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SPARSE RECOVERY IN CONVEX HULLS
VIA ENTROPY PENALIZATION1
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Georgia Institute of Technology

Let (X,Y ) be a random couple in S × T with unknown distribution P

and (X1, Y1), . . . , (Xn,Yn) be i.i.d. copies of (X,Y ). Denote Pn the em-
pirical distribution of (X1, Y1), . . . , (Xn,Yn). Let h1, . . . , hN :S �→ [−1,1]
be a dictionary that consists of N functions. For λ ∈ R

N, denote fλ :=∑N
j=1 λjhj . Let � :T × R �→ R be a given loss function and suppose it is

convex with respect to the second variable. Let (� • f )(x, y) := �(y;f (x)).

Finally, let � ⊂ R
N be the simplex of all probability distributions on

{1, . . . ,N}. Consider the following penalized empirical risk minimization
problem

λ̂ε := argmin
λ∈�

[
Pn(� • fλ) + ε

N∑
j=1

λj logλj

]

along with its distribution dependent version

λε := argmin
λ∈�

[
P(� • fλ) + ε

N∑
j=1

λj logλj

]
,

where ε ≥ 0 is a regularization parameter. It is proved that the “approximate
sparsity” of λε implies the “approximate sparsity” of λ̂ε and the impact of
“sparsity” on bounding the excess risk of the empirical solution is explored.
Similar results are also discussed in the case of entropy penalized density
estimation.

1. Introduction. Let S and T be measurable spaces with σ -algebras S and T ,
respectively, and let (X,Y ) be a random couple in S × T . The distribution of
(X,Y ) will be denoted by P and the distribution of X by �. The training data
(X1, Y1), . . . , (Xn,Yn) consists of n i.i.d. copies of (X,Y ) (the distribution P is
not known and it is to be estimated based on the data). We will denote Pn the
empirical distribution of the data and will write in what follows

Pg = Eg(X,Y ) and Png = n−1
n∑

j=1

g(Xi, Yi)
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for functions g on S × T (as well as for functions on S since they can be also
viewed as functions on S × T ).

We will be interested in a class of prediction problems in which Y is to be pre-
dicted based on an observation of X. Prediction rules will be based on the training
data (X1, Y1), . . . , (Xn,Yn).

Let � :T × R �→ R+ be a loss function. It will be assumed in what follows that,
for all y ∈ T , �(y, ·) is convex. For a function f :S �→ R, let (� • f )(x, y) :=
�(y, f (x)). Then the quantity P(� • f ) is the (true) risk of the prediction rule f

and Pn(� • f ) is the corresponding empirical risk. The excess risk of f is defined
as

E(f ) := P(� • f ) − inf
g:S �→R

P(� • g) = P(� • f ) − P(� • f∗),

where the infimum is taken over all measurable functions and it is assumed for
simplicity that it is attained at f∗ ∈ L2(�) (moreover, it will be assumed in what
follows that f∗ is uniformly bounded by a constant M).

Let

H := {h1, . . . , hN }
be a given finite class of measurable functions from S into [−1,1] called a dic-
tionary (of course, it can be assumed instead that the functions in the dictionary
are uniformly bounded by an arbitrary constant; the only change will be in the
constants in the results below). The dictionary can be an orthonormal system of
functions, a union of several orthonormal systems suitable for approximation of
the target function f∗, a base class of a boosting type algorithm, a set of pretrained
estimators in an aggregation problem, etc. Let P (H) be the set of all probability
measures on H . For λ ∈ P (H), denote λj := λ({hj }) and

fλ(x) :=
∫
H

h(x)λ (dh) =
N∑

j=1

λjhj (x).

Denote � := {(λ1, . . . , λN) :λj ≥ 0, j = 1, . . . ,N,
∑N

j=1 λj = 1}. We will iden-
tify (whenever it is convenient) probability measures λ ∈ P (H) with vectors
(λ1, . . . , λN) from the simplex �. We will write (with a little abuse of notation)
λ = (λ1, . . . , λN). Clearly, the function fλ :S �→ [−1,1] is a convex combination
(a mixture) of functions from the dictionary and the set

conv(H) := {fλ :λ ∈ P (H)}
is the convex hull of H .

As always, define the entropy of λ as

H(λ) = −
N∑

j=1

λj logλj .
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The Kullback–Leibler divergence between λ, ν ∈ � is defined as

K(λ|ν) :=
N∑

j=1

λj log
(

λj

νj

)
.

Denote

K(λ, ν) := K(λ|ν) + K(ν|λ).

The following penalized empirical risk minimization problem will be studied:

λ̂ε := argmin
λ∈P (H)

[Pn(� • fλ) − εH(λ)]
(1.1)

= argmin
λ∈�

[
Pn(� • fλ) + ε

N∑
j=1

λj logλj

]
,

where ε ≥ 0 is a regularization parameter. Since, for all y, �(y, ·) is convex, the
empirical risk Pn(� • fλ) is a convex function of λ. Since also the set P (H) is
convex (it can be identified with the simplex �) and the function λ �→ −H(λ) is
convex, this makes the problem (1.1) a convex optimization problem. It is natural
to compare this problem with its distribution dependent version

λε := argmin
λ∈P (H)

[P(� • fλ) − εH(λ)]
(1.2)

= argmin
λ∈�

[
P(� • fλ) + ε

N∑
j=1

λj logλj

]
.

In the recent literature, there has been considerable attention to the problem of
sparse recovery in a linear span of a given dictionary using penalized empirical
risk minimization with �1-penalty (this method is called LASSO in the literature
on regression), and the current paper is close to this line of work. It has become
clear that sparse recovery is possible not always, but only under some geometric
assumptions on the dictionary. These assumptions are often described in terms of
the properties of the Gram matrix of the dictionary, which in the case of random
design models is the matrix

H := (〈hi, hj 〉L2(�)

)
i,j=1,N ,

and they take form of various conditions on the entries of this matrix (“coherence
coefficients”), or on its submatrices (in spirit of “uniform uncertainty principle”
or “restricted isometry” conditions). The essence of these assumptions is to try
to keep the dictionary not too far from being orthonormal in L2(�), which in
some sense is an ideal case for sparse recovery [see, e.g., Donoho (2006), Candes
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and Tao (2007), Rudelson and Vershynin (2005), Mendelson, Pajor and Tomczak-
Jaegermann (2007), Bunea, Tsybakov and Wegkamp (2007a), van de Geer (2008),
Koltchinskii (2008a, 2008b) and Bickel, Ritov and Tsybakov (2008), among many
other papers that study both the random design and the fixed design problems].

