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A NEW MULTIPLE TESTING METHOD
IN THE DEPENDENT CASE1

BY ARTHUR COHEN, HAROLD B. SACKROWITZ AND MINYA XU

Rutgers University

The most popular multiple testing procedures are stepwise procedures
based on P -values for individual test statistics. Included among these are the
false discovery rate (FDR) controlling procedures of Benjamini–Hochberg
[J. Roy. Statist. Soc. Ser. B 57 (1995) 289–300] and their offsprings. Even
for models that entail dependent data, P -values based on marginal distribu-
tions are used. Unlike such methods, the new method takes dependency into
account at all stages. Furthermore, the P -value procedures often lack an in-
tuitive convexity property, which is needed for admissibility. Still further, the
new methodology is computationally feasible. If the number of tests is large
and the proportion of true alternatives is less than say 25 percent, simulations
demonstrate a clear preference for the new methodology. Applications are
detailed for models such as testing treatments against control (or any intra-
class correlation model), testing for change points and testing means when
correlation is successive.

1. Introduction. The need for multiple testing procedures (MTPs) has been
given great impetus by diverse fields of application such as microarrays, astron-
omy, mutual fund evaluations, proteomics, disclosure risk, cytometry, imaging and
others. Traditional methods to deal with multiple testing when the number of tests
is large are deemed too conservative (i.e., they do not detect significant effects
often enough). New approaches to multiple testing have arisen. Many of the new
approaches are classified as stepwise procedures, such as step-up or step-down in
contrast to single step procedures [see Hochberg and Tamhane (1987) and also Du-
doit, Shaffer and Boldrick (2003), where 18 procedures are listed as single step,
step-up or step-down]. Among the more popular procedures is the Benjamini–
Hochberg (1995) false discovery rate (FDR) controlling procedure. Many off-
springs have followed [see, e.g., Efron et al. (2001), Storey and Tibshirani (2003),
Sarkar (2002), Benjamini and Yekutieli (2001) and Cai and Sarkar (2006), just to
mention a few]. Typically, the stepwise procedures deal with P -values determined
from marginal distributions [see, e.g., Dudoit and van der Laan (2008), Chapter 3].
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Even when the model entails random vectors with correlated variates, P -values
from marginal distributions, ignoring correlations, are the basis of the procedures.

Many multiple testing procedures are designed to control some error rate such
as the familywise error rate FWER (weak and strong), k-FWER [see Lehmann and
Romano (2005)] and FDR. However, many researchers study the multiple testing
problem as a finite action decision problem with a variety of loss functions [see,
e.g., Lehmann (1957), Genovese and Wasserman (2002), Ishwaran and Rao (2003)
and Muller et al. (2004)]. In these studies, the merits of the procedures are eval-
uated and compared by their risk functions. The risk function approach does not
always necessitate the need to control a particular kind of error rate and can some-
times lead to procedures whose overall performance is preferred or even strongly
preferred to an error controlling procedure. Whereas FDR control is appropriate
for some situations where the number of tests is large, there are many situations
where one would prefer a procedure whose expected number of both type I er-
rors and type II errors are smaller. Dudoit and van der Laan (2008) study expected
values of functions of numbers of type I and type II errors.

In a series of papers [Cohen and Sackrowitz (2005, 2007, 2008) and Cohen,
Kolassa and Sackrowitz (2007)] demonstrated that, given a typical step-up or step-
down procedure, there exist other procedures whose expected numbers of type I
and type II errors are smaller. In fact, in Cohen and Sackrowitz (2008), for multi-
variate normal models when correlation is nonzero for two-sided alternatives, there
exist procedures whose individual tests have smaller expected type I and type II
errors.

In this paper, we assume X is an M × 1 vector that is multivariate normal with
mean vector μ and covariance matrix � = σ 2�. The matrix � is a known positive,
definite nondiagonal matrix. The parameter σ 2 is either known or unknown. In the
latter case an estimator of σ 2, which is a scaled chi-square variable, is available
and this variable is independent of X. This is a classical linear model assump-
tion. � is known since it is a function of the design matrix. We will demonstrate
the new methodology in two important subclasses of this model. The first is the
intraclass covariance matrix model, which characterizes the popular situation in
which the variables are exchangeable. This model includes the problem of testing
several treatments against a control. The second application is to the successive
correlation covariance matrix, which includes change point problems. We test two
sided alternatives (i.e., Hi :μi = 0 vs. Ki :μi �= 0, i = 1, . . . ,M). We also test one
sided alternatives (i.e., H ∗

i :μi ≤ 0 vs. K∗
i :μi > 0, i = 1, . . . ,M or Hi :μ = 0 vs.

K∗
i :μi > 0).
The goal of this paper is to develop good MTPs in the case of correlated vari-

ables. To begin with, we realize that every MTP induces individual tests, φi , for
the individual hypothesis testing problems Hi vs. Ki . The behavior of these tests
should be of fundamental concern. However, the stepwise construction of most
MTPs often makes it difficult to describe and study the individual tests.
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In particular, suppose an individual test induced by an MTP is inadmissible for
the standard hypothesis testing loss. That is, for that individual hypothesis testing
problem, a test exists whose size is no greater than the stepwise procedure test and
whose power is no less with some strict inequality. It would then follow that the
overall procedure would be inadmissible whenever the risk function is a monotone
function of the expected numbers of type I and type II errors.

As a first step, we find a convexity property that is necessary and sufficient
for admissibility of the individual tests. In Cohen and Sackrowitz (2008), it has
been shown that most popular stepwise procedures do not possess the convexity
property when there is correlation in the two-sided alternative case. Next, we con-
struct a step-down type MTP whose individual tests do have the required convexity
property. As is typical in problems where no single optimal procedure exists, the
selection of a procedure is somewhat subjective. In evaluating procedures, we fo-
cus mainly on the expected number of type I and type II errors that the procedures
make.

The new stepwise testing method proposed is based on the maximum of adap-
tively formed residuals. The method is called maximum residual down (MRD).
The MRD method has several advantages over the stepwise methods that are cur-
rently recommended in the literature:

(1) The main justification for MRDs is the fact that MRD tests take into account
the correlation among the M variates. Thus, MRD utilizes information oftentimes
not used by the current P -value methods. This property of the MRD procedure
is the likely explanation for the apparent improved overall performance of MRD
when compared to the P -value methods based on marginal distributions.

(2) MRD procedures have an intuitive and desirable convexity property required
for admissibility. Whereas admissibility is not in itself a compelling property, in-
admissibility can be a serious shortcoming.

(3) For the treatment vs. control and change point models for large and relevant
portions of the parameter space, simulations demonstrate that the MRD method
makes substantially fewer mistakes than the popular FDR controlling procedures.
In particular, if the proportion of true alternatives is less than 25 percent of the total
number of tests, then the simulations are somewhat convincing that this method is
quite good.

(4) The MRD method is applicable in all cases where � is known.
For arbitrary � and M extremely large, the procedure essentially requires inver-

sion of a larger size matrix. This could be computationally difficult. The level of
difficulty depends on the structure of �. In the two popular models, we consider �

can easily be inverted regardless of how large M is. The first model is intraclass.
The concept of intraclass covariance matrix was introduced by Rao (1945). Sub-
sequently it has been discussed in articles in behaviorial genetics and statistics
[see, e.g., Carey (2005) and Krishnaiah and Pathak (1967)]. Such a model is ap-
propriate whenever the components of X have a multivariate distribution that is
exchangeable. In particular, all variances are equal and all covariances are equal.
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The intraclass correlation matrix is appropriate for the model of testing each of
M − 1 treatments against a control. MRD is readily applicable here, since inver-
sion of the appropriate covariance matrix is easily facilitated. The second model is
successive correlation. This model has a constant nonzero correlation coefficient
between adjacent pairs of variables. All other correlations are zero [see Krishna-
iah and Pathak (1967)]. This model presents no computational issues even if M

is extremely large. A special case of this model is the change point problem [see
Chen and Gupta (2000)]. We will see in Section 6 that the MTP method discussed
in Chen and Gupta (2000) is based on many collections of pooled means. This is
precisely the set of statistics given by the MRD method applied to this very special
case. In a sense, this validates our very general approach, even though our method
uses the statistics differently than in Chen and Gupta (2000).

