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ON A GENERALIZED FALSE DISCOVERY RATE

BY SANAT K. SARKAR1 AND WENGE GUO

Temple University and National Institute of Environmental Health Sciences

The concept of k-FWER has received much attention lately as an appro-
priate error rate for multiple testing when one seeks to control at least k false
rejections, for some fixed k ≥ 1. A less conservative notion, the k-FDR, has
been introduced very recently by Sarkar [Ann. Statist. 34 (2006) 394–415],
generalizing the false discovery rate of Benjamini and Hochberg [J. Roy. Sta-
tist. Soc. Ser. B 57 (1995) 289–300]. In this article, we bring newer insight
to the k-FDR considering a mixture model involving independent p-values
before motivating the developments of some new procedures that control it.
We prove the k-FDR control of the proposed methods under a slightly weaker
condition than in the mixture model. We provide numerical evidence of the
proposed methods’ superior power performance over some k-FWER and k-
FDR methods. Finally, we apply our methods to a real data set.

1. Introduction. The classical idea of controlling at least one false discovery
has been generalized recently to that of controlling at least k false discoveries,
for some fixed k > 1. The rationale behind it has been that often in practice one is
willing to tolerate a few false rejections, so by controlling k or more false rejections
the ability of a procedure to detect more false null hypotheses can potentially be
improved. The k-FWER, the probability of at least k false rejections, is one such
generalized error rate that has received considerable attention [5, 6, 12, 13, 15,
16, 19, 20, 27]. With Vn and Rn denoting, respectively, the total number of false
rejections and the total number of rejections of null hypotheses in testing n null
hypotheses, it is defined as

k-FWER = Pr{Vn ≥ k},(1.1)

generalizing the traditional familywise error rate (FWER). Sarkar [19] has intro-
duced the following alternative error rate generalizing the usual false discovery
rate (FDR) of Benjamini and Hochberg [1]:

k-FDR = E(k-FDP), where k-FDP = VnI (Vn ≥ k)

Rn ∨ 1
,(1.2)
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with I (A) denoting the indicator of the event A and Rn ∨ 1 = max(Rn,1). It is
the expected ratio of k or more false rejections to all rejections of null hypothe-
ses, and, as k-FDR ≤ k-FWER, controlling it is a less conservative approach than
controlling the k-FWER.

Given p-values corresponding to the null hypotheses, Sarkar [19] provided
a stepup k-FDR procedure utilizing the kth order joint null distributions of the
p-values. It was assumed that these p-values are either independent or positively
dependent in a sense slightly stronger than assumed for k = 1 in proving the FDR
control of the Benjamini–Hochberg (BH) procedure [3, 17]. Later, Sarkar and
Guo [22] have given stepup as well as stepdown procedures based on the bivari-
ate null distributions of the p-values, assuming the p-values are independent or
positively dependent in the same sense as when k = 1.

Alternative k-FDR procedures with independent p-values are constructed in
this article taking the approach of conservatively estimating the FDR for a fixed
rejection region and using these estimates to produce FDR controlling procedures,
as in [23, 24, 28]. For a single-step test with a nonrandom threshold, we derive a
formula for the k-FDR of the test under the mixture model considered in [23] and
many other subsequent papers. The formula offers a new insight into the notion
of k-FDR in relation to that of the FDR. It provides a simple and intuitive upper
bound to the k-FDR that can be thought of as a scaled version of the FDR, with the
(k−1)-FWER in testing n − 1 null hypotheses being the scale factor. Motivated
by this, we consider conservative point estimates of the product of FDR and the
probability of at least k − 1 false rejections while testing n − 1 null hypotheses,
given a fixed rejection region for each null hypothesis. Then we develop through
these estimates procedures (stepwise) that control the k-FDR at a given level.

One of the new k-FDR procedures developed is a generalized version of the BH
FDR procedure, Procedure 1. Others are improved versions of Procedure 1 using
a class of estimates of the number of true null hypotheses. The k-FDR control of
these procedures is proved assuming that the p-values are independent with each
having the U(0,1) distribution when the corresponding null hypothesis is true.
This is a slightly weaker assumption than the i.i.d. mixture model.

The performances of our procedures are numerically compared with other rele-
vant procedures. It is important to point out that while we are in the paradigm of
controlling k false rejections, k-FWER and other k-FDR procedures should be the
relevant competitors. With that in mind, we numerically compare Procedure 1 with
two k-FWER procedures in Sarkar [20] to see the extent of power improvement
we have in a k-FDR procedure over a k-FWER procedure. This improvement is
seen to be quite significant, especially for large number of hypotheses.

Considering an ideal situation where the number of true null hypotheses is given
to us by an oracle, we determine the oracle procedure. It is a stepup procedure that
mimics Procedure 1 with the number of true null hypotheses assumed known. We
numerically compare the powers of different k-FDR procedures, those proposed
here, Procedure 1 and its modification with a particular choice of the estimate of
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true null hypotheses, and the one in Sarkar [19], relative to the power of the oracle
procedure.

Although this paper is motivated by the work of [23, 24], we have not fully
pursued their line of research here. We keep our focus mainly on developing pro-
cedures controlling the k-FDR and not on estimating it. Furthermore, we have not
taken the route of generalizing Storey’s concept of positive FDR and the related
q-value method. Finally, we obtain our results only in the finite sample setting.