The idea to use the entropy for complexity regularization is not new in informa-
tion theory and statistics (recall, e. g., the principle of maximum entropy). In partic-
ular, it has been studied recently in connection with the problem of aggregation of
statistical estimators by exponential weighting and also in a large number of papers
on PAC-Bayesian approach in learning theory [see, e.g., McAllester (1999), Catoni
(2004), Audibert (2004), Zhang (2001, 2006a, 2006b) and references therein].
However, we are not aware of any attempt to relate this penalization technique
to sparse recovery problems with an exception of a very recent paper by Dalalyan
and Tsybakov (2007), where it is done in the context of aggregation with expo-
nential weighting. Moreover, at least at the first glance, the idea of using this type
of penalization to achieve sparse recovery seems counterintuitive since the penalty
−H(λ) attains its minimum at the uniform distribution λj = N−1, j = 1, . . . ,N ,
and, from this point of view, it penalizes for “sparsity” rather than for “nonspar-
sity” [in fact, solutions of (1.1), (1.3) can be only “approximately sparse”].

In this paper we follow the approach of Koltchinskii (2005, 2008a), where the
problem was studied in the case of �p-penalization with 1 ≤ p ≤ 1 + c

logN
. This

approach is based on separate study of random error |E(f
λ̂ε ) − E(fλε)| and of ap-

proximation error E(fλε ). It happens that these are two different problems with
not entirely the same geometric parameters responsible for the size of each of the
two errors, and the geometry of the problem is more subtle than in the standard ap-
proach based on conditions on the Gram matrix H. In many problems in Statistics
and Learning Theory the distribution of the design variable is completely unknown
and it is unrealistic to make any restrictive assumptions on its Gram matrix. Be-
cause of this reason, it is desirable to study in a more precise way how the excess
risk of the solution of (1.1) depends on geometric parameters of the problem.

One of our goals is to show that if λε is “approximately sparse” (i.e., this mea-
sure is almost concentrated on a small set of atoms), then a similar property is
enjoyed by λ̂ε. These sparsity bounds provide a way to control ‖f

λ̂ε − fλε‖L2(�)

and K(λ̂ε, λε) (see Theorems 1 and 2). For instance, we show that for any set
J ⊂ {1, . . . ,N} with card(J ) = d and such that

∑
j /∈J

λε
j ≤

√
logN

n
,

the following bound holds with a high probability:

‖f
λ̂ε − fλε‖2

L2(�) + εK(λ̂ε;λε) ≤ C
d + logN

n
.

This allow us also to bound “the random error” |E(f
λ̂ε ) − E(fλε )| in terms of

“approximate sparsity” of the problem (Theorem 3).
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Some further geometric parameters (such as “the alignment coefficient” intro-
duced in the next section) provide a way to control “the approximation error”
E(fλε) (see Theorem 4). Namely, suppose there exists a vector λ ∈ � with the
following properties:

(i) λ is “sparse” [i.e., its support J = supp(λ) is a set of relatively small car-
dinality];

(ii) the excess risk E(fλ) is small;

(iii) λ is “aligned” nicely with the dictionary (the precise definitions are given
in the next section).

Then λε is approximately sparse and its excess risk E(fλε ) is small (more pre-
cisely, its size is controlled by sparsity of λ and its “alignment” with the dictio-
nary). These results ultimately yield oracle inequalities on the excess risk E(f

λ̂ε )

showing that this estimation method provides certain degree of adaptation to un-
known “sparsity” of the problem (see Corollary 1).

Density estimation problem can be also studied rather naturally in a similar
framework. In this problem, the data consists of n independent identically distrib-
uted observations X1, . . . ,Xn in S with common distribution P. Suppose that P

has density f∗ with respect to a σ -finite measure μ in (S,A). We will assume that
f∗ is uniformly bounded by a constant M. Let h1, . . . , hN be a large dictionary
of probability densities with respect to μ uniformly bounded by 1 (as in the case
of prediction problem discussed above, one can assume that these densities are
uniformly bounded by an arbitrary constant resulting in a proper change of con-
stants in the theorems). The goal is to construct an estimator of f∗ in the class of
mixtures {fλ :λ ∈ �}. The underlying assumption is that there exists a “sparse”
mixture that approximates the unknown density reasonably well. One can use an
estimator based on minimizing the entropy penalized empirical risk with respect
to quadratic loss:

λ̂ε := argmin
λ∈�

[
‖fλ‖2

L2(μ) − 2Pnfλ + ε

N∑
j=1

λj logλj

]
,(1.3)

which is again a convex minimization problem. The corresponding penalized true
risk minimization problem is

λε := argmin
λ∈�

[‖fλ − f∗‖2
L2(μ) − εH(λ)

]
(1.4)

= argmin
λ∈�

[
‖fλ‖2

L2(μ) − 2Pfλ + ε

N∑
j=1

λj logλj

]
.
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Recently, Bunea, Tsybakov and Wegkamp (2007b) studied a similar density es-
timation problem with �1-penalized empirical risk with respect to quadratic loss
(and for the linear aggregation instead of convex aggregation). As in the case of
prediction problems (regression, classification), we also obtain the bounds char-
acterizing approximate sparsity of the empirical solution in terms of approximate
sparsity of the true solution and oracle inequalities for ‖f

λ̂ε − f∗‖2
L2(μ) (which

is equivalent to considering the excess risk in this problem; see Theorems 5–7,
Corollary 2).

2. Main results.

2.1. Assumptions on the loss. We assume below the following properties of
the loss function � : for all y ∈ T , �(y, ·) is twice differentiable, �′′

u is a uniformly
bounded function in T × R and

sup
y∈T

�(y;0) < +∞, sup
y∈T

|�′
u(y;0)| < +∞.

Moreover, denote

τ(R) := 1
2 inf

y∈T
inf|u|≤R

�′′
u(y,u).(2.1)

It will be assumed that

τ(M ∨ 1) > 0

(recall that M is a constant such that ‖f∗‖∞ ≤ M). Without loss of generality, we
also assume that τ(R) ≤ 1,R > 0 (otherwise, it can be replaced by a lower bound).

There are many important examples of loss functions satisfying these assump-
tions, most notably, the quadratic loss �(y,u) := (y − u)2 in the case when T ⊂ R

is a bounded set. In this case, τ = 1. In regression problems with a bounded re-
sponse variable, one can also consider more general loss functions of the form
�(y,u) := φ(y − u), where φ is an even nonnegative convex twice continu-
ously differentiable function with φ′′ uniformly bounded in R, φ(0) = 0 and
φ′′(u) > 0, u ∈ R. In binary classification setting (i.e., when T = {−1,1}), one
can choose the loss �(y,u) = φ(yu) with φ being a nonnegative decreasing con-
vex twice continuously differentiable function such that φ′′ is uniformly bounded
in R and φ′′(u) > 0, u ∈ R. The loss function φ(u) = log2(1 + e−u) (often called
the logit loss) is a typical example.

Note that the condition that the second derivative �′′
u is uniformly bounded in

T × R can be replaced by its uniform boundedness in T × [−M ∨ 1,M ∨ 1]. The
constants in the theorems below will then depend on the sup-norm of the second
derivative (and, as a consequence, on M); otherwise, the results will be the same.
This allows one to cover several other popular choices of the loss function, such as
the exponential loss �(y,u) := e−yu in binary classification.