A seemingly logical step-down method that would take correlations into account
is to successively perform likelihood ratio tests (LRT) of global hypotheses. That
is, one could employ the closure method [see Marcus, Peritz and Gabriel (1976)]
using an LRT, at step one, for μ = 0 vs. μ �= 0. If the global test rejects, then
eliminate the variate corresponding to max1≤i≤M |Xi |. One continues in a step-
down fashion in determining the LRT-based MTP. Call this procedure LRSD.

When � is intraclass for two-sided alternatives, LRSD is admissible for any
monotone collection of critical constants only when M = 2 or M = 3. For M ≥ 4,
counterexamples abound. That is, there are many critical constants for which
LRSD is inadmissible. Furthermore, critical constants are found for M ≥ 5, which
relate to constants that are likely to be used. This inadmissibility of LRSD is what
prompted and led us to MRD.

For one-sided alternatives when � is intraclass, LRSD is admissible even in
cases where the common variance σ 2 is unknown (provided replications of the
observations are taken). In this instance, LRSD can be a competitor to MRD, and
this is reflected in the simulation study in Section 7.

We note there that M is taken to be 100. Large values of M entail computational
problems for LRSD, since under the alternative the parameter space is constrained,
and the software needed to carry out the tests for M much greater than 100 is
very time consuming. For the treatments vs. control model, one might think that
the P -value based step-down procedure, based on the analogue of Dunnett’s one
sided tests of global hypotheses, might also be a competitor [see Westfall and
Young (1993), Section 3.2.1]. In this instance, dependency is taken into account
when determining critical values. Nevertheless, it does not take correlation into
account in the test statistics, and, overall, the procedure does not fare well in the
simulation study.

As previously mentioned, another problem of interest is testing for change
points in a sequence of M +1 independent normal trials. Sometimes, it is assumed
that the means are nondecreasing, in which case the model is referred to as a sim-
ple order model. One seeks to determine whether a change in mean has occurred at



1522 A. COHEN, H. B. SACKROWITZ AND M. XU

particular time points. The alternative at each time point is either two-sided or one-
sided. In either case, the LRSD step-down method is mostly inadmissible, while
the MRD method is admissible.

Returning to the general case, we remark that if � is unknown but replications
are available, an estimator of � can replace it in the MRD method. We cannot
claim the optimality properties, but, nevertheless, the method is viable. For large
numbers of replications, even the normality assumption may not be crucial.

In the next section, we describe the MRD method. In Section 3, we prove that
the MRD method is admissible for the vector risk where each component of the
vector is the testing risk for an individual test. Admissibility depends on whether
each individual test function has an intuitive convexity property. Section 4 is con-
cerned with the LRT based step-down procedure (LRSD). Here, there are both
admissibility and inadmissibility results of interest. Section 5 contains a geometric
connection between the MRD and LRSD methods, some other interesting interpre-
tations and some figures related to the geometric interpretation. Results concerned
with testing several treatments vs. control, the change point problem and the suc-
cessive correlation model are given in Section 6. Simulations and analyses are
given in Section 7. Most proofs appear in the Appendix.

2. MRD method. Assume X = (X1, . . . ,XM)′ is distributed according to a
multivariate normal distribution with mean vector μ and covariance matrix σ 2� =
σ 2(σij ). The matrix � is assumed known, and, for now, we take σ 2 to be known
and, without loss of generality, let σ 2 = 1. The two-sided multiple testing problem
is test

Hi :μi = 0 vs. Ki :μi �= 0, i = 1, . . . ,M.(2.1)

We will also consider one-sided alternative problems

Hi :μi = 0 vs. K∗
i :μi > 0(2.2)

and

H ∗
i :μi ≤ 0 vs. K∗

i :μi > 0.(2.3)

For now, we focus on the two-sided case (2.1).
By way of notation, X(i1,i2,...,ir ) is the (M − r) vector consisting of the com-

ponents of X with Xi1, . . . ,Xir left out. �(i1,...,ir ) is the (M − r) × (M − r) co-

variance matrix of X(i1,...,ir ). σ
(i1,...,im−1)

(j) is the (M − m) × 1 vector of covariances
between Xj and all variables except Xi1, . . . ,Xi(m−1)

, and Xj .

σ(j ·i1,...,i(m−1)) = σjj − σ
(i1,...,i(m−1))

′
(j) �−1

(i1,...,i(m−1),j)σ
(i1,...,i(m−1))

(j)

is the conditional variance of Xj , given all variables except Xi1, . . . ,Xi(m−1)
,Xj .
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Now, define

U
(i1,...,im−1)

mj (X)
(2.4)

= (
Xj − σ

(i1,...,i(m−1))
′

(j) �−1
(i1,...,i(m−1),j)X

(i1,...,i(m−1),j))/σ 1/2
(j ·i1,...,i(m−1))

for m = 1, . . . ,M .
The m subscript represents the stage of the MRD procedure. Note that

U
(i1,...,im−1)

mj = (
Xj − E0

{
Xj |X(i1,...,i(m−1),j)})/√

Var
(
Xj |X(i1,...,i(m−1),j)

)
,

where E0 is taken under μ = 0.
We now describe a general class of stepwise down procedures, given a set of

M2M−1 functions Umj (x). At most, M(M + 1)/2 of these needs to be calculated
to carry out the procedure. The m index ranges from 1,2, . . . ,M and represents
the mth stage. At stage m there are M − m + 1 functions.

Let C1 > C2 > · · · > CM > 0 be a given set of constants. At stage 1, consider
U1j (x), j ∈ {1, . . . ,M}. Let j1 = j1(x) be such that U1j1(x) = maxj |U1j (x)|. If
U1j1(x) < C1, stop and accept all Hi . Otherwise, reject Hj1 and continue to stage 2.

At stage 2, consider M − 1 functions U
(j1)
2j (x), j ∈ {1, . . . ,M} \ {j1}. Note that

U
(j1)
2j (x) just depends on x(j1). Let j2 = j2(x(j1)) be such that U2j2 = maxj |U(j1)

2j |,
j ∈ {1, . . . ,M} \ {j1}. If U2j2 < C2, stop and accept all remaining null hypotheses.
Otherwise, reject Hj2 and continue to stage 3.

In general, at stage m, m = 1, . . . ,M , consider M − m + 1 functions

U
(j1,...,j(m−1))

mj (x), j ∈ {1, . . . ,M} \ {j1, . . . , j(m−1)}. Note that U
(j1,...,j(m−1))

mj

depends on x(j1,...,j(m−1)). Let jm = jm(x(j1,...,j(m−1))) be such that

Umjm = maxj |U(j1,...,j(m−1))
mj |, j ∈ {1, . . . ,M} \ {j1, . . . , j(m−1)}. If Umjm < Cm,

stop and accept all remaining null hypotheses. Otherwise, reject Hjm and continue
to stage m + 1 (unless m = M , in which case, stop).

The above MTP determines test functions for each individual testing problem.
Let φU(x) denote the test function for testing H1 :μ1 = 0 vs. K1 :μ1 �= 0.

Note that, at the beginning of Section 7, we offer a discussion regarding the
choice of C1, . . . ,Cm.

