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DIFFERENTIABILITY OF t-FUNCTIONALS OF
LOCATION AND SCATTER

BY R. M. DUDLEY,1 SERGIY SIDENKO2 AND ZUOQIN WANG2

Massachusetts Institute of Technology

The paper aims at finding widely and smoothly defined nonparametric lo-
cation and scatter functionals. As a convenient vehicle, maximum likelihood
estimation of the location vector μ and scatter matrix � of an elliptically
symmetric t distribution on R

d with degrees of freedom ν > 1 extends to
an M-functional defined on all probability distributions P in a weakly open,
weakly dense domain U . Here U consists of P putting not too much mass in
hyperplanes of dimension < d, as shown for empirical measures by Kent and
Tyler [Ann. Statist. 19 (1991) 2102–2119]. It will be seen here that (μ,�) is
analytic on U for the bounded Lipschitz norm, or for d = 1 for the sup norm
on distribution functions. For k = 1,2, . . . , and other norms, depending on k

and more directly adapted to t functionals, one has continuous differentiabil-
ity of order k, allowing the delta-method to be applied to (μ,�) for any P

in U , which can be arbitrarily heavy-tailed. These results imply asymptotic
normality of the corresponding M-estimators (μn,�n). In dimension d = 1
only, the tν functional (μ,σ ) extends to be defined and weakly continuous at
all P .

1. Introduction. This paper aims at developing some nonparametric location
and scatter functionals, defined and smooth on large (weakly dense and open) sets
of distributions. The nonparametric view is much as in the work of Bickel and
Lehmann (1975) (but not adopting, e.g., their monotonicity axiom) and to a some-
what lesser extent, that of Davies (1998). Although there are relations to robust-
ness, that is not the main aim here: there is no focus on neighborhoods of model
distributions with densities such as the normal. It happens that the parametric fam-
ily of ellipsoidally symmetric t densities provides an avenue toward nonparametric
location and scatter functionals, somewhat as maximum likelihood estimation of
location for the double-exponential distribution in one dimension gives the median,
generally viewed as a nonparametric functional.

Given observations X1, . . . ,Xn in R
d , let Pn := 1

n

∑n
j=1 δXj

. Given Pn, and the

location-scatter family of elliptically symmetric tν distributions on R
d with ν > 1,

maximum likelihood estimates of the location vector μ and scatter matrix � exist
and are unique for “most” Pn. Namely, it suffices that Pn(J ) < (ν + q)/(ν + d)
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for each affine hyperplane J of dimension q < d , as shown by Kent and Tyler
(1991). The estimates extend to M-functionals defined at all probability measures
P on R

d satisfying the same condition; that is shown for integer ν and in the
sense of unique critical points by Dümbgen and Tyler (2005) and for general ν > 0
and M-functionals in the sense of unique absolute minima in Theorem 3, using
Theorem 6(a), for pure scatter and then in Theorem 6(e) for location and scatter
with ν > 1. A method of reducing location and scatter functionals in dimension d

to pure scatter functionals in dimension d +1 was shown to work for t distributions
by Kent and Tyler (1991) and only for such distributions by Kent, Tyler and Vardi
(1994) as will be recalled after Theorem 6.

So the t functionals are defined on a weakly open and weakly dense domain,
whose complement is thus weakly nowhere dense. One of the main results of the
present paper gives analyticity (defined in the Appendix) of the functionals on
this domain, with respect to the bounded Lipschitz norm [Theorem 11(d)]. An
adaptation gives differentiability of any given finite order k with respect to norms,
depending on k, chosen to give asymptotic normality of the t location and scatter
functionals (Theorem 14), for arbitrarily heavy-tailed P (for such P , the central
limit fails in the bounded Lipschitz norm). In turn, this yields delta-method con-
clusions [Theorem 7(b)], uniformly over suitable families of distributions (Propo-
sition 8); these statements do not include any norms, although their proofs do. It
follows in Corollary 15 that continuous Fréchet differentiability of the tν location
and scatter functionals of order k also holds with respect to affinely invariant norms
defined via suprema over positivity sets of polynomials of degree at most 2k + 4.

For the delta-method, one needs at least differentiability of first order. To get first
derivatives with respect to probability measures P via an implicit function theorem
we use second-order derivatives with respect to matrices. Moreover, second-order
derivatives with respect to P (or in the classical case, with respect to an unknown
parameter) can improve the accuracy of the delta-method and the speed of conver-
gence of approximations. It turns out that derivatives of arbitrarily high order are
obtainable with little additional difficulty.

For norms in which the central limit theorem for empirical measures holds for
all probability measures, such as those just mentioned, bootstrap central limit the-
orems also hold [Giné and Zinn (1990)], which then via the delta-method can give
bootstrap confidence sets for the t location and scatter functionals.

In dimension d = 1, the domain on which differentiability is proved is the class
of distributions having no atom of size ν/(ν + 1) or larger. On this domain, analyt-
icity holds, Theorem 11(e), with respect to the usual supremum norm for distribu-
tion functions. Also, only for d = 1, the tν location and scatter (scale) functionals
extend to be defined and weakly continuous at arbitrary distributions (having arbi-
trarily large atoms, Theorem 12).

Weak continuity on a dense open set implies that for distributions in that set,
estimators (functionals of empirical measures) eventually exist almost surely and
converge to the functional of the distribution. Weak continuity, where it holds, also
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is a robustness property in itself and implies a strictly positive (not necessarily
large) breakdown point. The tν functionals, as redescending M-functionals, down-
weight outliers. Among such M-functionals, only the tν functionals are known to
be uniquely defined on a satisfactorily large domain.

A probability measure P on R
d is said to be symmetric around a point m if the

map x �→ 2m − x preserves P . The tν estimators are
√

n-consistent estimators of
tν functionals where each tν location functional, at any distribution in its domain
and symmetric around a point, (by equivariance) equals the center of symmetry.

It seems that few other known location and scatter functionals exist and are
unique and continuous, let alone differentiable, on a dense open domain. For ex-
ample, the median is discontinuous on a dense set. Smoothly trimmed means and
variances are defined and differentiable at all distributions in one dimension; see
for example, Boos (1979) for the means.

In higher dimensions there are analogues of trimming, called peeling or depth
weighting; see for example, the recent work Zuo and Cui (2005). Location-scatter
functionals differentiable on a dense domain apparently have not been found by
depth weighting thus far (in dimension d > 1).

The t location and scatter functionals, on their domain, can be effectively com-
puted via EM algorithms [cf. Kent, Tyler and Vardi (1994), Section 4; Arslan,
Constable and Kent (1995); Liu, Rubin and Wu (1998)].

Proofs of most facts stated in the paper are given in the longer version Dudley,
Sidenko and Wang (2008). Some are given in Dudley et al. (2007).