We will also assume in what follows that N ≥ (logn)γ for some γ > 0 (this is
needed only to avoid additional terms of the order log logn

n
in several inequalities).
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2.2. Sparsity bounds. Our first goal is to provide upper bounds on ‖f
λ̂ε −

fλε‖L2(�), on K(λ̂ε, λε) and on
∑

j /∈J λ̂ε
j , for an arbitrary subset J ⊂ {1, . . . ,N},

in terms of the cardinality of this set d = card(J ) and the measure
∑

j /∈J λε
j . The

idea is to show that if λε is approximately sparse, that is, there exists a small
set J such that

∑
j /∈J λε

j is also small, then λε is approximately sparse, too, with
a high probability and the L2-error of approximation of fλε by f

λ̂ε as well as the
Kullback–Leibler error of approximation of λε by λ̂ε are small.

The first result in this direction is the following theorem.

THEOREM 1. There exist constants D > 0 and C > 0 depending only on �

such that, for all J ⊂ {1, . . . ,N} with d := d(J ) = card(J ), for all A ≥ 1 and for
all

ε ≥ D

√
d + A logN

n
,(2.2)

the following bounds hold with probability at least 1 − N−A:

∑
j /∈J

λ̂ε
j ≤ C

[∑
j /∈J

λε
j +

√
d + A logN

n

]
,

∑
j /∈J

λε
j ≤ C

[∑
j /∈J

λ̂ε
j +

√
d + A logN

n

]

and

‖f
λ̂ε − fλε‖2

L2(�) + εK(λ̂ε, λε) ≤ C

[
d + A logN

n
∨ ∑

j /∈J

λε
j

√
d + A logN

n

]
.

Note that these bounds hold without any conditions on the dictionary (except
the assumption that the functions hj are uniformly bounded). However, the result

is true only for ε ≥ D

√
d+A logN

n
. Since it is not known for which set J

∑
j /∈J λε

j is
small, it is also not known for which d the condition (2.2) is to be satisfied. In other
words, the regularization parameter ε in this result depends on unknown degree of
sparsity of the problem.

In the next theorem, it will be assumed only that ε ≥ D

√
A logN

n
, but there will

be more dependence of the bounds on the geometric properties of the dictionary.
On the other hand, the error will be controlled not by d = card(J ), but rather by the
dimension of a linear space L that provides a good approximation of the functions
{hj : j ∈ J }. This dimension can be smaller than card(J ), which makes the bound
more precise. Given a subspace L of L2(�), define

U(L) := sup
f ∈L,‖f ‖L2(�)=1

‖f ‖∞ + 1.
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It is easy to check that for any L2(�)-orthonormal basis φ1, . . . , φd of L,

U(L) ≤ max
1≤j≤d

‖φj‖∞
√

d + 1,

where d := dim(L). In what follows PL denotes the orthogonal projector onto L

and L⊥ denotes the orthogonal complement of L. We will be interested in sub-
spaces L for which dim(L) and U(L) are not very large and, at the same time,
functions {hj : j ∈ J } in the “relevant” part of the dictionary can be approximated
well by the functions from L in the sense that the quantity maxj∈J ‖PL⊥hj‖L2(�)

is relatively small.

THEOREM 2. Suppose that

ε ≥ D

√
A logN

n
(2.3)

with a large enough constant D > 0 depending only on �. For all J ⊂ {1, . . . ,N},
for all subspaces L of L2(�) with d := dim(L) and for all A ≥ 1, the following
bounds hold with probability at least 1 −N−A and with a constant C > 0 depend-
ing only on �:

∑
j /∈J

λ̂ε
j ≤ C

[∑
j /∈J

λε
j + d + A logN

nε
+ max

j∈J
‖PL⊥hj‖L2(�)

(2.4)

+ U(L) logN

nε

]
,

∑
j /∈J

λε
j ≤ C

[∑
j /∈J

λ̂ε
j + d + A logN

nε
+ max

j∈J
‖PL⊥hj‖L2(�)

(2.5)

+ U(L) logN

nε

]

and

‖f
λ̂ε − fλε‖2

L2(�) + εK(λ̂ε, λε)

≤ C

[
d + A logN

n
∨ ∑

j /∈J

λε
j

√
A logN

n
(2.6)

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n
∨ U(L) logN

n

]
.
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If, for some J,

∑
j /∈J

λε
j ≤

√
A logN

n

and, for some L with U(L) ≤ √
d, hj ∈ L, j ∈ J, the bound (2.6) simplifies and

becomes

‖f
λ̂ε − fλε‖2

L2(�) + εK(λ̂ε, λε) ≤ C
d + A logN

n
.

It means that the fact that the dictionary is not orthogonal and even is not linearly
independent might actually help to make the random errors ‖f

λ̂ε − fλε‖2
L2(�) and

K(λ̂ε, λε) small: their size is controlled in this case by the dimension d of the
linear span L of the “relevant part” of the dictionary {hj : j ∈ J }, and d can be
much smaller than card(J ).

2.3. Random error bounds. The following result is a simple corollary of The-
orems 1, 2 and the properties of the loss function. Denote by L the linear span of
the dictionary {h1, . . . , hN } and let PL be the orthogonal projector on L ⊂ L2(P ).

Define

gε := PL(�′ • fλε).

THEOREM 3. Under the conditions of Theorem 1, the following bound holds
with probability at least 1 −N−A, with a constant C > 0 depending only on � and
with d = card(J ):

‖P(� • f
λ̂ε ) − P(� • fλε)|

≤ C

[
d + A logN

n
∨ ∑

j /∈J

λε
j

√
d + A logN

n

]
(2.7)

∨C1/2‖gε‖L2(�)

[
d + A logN

n
∨ ∑

j /∈J

λε
j

√
d + A logN

n

]1/2

.

Similarly, under the conditions of Theorem 2, with probability at least 1 − N−A

and with d = dim(L)

|P(� • f
λ̂ε ) − P(� • fλε)|

≤ C

[
d + A logN

n
∨

(∑
j /∈J

λε
j ∨ max

j∈J
‖PL⊥hj‖L2(�)

)√
A logN

n

∨U(L) logN

n

]
(2.8)



SPARSE RECOVERY 1341

∨C1/2‖gε‖L2(�)

[
d + A logN

n
∨

(∑
j /∈J

λε
j ∨ max

j∈J
‖PL⊥hj‖L2(�)

)

√
A logN

n
∨ U(L) logN

n

]1/2

.