3. Admissibility of MRD. We will demonstrate that for each individual test-
ing problem that the MTP based on the MRD method is admissible. Without loss
of generality, we focus on H1 vs. K1 and start with the case σ known (σ 2 = 1).
Our plan is to use a result of Matthes and Truax (1967) which offers a necessary
and sufficient condition for admissibility of a test of H1 vs. K1 when the joint
distribution of X is an exponential family. We will state this result for our model
as Lemma 3.1. We next demonstrate, in Lemma 3.2, that the Umj function given
in (2.4) has certain monotonicity properties. These monotonicity properties will
enable us to prove, in Lemma 3.3, that the individual test functions for Hi vs. Ki
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have a convexity property that is necessary and sufficient for admissibility. Theo-
rem 3.1 summarizes and states the admissibility of the MRD procedure.

Now, we express the density of X as

fX(x|μ) = (
1/(2π)M/2|�|1/2)

exp−1
2(x − μ)′�−1(x − μ),(3.1)

which, in exponential family form, is

fX(x|μ) = h(x)β(μ) exp x′�−1μ.(3.2)

Next, let Y = �−1X so that

fY(y|μ) = h∗(y)β(μ) exp
M∑
i=1

yiμi.(3.3)

LEMMA 3.1. A necessary and sufficient condition for a test φ(y) of H1 :μ1 =
0 vs. K1 :μ1 �= 0 to be admissible is that, for almost every fixed y2, . . . , yM , the
acceptance region of the test is an interval in y1.

PROOF. See Matthes and Truax (1967). �

Note that, to study the test function φ(y) = φU(x) as y1 varies and (y2, . . . , yM)

remain fixed, we can consider sample points x + rg where g is the first column
of � and r varies. This is true, since y is a function of x, and so y evaluated at
(x + rg) is �−1(x + rg) = y + (r,0, . . . ,0)′ = (y1 + r, y2, . . . , yM)′.

From here on it will be convenient to express the functions U
(j1,...,jm−1)

mj (x)

of (2.4) simply as Umj (x). No confusion should ensue.

LEMMA 3.2. The functions Umj (x) given in (2.4) have the following proper-
ties.

As a function of r ,

Um1(x + rg) = Um1(x) + r.(3.4)

For m = 1, . . . ,M ; j ∈ {2, . . . ,M} \ {j1, . . . , jm−1}, j1 �= 1, . . . , jm−1 �= 1,

Umj (x + rg) = Umj (x).(3.5)

PROOF. See Appendix. �

LEMMA 3.3. Suppose that, for some x∗ and r0 > 0, φU(x∗) = 0 and φU(x∗ +
r0g) = 1. Then, φU(x∗ + rg) = 1 for all r > r0.

PROOF. See Appendix. �

Note that Lemma 3.3 implies that the acceptance region in y1, for fixed
y2, . . . , ym is an interval.
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THEOREM 3.1. For the two sided case, the MRD procedure based on {Umj }
is admissible.

PROOF. Admissible means that each individual test for each hypothesis test-
ing problem is admissible. Without loss of generality, we show admissibility of
φU(x) for H1 vs. K1. Proof that the other tests are admissible for the other hy-
potheses would be done the same way. That φU(x) is admissible for H1 vs. K1
follows readily from Lemmas 3.1 and 3.3. �

For the case where σ 2 is unknown, we assume that we have available an un-
biased estimator s2 of σ 2 with the property that νs2/σ 2 is a X2

ν variable that is
independent of X. In this situation, we write the joint density of (X, s2)

fX,s2(x, s2|μ,σ 2)

= (
ν(νs2)ν/2−1/(2π)M/2 · 2ν/2�(ν/2)(σ 2)(M+ν)/2|�|1/2)

(3.6)
× exp(−1/2σ 2){(x − μ)′�−1(x − μ) + νs2}

= H(x, T )B(μ,σ 2) exp{x′�−1μ/σ 2 − (1/2σ 2)T },
where T = νs2 + x′�−1x. Note that the change from (x, s2) to (x, T ) limits the
values of x in the sample space to those for which x′�−1x ≤ T .

The MRD method now utilizes statistics Umj (X)/T 1/2. All lemmas and Theo-
rem 3.1 hold, with T as well as y2, . . . , yM fixed, where, once again, y = �−1x.

For one-sided alternatives specified in (2.2) and (2.3), the MRD method simply
uses Umj in place of |Umj |. The result of Theorem 3.1 can be proved similarly.

4. Likelihood ratio step-down method (LRSD). Assume that X is distrib-
uted as multivariate normal with unknown mean vector μ and known intraclass
covariance matrix �. Without loss of generality, we take the diagonal elements
of � to be 1 and the off diagonal elements to be ρ. The LRSD method is to test by
the LRT, at stage 1, the global hypothesis H1G :μ = 0 vs. K1G :μ �= 0. If H1G is
not rejected, then stop and accept all Hi , i = 1, . . . ,M . If H1G is rejected, then re-
ject Hj1 , where j1 is the index for which |Xj1 | = max1≤j≤M |Xj |, and continue to
stage 2. At stage 1 use the critical value C1. At stage 2, test, by the LRT the global
hypothesis, H2G :μ(j1) = 0 vs. K2G :μ(j1) �= 0, where μ(j1) is the (M − 1) × 1
vector of means that are the same as μ save μj1 is left out. Use the critical value
C2 < C1. Proceed as in stage 1. At stage m, test by the LRT HmG :μ(j1,...,jm−1) = 0
vs. KmG :μ(j1,...,jm−1) �= 0 and so on. At stage m, use the critical value Cm < Cm−1.

We will demonstrate that the LRSD is admissible for M = 2 and M = 3. For
M ≥ 4 there exist counterexamples for certain collections of critical values and
certain values of ρ. We offer a counterexample when M = 4, and, when M = 5, we
demonstrate inadmissibility for a large class of practical critical values for logical
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values of ρ. In fact, for large M using χ2 critical values, it turns out that for most ρ

values (ρ �= 0) counterexamples demonstrate that LRSD is inadmissible.
On the other hand, should the alternatives for the individual hypotheses be the

one-sided alternatives given in (2.2), then the LRSD is admissible.
When the alternative is two-sided, the results of Section 3 imply that admissibil-

ity of a test for an individual hypothesis testing problem (say H1 vs. K1, without
loss of generality) is determined by whether the conditional acceptance region
in y1 given (y2, . . . , yM) is an interval. (Recall y = �−1x.) When the alternative is
one-sided, the conditional acceptance region is a left sided half line.

Focusing first on the two-sided alternative case, we note that the LRT for H1G

vs. K1G is to reject if

x′�−1x ≥ C1,(4.1)

where

�−1 = (
1/(1 − ρ)

){I − G(11′)}(4.2)

and G = ρ/(1 + (M − 1)ρ). As such,

�−1 = [
1/(1 − ρ)

(
1 + (M − 1)ρ

)]

×
⎛
⎝ 1 + (M − 2)ρ −ρ

−ρ
(
1 + (M − 2)ρ

)
−ρ −ρ

(4.3)

· · · · · · · · · −ρ

−ρ · · · −ρ

· · · −ρ
(
1 + (M − 2)ρ

)
⎞
⎠ .

Again, let g be the first column of �.
Our first result in this section follows.

THEOREM 4.1. For the two-sided alternative case, LRSD is admissible for
M = 2 and M = 3.

PROOF. See Appendix. �

For M = 4, we exhibit a set of critical values for which LRSD is inadmissible.
To do so, we find a sample point x∗ at which H1 is rejected and for which H1 is
accepted at x∗ + γ g. In fact, let x∗ = (a,−a − �,b,−b − ε)′ for b > a + � >

a > 0 and ε > 0. Thus, using (4.1) at stage 1, choose C1 so that x∗�−1x∗ > C1 so
that H4 is rejected and variable x∗

4 is eliminated at stage 2. At stage 2, we calculate

x∗(4)′�−1
(4)x∗(4)

= [1/(1 + ρ − 2ρ2)](4.4)

× {(1 + ρ)b2 + 2a2(1 + 2ρ) + 2�[a + 2aρ + ρb + (1 + ρ)�/2]}.