2. Definitions and preliminaries. In this paper the sample space will be a
finite-dimensional Euclidean space R

d with its usual topological and Borel struc-
ture. A law will mean a probability measure on R

d . Let Sd be the collection of all
d × d symmetric real matrices, Nd the subset of nonnegative definite symmetric
matrices and Pd ⊂ Nd the further subset of strictly positive definite symmetric
matrices. The parameter spaces � considered will be Pd , Nd (pure scatter matri-
ces), R

d ×Pd , or R
d ×Nd . For (μ,�) ∈ R

d ×Nd , μ will be viewed as a location
parameter and � as a scatter parameter, extending the notions of mean vector and
covariance matrix to arbitrarily heavy-tailed distributions. Matrices in Nd but not
in Pd will only be considered in one dimension, in Section 6, where the scale
parameter σ ≥ 0 corresponds to σ 2 ∈ N1.

Notions of “location” and “scale” or multidimensional “scatter” functional will
be defined in terms of equivariance as follows.

DEFINITIONS. Let Q �→ μ(Q) ∈ R
d , resp. �(Q) ∈ Nd , be a functional de-

fined on a set D of laws Q on R
d . Then μ (resp. �) is called an affinely equi-

variant location (resp. scatter) functional if and only if for any nonsingular d × d

matrix A and v ∈ R
d , with f (x) := Ax + v, and any law Q ∈ D , the image

measure P := Q ◦ f −1 ∈ D also, with μ(P ) = Aμ(Q) + v or, respectively,
�(P ) = A�(Q)A′. For d = 1, σ(·) with 0 ≤ σ < ∞ will be called an affinely
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equivariant scale functional if and only if σ 2 satisfies the definition of affinely
equivariant scatter functional. If we have affinely equivariant location and scatter
functionals μ and � on the same domain D then (μ,�) will be called an affinely
equivariant location-scatter functional on D .

To define M-functionals, suppose we have a function (x, θ) �→ ρ(x, θ) de-
fined for x ∈ R

d and θ ∈ �, Borel measurable in x and lower semicontinuous
in θ , that is, ρ(x, θ) ≤ lim infφ→θ ρ(x,φ) for all θ . For a law Q, let Qρ(φ) :=∫

ρ(x,φ)dQ(x) if the integral is defined (not ∞ − ∞), as it always will be if
Q = Pn. An M-estimate of θ for a given n and Pn will be a θ̂n such that Pnρ(θ) is
minimized at θ = θ̂n, if it exists and is unique. A measurable function, not neces-
sarily defined a.s., whose values are M-estimates is called an M-estimator.

For a law P on R
d and a given ρ(·, ·), a θ1 = θ1(P ) is called the M-functional of

P for ρ if and only if there exists a measurable function a(x), called an adjustment
function, such that for h(x, θ) = ρ(x, θ) − a(x), Ph(θ) is defined and satisfies
−∞ < Ph(θ) ≤ +∞ for all θ ∈ �, and is minimized uniquely at θ = θ1(P ); see,
for example, Huber (1967, 1981). As Huber showed, θ1(P ) does not depend on the
choice of a(·), which can moreover be taken as a(x) ≡ ρ(x, θ2) for a suitable θ2.

The following definition will be used for d = 1. Suppose we have a parameter
space �, specifically Pd or Pd × R

d , which has a closure �, specifically Nd or
Nd × R

d , respectively. The boundary of � is then � \ �. The functions ρ and
h are not necessarily defined for θ in the boundary, but M-functionals may have
values anywhere in � according to the following.

DEFINITION. A θ0 = θ0(P ) ∈ � will be called the (extended) M-functional of
P for ρ or h if and only if for every neighborhood U of θ0,

−∞ ≤ lim inf
φ→θ0,φ∈�

Ph(φ) < inf
φ∈�,φ /∈U

Ph(φ).(1)

The above definition extends that of M-functional given by Huber (1967) in that
if θ0 is on the boundary of �, then h(x, θ0) is not defined, Ph(θ0) is defined only
in a lim inf sense, and at θ0 (but only there), the lim inf may be −∞.

From the definition, an M-functional, if it exists, must be unique. If P is an
empirical measure Pn, then the M-functional θ̂n := θ0(Pn), if it exists, is the max-
imum likelihood estimate of θ , in a lim sup sense if θ̂n is on the boundary. Clearly,
an M-estimate θ̂n is the M-functional θ1(Pn) if either exists.

For a differentiable function f , recall that a critical point of f is a point where
the gradient of f is 0. For example, on R

2 let f (x, y) = x2(1 + y)3 + y2. Then f

has a unique critical point (0,0), which is a strict relative minimum, but these con-
ditions do not suffice for an absolute minimum since f (1, y) → −∞ as y → −∞.
This example appeared in Durfee et al. (1993). Thus we will need to check global
as well as local conditions.
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3. Multivariate scatter. This section will treat the pure scatter problem in R
d ,

with parameter space � = Pd . The results here are extensions of those of Kent and
Tyler (1991), Theorems 2.1 and 2.2, on unique maximum likelihood estimates for
finite samples, to the case of M-functionals for general laws on R

d .
For A ∈ Pd and a function ρ from [0,∞) into itself, consider the function

L(y,A) := 1
2 log detA + ρ(y′A−1y), y ∈ R

d .(2)

For adjustment, let

h(y,A) := L(y,A) − L(y, I ),(3)

where I is the identity matrix. Then

Qh(A) = 1
2 log detA +

∫ (
ρ(y′A−1y) − ρ(y′y)

)
dQ(y)(4)

if the integral is defined.
As a referee suggested, one can differentiate functions of matrices in a

coordinate-free way, as follows. The d2-dimensional vector space of all d × d

real matrices becomes a Hilbert space (Euclidean space) under the inner product
〈A,B〉 := trace(A′B). It is easy to verify that this is indeed an inner product and is
invariant under orthogonal changes of coordinates in the underlying d-dimensional
vector space. The corresponding norm ‖A‖F := 〈A,A〉1/2 is called the Frobenius
norm. Here ‖A‖2

F is simply the sum of squares of all elements of A, and ‖ · ‖F is
the specialization of the (Hilbert)–Schmidt norm for Hilbert–Schmidt operators on
a general Hilbert space to the case of (all) linear operators on a finite-dimensional
Hilbert space. Let ‖ ·‖ be the usual matrix or operator norm, ‖A‖ := sup|x|=1 |Ax|.
Then

‖A‖ ≤ ‖A‖F ≤ √
d‖A‖,(5)

with equality in the latter for A = I and the former when A = diag(1,0, . . . ,0). In
statements such as ‖A‖ → 0 or expressions such as O(‖A‖) the particular norm
does not matter for fixed d .

We have the following, stated for Q = Qn an empirical measure in Kent and
Tyler (1991), equation (1.3). Here (6) is a redescending condition.

PROPOSITION 1. Let ρ : [0,∞) → [0,∞) be continuous and have a bounded
continuous derivative on [0,∞), where ρ ′(0) := ρ′(0+) := limx↓0[ρ(x) −
ρ(0)]/x. Let 0 ≤ u(x) := 2ρ ′(x) for x ≥ 0 and suppose that

sup
0≤x<∞

xu(x) < ∞.(6)

Then for any law Q on R
d , Qh in (4) is a well-defined and C1 function of A, which

has a critical point at A = B if and only if

B =
∫

u(y′B−1y)yy′ dQ(y).(7)
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In the proof of Proposition 1, it is shown that

For any compact K ⊂ Pd, sup{|h(y,A)| :y ∈ R
d,A ∈ K} < ∞.(8)

The following extends to any law Q the uniqueness part of Kent and Tyler
(1991), Theorem 2.2.