Recall that f∗ denotes a function that minimizes the risk P(� • f ) and it was
assumed that f∗ is uniformly bounded by a constant M. Clearly, by necessary
conditions of minimum, we have

P(�′ • f∗)hj = 0, j = 1, . . . ,N,

so, �′ • f∗ ∈ L⊥. Note that for any function f̄ uniformly bounded by M and such
that �′ • f̄ ∈ L⊥ (in particular, for f∗) we have

‖gε‖L2(�) = ‖PL(�′ • fλε)‖L2(P ) = ‖PL(�′ • fλε − �′ • f̄ )‖L2(P )

≤ ‖(�′ • fλε − �′ • f̄ )‖L2(P ) ≤ C‖fλε − f̄ ‖L2(�),

where we used the fact that �′ is Lipschitz with respect to the second variable.
Under the conditions on the loss function, for all λ ∈ �

E(fλ) ≥ 1
2τ(‖f∗‖∞ ∨ 1)‖fλ − f∗‖2

L2(�) =: τ‖fλ − f∗‖2
L2(�),(2.9)

which easily follows from a version of Taylor expansion for the risk.
To bound the excess risk E(f

λ̂ε ), one has to solve two different problems:
bounding the random error

|E(f
λ̂ε ) − E(fλε)| = |P(� • f

λ̂ε ) − P(� • fλε)|
and bounding the approximation error E(fλε ). Using the above facts, one can eas-
ily get from Theorem 3 the following bounds on the random error: under the con-
ditions of Theorem 1, with probability at least 1 − N−A and with d = card(J )

|E(f
λ̂ε ) − E(fλε)|

≤ C

[
d + A logN

n
∨ ∑

j /∈J

λε
j

√
d + A logN

n

]
(2.10)

∨ C1/2

√
E(fλε )

τ

[
d + A logN

n
∨ ∑

j /∈J

λε
j

√
d + A logN

n

]1/2

and under the conditions of Theorem 2, with probability at least 1−N−A and with
d = dim(L)

|E(f
λ̂ε ) − E(fλε)|
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≤ C

[
d + A logN

n
∨

(∑
j /∈J

λε
j ∨ max

j∈J
‖PL⊥hj‖L2(�)

)√
A logN

n

∨U(L) logN

n

]
(2.11)

∨C1/2

√
E(fλε)

τ

[
d + A logN

n
∨

(∑
j /∈J

λε
j ∨ max

j∈J
‖PL⊥hj‖L2(�)

)

√
A logN

n
∨ U(L) logN

n

]1/2

,

which reduces the problem to bounding only the approximation error.

2.4. Approximation error bounds, alignment and oracle inequalities. To con-
sider the approximation error we need several definitions. For λ ∈ �, denote

T�(λ) := {v ∈ R
N :∃t > 0 λ + vt ∈ �}.

The set T�(λ) is the tangent cone of convex set � at point λ. Recall that H denotes
the Gram matrix of the dictionary in the space L2(�). Whenever it is convenient,
H will be viewed as a linear transformation of R

N. For a vector w ∈ R
N, let

aH (�,λ,w) := sup
{〈w,u〉�2 :u ∈ T�(λ),‖fu‖L2(�) = 1

}
.

We will call this quantity the alignment coefficient of vector w, matrix H and
convex set � at point λ ∈ �. Note that

‖fu‖2
L2(�) = 〈Hu,u〉�2 = 〈H 1/2u,H 1/2u〉�2 .

Therefore, the alignment coefficient can be bounded as follows:

aH (�,λ,w) ≤ sup
{〈w,u〉�2 : u ∈ R

N, ‖fu‖L2(�) = 1
}

= sup
‖H 1/2u‖�2=1

〈w,u〉�2 =: ‖w‖H .

If H is nonsingular, we can further write

‖w‖2
H = sup

‖H 1/2u‖�2=1
〈H−1/2w,H 1/2u〉�2 = ‖H−1/2w‖2

�2
.

Even when H is singular, we still have

‖w‖2
H ≤ ‖H−1/2w‖2

�2
,

where for w ∈ Im(H 1/2) = H 1/2
R

N, one defines

‖H−1/2w‖�2 := inf{‖v‖�2 :H 1/2v = w}
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[which means factorization of the space with respect to Ker(H 1/2)] and for w /∈
Im(H 1/2) the norm ‖H−1/2w‖�2 becomes infinite. It is also easy to see that if
J = supp(w), then

‖w‖H ≤ ‖w‖�2√
κ(J )(1 − ρ2(J ))

≤ ‖w‖�∞
√

d(J )√
κ(J )(1 − ρ2(J ))

,

where d(J ) := card(J ), κ(J ) is the minimal eigenvalue of the matrix

HJ = (〈hi, hj 〉L2(�)

)
i,j∈J

and

ρ(J ) := sup
{ 〈f1, f2〉L2(�)

‖f1‖L2(�)‖f2‖L2(�)

:f1 ∈ LJ ,f2 ∈ LJc

}
,

LJ denoting the linear span of {hj : j ∈ J } [see Koltchinskii (2008a), the proof of
Proposition 1, for a similar argument]. Measures of linear dependence similar to
ρ(J ) are known in multivariate statistical analysis as “canonical correlations.”

These upper bounds show that the size of the alignment coefficient is controlled
by the “sparsity” of the vector w as well as by some characteristics of the dictionary
(or its Gram matrix H ). In particular, for orthonormal dictionaries and for dictio-
naries that are close enough to being orthonormal [so that κ(J ) is bounded away
from 0 and ρ2(J ) is bounded away from 1], the alignment coefficient is bounded
from above by a quantity of the order ‖w‖�∞

√
d(J ). However, the alignment coef-

ficient can be much smaller than this upper bound and it reflects in a more delicate
way rather complicated geometric relationships between the vector w, the dictio-
nary and the convex set �. Even the quantity ‖H−1/2w‖2

�2
, which is a rough upper

bound on the alignment coefficient that does not take into account the geometry of
set �, depends not only on the sparsity of w, but also on how this vector is aligned
with the eigenspaces of H. For instance, if w belongs to the linear span of the
eigenspaces that correspond only to the eigenvalues of H that are not too small,
‖H−1/2w‖2

�2
becomes of the order ‖w‖2

�2
. Note also that the geometry of the prob-

lem crucially depends on the unknown distribution � of the design variable [since
one has to deal with the Hilbert space L2(�)].

For λ ∈ R
N, let sN

j (λ) := log(eN2λj ), j ∈ supp(λ) and sN
j (λ) := 0, j /∈

supp(λ). Note that, for j ∈ supp(λ), sN
j (λ) = logλj + 1 + 2 logN and logλj + 1

is the derivative of the function λ logλ involved in the definition of the penalty. Let

sN(λ) := (sN
1 (λ), . . . , sN

N (λ)).

It happens that both the approximation error E(fλε) and the “approximate sparsity”
of λε can be controlled by the alignment coefficient of the vector sN(λ) for an
arbitrary λ ∈ �. Denote

αN(λ) := aH (�,λ, sN(λ)).
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THEOREM 4. There exists a constant C > 0 that depends only on � and on the
constant M (for which ‖f∗‖∞ ≤ M) such that, for all ε > 0 and all λ ∈ �

E(fλε) + 2ε
∑

j /∈supp(λ)

λε
j ≤ 3E(fλ) + C

(
ε2α2

N(λ) + ε

N

)
.(2.12)

Theorem 4 and either of the bounds on the random error (2.10) and (2.11) im-
mediately imply oracle inequalities for the excess risk E(f

λ̂ε ). For instance, the
next corollary follows from (2.11).