MULTIPLE TESTING METHOD IN THE DEPENDENT CASE 1527

We set x∗(4)′�−1
(4)x∗(4) = C2. At stage 3, H2 is rejected, and, at stage 4, H1 is

rejected. Now, if ρ > 0, let γ = ε/ρ and note that (x∗ + γ g)′�−1(x∗ + γ g) > C1.
This time, however, H3 is rejected at stage 1. At stage 2, we calculate, for γ = ε/ρ,

(
x∗(3) + γ g(3))′�−1

(3)

(
x∗(3) + γ g(3)).(4.5)

We note that (4.4) minus (4.5) is

1/(1 + ρ − 2ρ2){4�bρ − ε2[ρ − 1 + 1/ρ + 1/ρ2]
(4.6)

− ε[2a/ρ + 2a − 4aρ − 2ρ� + 2(1 + ρ)b]}.
There are many choices of a, b,�, ε, ρ, γ for which (4.6) is positive (e.g., a =
2, b = 4,� = 1, ε = 0.1, ρ = 0.5, γ = 0.2). The fact that (4.6) > 0 implies that at
x∗ + γ g the overall procedure rejects H3 and accepts H1,H2 and H4. Note that,
since x∗

1 > 0, x∗ − x1g is an accept point. Now, if H1 is rejected for x = x∗ but
accepted for x∗ + γ g, it is implied that the test for H1 is inadmissible.

For M = 5, it can be shown that if the critical values correspond to critical values
of chi-square with m degrees of freedom, m = 1,2,3,4,5 at level, say 0.05, then,
for most values of ρ, LRSD is also inadmissible. The same is true for any M ≥ 5.

Next, for the intraclass model, we consider testing one-sided alternatives (i.e.,
we test Hi :μi = 0 vs. K∗

i :μi > 0). The LRSD method in this case is the same
as in the two-sided alternative case, except that |Xj1 | is replaced by Xj1 =
max(X1, . . . ,XM) and similarly at subsequent stages. For this setup we have the
following theorem.

THEOREM 4.2. For the one-sided alternative case, LRSD is admissible.

PROOF. See Appendix. �

The final result of this section deals with the intraclass model when the covari-
ance matrix is of the form σ 2�, where σ 2 is unknown and � is as before. This
time, however, a random sample Xα , α = 1, . . . , n, is taken from a normal distrib-
ution with mean vector μ and covariance matrix σ 2�. The alternative hypotheses
are one-sided, and the global likelihood ratio test is based on X̄ = ∑n

α=1 Xα/n and
T = ∑n

α=1 X′
α�−1Xα . Using the fact that X̄, T have an exponential family distri-

bution and arguments similar to those used previously, it can be shown that the
LRSD procedure is admissible in this case as well.

We remark that this model ensues for the problem of testing M treatments
against a control when it is assumed that the mean for each treatment is greater
than or equal to the mean for the control. More details are given in Section 6.
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5. Geometric and other interpretations. LRSD compared statistics of the
form x′�−1x to critical values in order to test global hypotheses at each stage
of the process. The overall acceptance region for the global testing problem is
therefore an ellipsoid. The individual statistics ±Umj given in (2.4) determine the
MRD method. These statistics represent pairs of supporting hyperplanes to the
ellipsoids determining acceptance regions of the global hypotheses at stage m [see
Scheffé (1959), page 69]. The particular hyperplanes are tangent to the ellipsoids
at sample points on the ellipsoid for which all but one coordinates are zero. If the
probability, under a global null hypothesis of a mean vector, is zero, specified at,
say γ , then the probability of the ellipsoid is γ . The acceptance set determined
by the supporting hyperplanes would be larger than γ . However, should one desire
this set to have probability γ , then the hyperplanes would support a smaller ellipse.
Figures 1 and 2 depict such sets for the stage when there are only two means left
to test.

Note that, by comparing the maxj |Umj | to a critical constant, one is determining
an acceptance region for the global hypothesis at stage m by using the union-
intersection procedure [see, e.g., Casella and Berger (2002), page 380].

The statistics Umj appear in the identity in Anderson (1984), Exercise 54, Chap-
ter 2. Thus, one can express the MRD method alternatively in terms of x(i)′�−1

(i) x(i).
The statistics Umj are also the focal point in determining change points in the

methodology offered by Vostrikova (1981).

FIG. 1. LRSD ellipse with supporting hyperplanes in two dimensions.
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FIG. 2. LRSD ellipse with supporting hyperplanes shrunk to match size.

Although MRD uses Umj as does Vostrikova (1981), the methodologies are
different. We discuss this further in Section 6.

REMARK 5.1. It is interesting to note that the MRD method is not P -value
monotone in the sense of Hommel and Bernhard (1999). That is, an MTP is
monotone with respect to P -values if Pi ≤ Pj and Hi is not rejected, then Hj

cannot be rejected. As indicated in that reference, P -value monotonicity is not
always desirable.

REMARK 5.2. Use of Umj converted to P -values can be thought of as using
conditional P -values at stage m for a centered variable j , conditioned on the other
remaining variables, assuming all nulls are true.

6. Treatments vs. control, change point and successive correlation models.
The first two models of this section entail independent random samples from (M +
1) normal populations. Let Zij , i = 1, . . . ,M + 1, j = 1, . . . , n, be N(νi, σ

2).
In the treatments vs. control model, the treatments correspond to i = 1, . . . ,M ,
while the control population corresponds to the (M + 1)st population. Let Xi =
Z̄i − Z̄M+1, i = 1, . . . ,M , so that X is distributed as multivariate normal with
mean vector μ, μi = νi − νM+1 and covariance matrix (2σ 2/n)�, where � is
intraclass with diagonal elements 1 and off diagonal elements 1/2. Should σ 2 be
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unknown, then an unbiased estimator of σ 2 is

s2 =
M+1∑
i=1

n∑
j=1

(Zij − Z̄i)
2/(M + 1)(n − 1)

=
(

M+1∑
i=1

n∑
j=1

Z2
ij − n

M+1∑
i=1

Z̄2
i

)/
(M + 1)(n − 1)

=
(
T − n

M+1∑
i=1

Z̄2
i

)/
(M + 1)(n − 1).

Furthermore, (M +1)(n−1)s2/σ 2 is distributed as chi-square with (M +1)(n−1)

degrees of freedom and is independent of Z̄ and hence X. We recognize that, in
terms of X and T , we have a special case of the model of Section 2 and, in fact, we
have one of the models of Section 4. For this problem then, MRD is an admissible
procedure for two-sided as well as one-sided alternatives. The LRSD procedure
is admissible for one-sided procedures and for two-sided procedures for M = 2
and 3. For M = 4, however, many counterexamples to admissibility exist. In the
next section, we use simulations to evaluate MRD and compare it to the popular
step-wise procedures that are based on P -values from marginal distributions.

The model for the change point problem also entails M +1 independent random
samples from normal populations. Let Zij be as in the previous setup, only this
time we are interested in M null hypotheses Hi :μi = νi+1 −νi = 0 vs. Ki :μi �= 0
for two-sided alternatives or K∗

i :μi > 0 for one-sided alternatives, i = 1, . . . ,M .
Let Xi = Z̄i+1 − Z̄i , so that X is distributed as multivariate normal with mean
vector μ and covariance matrix (σ 2/n)�, where � = (σij ), and

σii = 2, σij = −1, if |i − j | = 1, σij = 0,
(6.1)

otherwise, i, j = 1, . . . ,M, i �= j.