The layout of the paper is as follows. The k-FDR formula under the mixture
model is given in Section 2. Having briefly introduced in Section 3 a class of con-
servatively biased point estimates of the k-FDR based on this formula, we moti-
vate our procedures controlling the k-FDR in Section 4. The findings of numerical
studies are presented in Section 5. An application to a real data set is provided in
Section 6. Some concluding remarks and additional numerical investigations are
made in Section 7. Proofs of all the main results are given in the Appendix.

2. The k-FDR under mixture model. Given n null hypotheses H1, . . . ,Hn,
consider testing if Hi = 0 (true) or Hi = 1 (false) simultaneously for i = 1, . . . , n,
based on their respective p-values p1, . . . , pn. We first consider a single step mul-
tiple testing procedure rejecting each Hi = 0 if pi ≤ t for some fixed, nonrandom
t ∈ (0,1) and derive a formula for the k-FDR of this procedure under the following
model considered in [23].

Mixture model: Let (pi,Hi), i = 1, . . . , n, be i.i.d. as (p,H ), where

Pr(p ≤ u|H) = (1 − H)u + HF1(u), u ∈ (0,1),
(2.1)

Pr(H = 0) = π0 = 1 − Pr(H = 1),

for some cdf F1(u).

THEOREM 2.1. Let

Vn(t) =
n∑

i=1

I (pi ≤ t,Hi = 0), Rn(t) =
n∑

i=1

I (pi ≤ t).(2.2)

Then, under the above mixture model, the k-FDR of the single-step test rejecting
each Hi = 0 if pi ≤ t is given by

k-FDRn(t) = nπ0tE

{
I [Vn−1(t) ≥ k − 1]

Rn−1(t) + 1

}
.(2.3)

The formula in Theorem 2.1 provides an insight into the k-FDR as a measure of
generalized FDR as well as a direction toward developing procedures that control
it. To see this, consider first k = 1 and notice that for the FDR the formula is given
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by

FDRn(t) = nπ0tE

{
1

Rn−1(t) + 1

}
(2.4)

= E[Vn(t)]E
{

1

Rn−1(t) + 1

}
.

Of course, since Rn−1 ∼ Bin[n − 1,F (t)], with F(t) = π0t + (1 − π0)F1(t), we
have

E

{
1

Rn−1(t) + 1

}
= 1 − [1 − F(t)]n

nF (t)
= Pr{Rn(t) ≥ 1}

nF(t)
;

that is, the formula (2.4) is same as the following alternative formula

FDRn(t) = π0t

F (t)
Pr{Rn(t) ≥ 1}

(2.5)

= E[Vn(t)

E[Rn(t)]Pr{Rn(t) ≥ 1},
given in Storey [23] and commonly used in many subsequent papers. Nevertheless,
(2.4) offers a slightly different insight into the FDR than (2.5), and it is this insight
that helps us in understanding what the k-FDR means as a generalization of the
FDR. Writing the k-FDR as

k-FDRn(t)
(2.6)

= Pr{Vn−1(t) ≥ k − 1}nπ0tE

{
1

Rn−1(t) + 1

∣∣∣Vn−1(t) ≥ k − 1
}
,

we see that it is a combination of the (k−1)-FWER in testing n−1 null hypotheses
and an FDR-type measure conditional on at least k − 1 false rejections in testing
n − 1 null hypotheses.

For a fixed t , I [Vn−1(t) ≥ k − 1] is a stochastically increasing function of
Rn−1(t), because Vn−1(t) is so; whereas, [Rn−1(t) + 1]−1 is a decreasing func-
tion of Rn−1(t). Using these, we get

E

{
1

Rn−1(t) + 1

∣∣∣Vn−1(t) ≥ k − 1
}

≤ E

{
1

Rn−1(t) + 1

}
(2.7)

(see Appendix A.4 for a proof). In other words, we have

k-FDRn(t) ≤ Pr{Vn−1(t) ≥ k − 1}FDRn(t).(2.8)

Storey [23] estimated FDRn(t), given a fixed rejection region (0, t) for each
null hypothesis, by using conservative point estimates of the quantity π0t/F (t).
Borrowing Storey’s idea, we consider conservatively estimating the quantity

π0t

F (t)
Pr{Vn−1(t) ≥ k − 1}(2.9)
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for estimating the k-FDR toward developing procedures that control it. Before we
do that in the next section, it would be interesting to see what the quantity (2.9)
means and how it is related to the original definition of the k-FDR(t).

Since Vn−1 ∼ Bin(n − 1, π0t), the probability Pr{Vn−1(t) ≥ k − 1} is equal to
G(k − 1, n − 1, π0t), where

G(k,n,u) =
n∑

j=k

(
n

j

)
uj (1 − u)n−j , 0 < u < 1.(2.10)

Also, E{Vn(t)I (Vn(t) ≥ k)} = nπ0tG(k − 1, n − 1, π0t) and E{Rn(t)I (Rn(t) ≥
1)} = nF(t). Thus, we see that

π0t

F (t)
Pr{Vn−1(t) ≥ k − 1} = E{Vn(t)I (Vn(t) ≥ k)}

E{Rn(t)I (Rn(t) ≥ 1} ,(2.11)

that is, the quantity (2.9) is the ratio of the expectations, conditional on at least
one rejection, of the numerator and denominator terms in k-FDP, the expectation
of which is the k-FDR. This is similar to what Storey [23] noted when k = 1, that
is, for the ratio π0t/F (t). Storey also showed that π0t/F (t) is the positive false
discovery rate (pFDR) defined in [23] under the mixture model. Thus, the quantity
(2.9) is also seen to be a combination of the (k − 1)-FWER in testing n − 1 null
hypotheses and the pFDR. The right-hand side ratio in (2.11) when k = 1 has
been referred to as the marginal FDR (mFDR) in [26] where an optimal procedure
controlling the mFDR is developed under the model (2.1), taking a compound-
decision theoretic approach to multiple testing.