COROLLARY 1. Under the conditions of Theorem 2, for all λ ∈ � with J =
supp(λ) and for all subspaces L of L2(�) with d := dim(L), the following bound
holds with probability at least 1−N−A and with a constant C depending on � and
on M :

E(f
λ̂ε ) ≤ 4E(fλ) + C

(
d + A logN

n
+ max

j∈J
‖PL⊥hj‖L2(�)

√
A logN

n

+ U(L) logN

n
+ ε2α2

N(λ) + ε

N

)
.

2.5. Density estimation and sparse mixtures recovery. In the case of density
estimation based on entropy penalized empirical risk minimization with quadratic
loss, as in (1.3), the results are rather similar to what was described above for pre-
diction problems (regression and classification) and their proofs are quite similar,
too.

Recall the notations at the end of the Introduction 1. Recall also the assumptions
that the unknown density f∗ of distribution P is uniformly bounded by M and the
densities in the dictionary hj are uniformly bounded by 1.

The following results hold.

THEOREM 5. There exist numerical constants D > 0 and C > 0 such that, for
all J ⊂ {1, . . . ,N} with d := d(J ) = card(J ), for all A ≥ 1 and for all

ε ≥ D

√
d + A logN

n
,

the following bounds hold with probability at least 1 − N−A:

∑
j /∈J

λ̂ε
j ≤ C

[∑
j /∈J

λε
j + M2

√
d + A logN

n

]
,

∑
j /∈J

λε
j ≤ C

[∑
j /∈J

λ̂ε
j + M2

√
d + A logN

n

]
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and

‖f
λ̂ε − fλε‖2

L2(μ) + εK(λ̂ε, λε) ≤ C

[
M2 d + A logN

n
∨ ∑

j /∈J

λε
j

√
d + A logN

n

]
.

THEOREM 6. Suppose that

ε ≥ D

√
A logN

n

with a large enough numerical constant D > 0. For all J ⊂ {1, . . . ,N}, for all
subspaces L of L2(P ) with d := dim(L) and for all A ≥ 1, the following bounds
hold with probability at least 1 − N−A and with a numerical constant C > 0:

∑
j /∈J

λ̂ε
j ≤ C

[∑
j /∈J

λε
j + M2 d + A logN

nε
+ max

j∈J
‖PL⊥hj‖L2(P )

(2.13)

+ U(L) logN

nε

]
,

∑
j /∈J

λε
j ≤ C

[∑
j /∈J

λ̂ε
j + M2 d + A logN

nε
+ max

j∈J
‖PL⊥hj‖L2(P )

(2.14)

+ U(L) logN

nε

]

and

‖f
λ̂ε − fλε‖2

L2(μ) + εK(λ̂ε, λε)

≤ C

[
M2 d + A logN

n
∨ ∑

j /∈J

λε
j

√
A logN

n

(2.15)

∨max
j∈J

‖PL⊥hj‖L2(P )

√
A logN

n

∨U(L) logN

n

]
.

In the case of density estimation, it makes sense to redefine the alignment coef-
ficient in terms of measure μ:

aH (�,λ,w) := sup
{〈w,u〉�2 :u ∈ T�(λ),‖fu‖L2(μ) = 1

}
,

αN(λ) := aH (�,λ, sN(λ)).

The approximation error bound then becomes as follows.
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THEOREM 7. There exists a numerical constant C > 0 such that, for all ε > 0
and all λ ∈ �

‖fλε − f∗‖2
L2(μ) + 2ε

∑
j /∈supp(λ)

λε
j ≤ 3‖fλ − f∗‖2

L2(μ)

(2.16)

+ C

(
ε2α2

N(λ) + ε

N

)
.

Finally, this results in the following oracle inequality.

COROLLARY 2. Under the conditions of Theorem 6, for all λ ∈ � with J =
supp(λ) and for all subspaces L of L2(�) with d := dim(L), the following bound
holds with probability at least 1 − N−A and with a numerical constant C:

‖f
λ̂ε − f∗‖2

L2(μ) ≤ 4‖fλ − f∗‖2
L2(μ)

+ C

(
M2 d + A logN

n
+ max

j∈J
‖PL⊥hj‖L2(�)

√
A logN

n

+ U(L) logN

n
+ ε2α2

N(λ) + ε

N

)
.

3. Proofs. The proofs of Theorems 1 and 2 are quite similar. We give only the
proof of Theorem 2.

PROOF OF THEOREM 2. The following necessary conditions of minima in
minimization problems defining λε and λ̂ε will be used to derive sparsity bounds:

P(�′ • fλε)(f
λ̂ε − fλε) + ε

N∑
j=1

(logλε
j + 1)(λ̂ε

j − λε
j ) ≥ 0(3.1)

and

Pn(�
′ • f

λ̂ε )(fλ̂ε − fλε) + ε

N∑
j=1

(log λ̂ε
j + 1)(λ̂ε

j − λε
j ) ≤ 0.(3.2)

The inequality (3.1) holds because the directional derivative of the penalized risk
function (which is convex)

� � λ �→ P(� • fλ) + ε

N∑
j=1

λj logλj

at the point of its minimum λε is nonnegative in the direction of any other point of
the convex set �, in this case in the direction of λ̂ε. The inequality (3.2) is based
on similar considerations in the case of penalized empirical risk (note that in this
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case the minimum of the convex function is at λ̂ε and we are differentiating in the
direction to the minimal point, not from the minimal point). Subtracting (3.1) from
(3.2) and replacing P by Pn in (3.2), we get

P
(
(�′ • f

λ̂ε ) − (�′ • fλε)
)
(f

λ̂ε − fλε) + ε

N∑
j=1

(log λ̂ε
j − logλε

j )(λ̂
ε
j − λε

j )

(3.3)
≤ (P − Pn)(�

′ • f
λ̂ε )(fλ̂ε − fλε).

Note that
N∑

j=1

(log λ̂ε
j − logλε

j )(λ̂
ε
j − λε

j ) =
N∑

j=1

(
log

λ̂ε
j

λε
j

)
(λ̂ε

j − λε
j ) = K(λ̂ε, λε),

so bound (3.3) can be also written as

P
(
(�′ • f

λ̂ε ) − (�′ • fλε)
)
(f

λ̂ε − fλε) + εK(λ̂ε;λε)
(3.4)

≤ (P − Pn)(�
′ • f

λ̂ε )(fλ̂ε − fλε).

To extract from this bound some information about approximate sparsity of λ̂ε note
that

K(λ̂ε, λε) =
N∑

j=1

(
log

λ̂ε
j

λε
j

)
(λ̂ε

j − λε
j )

(3.5)

≥ log 2

2

∑
j :λ̂ε

j≥2λε
j

λ̂ε
j + log 2

2

∑
j :λε

j≥2λ̂ε
j

λε
j .