Note that a rejected Hi amounts to infering that a change in mean has occurred
from time i to time (i + 1). One seeks to identify all change points. There is a sub-
stantial literature on the change point problem [see, e.g., Chen and Gupta (2000),
where reference is made to the binary segmentation procedure (BSP) due to
Vostrikova (1981)].

For this problem, one can consider a number of approaches. Among them are
MRD, LRSD and BSP, the usual step-up and step-down procedures based on
P -values. There is a very interesting connection between the MRD and BSP meth-
ods. Both are based on the Umi statistics given in (2.4). This is further support for
our general methodology since, in this special case, our statistics are precisely the
statistics Vmi used by Vostrikova (1981) for the change point problem. MRD and
BSP use the statistics differently.
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We now demonstrate that Umi are the same as Vmi and note that the Umi statis-
tics can be computed readily for any size problem, since it will not be necessary to
actually invert any matrix or submatrix of � as given in (6.1). Toward this end, for
1 ≤ p ≤ M , define the p × p matrix

�(p) =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎠ .(6.2)

Note that �(M) was given in (6.1). It is easily verified that the first and last rows
of �−1(p) are (1/(p + 1))(p(p − 1) · · ·1) and (1/(p + 1))(12 · · ·p), respectively.

Suppose now that, at stage m, we have not eliminated x1 (i.e., not rejected x1 at
an earlier stage) but have eliminated xj1, . . . , xjm−1 (i.e., rejected Hj1, . . . ,Hjm−1 ).
For this development, we may take j1 < j2 < · · · < jm−1 without loss of general-
ity. Let r be an index, 0 ≤ r ≤ m, and let j0 = 1, jm = M . We are now ready to
prove the following theorem.

THEOREM 6.1. For jr < i < jr+1, the statistics Umi of (2.4) can be expressed
as

[(jr+1 − jr)/(jr+1 − i)(i − jr)]1/2

(6.3)

×
[

i∑
j=jr+1

Zj − (i − jr)

( jr+1∑
j=jr+1

Zj

)/
(jr+1 − jr)

]
.

PROOF. See Appendix. �

REMARK 6.1. It can be shown that the BSP procedure is also admissible.

REMARK 6.2. For the change point model when M ≥ 4, it can be demon-
strated that the LRSD method is frequently inadmissible both for two-sided and
one-sided alternatives.

The successive correlation model starts with an M × 1 random vector X, which
is multivariate normal with mean vector μ and covariance matrix

�(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ 0 0 · · · 0 0
ρ 1 ρ 0 · · · 0 0
0 ρ 1 ρ · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 1 ρ

0 0 0 0 · · · ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(6.4)



1532 A. COHEN, H. B. SACKROWITZ AND M. XU

Note that if �(0) ≡ 1, then for r = 0,1, . . . ,M ,

|�(r)| = |�(r − 1)| − ρ2|�(r − 2)|.(6.5)

Also, one can verify that the first row of the inverse of �(r) is (d1,r , . . . , dr,r )

where

di,r = (−ρ)i−1|�(r − i)|/|�(r)|.(6.6)

By symmetry, the last row is (dr,r , . . . , d1r ). Proceeding as in the change point
model case when xj1, . . . , xjm−1 have been eliminated and jr < i < jr+1, the nu-
merator of Umi [see (A.7)] is

xi − (0, . . . ,0, ρ, ρ,0, . . . ,0)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(j1 − 1)
. . .

�(s1)

�(s2)
. . .

�(M − jm−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7)

× x(i,j1,...,jm−1),

where the row vector above is of order (M − m) × 1 and has two entries of ρ in
positions i − 1 and i. If i = 1 or M , then there is only one entry of ρ. Defining s1
and s2 as in the change point model, we find that (6.7) is

xi + (0, . . . ,0, di,s1, . . . , ds1,s1, ds2,s2, . . . , d1,s2,0, . . . ,0)x(i,j1,...,jm−1),(6.8)

where the nonzero entries in (6.8) appear in positions jr + 1, jr+1 − 2. Thus, (6.8)
becomes

xi +
s1∑

j=1

dj,s1xjr+j +
s2∑

j=1

ds2−j+1,s2xi+j .(6.9)

The denominator of Umi is

1 − (0, . . . ,0, ρ, ρ,0, . . . ,0)

(6.10)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(j1 − 1)
. . .

�(s1)

�(s2)
. . .

�(M − jm − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
ρ

ρ

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where the vectors are (M − m)-dimensional with two entries of ρ in the (i − 1)

and i positions. If i = 1 or M , then there is only one entry of ρ. Thus, only the
(s1, s1) element of �−1(s1) and the (1,1) element of �−1(s2) will be needed.
Specifically, we get

1 − ρ2
( |�(s1 − 1)|

|�(s1)| + |�(s2 − 1)|
|�(s2)|

)
.(6.11)

7. Simulations. The MRD procedure can be viewed as a family of admissible
procedures parametrized by a set of constants {C1, . . . ,CM}. It can be shown, us-
ing an inequality due to Sidák (1968), that {C1, . . . ,CM} can be chosen so that the
MRD procedure controls the strong FWER. However, such a choice of C’s would
be extremely conservative and would sacrifice the gains achieved by MRD, which
takes advantage of the correlation among the variables. It is also possible to choose
smaller C’s to control FDR. However, this too is likely to lead to an overly con-
servative procedure. To determine a reasonable set of constants, one must study
the risks (errors and error rates) for various choices of constants. As is the case
in a typical decision theory problem where no optimal procedure exists, one must
choose from a number of admissible procedures. This process needs to be done
prior to looking at the data. To make this choice in practice, one must consider
the particular application. In the examples we present, the number of hypotheses
is very large, and so one expects only a small or modest percentage of alternatives
to be true. Thus, we focused on that portion of the parameter space where, at most,
25% of alternatives were true. A large variety of sets of constants were evaluated
through simulation. Those presented gave a good balance of performance in terms
of expected numbers of type I and type II errors committed.

We have seen, in Section 3, that the MRD procedures possess the intuitive con-
vexity property needed for admissibility regardless of the covariance matrix, σ 2�.
These stepwise procedures make extensive use of the covariance structure at every
stage. To see the types of improvements that can be made over usual stepwise
methods, we now present some simulation studies. In this section, we report re-
sults for the treatments versus control model in both the σ 2 known and unknown
cases. We also look at the change point model.

Our studies focus on the situation where the number of populations is large and
the number of true alternatives is less than 25%. For two-sided alternatives, we
present a comparison of the MRD method with either the step-up or step-down
method (whichever did best in the given situation). The step-up and step-down
methods used in the comparison are those based on P -values determined from
marginal distributions. We report the expected number of type I errors, the ex-
pected number of type II errors and the FDR. To obtain the probabilities of types I
and II errors we can divide the expected number of errors, in the tables below by
the number of true nulls and alternatives, respectively. For all simulations, we used
1000 iterations.
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Table 1 gives the results for the treatments versus control model (i.e., intra-
class with a correlation coefficient of 0.5) with a known σ 2 = 1 for two-sided
alternatives. The step-up procedure in the table is the Benjamini–Hochberg (1995)
FDR controlling procedure where FDR = 0.05. Thus, the critical values for the
step-up procedure are [�−1(0.05i/2M)]. The critical values for MRD are some-
what related to the FWER controlling step-down procedure where the control is at
level 0.05. Specifically, these critical values for MRD are as follows. For α = 0.05,
M = 10,000, C1 = �−1(1 − α/2M), Ci = 0.71�−1(1 − α/2(M − i + 1)) and
1 < i ≤ M . These critical values were selected by trial and error using simula-
tions with 1000 iterations. They were chosen so that a desirable procedure would
ensue and also to suggest a way to get critical values in other cases. Another con-
sideration was to try to match step-up in FDR when the number of nonnulls is
large. Here, M = 10,000, and the results are most dramatic. There is improvement
(usually substantial) in both the expected number of types I and II errors.