3. Conservative point estimates of the k-FDR(t). Storey [23] proposes the
following class of conservative point estimates of FDR(t):

F̂DRλ(t) = nπ̂0(λ)t

Rn(t) ∨ 1
,(3.1)

where

π̂0(λ) = n − Rn(λ)

n(1 − λ)
(3.2)

for any λ ∈ [0,1). Multiplying this with G(k − 1, n − 1, t), a conservative version
of Pr{Vn−1(t) ≥ k − 1}, we consider estimating the k-FDR(t) as follows:

̂k-FDRλ(t) = nπ̂0(λ)tG(k − 1, n − 1, t)

Rn(t) ∨ 1
, λ ∈ [0,1).(3.3)

THEOREM 3.1. Let the p-values be independent and those corresponding to
the true null hypotheses be i.i.d. U(0,1). Then, E( ̂k-FDRλ(t)) ≥ k-FDR(t), for
every fixed λ ∈ [0,1).
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This result follows from [23, 24]. It shows that the point estimates given by (3.3)
for the k-FDR are conservative.

REMARK 3.1. A more natural way of estimating the k-FDR(t) would be to
estimate Pr{Vn−1(t) ≥ k − 1} using G(k − 1, n − 1, π̂0(λ)t), instead of G(k − 1,

n − 1, t), and multiply this with (3.1). However, for such estimates, Theorem 3.1
holds under certain restrictions on λ depending on t .

4. Procedures controlling the k-FDR. Using ̂k-FDRλ(t), we will now derive
a new class of k-FDR procedures. Let

tα( ̂k-FDRλ) = sup{0 ≤ t ≤ 1 : ̂k-FDRλ(t) ≤ α}.(4.1)

Then, reject Hi if pi ≤ tα( ̂k-FDRλ). Given p1:n ≤ · · · ≤ pn:n, the sorted p-values,
this procedure when λ = 0 (i.e., π̂0 = 1) is equivalent to the following procedure.

PROCEDURE 1. Reject H(1), . . . ,H(l̂)
, where

l̂ = max
{

1 ≤ i ≤ n :pi:nG(k − 1, n − 1,pi:n) ≤ iα

n

}
,(4.2)

if the maximum exists, otherwise, reject none, where H(i) is the null hypothesis
corresponding to pi:n, i = 1, . . . , n.

THEOREM 4.1. Procedure 1 controls the k-FDR at α if the p-values are in-
dependent and those corresponding to the true null hypotheses are i.i.d. U(0,1).

Define

G̃k,n(t) = tG(k − 1, n − 1, t), t ∈ (0,1).(4.3)

Let G̃−1
k,n be the inverse function of G̃k,n. Then, Procedure 1 is a stepup proce-

dure with the critical values αi = G̃−1
k,n(iα/n), i = 1, . . . , n, generalizing the BH

procedure from an FDR to a k-FDR procedure. As G̃k,n(t) ≤ t and G̃k,n(t) is in-
creasing in t (see, e.g., Result A.1 in Appendix A.2), G̃−1

k,n(t) ≥ t . In other words,
Procedure 1 is uniformly more powerful than the BH procedure.

It is important to note that, as in a k-FWER procedure, the first k − 1 critical
values in Procedure 1 and the one to be developed later can be chosen arbitrarily.
This is because the first k − 1 critical values in any stepwise procedure have no
role in defining the k-FDR of such a procedure as the k-FDR is zero until at least k

of the null hypotheses are rejected. Nevertheless, the best way to choose these
critical values would be to keep them all constant at the kth critical value; see,
for example, [19]. So, we consider the first k − 1 critical values in our proposed
k-FDR methods to be same as the kth one while comparing them with k-FWER
and other k-FDR procedures.
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Does Procedure 1 (with its first k − 1 critical values same as the kth one) pro-
vide a more powerful method of controlling k false rejections than a compatible
k-FWER method? Lehmann and Romano [13] gave a stepdown k-FWER proce-
dure generalizing Holm’s original FWER procedure in [9]. Sarkar [20] showed
that a stepup version of the procedure, which generalizes Hochberg’s procedure
in [8], also controls the k-FWER under independence or certain type of positive
dependence. Its critical values are αi = kα/(n − i ∨ k + k), i = 1, . . . , n. Clearly,
Procedure 1 is more powerful than this procedure, as iα/n ≥ kα/(n + k − i), for
all i = k, . . . , n.