This implies that for any J ⊂ {1, . . . ,N}∑
j /∈J

λ̂ε
j ≤ 2

∑
j /∈J

λε
j + 2

log 2
K(λ̂ε, λε).(3.6)

Similarly, ∑
j /∈J

λε
j ≤ 2

∑
j /∈J

λ̂ε
j + 2

log 2
K(λ̂ε, λε).(3.7)

Therefore, taking into account (3.4),

ε
∑
j /∈J

λ̂ε
j ≤ 2ε

∑
j /∈J

λε
j + 2

log 2
(P − Pn)(�

′ • f
λ̂ε )(fλ̂ε − fλε).(3.8)

Since the second derivative of the loss function is bounded away from 0, we also
have

P
(
(�′ • f

λ̂ε ) − (�′ • fλε)
)
(f

λ̂ε − fλε) ≥ c‖f
λ̂ε − fλε‖2,
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where c = τ(1) (note that ‖fλε‖∞ ≤ 1 and ‖f
λ̂ε‖∞ ≤ 1). In view of (3.4), this

implies

c‖f
λ̂ε − fλε‖2 + εK(λ̂ε, λε) ≤ (P − Pn)(�

′ • f
λ̂ε )(fλ̂ε − fλε).(3.9)

Denote

�(δ;�) :=
{
λ ∈ � :‖fλ − fλε‖L2(�) ≤ δ,

∑
j /∈J

λj ≤ �

}
,

αn(δ;�) := sup
{∣∣(Pn − P)

(
(�′ • fλ)(fλ − fλε)

)∣∣ : λ ∈ �(δ;�)
}
.

The following two lemmas are somewhat akin to Lemma 5 in Koltchin-
skii (2008a). We will give below the proof of Lemma 2 that is needed to complete
our proof of Theorem 2. Lemma 1 can be used in a similar way in the proof of
Theorem 1, which we skip.

LEMMA 1. Under the assumptions of Theorem 1, there exists constant C that
depends only on � such that with probability at least 1 − N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ � ≤ 1

the following bounds hold:

αn(δ;�) ≤ βn(δ;�) := C

[
δ

√
d + A logN

n
∨ �

√
d + A logN

n
(3.10)

∨ ∑
j /∈J

λε
j

√
d + A logN

n
∨ A logN

n

]
.

LEMMA 2. Under the assumptions of Theorem 2, there exists constant C that
depends only on � such that with probability at least 1 − N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ � ≤ 1(3.11)

the following bounds hold:

αn(δ;�) ≤ βn(δ;�)

:= C

[
δ

√
d + A logN

n
∨ �

√
A logN

n
∨ ∑

j /∈J

λε
j

√
A logN

n
(3.12)

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n
∨ U(L) logN

n
∨ A logN

n

]
.
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It follows from Lemma 2 and from (3.8), (3.9) that, for

δ = ‖f
λ̂ε − fλε‖L2(�) and � = ∑

j /∈J

λ̂ε
j ,(3.13)

the following bounds hold with βn(δ,�) defined in (3.12):

cδ2 ≤ βn(δ,�)(3.14)

and

ε� ≤ 2ε
∑
j /∈J

λε
j + 2

log 2
βn(δ,�)(3.15)

provided that δ ≥ n−1/2,� ≥ n−1/2. In the case if δ < n−1/2 or � < n−1/2 one can
replace δ or �, respectively, by n−1/2 in the expression for βn(δ,�) and still have
bounds (3.14) and (3.15). The proof below goes through in this case, even with
some simplifications. In the main case, when δ ≥ n−1/2,� ≥ n−1/2, it remains to
solve the inequalities (3.14), (3.15) to complete the proof. To this end, note that
(3.15) can be rewritten (with a proper adjustment of constant C) as

ε� ≤ C�

√
A logN

n

+ C

[
ε

∑
j /∈J

λε
j ∨ δ

√
d + A logN

n
∨ ∑

j /∈J

λε
j

√
A logN

n

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n
∨ U(L) logN

n
∨ A logN

n

]
.

Under the assumption that the constant D in the condition (2.3) on ε is larger

than 1, the term
∑

j /∈J λε
j

√
A logN

n
in the maximum can be dropped since it smaller

than the first term ε
∑

j /∈J λε
j . If D ≥ 2C, the bound can be further rewritten as

ε� ≤ C

[
ε

∑
j /∈J

λε
j ∨ δ

√
d + A logN

n

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n

∨U(L) logN

n
∨ A logN

n

]

(again with an adjustment of C). To get a bound on �, it is enough to solve the
inequality separately for each term in the maximum and take the maximum of the



1350 V. KOLTCHINSKII

solutions. This yields

� ≤ C

[∑
j /∈J

λε
j ∨ δ

ε

√
d + A logN

n

∨ max
j∈J

‖PL⊥hj‖L2(�)

1

ε

√
A logN

n
∨ U(L) logN

nε
∨ A logN

nε

]
.

Under the assumption (2.3) on ε (with D ≥ 1), this can be further simplified and
the bound becomes

� ≤ �(δ) := C

[∑
j /∈J

λε
j ∨ δ

ε

√
d + A logN

n

∨ max
j∈J

‖PL⊥hj‖L2(�) ∨ U(L) logN

nε
∨

√
A logN

n

]
.

Let us now substitute �(δ) instead of � in (3.14) [note than βn(δ,�) is nonde-
creasing in �]. This easily gives the following bound on δ:

δ2 ≤ C

[
δ

√
d + A logN

n
∨ δ

ε

√
d + A logN

n

√
A logN

n

∨ U(L) logN

nε

√
A logN

n
∨ ∑

j /∈J

λε
j

√
A logN

n

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n
∨ U(L) logN

n
∨ A logN

n

]
,

and the second and the third terms in the maximum can be dropped again since
1
ε

√
A logN

n
≤ 1. Thus, we have

δ2 ≤ C

[
δ

√
d + A logN

n
∨ ∑

j /∈J

λε
j

√
A logN

n

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n
∨ U(L) logN

n
∨ A logN

n

]
,

which gives the following bound on δ2:

δ2 ≤ C

[
d + A logN

n
∨ ∑

j /∈J

λε
j

√
A logN

n

(3.16)

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n
∨ U(L) logN

n

]
.
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This can be substituted back into the expression for �(δ) yielding the bound on �:

� ≤ C

[∑
j /∈J

λε
j ∨ d + A logN

nε
∨

(∑
j /∈J

λε
j

)1/2
1

ε

(
A logN

n

)1/4
√

d + A logN

n

∨
√

U(L) logN

nε

√
d + A logN

n

∨ max
j∈J

‖PL⊥hj‖1/2
L2(�)

1

ε

(
A logN

n

)1/4
√

d + A logN

n

∨ max
j∈J

‖PL⊥hj‖L2(�) ∨ U(L) logN

nε
∨

√
A logN

n

]
,

which, using the inequality ab ≤ (a2 +b2)/2 and the condition 1
ε

√
A logN

n
≤ 1, can

be simplified and rewritten as

� ≤ C

[∑
j /∈J

λε
j ∨ d + A logN

nε
∨ max

j∈J
‖PL⊥hj‖L2(�)

(3.17)

∨ U(L) logN

nε
∨

√
A logN

n

]

with a proper change of C (still depending only on �). Now we can substitute
(3.16) and (3.17) in the expression for βn(δ,�). We skip the details that are simple
and similar to the bounds earlier in the proof. In view of Lemma 2, this gives the
following bound on αn(δ,�) that holds for δ,� defined by (3.13) with probability
at least 1 − N−A:

αn(δ,�) ≤ C

[
d + A logN

n
+ ∑

j /∈J

λε
j

√
A logN

n

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n
∨ U(L) logN

n

]
.