Table 2 also gives results for the treatments versus control model (i.e., in-
traclass with a correlation coefficient of 0.5) but with unknown σ 2 for two-
sided alternatives. Here, M = 3000, n = 10, α = 0.05, C1 = �−1(1 − α/2M),
Ci = 0.63�−1(1 − α/2(M − i + 1)) and 1 < i ≤ M . The step-down procedure in
the table is based on P -values of the marginal distributions of t-statistics with a
pooled estimate of σ 2. The step-down procedure controls FWER at α = 0.05.

Table 3 deals with the change point model for two-sided alternatives. Unlike
the intraclass model, the variables are not exchangeable. Thus, the pattern of true
mean values as well as the choice of true mean values impacts the operating char-
acteristics of the procedures. It would be difficult to select a particular portion of
the parameter space to study without knowing the specific application. The type
of pattern in mean values we present reflects the notion of an occasional rise in
mean value as follows. The sequence of differences in consecutive means are of
the form 0, . . . ,0,1,1,1,0, . . . ,0,1,1,1,0, . . . ,0 where the sets of triples (1,1,1)

are equally spaced. Once again, M = 3000, α = 0.05, C1 = �−1(1 − α/2M),
Ci = 0.77�−1(1 − α/2(M − i + 1)). The step-down procedure in the table is
based on the difference of two normal variables, each with variance 1. The proce-
dure controls FWER at α = 0.05.

The message in Tables 2 and 3 for two sided alternatives is that MRD has
slightly higher expected number of type I errors but has many fewer type II er-
rors.

Table 4 gives results for the treatments versus control model with known σ 2 = 1,
for one-sided alternatives. We compare MRD, LRSD, step-down based on Dun-
nett’s tests for α = 0.05, call it D(0.05), step-down based on Dunnett’s tests for
α = 0.2, call it D(0.2), regular step-down (SD) and regular step-up (SU). Before
commenting on the simulation findings, we make some remarks. MRD and LRSD
both take dependency into account in two ways. Namely, through test statistics
and through critical values. D(0.05) and D(0.2) take dependency into account
only through critical values, SD and SU do not take dependency into account at
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TABLE 1
Comparison of MRD and SU procedures for treatments vs. control, variance known

Expected # of Expected # of
Number of means equal to type I errors type II errors FDR Total errors

0 −4 −2 2 4 MRD SU MRD SU MRD SU MRD SU

10000 0 0 0 0 0.67 28 0 0 0.05 0.02 0.67 28
9200 0 800 0 0 13.02 24.03 560.32 726.5 0.05 0.02 573.34 750.52
9200 800 0 0 0 12.23 58.77 5.99 131.18 0.02 0.04 18.22 189.96
8400 0 800 800 0 11.2 40.32 1041.91 1463.22 0.02 0.03 1053.11 1503.54
8400 0 0 1600 0 16.06 43.45 1205.59 1392.09 0.04 0.02 1221.65 1435.54
8400 800 0 800 0 12.78 55.09 557.82 730.51 0.01 0.03 570.60 785.6
8400 0 0 800 800 12.95 34.40 563.96 752.64 0.01 0.03 576.91 787.04
8400 800 0 0 800 13.28 73.65 12.37 148.81 0.01 0.04 25.65 222.45
8400 0 0 0 1600 13.46 70.82 12.56 167.88 0.01 0.04 26.02 238.7
7600 0 800 1600 0 12.17 55.13 1602.92 2121.25 0.02 0.03 1614.47 2176.37
7600 0 0 2400 0 24.95 59.77 1943.43 2000.7 0.05 0.03 1968.37 2060.47
7600 800 0 1600 0 16.17 57.67 1191.87 1313.02 0.01 0.03 1208.05 1370.7
7600 0 0 1600 800 16.41 58.33 1202.26 1326.52 0.01 0.03 1218.66 1384.85
7600 800 0 800 800 14.32 85.26 562.51 718.44 0.01 0.03 576.83 803.7
7600 0 0 800 1600 14.56 69.92 569.23 758.13 0.01 0.04 583.8 828.05
7600 800 0 0 1600 14.73 95.19 19.79 160.22 0.01 0.03 34.52 255.4
7600 0 0 0 2400 15.58 116.56 21.17 218.25 0.01 0.04 36.76 334.82
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TABLE 2
Comparison of MRD and SD procedures for treatments vs. control, variance unknown

Number of noncentrality Expected # of Expected # of
parameters equal to the value type I errors type II errors FDR Total errors

0 −3 −1 1 3 MRD SD MRD SD MRD SD MRD SD

3000 0 0 0 0 0.18 0.09 0 0 0.02 0.02 0.18 0.09
2800 0 200 0 0 1.22 0.04 198.62 199.93 0.05 0.02 199.85 199.96
2800 200 0 0 0 7.33 0.07 22.7 180.9 0.04 0.01 30.03 180.97
2600 0 200 200 0 2.51 0.04 992.62 399.78 0.07 0.01 395.13 399.82
2600 0 0 400 0 1.7 0.04 396.81 399.79 0.05 0.01 398.51 399.83
2600 200 0 200 0 6.5 0.03 211.3 379.14 0.03 0 217.81 379.17
2600 0 0 200 200 7.02 0.04 218.62 381.31 0.04 0.01 225.64 381.35
2600 200 0 0 200 4.31 0.07 58.43 361.18 0.01 0 62.75 361.25
2600 0 0 0 400 4.92 0.04 59.52 362.74 0.01 0.01 64.43 362.78
2400 0 200 400 0 2.82 0.05 587.53 599.69 0.06 0.01 590.35 599.74
2400 0 0 600 0 1.74 0.05 596.39 599.66 0.05 0.01 598.14 599.71
2400 200 0 400 0 6.2 0.02 403.79 580.5 0.03 0 409.99 580.52
2400 0 0 400 200 7.07 0.02 417.96 581.49 0.04 0.01 425.03 581.51
2400 200 0 200 200 3.88 0.03 254.02 562.3 0.01 0 257.9 562.32
2400 0 0 200 400 5.01 0.02 262.95 562.79 0.02 0.01 267.96 562.81
2400 200 0 0 400 2.91 0.05 110.07 541.56 0.01 0 112.98 541.61
2400 0 0 0 600 3.96 0.03 110.39 543.14 0.01 0.01 114.36 543.17
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TABLE 3
Comparison of MRD and SD procedures for the change point model

Expected # of Expected # of
Number of type I errors type II errors FDR Total errors

nulls triples MRD SD MRD SD MRD SD MRD SD

3000 0 0 0.05 0 0 0 0.05 0 0.05
2970 10 1.81 0.04 21.14 30 0.16 0.04 22.95 30.04
2955 15 2.04 0.06 31.34 44.99 0.13 0.06 33.38 45.05
2925 25 4.27 0.05 52.65 74.98 0.16 0.05 56.93 75.03
2850 50 8.39 0.05 105.26 149.97 0.16 0.05 113.65 150.03
2820 60 7.63 0.06 125.77 179.97 0.12 0.05 132.99 180.03
2700 100 17.61 0.04 210.99 299.95 0.17 0.04 228.6 299.99
2550 150 27.21 0.05 317.71 449.93 0.17 0.04 344.92 449.97
2400 200 36.52 0.04 423.90 599.90 0.17 0.04 460.42 599.95

all. Recall that our proposal is to sacrifice some FDR control, especially when
there are not too many rejections. MRD was recommended when the proportion of
false nulls is less than 0.25. Also, recall the geometric relationship between MRD
and LRSD, as noted in Section 5. In light of this, we expect and do observe that
the performance of MRD and LRSD (in terms of expected number of mistakes) is
comparable. One advantage that MRD has over LRSD is in computation. LRSD
requires a package like “quadprog” in R. This program is very time consuming for
M > 100, which is why the simulation is done for M = 100 and not for a larger M .
Since D(0.05) takes dependency into account through critical values, that proce-
dure should and does perform better than SD, which controls FWER at α = 0.05.
It is not fair in a sense to compare D(0.05), a markedly conservative procedure,
with MRD and LRSD. However, one can compare D(0.2) with MRD and LRSD,
and the latter two are preferred.