PROPOSITION 2. Under the hypotheses of Proposition 1 on ρ and u(·), if in
addition u(·) is nonincreasing and s �→ su(s) is strictly increasing on [0,∞), then
for any law Q on R

d , Qh has at most one critical point A ∈ Pd .

Our proof of the preceding [Dudley, Sidenko and Wang (2008)] shows that ex-
istence of critical points implies that Q must not be concentrated in any proper
linear subspace. More precisely, a sufficient condition for existence of a minimum
(which will then be unique by Proposition 2) will include the following assump-
tion from Kent and Tyler (1991), equation (2.4). For a given function u(·) as in
Proposition 2, let a0 := a0(u(·)) := sups>0 su(s). Since s �→ su(s) is increasing,
we will have

su(s) ↑ a0 as s ↑ +∞.(9)

Kent and Tyler (1991) gave the following conditions for empirical measures.

DEFINITION. For a given number a0 := a(0) > 0 let Ud,a(0) be the set of all
probability measures Q on R

d such that for every linear subspace H of dimension
q ≤ d − 1, Q(H) < 1 − (d − q)/a0, so that Q(Hc) > (d − q)/a0.

If Q ∈ Ud,a(0), then Q({0}) < 1 − (d/a0), which is impossible if a0 ≤ d . So
we will need a0 > d and assume it, for example, in the following theorem. In the
tν case later we will have a0 = ν + d > d for any ν > 0. For a(0) > d , Ud,a(0)

is weakly open and dense and contains all laws with densities. For part (a), Tyler
(1988) gave a proof that extends to the present case. In part (b), Kent and Tyler
(1991), Theorems 2.1 and 2.2, proved that there is a unique B(Qn) minimizing
Qnh for an empirical Qn ∈ Ud,a(0).

THEOREM 3. Let u(·) ≥ 0 be a bounded continuous function on [0,∞) sa-
tisfying (6), with u(·) nonincreasing and s �→ su(s) strictly increasing. Then for
a(0) = a0 as in (9):

(a) If Q /∈ Ud,a(0), then Qh has no critical points.
(b) If a0 > d and Q ∈ Ud,a(0), then Qh attains its minimum at a unique B =

B(Q) ∈ Pd and has no other critical points.
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4. Location and scatter t functionals. The main result of this section, The-
orem 6, is an extension of results of Kent and Tyler [(1991), Theorem 3.1] who
found maximum likelihood estimates for finite samples, and Dümbgen and Tyler
(2005) for M-functionals, defined as unique critical points, for integer ν, to the
case of M-functionals in the sense of absolute minima, and any ν > 0.

Kent and Tyler [(1991), Section 3] and Kent, Tyler and Vardi (1994) showed that
location-scatter problems in R

d can be treated by way of pure scatter problems in
R

d+1, specifically for functionals based on t log likelihoods. The two papers prove
the following:

PROPOSITION 4. (i) For any d = 1,2, . . . , there is a 1–1 correspondence be-
tween matrices A ∈ Pd+1 and triples (�,μ,γ ) where � ∈ Pd , μ ∈ R

d , and γ > 0,
given by A = A(�,μ,γ ) where

A(�,μ,γ ) = γ

[
� + μμ′ μ

μ′ 1

]
.(10)

The correspondence is C∞ in either direction.
(ii) For A = A(�,μ,γ ), we have

A−1 = γ −1
[

�−1 −�−1μ

−μ′�−1 1 + μ′�−1μ

]
.(11)

(iii) If (10) holds, then for any y ∈ R
d (a column vector),

(y′,1)A−1(y′,1)′ = γ −1(
1 + (y − μ)′�−1(y − μ)

)
.(12)

For M-estimation of location and scatter in R
d , we will have a function

ρ : [0,∞) �→ [0,∞) as in the previous section. The parameter space is now the
set of pairs (μ,�) for μ ∈ R

d and � ∈ Pd , and we have a multivariate ρ function
(the two meanings of ρ should not cause confusion)

ρ(y, (μ,�)) := 1
2 log det� + ρ

(
(y − μ)′�−1(y − μ)

)
.

For any μ ∈ R
d and � ∈ Pd let A0 := A0(μ,�) := A(�,μ,1) ∈ Pd+1 by (10)

with γ = 1, noting that detA0 = det�. Now ρ can be adjusted, in light of (8) and
(12), by defining

h(y, (μ,�)) := ρ(y, (μ,�)) − ρ(y ′y).(13)

Laws P on R
d correspond to laws Q := P ◦ T −1

1 on R
d+1 concentrated in

{y :yd+1 = 1}, where T1(y) := (y′,1)′ ∈ R
d+1, y ∈ R

d . We will need a hypothesis
on P corresponding to Q ∈ Ud+1,a(0). Kent and Tyler (1991) gave these conditions
for empirical measures.

DEFINITION. For any a0 := a(0) > 0 let Vd,a(0) be the set of all laws P on
R

d such that for every affine hyperplane J of dimension q ≤ d − 1, P(J ) < 1 −
(d − q)/a0, so that P(J c) > (d − q)/a0.
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The next fact is rather straightforward to prove.

PROPOSITION 5. For any law P on R
d , a > d + 1, and Q := P ◦ T −1

1 on
R

d+1, we have P ∈ Vd,a if and only if Q ∈ Ud+1,a .

For laws P ∈ Vd,a(0) with a(0) > d + 1, one can prove that there exist μ ∈ R
d

and � ∈ Pd at which Ph(μ,�) is minimized, as Kent and Tyler (1991) did for
empirical measures, by applying part of the proof of Theorem 3 restricted to the
closed set where γ = Ad+1,d+1 = 1 in (12). But the proof of uniqueness (Propo-
sition 2) does not apply in general under the constraint Ad+1,d+1 = 1. For mini-
mization under a constraint the notion of critical point changes, for example, for a
Lagrange multiplier λ one would seek critical points of Qh(A)+λ(Ad+1,d+1 −1),
so Propositions 1 and 2 no longer apply. Uniqueness will hold under an additional
condition. A family of ρ functions that will satisfy the condition, as pointed out by
Kent and Tyler (1991), equations (1.5) and (1.6), comes from elliptically symmet-
ric multivariate t densities with ν degrees of freedom as follows: for 0 < ν < ∞
and 0 ≤ s < ∞ let

ρν(s) := ρν,d(s) := ν + d

2
log

(
ν + s

ν

)
.(14)

For this ρ, u is uν(s) := uν,d(s) := (ν + d)/(ν + s), which is decreasing, and
s �→ suν,d(s) is strictly increasing and bounded, so that (6) holds, with supremum
and limit at +∞ equal to a0,ν := a0(uν(·)) = ν + d for any ν > 0.

The following fact was shown in part by Kent and Tyler (1991) and further by
Kent, Tyler and Vardi (1994) for empirical measures, with a short proof, and with
equation (15) only implicit. The relation that ν degrees of freedom in dimension d

correspond to ν ′ = ν − 1 in dimension d + 1, due to Kent, Tyler and Vardi (1994),
is implemented more thoroughly in the following theorem and the proof in Dudley
(2006). The extension from empirical to general laws follows from Theorem 3,
specifically for part (a) of the next theorem since a0 = ν + d > d .