Together with (3.9) this yields the bound

c‖f
λ̂ε − fλε‖2

L2(�) + εK(λ̂ε, λε)

≤ C

[
d + A logN

n
+ ∑

j /∈J

λε
j

√
A logN

n
(3.18)

∨ max
j∈J

‖PL⊥hj‖L2(�)

√
A logN

n
∨ U(L) logN

n

]
,
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which is equivalent to (2.6). Bound (2.4) follows immediately from bound (3.17)

(under the assumption on ε, the term
√

A logN
n

is smaller than d+A logN
nε

, so, it can
be discarded), and bound (2.5) follows from (3.7) and (3.18), which completes the
proof. �

PROOF OF LEMMA 2. The proof relies on Talagrand’s concentration inequal-
ity for empirical processes as well as on Rademacher symmetrization and con-
traction inequalities [see, e.g., Koltchinskii (2006) or Massart (2007) for their for-
mulations in a form convenient for our purposes]. By Talagrand’s concentration
inequality, with probability at least 1 − e−t

αn(δ;�) ≤ 2
[
Eαn(δ;�) + Cδ

√
t

n
+ Ct

n

]
(3.19)

and, by symmetrization inequality,

Eαn(δ;�) ≤ 2E sup
{∣∣Rn

(
(�′ • fλ)(fλ − fλε)

)∣∣ :λ ∈ �(δ;�)
}
.

Since

�′(fλ(·))(fλ(·) − fλε(·)) = �′(fλε(·) + u
)
u|u=fλ(·)−fλε (·)

and the function

[−1,1] � u �→ �′(fλε(·) + u
)
u

is Lipschitz with a constant C depending only on �, the application of Rademacher
contraction inequality yields the bound

Eαn(δ;�) ≤ CE sup{|Rn(fλ − fλε)| :λ ∈ �(δ;�)}.(3.20)

Now we use the following representation

fλ − fλε = PL(fλ − fλε) + ∑
j∈J

(λj − λε
j )PL⊥hj

(3.21)
+ ∑

j /∈J

(λj − λε
j )PL⊥hj .

Clearly, for all λ ∈ �(δ,�),

‖PL(fλ − fλε)‖L2(�) ≤ ‖fλ − fλε‖L2(�) ≤ δ

and PL(fλ − fλε) ∈ L, which is a d-dimensional subspace. Therefore,

E sup
{∣∣Rn

(
PL(fλ − fλε)

)∣∣ :λ ∈ �(δ;�)
} ≤ Cδ

√
d

n
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[see, e.g., Koltchinskii (2006), Section 2, Example 1]. On the other hand, since
λ,λε ∈ �, we have

∑
j∈J |λj − λε

j | ≤ 2 and

E sup

{∣∣∣∣∣Rn

(∑
j∈J

(λj − λε
j )PL⊥hj

)∣∣∣∣∣ :λ ∈ �(δ;�)

}
≤ 2E max

j∈J
|Rn(PL⊥hj )|.

We now proceed with rather well-known approach to bounding the sup-norm of
Rademacher sums:

E max
j∈J

|Rn(PL⊥hj )| ≤ CE max
j∈J

‖PL⊥hj‖L2(�n)

√
log card(J )

n

≤ C max
j∈J

‖PL⊥hj‖L2(�)

√
logN

n

+
√

E max
j∈J

∣∣‖PL⊥hj‖2
L2(�n) − ‖PL⊥hj‖2

L2(�)

∣∣
√

logN

n
.

Note that

‖PL⊥hj‖∞ ≤ ‖PLhj‖∞ + ‖hj‖∞ ≤ (
U(L) − 1

)‖PLhj‖L2(�) + 1

≤ (
U(L) − 1

)‖hj‖L2(�) + 1 ≤ U(L).

We use symmetrization inequality together with Rademacher contraction inequal-
ity to get the following bound

E max
j∈J

|Rn(PL⊥hj )|

≤ C

[
max
j∈J

‖PL⊥hj‖L2(�)

√
logN

n

+
√

max
j∈J

‖PL⊥hj‖∞E max
j∈J

|Rn(PL⊥hj )|
√

logN

n

]
.

The last inequality can be solved for

E max
j∈J

|Rn(PL⊥hj )|,
which gives the bound

E max
j∈J

|Rn(PL⊥hj )| ≤ C

[
max
j∈J

‖PL⊥hj‖L2(�)

√
logN

n
+ U(L)

logN

n

]
.

Quite similarly, we have for all λ ∈ �(δ,�)∑
j /∈J

|λj − λε
j | ≤ � + ∑

j /∈J

λε
j
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and

E sup

{∣∣∣∣∣Rn

(∑
j /∈J

(λj − λε
j )PL⊥hj

)∣∣∣∣∣ : λ ∈ �(δ;�)

}

≤
(
� + ∑

j /∈J

λε
j

)
E max

j /∈J
|Rn(PL⊥hj )|.

Repeating what we have done in the case of j ∈ J, we get

E max
j /∈J

|Rn(PL⊥hj )| ≤ C

[√
logN

n
+ U(L)

logN

n

]
,

where we used the fact that

‖PL⊥hj‖L2(�) ≤ ‖hj‖L2(�) ≤ 1.

It remains to recall representation (3.21) and bound (3.20) to show that

Eαn(δ,�)

≤ C

[
δ

√
d

n
∨ �

√
logN

n
∨ ∑

j /∈J

λε
j

√
logN

n

(3.22)

∨max
j∈J

‖PL⊥hj‖L2(�)

√
logN

n
∨ �U(L)

logN

n

∨ ∑
j /∈J

λε
jU(L)

logN

n
∨ U(L)

logN

n

]
,

which can be bounded further as

Eαn(δ,�) ≤ C

[
δ

√
d

n
∨ �

√
logN

n
∨ ∑

j /∈J

λε
j

√
logN

n

∨max
j∈J

‖PL⊥hj‖L2(�)

√
logN

n
∨ U(L) logN

n

]
.(3.23)

This can be plugged in (3.19) to get that with probability 1 − e−t

αn(δ,�) ≤ β̃n(δ,�, t)

:= C

[
δ

√
d

n
∨ �

√
logN

n
∨ ∑

j /∈J

λε
j

√
logN

n
(3.24)

∨max
j∈J

‖PL⊥hj‖L2(�)

√
logN

n
∨ U(L) logN

n
∨ δ

√
t

n
∨ t

n

]
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with a constant C > 0 depending only on �.