The simulations are based on 1000 iterations. The largest percentage of true al-
ternatives considered is 25. The cirtical values for MRD and LRSD are as follows.
Let C1(SD) = �−1(1 − α/M), Ci(SD) = �−1(1 − α/(M − i + 1)),1 < i ≤ M ,
then C1 for LRSD is 1.25C1(SD) and Ci for LRSD is 1.2Ci(SD), for i �= 1. For
MRD C1 = C1(SD), Ci = 0.7Ci(SD), for i �= 1. The C’s for D(0.2) and D(0.05)

are obtained by simulation.
Table 4 offers simulations that yield FDR and total errors for each of the six pro-

cedures. Other simulations yielded expected number of type I errors and expected
number of type II errors. These are not given in the table, because the pattern for
type I errors is the same as with FDR, and the pattern for type II errors can be
discerned from the columns giving total errors.

In summary, under the stated conditions, the admissible procedures MRD and
LRSD have comparable performances with a computational advantage for MRD,
should M > 100.
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TABLE 4
Comparison of MRD, LRSD, D(0.2), D(0.05), SD and SU for one-sided treatments vs. control

# of means equal to FDR Total errors

0 2 4 MRD LRSD D(0.2) D(0.05) SD SU MRD LRSD D(0.2) D(0.05) SD SU

100 0 0 0.05 0.04 0.19 0.05 0.03 0.04 0.11 0.19 0.95 0.08 0.07 0.63
95 5 0 0.1 0.11 0.11 0.02 0.01 0.02 4.53 4.81 4.99 4.89 4.91 5.19
95 0 5 0.17 0.06 0.08 0.02 0.01 0.04 1.39 1.54 2.46 3.11 3.33 3.40
90 5 5 0.12 0.07 0.05 0.01 0.01 0.03 4.40 5.13 6.77 7.89 8.38 8.23
90 10 0 0.09 0.14 0.09 0.02 0.01 0.04 8.28 8.12 9.18 9.65 9.73 10.06
90 0 10 0.1 0.04 0.05 0.01 0.00 0.04 1.66 2.20 4.29 6.09 6.82 5.93
85 5 10 0.07 0.04 0.04 0.01 0.00 0.04 4.53 5.51 8.24 10.58 11.51 10.02
85 10 5 0.08 0.07 0.05 0.01 0.01 0.04 7.56 8.24 10.96 12.55 13.11 12.70
80 15 5 0.06 0.06 0.04 0.01 0.00 0.04 10.86 11.21 14.81 17.34 17.86 16.75
80 5 15 0.05 0.02 0.02 0.01 0.00 0.03 4.78 6.03 10.00 13.27 15.14 11.82
80 10 10 0.06 0.04 0.03 0.00 0.00 0.03 7.85 8.66 12.7 15.50 16.55 14.63
80 20 0 0.04 0.10 0.05 0.01 0.01 0.03 15.88 13.54 17.31 19.09 19.34 19.00
80 0 20 0.05 0.01 0.02 0.00 0.00 0.03 2.06 3.34 7.50 11.66 13.76 9.09
75 5 20 0.04 0.02 0.02 0.00 0.00 0.03 5.23 6.68 11.49 16.59 18.43 13.06
75 20 5 0.04 0.06 0.03 0.01 0.00 0.03 14.51 14.17 18.95 22.10 22.73 21.06
75 15 10 0.05 0.04 0.03 0.01 0.00 0.03 11.02 11.66 16.55 20.21 21.34 18.62
75 10 15 0.05 0.03 0.02 0.01 0.00 0.03 8.13 9.26 14.01 18.26 19.82 15.81
75 25 0 0.03 0.08 0.04 0.01 0.00 0.03 20.35 16.52 21.73 23.87 24.28 23.63
75 0 25 0.05 0.01 0.02 0.00 0.00 0.03 2.50 3.88 9.14 14.34 17.12 10.59



MULTIPLE TESTING METHOD IN THE DEPENDENT CASE 1539

APPENDIX

PROOF OF LEMMA 3.2. For j �= 1, j �= j1, . . . , j �= j(m−1), use (2.4) and re-
call g is the first column of � to see that

Umj (x + rg)

= {
xj + rσj1 − σ

(j1,...,j(m−1))
′

j

× �−1
(j1,...,j(m−1),j)

(
x(j1,...,j(m−1),j) + rg(j1,...,j(m−1),j))}/σ(j ·j1,...,j(m−1))(A.1)

= Umj (x) + [
rσj1 − rσ

(j1,...,j(m−1))
′

j (1,0, . . . ,0)′
]
/σ(j ·j1,...,j(m−1))

= Umj (x).

This establishes (3.4).
Now,

Um1(x + rg)

= Um1(x) + [
rσ11 − rσ

(j1,...,j(m−1))
′

(1) �−1
(j1,...,j(m−1),1)σ

(j1,...,j(m−1))

(1)

]
(A.2)

/σ(1·j1,...,j(m−1))

= Um1(x) + r,

which establishes (3.5). �

PROOF OF LEMMA 3.3. If φU(x∗) = 0 then, when x∗ is observed, the process
must stop before H1 is rejected. Suppose it stops at stage m without having re-
jected H1. That means that Um,jm < Cm, which is equivalent to |Umi | < Cm for
all i ∈ {1, . . . ,M} \ j1, . . . , jm−1, ji �= 1. Also Uij1 ≥ Ci , i = 1, . . . ,m − 1, ji �= 1.
Next, consider x∗ +r0g, which is a reject H1 point. By Lemma 3.2, (A.1) and (A.2)
imply that only the functions Um1(x) can change from x∗ to x∗ + r0g. Also, at
some stage h ≤ m from (A.2), Uh,1 must have increased to become positive and
become the maximum function at that stage and also be ≥ Ch. By (A.2), Uh,1 will
be at least this large for all r ≥ r0. Thus, H1 will also be rejected for all x + rg,
r > r0. �

PROOF OF THEOREM 4.1. We prove the theorem for M = 3. For M = 2 the
method is the same and the proof is simpler. In light of Lemma 3.1 and the proof
of Theorem 3.1, we need to show that the LRSD test for H1 vs. K1, say φ1(x),
as a function of x + γ g, goes from reject to accept to reject as γ varies from
(−∞,∞). Another way of stating this requirement is, suppose φ1(x∗) = 1 when
x∗

1 > 0. Then, we must have φ1(x∗ + γ g) = 1 for all γ > 0, while if φ1(x∗) = 1
and x∗

1 < 0, we must have φ1(x∗ − γ g) = 1 for all γ > 0.
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There are a number of cases that need to be treated. Namely each of the three
stages at which H1 is rejected. If H1 is rejected at stage 1 at x = x∗ and x∗

1 > 0,
with x∗

1 > |x∗
2 | and x∗

1 > |x∗
3 |, then x∗′�−1x∗ ≥ C1, and this implies that

(x∗ + γ g)′�−1(x∗ + γ g) = x∗′
�−1x∗ + 2γ x∗

1 + γ 2 > C1.

Also, x∗
1 + γ > |x∗

2 + γρ| and x∗
1 + γ > |x∗

3 + γρ|, which means that φ1(x∗) = 1
implies φ1(x∗ + γ g) = 1 and H1 is rejected at stage 1 for all x∗ + γ g, all γ > 0.