Theorem 4.1 establishes the k-FDR control of the single step procedure with
the random threshold tα( ̂k-FDRλ=0). For λ > 0, we use the threshold, as in [24],
based on the following modified version of ̂k-FDRλ(t):

̂k-FDR
∗
λ(t) =

⎧⎨⎩
nπ̂∗

0 (λ)tG(k − 1, n − 1, t)

Rn(t) ∨ 1
, if t ≤ λ,

1, if t > λ,
(4.4)

where

π̂∗
0 (λ) = n − Rn(λ) + 1

n(1 − λ)
,(4.5)

a slight modification of Storey’s [23] original estimate in (3.2). Define

tα( ̂k-FDR
∗
λ) = sup{0 ≤ t ≤ 1 : ̂k-FDR

∗
λ(t) ≤ α},(4.6)

and reject Hi if pi ≤ tα( ̂k-FDR
∗
λ). Given p1:n ≤ · · · ≤ pn:n, this is equivalent to

finding j = max{1 ≤ i ≤ n :pi:n ≤ λ}, for a fixed λ ∈ (0,1), and then rejecting
H(1), . . . ,H(l̂)

, where

l̂ = max
{

1 ≤ i ≤ j :pi:n ≤ min
[
G̃−1

k,n

(
iα(1 − λ)

n − j + 1

)
, λ

]}
,(4.7)

if the maximums at both stages exist, otherwise not rejecting any hypothesis. Nev-
ertheless, we will consider slightly more conservative procedures of the following
type.

PROCEDURE 2. Given a fixed λ ∈ (0,1), find, at the first stage, j = max{1 ≤
i ≤ n :pi:n ≤ λ}. At the second stage, reject H(1), . . . ,H(l̂)

, where

l̂ = max
{

1 ≤ i ≤ j :pi:n ≤ λmin
[
G̃−1

k,n

(
iα(1 − λ)

λ(n − j + 1)

)
,1

]}
.(4.8)

If the maximum does not exist at either stage, do not reject any hypothesis.

THEOREM 4.2. Procedure 2, for every fixed λ ∈ (0,1), controls the k-FDR
at α if the p-values are independent and those corresponding to the true null hy-
potheses are i.i.d. U(0,1).
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REMARK 4.1. Let n0 be the number of true null hypotheses. When n0 < k,
the k-FDR is zero and hence trivially controlled. When n0 ≥ k, the k-FDR
of a stepup procedure with critical values α1 ≤ · · · ≤ αn is bounded above by
n0 maxk≤r≤n{G̃k,n0(αr)/r} under the conditions assumed in Theorem 4.1, as seen
from (A.2) and (A.8). With unknown n0, we consider the maximum of this up-
per bound with respect to n0, which is nmaxk≤r≤n{G̃k,n(αr)/r}, and choose the
αr satisfying nG̃k,n(αr)/r = α that makes it equal to α. This is how we develop
Procedure 1 generalizing the BH FDR procedure.

Procedure 2 is an adaptive k-FDR procedure generalizing that in [24]. It at-
tempts to improve the k-FDR control of Procedure 1 by sharpening it using an
estimate of n0 obtained from the available p-values. More formally, given any
0 < λ < 1, we choose the αr subject to n̂0(λ)G̃k,n(αr)/r = α, considering the
n̂0(λ) = [n − Rn(λ) + 1]/(1 − λ) used in [24], and then slightly modify it so that
we can theoretically establish the k-FDR control of the modified adaptive proce-
dure when k > 1. Of course, when k = 1 this modification does not make any
difference, while it results in a slightly more conservative procedure when k > 1.
We will explain later why it is more conservative when k > 1.

A more reasonable approach to constructing a class of adaptive procedures
would be to find the αr initially from n̂0(λ)G̃k,n̂0(λ)(αr)/r = α before it is modi-
fied if necessary. We have taken a slightly more conservative approach than this,
and the only reason we have done so is that we are able to theoretically prove the
k-FDR control of the resulting adaptive procedure based on (4.8), but not of the
original one based on (4.7) when k > 1. This proof is an extension of a proof given
in [21] and alternative to those given in [2, 24] of the FDR control of the procedure
in [24].

A careful study of our proof of the k-FDR control of Procedure 2 would reveal,
at least theoretically, that (4.5) is a natural choice for an estimate of n0 that can be
used adaptively in Procedure 1 maintaining a control of the k-FDR. Alternative and
more complicated methods of estimating n0 are given in [10, 14]. However, unlike
(4.5), it seems hard to prove theoretically that using these estimates adaptively in
Procedure 1 will control the k-FDR. Of course, if these are used nonadaptively,
that is, by obtaining them independently before incorporating into Procedure 1
to find αr satisfying n̂0G̃k,n(αr)/r = α, the k-FDR can be controlled as long as
E(1/n̂0) ≤ 1/n0.

If n0 ≥ k were known, the least conservative stepup procedure controlling the
k-FDR at level α would be the one in which αr satisfies n0G̃k,n0(αr)/r = α. This
will be referred to as the oracle k-FDR procedure in this article.

Let us now explain why Procedure 2 is more conservative when k > 1 than the
one based on (4.7). For any 0 < λ < 1 and t > 0 [in particular, for t = iα(1 − λ)/

(n − j + 1)], note that

G̃k,n(λt) = λtG(k − 1, n − 1, λt) ≤ λtG(k − 1, n − 1, t) = λG̃k,n(t).
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Thus,

λG̃−1
k,n

(
t

λ

)
≤ G̃−1

k,n

(
λG̃k,n

(
G̃−1

k,n

(
t

λ

)))
= G̃−1

k,n(t).