THEOREM 6. For any d = 1,2, . . . :
(a) For any ν > 0 and Q ∈ Ud,ν+d , the map A �→ Qh(A) defined by (4) for

ρ = ρν,d has a unique critical point A(ν) := Aν(Q) which is an absolute mini-
mum.

In parts (b) through (f) let ν > 1, let P be a law on R
d , Q = P ◦ T −1

1 on R
d+1,

and ν′ := ν − 1. Assume P ∈ Vd,ν+d in parts (b) through (e). We have:
(b) A(ν′)d+1,d+1 = ∫

uν′,d+1(z
′A(ν′)−1z) dQ(z) = 1.

(c) For any μ ∈ R
d and � ∈ Pd let A = A(�,μ,1) ∈ Pd+1 in (10). Then for

any y ∈ R
d and z := (y′,1)′, we have

uν′,d+1(z
′A−1z) ≡ uν,d

(
(y − μ)′�−1(y − μ)

)
.(15)

In particular, this holds for A = A(ν′) and its corresponding μ = μν ∈ R
d and

� = �ν ∈ Pd .



DIFFERENTIABLE t LOCATION–SCATTER FUNCTIONALS 947

(d) ∫
uν,d

(
(y − μν)

′�−1
ν (y − μν)

)
dP (y) = 1.(16)

(e) For h := hν := hν,d defined by (13) with ρ = ρν,d , (μν,�ν) is an M-
functional for P .

(f) If, on the other hand, P /∈ Vd,ν+d , then (μ,�) �→ Ph(μ,�) for h as in
part (e) has no critical points.

Kent, Tyler and Vardi [(1994), Theorem 3.1] showed that if u(s) ≥ 0, u(0) <

+∞, u(·) is continuous and nonincreasing for s ≥ 0, and su(s) is nondecreasing
for s ≥ 0, with a0 := lims→+∞ su(s) > d , and if equation (16) holds with u in
place of uν,d at each critical point (μ,�) of Qnh for any Qn, then u must be
of the form u(s) = uν,d(s) = (ν + d)/(ν + s) for some ν > 0. Thus, the method
of relating pure scatter functionals in R

d+1 to location-scatter functionals in R
d

given by Theorem 6 for t functionals defined by functions uν,d does not extend
directly to other functions u. For 0 < ν < 1, we would get ν′ < 0, so the methods
of Section 3 do not apply. In fact, (unique) tν location and scatter M-functionals
may not exist, as Gabrielsen (1982) and Kent and Tyler (1991) noted. For example,
if d = 1, 0 < ν < 1, and P is symmetric around 0 and nonatomic but concentrated
near ±1, then for −∞ < μ < ∞, there is a unique σν(μ) > 0 where the minimum
of Phν(μ,σ ) with respect to σ is attained. Then σν(0)

.= 1 and (0, σν(0)) is a
saddle point of Phν . Minima occur at some μ �= 0, σ > 0, and at (μ,σ ) if and
only if at (−μ,σ). The Cauchy case ν = 1 can be treated separately, see Kent,
Tyler and Vardi (1994), Section 5, and references there.

When d = 1, P ∈ V1,ν+1 requires that P({x}) < ν/(1 + ν) for each point x.
Then � reduces to a number σ 2 with σ > 0. If ν > 1 and P /∈ V1,ν+1, then for
some unique x, P({x}) ≥ ν/(ν + 1). One can extend (μν, σν) by setting μν(P ) :=
x and σν(P ) := 0, with (μν, σν) then being weakly continuous at all P , as will be
seen in Section 6.

For d > 1 there is no weakly continuous extension to all P , because such an ex-
tension of μν would give a weakly continuous affinely equivariant location func-
tional defined for all laws, which is known to be impossible [Obenchain (1971)].

Here is a delta-method fact.

THEOREM 7. (a) For any d = 1,2,3, . . . , ν > 0, and Q ∈ Ud,ν+d with em-
pirical measures Qn, we have Qn ∈ Ud,ν+d with probability → 1 as n → ∞ and√

n(Aν(Qn) − Aν(Q)) converges in distribution to a normal distribution N(0, S)

on Sd . The covariance matrix S has full rank d(d + 1)/2 if Q is not concentrated
in any set where a non-zero second-degree polynomial vanishes, for example, if
Q has a density. For general Q ∈ Ud,ν+d , if d = 1 the rank is exactly 1, and for
d ≥ 2, the smallest possible rank of S is d − 1.



948 R. M. DUDLEY, S. SIDENKO AND Z. WANG

(b) For any d = 1,2, . . . , 1 < ν < ∞ and P ∈ Vd,ν+d with empirical mea-
sures Pn, we have Pn ∈ Vd,ν+d with probability → 1 as n → ∞ and the function-
als μν and �ν are such that as n → ∞,

√
n[(μν,�ν)(Pn) − (μν,�ν)(P )]

converges in distribution to some normal distribution with mean 0 on R
d × R

d2
,

whose marginal on R
d2

is concentrated on Sd . The covariance of the asymptotic
normal distribution for μν(Pn) has full rank d . The rank of the covariance for
�ν(Pn) has the same behavior as the rank of S in part (a).

The proof is based on some differentiability and an implicit function theo-
rem. Although A is finite-dimensional, P is infinite-dimensional, so an infinite-
dimensional implicit function theorem is needed, specifically the Hildebrandt–
Graves theorem, for example, Deimling (1985), pages 148–150. For this we need
to choose suitable norms defined on the space of all probability measures, which
is not a simple matter; it is treated in Sections 5 and 7 and the related part of the
Appendix.

For 0 < δ < 1 and d = 1,2, . . . , define an open subset of Pd ⊂ Sd by

Wδ := Wδ,d := {A ∈ Pd : max(‖A‖,‖A−1‖) < 1/δ}.(17)

Now, here is a statement on uniformity as P and Q vary. Its proof is partly based
on the results of Giné and Zinn (1991) and Bousquet, Koltchinskii and Panchenko
(2002).

PROPOSITION 8. For any δ > 0 and M < ∞, the rate of convergence to nor-
mality in Theorem 7(a) is uniform over the set Q := Q(δ,M,ν) of all Q ∈ Ud,ν+d

such that Aν(Q) ∈ Wδ and

Q({y : |y| > M}) ≤ (1 − δ)/(ν + d),(18)

or in part (b), over all P ∈ Vd,ν+d such that �ν(P ) ∈ Wδ and (18) holds for P in
place of Q.

REMARK. The example after Lemma 10 will show that A = Aν(Q) itself does
not control Q well enough to keep it away from the boundary of Ud,ν+d or give
uniformity in the limit theorem. For a class Q of laws to have the uniform asymp-
totic normality of Aν , uniform tightness is not necessary, but a special case (18) of
uniform tightness is assumed.