The next case to consider is when H1 is rejected at the second stage for x = x∗.
Two subcases are x∗

1 > 0 and x∗
1 < 0. For x∗

1 > 0, suppose x3 is out first. Then, we
find that x∗

1
2 + x∗

2
2 − 2ρx∗

1x∗
2 ≥ C2 and

(x∗
1 + γ )2 + (x∗

2 + γρ)2 − 2ρ(x∗
1 + γ )(x∗

2 + ργ )
(A.3)

= x∗
1

2 + x∗
2

2 − 2ρx∗
1x∗

2 + 2γ x∗
1 + γ 2 + ρ2γ 2 − 2ρ2x∗

1γ − 2ρ2γ 2.

But, since γ 2 + ρ2γ 2 > 2ρ2γ 2 and 2γ x∗
1 ≥ 2ρ2γ x∗

1 , it follows that (A.3) > C2

for all γ > 0. Hence, φ1(x∗ + γ g) = 1 for all γ > 0. If x∗
1 < 0, a similar argument

works for (x∗
1 − γ )2 + (x∗

2 − γρ)2 − 2ρ(x∗
1 − γ )(x∗

2 − γρ).
Finally, the third case is when H1 is rejected at stage 3. In subcases where

the ordering of the components of x∗ is maintained with (x∗ + γ g), it is easy
to prove the required monotonicity property. The most challenging subcase is if
|x∗

3 | > x∗
2 > x∗

1 > 0 with x∗
3 < 0 but

|x∗
3 + γρ| < x∗

2 + γρ.(A.4)

In this case, when ρ > 0, we use the fact that x∗2
3 > x∗2

2 and use inequalities, as in
the previous case, to prove the result. When ρ < 0, we observe that, if |x∗

3 | > x∗
2 >

x∗
1 > 0 and x∗

3 < 0, then |x∗
3 + ργ | > |x∗

2 + ργ |, and so (A.4) cannot happen. It is
easy to verify then that if φ1(x∗) = 1 then φ1(x∗ +γ g) = 1 for all γ > 0. Similarly,
for x1 < 0. �

PROOF OF THEOREM 4.2. Once again, we focus on H1 vs. K∗
1 and demon-

strate that if φ1(x∗) = 1, then φ1(x∗+γ g) = 1 for all γ > 0. Suppose H1 is rejected
at stage m at x = x∗. Then, x∗

j1
> x∗

j2
> · · · > x∗

jm−1
> x∗

1 > x∗
jm+1

> · · · > x∗
jM

and
x∗

1 > 0. Note that, at x∗∗ = x∗ + γ g, the orders of all coordinates are preserved ex-
cept perhaps the first coordinate, which now can be anywhere among the m largest
coordinates. The k stage global hypothesis is considered if Hj1, . . . ,Hjk−1 have
been rejected. This global testing problem is HkG :μ(j1,...,jk−1) = 0(j1,...,jk−1) vs.
KkG :μ(j1,...,jk−1) ∈ Q(j1,...,jk−1), where Q(j1,...,jk−1) = {μ(j1,...,jk−1) :μi ≥ 0, i ∈
[1, . . . ,M]\[j1, . . . , jk−1]}\0(j1,...,jk−1). The likelihood ratio test rejects HkG if x∗
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is observed and if

sup
Q

exp
{
x∗(j1,...,jk−1)

′
�−1

(j1,...,jk−1)
μ(j1,...,jk−1)

− (1/2)μ(j1,...,jk−1)
′
�−1

(j1,...,jk−1)
μ(j1,...,jk−1)

}
(A.5)

= exp
{
x∗(j1,...,jk−1)

′
�−1

(j1,...,jk−1)
μ̂(j1,...,jk−1)∗

− (1/2)μ̂(j1,...,jk−1)∗′
�−1

(j1,...,jk−1)
μ̂(j1,...,jk−1)∗}

,

where μ̂(j1,...,jk−1)∗ is the maximum likelihood estimator of μ(j1,...,jk−1), when
x = x∗.

Next, consider the likelihood ratio test statistic at x∗∗. It is

sup
Q

exp
{(

x∗(j1,...,jk−1) + γ g(j1,...,jk−1)
)′

× �−1
(j1,...,jk−1)

μ(j1,...,jk−1)

− (1/2)μ(j1,...,jk−1)
′
�−1

(j1,...,jk−1)
μ(j1,...,jk−1)

}
(A.6)

≥ exp
{(

x∗(j1,...,jk−1)
)′

× �−1
(j1,...,jk−1)

μ̂(j1,...,jk−1)∗

− (1/2)μ̂(j1,...,jk−1)∗�(j1,...,jk−1)μ̂
(j1,...,jk−1)∗}

.

Recognize that the right-hand side of (A.6) is the maximized likelihood in (A.5)
times expγ μ̂

(j1,...,jk−1)∗
1 . Since μ̂

(j1,...,jk−1)∗
1 > 0, it follows from (A.5) and (A.6)

that (A.6) ≥ Ck , which means that there is a rejection at stage k at x∗∗ if there was
a rejection at stage k at x∗, k = 1, . . . ,M . Since the order of the coordinates of
xj1, . . . , xjm−1 remains unchanged and x∗∗

1 is among the m largest coordinates of
x∗∗, it follows that H1 is rejected at stage m or sooner. �

PROOF OF THEOREM 6.1. With xj1, . . . , xjm−1 eliminated, the covariance ma-
trix of the remaining variables is the block matrix

⎛
⎜⎜⎜⎝

�(j1 − 1) 0
�(j2 − j1 − 1)

. . .

0 �(M − jm−1)

⎞
⎟⎟⎟⎠ ,

where �(p) is given in (6.2). Now, let s1 = i − jr −1 and s2 = jr+1 − i −1. Then,
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the residual for xi (i.e., the numerator of Umi ) is

xi − (0, . . . ,0,−1,−1,0, . . . ,0)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(j1 − 1) 0
. . .

�(s1)

�(s2)
. . .

0 �(M − jm−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(A.7)

× x(i,j1,...,jm−1),

where the row vector above is of order (M − m) × 1 and has two entries of −1 in
positions (i − 1) and i. If i = 1 or M , then there is only one entry of −1. Thus,
only the last row of �−1(s1) and first row of �−1(s2) will be needed. Specifically,
(A.7) can be written as

xi + (
0, . . . ,0,1/(s1 + 1),2/(s1 + 1), . . . ,

(A.8)
s1/(s1 + 1), s2/(s2 + 1), . . . ,1/(s2 + 1),0, . . . ,0

)
x(i,j1,...,jm−1),

where the nonzero entries in (A.8) appear in positions jr + 1, . . . , jr+1 − 2, so that
the residual depends only on xjr+1, . . . , xjr+1−1. Thus, (A.8) becomes

xi + (
1/(s1 + 1)

) s1∑
j=1

jxjr+j + (
1/(s2 + 1)

) s2∑
j=1

(s2 − j + 1)xi+j .(A.9)

Since xj = Z̄j − Z̄j+1, (A.9) can be written as

(
1/(s1 + 1)

) s1+1∑
j=1

Z̄jr+j − (
1/(s2 + 1)

) s2+1∑
j=1

Z̄i+j

= (
1/(i − jr)

) i∑
j=jr+1

Z̄j − (
1/(jr+1 − i)

) jr+1∑
j=i+1

Z̄j

(A.10)
= [(jr+1 − jr)/(jr+1 − i)(i − jr)]

×
{

i∑
j=jr+1

Z̄j − [(i − jr)/(jr+1 − jr)]
jr+1∑

j=jr+1

Z̄j

}
.

A similar computation yields the denominator of Umi , namely σ(i·j1,...,jm−1) as

[(jr+1 − jr)/(jr+1 − i)(i − jr)]1/2.(A.11)

Combine (A.10) and (A.11) and (6.3) is established. �
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