5. Numerical studies. Sarkar [20] introduced two stepup procedures that
control the k-FWER under independence. One of these we call the generalized
Hochberg procedure, and is based on the following critical values:

α
(1)
i = kα

n − i ∨ k + k
, i = 1, . . . , n.(5.1)

As said before, this is actually the stepup analog of the k-FWER procedure derived
in [13] as a generalization of the Holm procedure [9]. The other procedure we call
Sarkar’s k-FWER procedure, and is based on the following critical values:

α
(2)
i =

(
α

k∏
j=1

j

n − i ∨ k + j

)1/k

, i = 1, . . . , n.(5.2)

In addition, Sarkar [19], while introducing the notion of the k-FDR, proposed a
stepup k-FDR procedure with the following critical values:

α
(3)
i =

(
i ∨ k

n
α

k−1∏
j=1

j

n − i ∨ k + j

)1/k

, i = 1, . . . , n.(5.3)

It controls the k-FDR at α under independence. We call this procedure Sarkar’s
k-FDR procedure. The oracle k-FDR procedure is a stepup procedure with the
following critical values:

α
(4)
i = G̃−1

k,n0

(
i ∨ k

n0
α

)
, i = 1, . . . , n,(5.4)

with n0 ≥ k.
Numerical studies were conducted, first to get an idea of how powerful the no-

tion of k-FDR is compared to that of the k-FWER. For that, we considered Pro-
cedure 1 and compared it with the above k-FWER procedures, the generalized
Hochberg and Sarkar’s k-FWER procedures, in terms of their critical values and
average powers. Second, we wanted to compare the average powers of different
k-FDR procedures, Procedures 1 and 2 and Sarkar’s k-FDR procedure, relative to
the oracle k-FDR procedure. To recall the definition of average power, it is the
expected proportion of false nulls that are rejected.

Figure 1 presents a comparison among Procedure 1, labeled New SU, and
the generalized Hochberg and Sarkar’s k-FWER procedures, labeled GH SU and
Sarkar SU, respectively. We plot in this figure the three sequences of constants
described in (4.2), (5.1) and (5.2) for (n, k) = (500,8), (1000,10), (2000,15) and
(5000,20) and α = 0.05. The critical values of Procedure 1 are seen to be uni-
formly much larger than those of the generalized Hochberg procedure and, except



1554 S. K. SARKAR AND W. GUO

FIG. 1. The critical constants of Procedure 1 (4.2), generalized Hochberg k-FWER procedure (5.1)
and Sarkar’s k-FWER procedure (5.2) for α = 0.05.

when n is quite large, they are also larger than those of Sarkar’s k-FWER proce-
dure.

Figure 2 presents a comparison among the above three procedures in terms of
simulated average power. We considered in this case (n, k) = (100,3), (200,5),

(500,8) and (1000,10), and α = 0.05. Each simulated average power was ob-
tained by: (i) generating n independent normal random variables N(μi,1), i =
1, . . . , n, with n1 of the n μi’s being equal to 2 and the rest 0; (ii) applying Proce-
dure 1 and the generalized Hochberg and Sarkar’s k-FWER procedures to the gen-
erated data to test Hi :μi = 0 against Ki :μi �= 0 simultaneously for i = 1, . . . , n

at α = 0.05; and (iii) repeating steps (i) and (ii) 1000 times before observing the
proportion of the n1 false Hi’s that are correctly declared significant. As seen in
this figure, Procedure 1 is uniformly much more powerful than the generalized
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FIG. 2. Comparison of average powers of k-FDR stepup procedures based on the sets of critical
values given by (4.2), (5.1) and (5.2) for α = 0.05.

Hochberg procedure and substantially more powerful than Sarkar’s k-FWER pro-
cedure, with the power difference getting significantly higher with increasing num-
ber of false null hypotheses.

We brought in the above power study the other three k-FDR procedures, Proce-
dure 2 (with λ = 0.5), Sarkar’s k-FDR procedure and the oracle k-FDR procedure.
Figure 3 presents this comparison, with Procedure 1 now labeled New SU I and
Procedure 2, Sarkar’s k-FDR procedure and the oracle procedure labeled, respec-
tively, New SU II, Sarkar and Oracle. Benchmarking the three k-FDR procedures,
Procedures 1 and 2 and Sarkar’s procedure against the oracle, it is seen that Pro-
cedure 1 has the best power performance among these three when the number of
false null hypotheses is small. But, with increasing number of false null hypothe-
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FIG. 3. Comparison of average power of k-FDR stepup procedures based on the sets of critical
values given by (4.2), (4.8), (5.3) and (5.4) for α = 0.05 and λ = 0.5.

ses, Procedure 2 becomes substantially more powerful than either of the other two
procedures.

6. An application to gene expression data. Hereditary breast cancer is
known to be associated with mutations in BRCA1 and BRCA2 proteins. Heden-
falk et al. [7] report a group of differentially expressed genes between tumors
with BRCA1 mutations and tumors with BRCA2 mutations by analyzing one
real microarray data set. The data set, which is publicly available from the web
site http://research.nhgri.nih.gov/microarray/NEJM_Supplement/, consists of 22
breast cancer samples, among which 7 samples are BRCA1 mutants, 8 samples
are BRCA2 mutants, and the remaining 7 samples are sporadic (not used in this
illustration). Expression levels in terms of florescent intensity ratios of a tumor

http://research.nhgri.nih.gov/microarray/NEJM_Supplement/
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TABLE 1
Numbers of differentially expressed genes for the data in [7] with α = 0.05 and λ = 0.9

k = 1 k = 3 k = 5 k = 8 k = 10 k = 15 k = 20 k = 30

New SU I 74 75 81 103 124 157 173 229
New SU II 129 129 129 135 137 162 176 229
SK k-FDR SU 74 33 50 73 76 94 114 145
SK k-FWER SU 2 19 33 56 73 87 107 138
GH k-FWER SU 2 5 8 11 17 21 24 33

sample to a common reference sample, are measured for 3226 genes using cDNA
microarrays. Before processing the data, there is a preprocessing step. If any gene
has one ratio exceeding 20, then this gene is eliminated. Such preprocessing leaves
n = 3170 genes.