5. Differentiability of t functionals. To prove the delta-method Theorem
7 for a general P , for example, for the Cauchy distribution on R, we use dif-
ferentiability for special norms to be introduced in Section 7. First let us con-
sider a familiar norm that metrizes weak convergence. For a bounded function f
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from R
d into a normed space, the sup norm is ‖f ‖sup := supx∈Rd ‖f (x)‖. Let V

be a k-dimensional real vector space with a norm ‖ · ‖, where 1 ≤ k < ∞. Let
BL(Rd,V ) be the vector space of all functions f from R

d into V such that the
norm

‖f ‖BL := ‖f ‖sup + sup
x �=y

‖f (x) − f (y)‖/|x − y| < ∞,

that is bounded Lipschitz functions. The space BL(Rd,V ) does not depend
on ‖ · ‖, although ‖ · ‖BL does. Take any basis {vj }kj=1 of V . Then f (x) ≡∑k

j=1 fj (x)vj for some fj ∈ BL(Rd) := BL(Rd,R) where R has its usual

norm | · |. Let X := BL∗(Rd) be the dual Banach space. For φ ∈ X, let

φ∗f :=
k∑

j=1

φ(fj )vj ∈ V.

Then because φ is linear, φ∗f does not depend on the choice of basis.
For a given domain U , let Ck

b(U) denote the space of real-valued functions on
U having continuous derivatives (equivalently, partial derivatives) through order k

bounded on U . Then clearly C1
b(Rd) ⊂ BL(Rd).

Let P (Rd) be the set of all probability measures on the Borel sets of R
d .

Then each Q ∈ P (Rd) defines a φQ ∈ BL∗(Rd) via φQ(f ) := ∫
f dQ. For any

P,Q ∈ P (Rd) let β(P,Q) := ‖P − Q‖∗
BL := ‖φP − φQ‖∗

BL. Then β is a metric
on P (Rd) which metrizes the weak topology, for example, Dudley (2002), Theo-
rem 11.3.3.

Substituting ρν,d from (14) into (2) gives for y ∈ R
d and A ∈ Pd ,

Lν,d(y,A) := 1

2
log detA + ν + d

2
log[1 + ν−1y′A−1y].(19)

Then, reserving hν := hν,d for the location-scatter case as in Theorem 6(e), we get
in (3) for the pure scatter case

Hν(y,A) := Hν,d(y,A) := Lν,d(y,A) − Lν,d(y, I ).(20)

We have for fixed A ∈ Pd as  → 0 in Sd that

log det(A + ) − log detA
(21)

= trace(A−1) − ‖A−1/2A−1/2‖2
F /2 + O(‖‖3).

It follows from (21) and (19) that for A ∈ Pd and C = A−1, gradients with
respect to C are given by

G(ν)(y,A) := ∇CHν,d(y,A) = ∇CLν,d(y,A) = −A

2
+ (ν + d)yy′

2(ν + y′Cy)
∈ Sd .(22)
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For any A ∈ Pd , C = A−1, and Lν := Lν,d , let

I (C,Q) := QHν(A) =
∫ (

Lν(y,A) − Lν(y, I )
)
dQ(y),

J (C,Q) := 1

2
log detC + I (C,Q) = ν + d

2

∫
log

[
ν + y′Cy

ν + y′y

]
dQ(y).

PROPOSITION 9. (a) The function C �→ I (C,Q) is an analytic function of C

on the open subset Pd of Sd .
(b) Its gradient is

∇CI (C,Q) ≡ 1

2

(
(ν + d)

∫
yy′

ν + y′Cy
dQ(y) − A

)
.(23)

(c) The functional C �→ J (C,Q) has the Taylor expansion around any C ∈ Pd

J (C + ,Q) − J (C,Q) = ν + d

2

∞∑
k=1

(−1)k−1

k

∫
(y′y)k

(ν + y′Cy)k
dQ(y),(24)

convergent for ‖‖ < 1/‖A‖.
(d) For any δ ∈ (0,1), ν ≥ 1 and j = 1,2, . . . , the function C �→ I (C,Q) is

in C
j
b (Wδ,d).

Usually, one might show that the Hessian (matrix of second partial derivatives)
is positive definite at a critical point to show it is a strict relative minimum. Here
we already know from Theorem 6(a) that we have a unique critical point which is a
strict absolute minimum. The following lemma is useful instead in showing differ-
entiability of t functionals via the Hildebrandt–Graves implicit function theorem,
for example, Deimling (1985), pages 148–150, in that it implies that the derivative
of the gradient (the Hessian) is nonsingular. To treat t functionals of location and
scatter in any dimension p we will need functionals of pure scatter in dimension
p + 1, so here we only need dimension d ≥ 2.

LEMMA 10. For each ν > 0, d = 2,3, . . . , and Q ∈ Ud,ν+d , at A(ν) =
Aν(Q) given by Theorem 6(a), the Hessian of QHν on Sd with respect to C = A−1

is positive definite.

EXAMPLE. For Q such that Aν(Q) = Cν = Id , the d × d identity matrix,
a large part of the mass of Q can escape to infinity, Q can approach the boundary
of Ud,ν+d , and some eigenvalues of the Hessian can approach 0, as follows. Let
ej be the standard basis vectors of R

d . For c > 0 and p such that 1/[2(ν + d)] <

p ≤ 1/(2d), let

Q := (1 − 2dp)δ0 + p

d∑
j=1

δ−cej
+ δcej

.
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To get Aν(Q) = Id , by (7) we need (ν + d) · 2pc2 = ν + c2, or ν = c2[2p(ν +
d) − 1]. There is a unique solution for c > 0 but as p ↓ 1/[2(ν + d)], we have
c ↑ +∞. Then, for each q = 0,1, . . . , d − 1, for each q-dimensional subspace
H where d − q of the coordinates are 0, Q(H) ↑ 1 − d−q

ν+d
, the critical value for

which Q /∈ Ud,ν+d . Also, an amount of probability for Q converging to d/(ν + d)

is escaping to infinity. The Hessian has d arbitrarily small eigenvalues ν/(ν + c2).
The second-order term in the Taylor expansion of C �→ I (C,Q), for example,

(36) in the Appendix, using also (21), is the quadratic form, for  ∈ Sd ,

 �→ 1

2

(
‖A1/2A1/2‖2

F − (ν + d)

∫
(y′y)2

(ν + y′Cy)2 dQ(y)

)
.(25)

For the relatively open set Pd ⊂ Sd and G(ν) from (22), define the function F :=
Fν from X × Pd into Sd by

F(φ,A) := φ∗(
G(ν)(·,A)

)
.(26)

Then F is well defined because G(ν)(·,A) is a bounded and Lipschitz Sd -valued
function of x for each A ∈ Pd ; in fact, each entry is C1 with bounded derivative,
as is straightforward to check.

For d = 1, and a finite signed Borel measure τ , let

‖τ‖K := sup
x

|τ((−∞, x])|.(27)

Let P and Q be two laws with distribution functions FP and FQ. Then ‖P −Q‖K

is the usual sup (Kolmogorov) norm distance supx |(FQ − FP )(x)|.
The next statement and its proof in Dudley, Sidenko and Wang (2008) call on

some basic notions and facts from infinite-dimensional calculus, reviewed in the
Appendix.

THEOREM 11. Let ν > 0 in parts (a) through (c), ν > 1 in parts (d), (e).