We will make the above bound uniform in δ,� satisfying (3.11). To this end,
define

δj := 2−j and �j := 2−j

and replace t by t +2 log(j +1)+2 log(k +1). The union bound implies that with
probability at least

1 − ∑
j,k≥0

exp{−t − 2 log(j + 1) − 2 log(k + 1)}

= 1 −
(∑

j≥0

(j + 1)−2

)2

exp{−t} ≥ 1 − 4e−t ,

for all δ and � satisfying (3.11), and for j, k such that

δ ∈ (δj+1, δj ] and � ∈ (�k+1,�k],
the following bound holds:

αn(δ;�) ≤ β̃n(δj ,�k, t + 2 log j + 2 log k).

Since

2 log j ≤ 2 log log2

(
1

δj

)
≤ 2 log log2

(
2

δ

)

and

2 log k ≤ 2 log log2

(
2

�

)
,

we have

β̃n(δj ,�k, t + 2 log j + 2 log k)

≤ β̃n

(
2δ,2�, t + 2 log log2

(
2

δ

)
+ 2 log log2

(
2

�

))
=: β̄n(δ;�; t)

and, therefore, with probability at least 1 − 4e−t , for all δ and � satisfying (3.11),

αn(δ;�) ≤ β̄n(δ;�; t).
Let t = A logN + log 4 (so that 4e−t = N−A). Then, with some constant C that
depends only on �,

β̄n(δ;�; t)

≤ C

[
δ

√
d

n
∨ δ

√
A logN

n
∨ δ

√
2 log log2(2/δ)

n
∨ δ

√
2 log log2(2/�)

n
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∨�

√
logN

n
∨ ∑

j /∈J

λε
j

√
logN

n
∨ max

j∈J
‖PL⊥hj‖L2(�)

√
logN

n

∨U(L) logN

n
∨ 2 log log2(2/δ)

n
∨ 2 log log2(2/�)

n
∨ A logN

n

]
.

For all δ and � satisfying (3.11),

2 log log2(2/δ)

n
≤ C

log logn

n

and

2 log log2(2/�)

n
≤ C

log logn

n
.

By assumptions on N,n, A logN ≥ γ log logn. Therefore, for δ and � satisfying
(3.11),

αn(δ,�) ≤ β̄n(δ;�; t) ≤ C

[
δ

√
d

n
∨ δ

√
A logN

n
∨ �

√
logN

n

∨ ∑
j /∈J

λε
j

√
logN

n
∨ max

j∈J
‖PL⊥hj‖L2(�)

√
logN

n
(3.25)

∨U(L) logN

n
∨ A logN

n

]
,

which holds with probability at least 1 − N−A. �

PROOF OF THEOREM 3. The proof easily follows from the fact that under the
conditions on the loss function we have

(� • f
λ̂ε )(x, y) − (� • fλε)(x, y) = (�′ • fλε)(x, y)(f

λ̂ε − fλε)(x) + R(x, y),

where

|R(x, y)| ≤ C(f
λ̂ε − fλε)2(x).

Integrating with respect to P yields

|P(� • f
λ̂ε ) − P(� • fλε) − P(�′ • fλε)(f

λ̂ε − fλε)| ≤ C‖f
λ̂ε − fλε‖2

L2(�).

It is enough to observe that

|P(�′ • fλε)(f
λ̂ε − fλε)|

= ∣∣〈�′ • fλε , f
λ̂ε − fλε〉L2(P )

∣∣ = ∣∣〈PL(�′ • fλε), f
λ̂ε − fλε〉L2(P )

∣∣
≤ ‖gε‖L2(P )‖fλ̂ε − fλε‖L2(�)
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and to use the bounds of Theorems 1 and 2. �

PROOF OF THEOREM 4. The following bound immediately follows from the
definition of λε : for all λ ∈ �,

E(fλε) + ε

N∑
j=1

λε
j log(N2λε

j ) ≤ E(fλ) + ε

N∑
j=1

λj log(N2λj ).

Denoting Jλ = supp(λ) and using the convexity of the function u �→ u log(N2u)

and the fact that its derivative is log(eN2u), we get

E(fλε ) + ε
∑
j /∈Jλ

λε
j log(N2λε

j ) ≤ E(fλ) + ε
∑
j∈Jλ

(
λj log(N2λj ) − λε

j log(N2λε
j )

)

≤ E(fλ) + ε
∑
j∈Jλ

log(eN2λj )(λj − λε
j ),

which, by the definition of αN(λ), can be further bounded by

E(fλ) + ε|αN(λ)|‖fλ − fλε‖L2(�).

Next we use obvious bounds [recall (2.9)]

‖fλ − fλε‖L2(�) ≤ ‖fλ − f∗‖L2(�) + ‖fλε − f∗‖L2(�) ≤
√

E(fλ)

τ
+

√
E(fλε)

τ

to get

E(fλε ) + ε
∑
j /∈Jλ

λε
j log(N2λε

j ) ≤ E(fλ) + ε|αN(λ)|
(√

E(fλ)

τ
+

√
E(fλε)

τ

)
.

Since

ε|αN(λ)|
√

E(fλε)

τ
≤ 1

2

ε2α2
N(λ)

τ
+ 1

2
E(fλε )

and

ε|αN(λ)|
√

E(fλ)

τ
≤ 1

2

ε2α2
N(λ)

τ
+ 1

2
E(fλ),

this yields

1

2
E(fλε) + ε

∑
j /∈Jλ

λε
j log(N2λε

j ) ≤ 3

2
E(fλ) + ε2α2

N(λ)

τ
.
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Note that also∑
j /∈Jλ

λε
j log(N2λε

j ) = ∑
j /∈Jλ:λε

j≥eN−2

λε
j log(N2λε

j ) + ∑
j /∈Jλ:λε

j<eN−2

λε
j log(N2λε

j )

≥ ∑
j /∈Jλ:λε

j≥eN−2

λε
j − 1

eN
,

where we used the fact that the function t �→ t log(N2t) is bounded from below by
− 1

eN2 . Thus,

∑
j /∈Jλ

λε
j log(N2λε

j ) ≥ ∑
j /∈Jλ

λε
j − ∑

j /∈Jλ:λε
j<eN−2

λε
j − 1

eN
≥ ∑

j /∈Jλ

λε
j − (e + e−1)

1

N
.

Therefore, we get

E(fλε) + 2ε
∑
j /∈Jλ

λε
j ≤ 3E(fλ) + 2ε2α2

N(λ)

τ
+ 2(e + e−1)

ε

N
,

which implies the result. �

The results concerning penalized density estimation can be proved quite simi-
larly.
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