For each gene, the base 2 logarithmic transformation of the ratio was performed
before computing its two-sample t-test statistic. We then computed its associated
raw p-value by using a permutation method from [25] with the permutation num-
ber B = 1000. Finally, we adjusted these 3170 raw p-values using the following
five different procedures: the three k-FDR procedures, Procedures 1 and 2, Sarkar’s
k-FDR procedure and two k-FWER procedures, Sarkar’s k-FWER and the gener-
alized Hochberg procedures, which are now labeled in Table 1 New SU I, New
SU II, SK k-FDR SU, SK k-FWER SU and GH k-FWER SU, respectively. For
α = 0.05 and λ = 0.9, the numbers of significant genes found by the above five
methods are presented in this table for different values of k = 1,3,5,8,10,15,20
and 30.

As expected, the k-FWER procedures are seen to be extremely conservative,
unless k is chosen large, compared to the k-FDR procedures. Among the k-FDR
procedures, the two proposed ones, particularly Procedure 2, always detect much
more differentially expressed genes. The SK k-FDR SU does not appear to be
more powerful than the original BH FDR procedure unless k is large (relative
to n); whereas, those proposed here are more powerful for all k (see Section 7 for
further remarks on this).

7. Concluding remarks and additional numerical investigations. There is
currently a growing interest in developing theory and methodology of multiple
testing when the control of at least k false rejections, for some fixed k > 1, rather
than at least one, is of importance. A number of related procedures have been put
forward in the literature, most of which are developed generalizing the traditional
FWER. The generalized notion of FDR, the k-FDR, introduced recently in [19], on
the other hand, provides a more powerful framework in this context. This is a key
point, though highlighted before in [19], is re-emphasized in this paper through
alternative procedures controlling the k-FDR, at least under independence.
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A procedure controlling k false discoveries should get more powerful as k in-
creases, as more and more rejections are being allowed by increasing k. The k-FDR
procedures proposed here have this feature, whereas the one previously proposed
in [19] does not have (as seen in Table 1). Of course, one should keep in mind
that the procedure in [19] was originally developed not for independent p-values
but for dependent p-values explicitly utilizing the kth order joint distribution of
the null p-values. Having said that, we must nevertheless emphasize the point that
even though our procedures are uniformly more powerful than the corresponding
FDR procedures, one should not judge the performance of a k-FDR procedure
against FDR procedures in the context of controlling k false rejections. It should
be judged, as noted in the Introduction, against compatible k-FWER and other
k-FDR procedures. In fact, the difference between k-FDR and the corresponding
FDR procedures diminishes as n becomes large relative to k.

Choosing the value of k in a k-FDR procedure is an important issue. It could be
pre-determined. For instance, in a microarray experiment involving thousands of
genes where the scientist knows that the chance of more than one hypothesis being
falsely rejected is high, he/she may find it worthwhile to make further investigative
studies once at least a given number, more than just one, are found differentially
expressed. It could also be data-driven in that a reasonable choice of k can be made
only after looking at the data. For example, suppose that we are testing 100,000
hypotheses using a method controlling the FDR at 5% level. If 100 hypotheses
are rejected, then one might feel comfortable adjusting this procedure to one that
allows a few false rejections, say at most 9, and controls 10 or more of those at
this level in an attempt to improve the power of detecting more truly false null hy-
potheses. On the other hand, if only 12 hypotheses are rejected, 10 is clearly not a
comfortable choice. In any event, the choice of k should make it more worthwhile
to control the k-FDR than the FDR. Let us suppose that the p-values are indepen-
dent and one likes to use our Procedure 1 to control the k-FDR. Notice that in this
procedure the ith critical value iα/n of the BH procedure is calibrated to the αi

satisfying αiG(k − 1, n− 1, αi) = iα/n. Thus, we have larger rejection thresholds
and hence more power, and the factor G essentially gives an idea about the choice
of k relative n. Let k/n → γ ∈ (0,1) as n → ∞. Any γ > 0 gives more power to
Procedure 1 compared to the BH procedure, but the gain in power is negligible as
γ → 0. An appropriate value of γ can be determined subject to a desirable amount
of improvement over the BH procedure. But, we will attempt to address it more
formally in a different communication.

It would be interesting to see how different k-FDR procedures, including the
oracle, proposed here under the independence assumption continue to perform in
dependence cases. We did some additional simulations to investigate this. Among
different possible types of dependence, we considered the equal correlation case.
In particular, we generated 500 dependent normal random variables with the same
variance 1 and a common correlation ρ, performed a multiple test using each of
Procedures 1, 2 (with λ = 0.5), the oracle and the BH procedure to test each mean
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FIG. 4. Comparison of k-FDR under dependence for α = 0.05.

at 0 against 2 using a two-sided test, and repeated this over 1000 runs to simulate
the k-FDR. The BH procedure was included for reference. Figure 4 compares the
simulated k-FDR of these procedures with k = 8 and some small values of ρ, with
Procedures 1 and 2 labeled, respectively, New SU I and New SU II. Interestingly,
while both Procedure 1 and the oracle lose control of the k-FDR with increasing
dependence, Procedure 2 seems to hold it under dependency, at least when the
dependence is not too high.