(a) The function F = Fν is analytic from X×Pd into Sd where X = BL∗(Rd).
(b) For any law Q ∈ Ud,ν+d , and the corresponding φQ ∈ X, at Aν(Q)

given by Theorem 6(a), the partial derivative linear map ∂CF(φQ,A)/∂C :=
∇CF(φQ,A) from Sd into Sd is invertible.

(c) Still for Q ∈ Ud,ν+d , the functional Q �→ Aν(Q) is analytic for the BL∗
norm.

(d) For each P ∈ Vd,ν+d , the tν location-scatter functional P �→ (μν,�ν)(P )

given by Theorems 3 and 6 is also analytic for the norm on X.
(e) For d = 1, the tν location and scatter functionals μν,σ

2
ν are on V1,ν+1

with respect to the sup norm ‖ · ‖K .

If a functional T is differentiable at P for a suitable norm, with a nonzero deriv-
ative, then one can look for asymptotic normality of

√
n(T (Pn) − T (P )) by way



952 R. M. DUDLEY, S. SIDENKO AND Z. WANG

of some central limit theorem and the delta-method. For this purpose, the dual-
bounded-Lipschitz norm ‖ · ‖∗

BL, although it works for large classes of distrib-
utions, is still too strong for some heavy-tailed distributions. For d = 1, let P

be a law concentrated in the positive integers with
∑∞

k=1
√

P({k}) = +∞. Then
a short calculation shows that as n → ∞,

√
n

∑∞
k=1 |(Pn − P)({k})| → +∞ in

probability. For any numbers ak there is an f ∈ BL(R) with usual metric such
that f (k)ak = |ak| for all k and ‖f ‖BL ≤ 3. Thus

√
n‖Pn − P‖∗

BL → +∞ in
probability. Giné and Zinn (1986) proved equivalence of the related condition∑∞

j=1 Pr(j − 1 < |X| ≤ j)1/2 < ∞ for X with general distribution P on R to the
Donsker property [defined in Dudley (1999), Section 3.1] of {f : ‖f ‖BL ≤ 1}. But
norms more directly adapted to the functions needed will be defined in Section 7.

6. The one-dimensional case. In dimension d = 1, the scatter matrix � re-
duces to a number σ 2. The ρ and h functions in this case become, for θ := (μ,σ )

with σ > 0,

ρν(x, θ) := logσ + ν + 1

2
log

(
1 + (x − μ)2

νσ 2

)
,(28)

hν(x, θ) := logσ + ν + 1

2
log

(
1 + [(x − μ)2/(νσ 2)]

1 + x2/ν

)
.(29)

The function hν is bounded uniformly in x and for |μ| bounded and σ bounded
away from 0 and ∞. Thus it is integrable for any probability distribution P on R.
Let Phν(θ) := ∫

hν(x, θ) dP (x). In the next theorem, extended M-functionals are
defined by (1) with θ := (μ,σ ) ∈ � = R × (0,∞) and � = R × [0,∞).

THEOREM 12. Let d = 1 and 1 < ν < ∞. Then:

(a) For any law Q on R satisfying

max
t

Q({t}) < ν/(ν + 1),(30)

the M-functional (μ,σ ) = (μν, σν)(Q) exists with σν(Q) > 0 and is the unique
critical point with ∂Qhν/∂μ = ∂Qhν/∂σ = 0. On the set of laws satisfying (30),
(μν, σν) is analytic with respect to the dual-bounded-Lipschitz norm and thus
weakly continuous.

(b) For any law Q on R, the extended M-functional θ0(Q) := (μν, σν)(Q) ∈ �

exists for hν from (29).
(c) If Q({s}) ≥ ν/(ν+1) for some (unique) s, then μν(Q) = s and σν(Q) = 0.
(d) The map Q �→ θ0(Q) is weakly continuous at every law Q. For X1,X2, . . .

i.i.d. (Q) and empirical measures Qn := n−1 ∑n
j=1 δXj

, we thus have maximum

likelihood estimates θ̂n = θ0(Qn) existing for all n and converging to θ0(Q) almost
surely.
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REMARKS. For Qp := (1 − p)δ0 + pδ1, dσ 2
ν (Qp)/dp has different left and

right limits at p = 1/(ν +1). Thus σ 2
ν is not differentiable, and σν is not Lipschitz,

at Qp , with respect to p or any norm. So in part (d), continuity cannot be improved
to Lipschitz.

The theorem does not extend to 0 < ν ≤ 1. For some Q, points s in part (c)
are not unique. For example if ν = 1 (the Cauchy case) and Q = 1

2(δ−1 + δ1), the
likelihood is maximized on the semicircle μ2 + σ 2 = 1, as Copas (1975) noted.

7. Some Banach spaces generated by rational functions. The classes of
functions and norms defined in this section are used in the proof (although not the
statement) of the main theorem of the paper, the delta-method Theorem 7. Some
further facts on these norms are stated at the end of the Appendix. Details and
proofs are given in Dudley et al. (2007). Throughout this section let 0 < δ < 1,
d = 1,2, . . . and r = 1,2, . . . be arbitrary unless further specified. Let MMr be
the set of monic monomials g from R

d into R of degree r , in other words g(x) =
�d

i=1x
ni

i for some ni ∈ N with
∑d

i=1 ni = r . For Wδ defined in (17), let

Fδ,r := Fδ,r,d :=
{
f : Rd → R, f (x) ≡ g(x)

/ r∏
s=1

(1 + x′Csx),

where g ∈ MM2r , and for s = 1, . . . , r,Cs ∈ Wδ

}
.

For 1 ≤ j ≤ r , let F
(j)
δ,r := F

(j)
δ,r,d be the set of f ∈ Fδ,r such that for s = 1, . . . , r ,

Cs ranges over at most j different matrices. Such functions relate to our purposes
as follows: the coordinates of derivatives (partial derivatives) of tν log likelihood
functions with respect to C, evaluated at a C ∈ Wδ , are constants plus constants
times functions in F (1)

δ,r (here all Cs = C so j = 1). To show that Fréchet differ-
entiability of some order holds in some norm, or to show that the derivatives with
respect to C can be interchanged with integrals, we need to consider difference-
quotients and thus to take j = 2, as we do in the definition Xδ,r,ν below and so in
Theorem 14 and other facts based on it.

We have Fδ,r = F (r)
δ,r . Let G

(j)
δ,r := G

(j)
δ,r,d := ⋃r

v=1 F
(j)
δ,v . For the reasons men-

tioned above we will be interested in j = 1 and 2. Clearly F (1)
δ,r ⊂ F (2)

δ,r ⊂ · · · ⊂
Fδ,r for each δ and r . The next lemma is straightforward:

LEMMA 13. For any f ∈ G(r)
δ,r we have (δ/d)r ≤ ‖f ‖sup ≤ δ−r .

For any f : Rd → R, define

‖f ‖∗,j
δ,r := ‖f ‖∗,j

δ,r,d := inf

{ ∞∑
s=1

|λs | :∃gs ∈ G
(j)
δ,r , s ≥ 1, f ≡

∞∑
s=1

λsgs

}
,(31)
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or +∞ if no such λs , gs with
∑

s |λs | < ∞ exist. Lemma 13 implies that for∑
s |λs | < ∞ and gs ∈ G(r)

δ,r ,
∑

s λsgs converges absolutely and uniformly on R
d .

