the opposite way to (2): the “>” in (2) is
replaced by “<.” Let us check that the conformal predictor �† determined by the
conformity measure

An(s
′, ζ ) := inf{ε : (s′, ζ ) ∈ E(Fn(s

′, ζ ), ε)}
is at least as accurate as �. By the monotone convergence theorem for conditional
expectations,

P
(
An(Sn−1(ζ1, . . . , ζn−1), ζn) ≤ ε | Sn(ζ1, . . . , ζn) = s

)
= lim

δ↓ε
P

(
An(Sn−1(ζ1, . . . , ζn−1), ζn) < δ | Sn(ζ1, . . . , ζn) = s

)
≤ lim

δ↓ε
P

(
(Sn−1(ζ1, . . . , ζn−1), ζn) ∈ E(s, δ) | Sn(ζ1, . . . , ζn) = s

)
= lim

δ↓ε
δ = ε a.s.,
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where (ζ1, ζ2, . . .) ∼ P ∈ P and δ is constrained to be a rational number. There-
fore, at each significance level ε and for all (ζ1, . . . , ζn) ∈ Zn,

yn ∈ (�†)ε(ζ1, . . . , ζn−1,xn)

⇐⇒ P(Arnd
n ≤ Aobs

n | Srnd
n = Sobs

n ) > ε

�⇒ Aobs
n > ε

�⇒ (Sn−1(ζ1, . . . , ζn−1), ζn) /∈ E(Sn(ζ1, . . . , ζn), ε)

⇐⇒ yn ∈ �ε(ζ1, . . . , ζn−1,xn) a.s.,

in the notation of (2) and for (ξ1, ξ2, . . .) ∼ P ∈ P .

Acknowledgments. We have greatly benefited from Glenn Shafer’s advice
and from a discussion with Steffen Lauritzen. Comments by the anonymous refer-
ees and Professor Susan Murphy helped us improve the presentation.

Note added in proof. The R package PredictiveRegression, available from
CRAN, implements the three prediction algorithms (IID predictor, Gauss predictor
and MVA predictor) described in this paper.
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