APPENDIX: PROOFS

A.1. Proof of Theorem 2.1. Define

V
(−i)
n−1 (t) =

n∑
j ( �=i)=1

I (pj ≤ t,Hj = 0), R
(−i)
n−1 (t) =

n∑
j ( �=i)=1

I (pj ≤ t).
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Then, we note that

k-FDR(t) = E

{
Vn(t)

Rn(t)
I [Vn(t) ≥ k]

}

= E

{
n∑

i=1

n∑
r=k

1

r
I (pi ≤ t,Hi = 0)

× I
[
V

(−i)
n−1 (t) + I (pi ≤ t,Hi = 0) ≥ k,

R
(−i)
n−1 (t) + I (pi ≤ t) = r

]}

= E

{
n∑

i=1

n∑
r=k

1

r
I (pi ≤ t,Hi = 0)

(A.1)
× Pr

[
V

(−i)
n−1 (t) ≥ k − I (pi ≤ t,Hi = 0),

R
(−i)
n−1 (t) = r − I (pi ≤ t)

]}

= π0t

n∑
i=1

n∑
r=k

1

r
Pr

{
V

(−i)
n−1 (t) ≥ k − 1,R

(−i)
n−1 (t) = r − 1

}

= nπ0t

n∑
r=k

1

r
Pr{Vn−1(t) ≥ k − 1,Rn−1(t) = r − 1}

= nπ0tE

{
I [Vn−1(t) ≥ k − 1]

Rn−1(t) + 1

}
.

The probability in the third line in (A.1) is obtained by taking the conditional
expectation given I (pi ≤ t) and I (Hi = 0) of the inner indicator function in the
previous line. The fourth line follows from the fact that the expectation of the
product of I (pi ≤ t,Hi = 0) and a function of I (pi ≤ t) and I (Hi = 0) is Pr{pi ≤
t,Hi = 0} times the value of that function when both I (pi ≤ t) and I (Hi = 0)

are 1.

A.2. Proof of Theorem 4.1. Let us first prove the following two results that
will be useful in proving the theorem.

RESULT A.1. The function G(k,n,u) defined in (2.10) is nondecreasing in n

and u, for any fixed 1 ≤ k ≤ n.

PROOF. Note that G(k,n,u) = Pr(Uk:n ≤ u) with Uk:n being the kth order
statistic based on n i.i.d. Uniform(0,1) random variables, which is clearly increas-
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ing in u for fixed k and n. Since the value of Uk:n decreases as n increases, G is
also increasing in n for fixed k and u. �

RESULT A.2. Let Rn be the total number of rejections in a stepup procedure
based on p-values p1, . . . , pn and critical values α1 ≤ · · · ≤ αn. Let p̂1:n0 ≤ · · · ≤
p̂n0:n0 be the ordered p-values corresponding to the n0 true null hypotheses. Then,
for any fixed 1 ≤ k ≤ n0,

n∑
r=k

Pr(Rn = r|p̂k:n0 ≤ αr) ≤ 1.(A.2)

PROOF.
n∑

r=k

Pr(Rn = r|p̂k:n0 ≤ αr)

=
n∑

r=k

Pr(Rn ≥ r|p̂k:n0 ≤ αr) −
n−1∑
r=k

Pr(Rn ≥ r + 1|p̂k:n0 ≤ αr)

= Pr(Rn ≥ k|p̂k:n0 ≤ αk)

+
n−1∑
r=k

[Pr(Rn ≥ r + 1|p̂k:n0 ≤ αr+1) − Pr(Rn ≥ r + 1|p̂k:n0 ≤ αr)].

The result then follows from the fact that Pr(Rn ≥ k|p̂k:n0 ≤ αk) = 1, because,
given the occurrence of at least k false rejections, the probability that at least k

hypotheses are rejected is 1, and that

Pr(Rn ≥ r + 1|p̂k:n0 ≤ αr+1) ≤ Pr(Rn ≥ r + 1|p̂k:n0 ≤ αr),(A.3)

for all r = k, . . . , n − 1, which can be proved as follows.
Since Rn decreases as each of p̂1:n0, . . . , p̂n0:n0 and the nonnull p-values in-

creases, the conditional probability

g(p̂1:n0, . . . , p̂n0:n0) = Pr(Rn ≥ r + 1|p̂1:n0, . . . , p̂n0:n0)(A.4)

is nonincreasing in p̂1:n0, . . . , p̂n0:n0 . Now, the order statistics, say X1:m ≤ · · · ≤
Xm:m, of any set of m i.i.d. (continuous) random variables are stochastically in-
creasing in each of its components, that is, E{φ(X1:m, . . . ,Xm:m)|Xk:m} is nonde-
creasing (or nonincreasing) in Xk:m, for any fixed 1 ≤ k ≤ m and nondecreasing
(or nonincreasing) function φ. See, for example, Block, Savits and Shaked [4],
who defined this condition as the positive dependent through stochastic ordering
(PDS) condition. It also follows from the positive regression dependence condition
satisfied by the joint distribution of order statistics; see, for example, Karlin and
Rinott [11]. Thus, the conditional probability

h(p̂k:n0) = Pr(Rn ≥ r + 1|p̂k:n0)
(A.5)