Let Y
j
δ,r := Y

j
δ,r,d := {f : Rd → R,‖f ‖∗,j

δ,r < ∞}. It’s easy to see that each Y
j
δ,r is a

real vector space of functions on R
d and ‖ · ‖∗,j

δ,r is a seminorm on it.

Let R ⊕ Y
j
δ,r be the set of all functions c + g on R

d for any c ∈ R and g ∈ Y
j
δ,r .

Then c and g are uniquely determined since g(0) = 0. Let ‖c + g‖∗∗,j
δ,r,d := |c| +

‖g‖∗,j
δ,r,d . Let Xδ,r,ν be the dual Banach space of R ⊕ Y 2

δ/ν,r,d , that is, the set of all
real-valued linear functionals φ on it for which the norm

‖φ‖δ,r,ν := sup{|φ(f )| :‖f ‖∗∗,2
δ/ν,r,d ≤ 1} < ∞.

Let X0
δ,r,ν := {φ ∈ Xδ,r,ν :φ(c) = 0 for all c ∈ R}. For φ ∈ X0

δ,r,ν , by (31)

‖φ‖δ,r,ν ≡ ‖φ‖0
δ,r,ν := sup{|φ(0, g)| : ‖g‖∗,2

δ/ν,r,d ≤ 1}
(32)

≤ sup
{|φ(0, g)| :g ∈ G(2)

δ/ν,r

} ≤ sup
{|φ(0, g)| :g ∈ G(r)

δ/ν,r

}
.

For A ∈ Wδ,d and φ ∈ Xδ,r,ν , define F(φ,A) again by (26), which makes sense
since for any r = 1,2, . . . , G(ν) has entries in Y 1

δ/ν,1,d ⊂ Y 2
δ/ν,r,d . Proposition 19,

closely related to Theorem 18, implies that in the following theorem k + 2 cannot
be replaced by k + 1.

THEOREM 14. For any d = 1,2, . . . , k = 1,2, . . . , 0 < ν < ∞, and Q ∈
Ud,ν+d , there is a δ with 0 < δ < 1 such that the conclusions of Theorem 11 hold
for X = Xδ,k+2,ν in place of BL∗(Rd), Wδ,d in place of Pd , ν > 1 in part (d), and
analyticity replaced by Ck in parts (a), (c) and (d).

8. Norms based on classes of sets. Suppose ‖ · ‖1 and ‖ · ‖2 are two norms
on a vector space V such that for some K < ∞, ‖x‖2 ≤ K‖x‖1 for all x ∈ V . Let
U ⊂ V be open for ‖ · ‖2 and so also for ‖ · ‖1. Let v ∈ U and suppose a functional
T from U into some other normed space is Fréchet differentiable at v for ‖ · ‖2.
Then the same holds for ‖ · ‖1 since the identity from V to V is a bounded linear
operator from (V ,‖ · ‖1) to (V ,‖ · ‖2) and so equals its own Fréchet derivative
everywhere on V , and we can apply a chain rule, for example, Dieudonné (1960),
equation (8.12.10).

If F is a class of bounded real-valued functions on a set χ , measurable for a
σ -algebra A of subsets of χ , and φ is a finite signed measure on A, (e.g., Pn −P )
let ‖φ‖F := supf ∈F | ∫ f dφ|. For C ⊂ A let ‖φ‖C := ‖φ‖G, where G := {1C :
C ∈ C}.

Let F be a VC major class of functions, as defined in Dudley (1999), Sec-
tion 4.7, for the VC class E of sets where E ⊂ A and suppose for some M < ∞,
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|f (x)| ≤ M for all f ∈ F and x ∈ χ . Then for any finite signed measure φ on A
having total mass φ(χ) = 0 (e.g., φ = P −Q for any two laws P and Q), we have

‖φ‖F ≤ 2M‖φ‖E ,(33)

by the rescaling f �→ (f +M)/(2M) to get functions with values in [0,1] and then
a convex hull representation [Dudley (1987), Theorem 2.1(a) or Dudley (1999),
Theorem 4.7.1(b)]; additive constants make no difference since φ(χ) = 0.

Let �
r+2,d
δ,ν := G(r+2)

δ/ν,r+2,d . Each �
r+2,d
δ,ν is a uniformly bounded VC major class

for the VC class E(2r + 4, d) of sets, namely positivity sets of polynomials of
degree ≤ 2r + 4. So by (32) and (33), for some M < ∞ depending on r , δ, ν and
d , we have

‖φ‖δ,r+2,ν ≤ 2M‖φ‖E(2r+4,d)(34)

for all finite signed measures φ on R
d with φ(Rd) = 0.

COROLLARY 15. For each d = 1,2, . . . , and ν > 1, the Fréchet Ck differen-
tiability property of the tν location and scatter functionals at each P in Vd,ν+d , as
in Theorem 14 with respect to ‖ · ‖δ,k+2,ν , also holds with respect to ‖ · ‖E(2k+4,d).

Each class E(r, d) for r = 1,2, . . . is invariant under all nonsingular affine trans-
formations of R

d , and hence so is the norm ‖ · ‖E(r,d). Davies (1993), pages 1851–
1852, defines norms ‖ · ‖L based on suitable VC classes L of subsets of R

d and
points out Donsker and affine invariance properties. The norms ‖ · ‖δ,r,ν are not
affinely invariant.

On the other hand, note that M in (34) depends on δ, and there is no corre-
sponding inequality in the opposite direction. Thus, Fréchet differentiability (of
any order) is a strictly stronger property for ‖ · ‖δ,k+2,ν than it is for ‖ · ‖E(2k+4,d).

APPENDIX

Derivatives in Banach spaces. The standard mathematicians’ definition of
Fréchet differentiability requires that a function(al) be defined on an open subset
of a normed vector space. Statisticians often find it natural to consider functionals
defined on sets of probability measures and adapt the definition of Fréchet differ-
entiability, although no set of probability measures is open in any normed space
of signed measures. In this paper we need the mathematicians’ definition, to be
recalled, in order to apply implicit function theorems.

Let X and Y be Banach spaces over the real numbers. Let B(X,Y ) be the space
of bounded, that is continuous, linear operators A from X into Y , with the norm
‖A‖ := sup{‖Ax‖ :‖x‖ = 1}. Let U be an open subset of X, x ∈ U , and f a func-
tion from U into Y . Then f is said to be Fréchet differentiable at x iff there is an
A ∈ B(X,Y ) such that

f (u) = f (x) + A(u − x) + o(‖u − x‖)
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as u → x. If so let (Df )(x) := A. Then f is said to be C1 on U if it is Fréchet
differentiable at each x ∈ U and x �→ Df (x) is continuous from U into B(X,Y ).
Iterating the definition, the second derivative D2f (x) = D(Df ))(x), if it exists
for a given x, is in B(X,B(X,Y )), and the kth derivative Dkf (x) will be in
B(X,B(X, . . . ,B(X,Y )) . . .) with k B’s. Then f is called Ck on U if its kth deriv-
ative exists and is continuous on U . If f is Ck on U for all k = 1,2, . . . , it is called
C∞ on U . In some cases, higher-order derivatives will be seen to simplify or to
reduce to more familiar notions.