= E{g(p̂1:n0, . . . , p̂n0:n0)|p̂k:n0},
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is nonincreasing in p̂k:n0 , and hence

Pr(Rn ≥ r + 1|p̂k:n0 ≤ t) = E{h(p̂k:n0)I (p̂k:n0 ≤ t)}
Pr(p̂k:n0 ≤ t)

,(A.6)

is nonincreasing in t . �

We are now ready to prove the theorem. First, note that given n0 true null hy-
potheses with the corresponding p-values p̂1, . . . , p̂n0 , the k-FDR of a stepup pro-
cedure with critical values α1 ≤ · · · ≤ αn under the conditions assumed in the the-
orem is

k-FDR = n0

n∑
r=k

αr

r
Pr(Vn−1 ≥ k − 1,Rn−1 = r − 1),(A.7)

where Rn−1 and Vn−1 are the number of rejections and the number of false
rejections, respectively, in the stepup procedure based on the n − 1 p-values
{p1, . . . , pn} \ {p̂n0} and the critical values αi , i = 2, . . . , n. Let p̂1:n0−1 ≤ · · · ≤
p̂n0−1:n0−1 be the ordered n0 − 1 null p-values. Then, given {Rn−1 = r − 1},
Vn−1 ≥ k − 1 if and only if p̂k−1:n0−1 ≤ αr . Thus, the k-FDR in (A.7) is equal
to

n0

n∑
r=k

αr

r
Pr(p̂k−1:n0−1 ≤ αr)Pr(Rn−1 = r − 1|p̂k−1:n0−1 ≤ αr)

= n0

n∑
r=k

αr

r
G(k − 1, n0 − 1, αr)Pr(Rn−1 = r − 1|p̂k−1:n0−1 ≤ αr)(A.8)

≤ n0

n∑
r=k

αr

r
G(k − 1, n − 1, αr)Pr(Rn−1 = r − 1|p̂k−1:n0−1 ≤ αr),

using Result A.1. For the stepup procedure (4.2) with its critical values satisfy-
ing αrG(k − 1, n − 1, αr) = rα/n, r = 1, . . . , n, that are increasing because of
Result A.1, we have

k-FDR ≤ n0

n
α

n∑
r=k

Pr(Rn−1 = r − 1|p̂k−1:n0−1 ≤ αr).(A.9)

The theorem then follows form Result A.2.

A.3. Proof of Theorem 4.2. Our proof relies on arguments used in proving
Theorem 4.1 and in [18]. Define

αij = λmin
{
G̃−1

k,n

(
iα(1 − λ)

λ(n − j + 1)

)
,1

}
, 1 ≤ i ≤ j ; j = 1, . . . , n.(A.10)

Consider E(k-FDP|pj :n ≤ λ < pj+1:n), the k-FDR conditional on pj :n ≤ λ <

pj+1:n. This conditional k-FDR is the k-FDR of the stepup procedure based
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on j independent p-values, each truncated above at λ and the critical values αij ,
i = 1, . . . , j . Noting that these truncated p-values corresponding to the true null
hypotheses are i.i.d. Uniform(0, λ) and that

αrj

λr
G

(
k − 1, n − 1,

αrj

λ

)
= 1

r
G̃k

(
αrj

λ

)
≤ α(1 − λ)

λ(n − j + 1)
,

we see by arguing as in our proof of Theorem 4.1 [see (A.8)] that this conditional
k-FDR is less than or equal to (1−λ)α/[λ(n−j +1)]E{V (λ)|pj :n ≤ λ < pj+1:n},
where V (λ) = ∑n0

i=1 I (p̂i ≤ λ). Thus, we have

k-FDR =
n∑

j=k

E(k-FDP|pj :n ≤ λ < pj+1:n)Pr(pj :n ≤ λ < pj+1:n)

≤ αE

{
n∑

j=k

1 − λ

λ(n − j + 1)
V (λ)I (pj :n ≤ λ < pj+1:n)

}

= αE

{
n0∑
i=1

n∑
j=k

1 − λ

λ(n − j + 1)
I (p̂i ≤ λ,pj :n ≤ λ < pj+1:n)

}

≤ n0α

n∑
j=k

1 − λ

n − j + 1
Pr(pj−1:n−1 ≤ λ < pj :n−1)(A.11)

= α

n0∑
i=1

n∑
j=k

1

n − j + 1
Pr(p̂i > λ)Pr(pj−1:n−1 ≤ λ < pj :n−1)

≤ α

n∑
i=1

n∑
j=k

1

n − j + 1
Pr(pi > λ)Pr(pj−1:n−1 ≤ λ < pj :n−1)

≤ α

n∑
j=k

Pr(pj−1:n ≤ λ < pj :n) = αPr(pk−1:n ≤ λ < pn:n) ≤ α,

proving the theorem.

A.4. Proof of (2.7). Using the result that two functions, one increasing and
the other decreasing, of a random variable are negatively correlated, we first see
that

E

{
I (Vn−1 ≥ k − 1)

Rn−1(t) + 1

}
= E

{
Pr(Vn−1 ≥ k − 1|Rn−1)

Rn−1(t) + 1

}
(A.12)

≤ E

{
1

Rn−1(t) + 1

}
Pr{Vn−1 ≥ k − 1}.

The inequality then follows by dividing both sides of (A.12) by the probability
Pr{Vn−1 ≥ k − 1}.
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