Let X and Y be real vector spaces. For k ≥ 1, a mapping T : (x1, . . . , xk) �→
T (x1, . . . , xk) from Xk into Y is called k-linear iff for each j = 1, . . . , k, T is lin-
ear in Xj if xi for i �= j are fixed. T is called symmetric if and only if for each
π ∈ Sk , the set of all permutations of {1, . . . , k}, we have T (xπ(1), . . . , xπ(k)) ≡
T (x1, . . . , xk). Any k-linear mapping T has a symmetrization Ts , which is sym-
metric, defined by

Ts(x1, . . . , xk) := 1

k!
∑
π∈Sk

T
(
xπ(1), . . . , xπ(k)

)
.

A function g from X into Y is called a k-homogeneous polynomial if and only if for
some k-linear T :Xk → Y , we have g(x) ≡ gT (x) := T x⊗k := T (x, x, . . . , x) for
all x ∈ X. Since gTs ≡ gT one can assume that T is symmetric. For the following,
one can obtain T from g by the “polarization identity,” for example, Chae (1985),
Theorem 4.6.

PROPOSITION 16. For any two real vector spaces X and Y and k = 1,2, . . .,
there is a 1–1 correspondence between symmetric k-linear mappings T from Xk

into Y and k-homogeneous polynomials g = gT from X into Y .

Now suppose (X,‖ · ‖) and (Y, | · |) are normed vector spaces. It is known and
not hard to show that a k-linear mapping T from Xk into Y is jointly continuous if
and only if

‖T ‖ := sup{|T (x1, . . . , xk)| :‖x1‖ = · · · = ‖xk‖ = 1} < ∞,

and that a k-homogeneous polynomial g from X into Y is continuous if and only
if ‖g‖ := sup{|g(x)| :‖x‖ = 1} < ∞. In general, for a symmetric k-linear T with
‖T ‖ < ∞ we have ‖gT ‖ ≤ ‖T ‖ ≤ kk‖gT ‖/k!, for example, Chae (1985), The-
orem 4.13. The bounds are sharp in general Banach spaces, but if X and Y are
Hilbert spaces we have ‖gT ‖ ≡ ‖T ‖.

If f is a Ck function from an open set U ⊂ X into Y then at each x ∈ U , Dkf (x)

defines a k-linear mapping dkf (x) from Xk into Y ,

dkf (x)(x1, . . . , xk) := (· · · ((Dkf )(x)(x1))(x2) · · · (xk)
)
.(35)

Then dkf (x) is symmetric, for example Chae (1985), Theorem 7.9. The corre-
sponding k-homogeneous polynomial u �→ gdkf (x)(u) is u �→ dkf (x)u⊗k .
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Also, f will be called analytic from U into Y if and only if it is C∞ and for
each x ∈ U there is an r > 0 and k-homogeneous polynomials Vk from X into Y

for each k ≥ 1 such that for any v ∈ X with ‖v − x‖ < r , we have v ∈ U and

f (v) = f (x) +
∞∑

k=1

Vk(v − x).(36)

It is known that then necessarily for each k ≥ 1 and u ∈ X

Vk(u) = dkf (x)u⊗k/k!.(37)

For any Banach space X let (X′,‖ · ‖′) be the dual Banach space B(X,R). The
product X′ × X with coordinatewise operations is a vector space and a Banach
space with the norm ‖(φ, x)‖ := ‖φ‖′ + ‖x‖. The mapping γ : (φ, x) �→ φ(x) is
C∞ from X′ × X into R (it is analytic and a 2-homogeneous polynomial): for
ψ,φ ∈ X′ and x, y ∈ X we have

γ (ψ,y) = ψ(y) = φ(x) + (ψ − φ)(x) + φ(y − x) + (ψ − φ)(y − x).

As (ψ, y) → (φ, x), clearly (ψ − φ)(x) + φ(y − x) give first-derivative terms and
(ψ − φ)(y − x) a second-derivative term. We have that Dγ is continuous (linear)
and D2γ has a fixed value ((η,u), (ζ, v)) �→ η(v) + ζ(u) in B(X′ × X,B(X′ ×
X,R)), so D3γ ≡ 0.

If U is an open subset of a Banach space Y and f is a Ck function from U into
X, then

(φ,u) �→ φ(f (u))(38)

is Ck on X′ × U by a chain rule, for example Dieudonné (1960), equation
(8.12.10).

More about Banach spaces based on rational functions. Recall the nota-
tions of Section 7. Let hC(x) := 1 + x′Cx for C ∈ Pd and x ∈ R

d . Then clearly
f ∈ F (1)

δ,r if and only if for some P ∈ MM2r and C ∈ Wδ , f (x) ≡ fP,C,r (x) :=
P(x)hC(x)−r .

PROPOSITION 17. For any P ∈ MM2r , let ψ(C,x) := fP,C,r (x) = P(x)/

hC(x)r from Wδ × R
d into R. Then:

(a) For each fixed C ∈ Wδ , ψ(C, ·) ∈ F (1)
δ,r .

(b) For each x, ψ(·, x) has the partial derivative ∇Cψ(C,x) = −rP (x)xx′/
hC(x)r+1.

(c) The map C �→ ∇Cψ(C, ·) ∈ Sd on Wδ has entries Lipschitz into Y 2
δ,r+2.

(d) The map C �→ ψ(C, ·) from Wδ into F (1)
δ,r ⊂ Y 1

δ,r , viewed as a map into the

larger space Y 2
δ,r+2, is Fréchet C1.
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THEOREM 18. Let r = 1,2, . . . , d = 1,2, . . . , 0 < δ < 1, and f ∈ Y 1
δ,r , so

that for some as with
∑

s |as | < ∞ we have f (x) ≡ ∑
s asPs(x)/(1 + x′Csx)ks

for x ∈ R
d , where each Ps ∈ MM2ks , ks = 1, . . . , r , and Cs ∈ Wδ . Then f can be

written as a sum of the same form in which the triples (Ps,Cs, ks) are all distinct.
In that case, the Cs , Ps , ks and the coefficients as are uniquely determined by f .

For any P ∈ MM2r and any C �= D in Wδ , let

fP,C,D,r (x) := fP,C,D,r,d(x) := P(x)

(1 + x′Cx)r
− P(x)

(1 + x′Dx)r
.

For C fixed and D → C it is not hard to show that ‖fP,C,D,r‖∗,2
δ,r+1 → 0. The

following shows this is not true if r + 1 in the norm is replaced by r , even if the
number of different Cs ’s in the denominator is allowed to be as large as possible,
namely r :

PROPOSITION 19. For any r = 1,2, . . . , d = 1,2, . . ., and C �= D in Wδ , we
have ‖fP,C,D,r‖∗,r

δ,r = 2.

Proposition 17 can be adapted, replacing hC(x) by hC,ν(x) := ν + x′Cx and
making suitable other constant multiples, replacing δ by δ/ν in F (1)

δ,r and each Y
j
δ,s

(but not Wδ) and in part (a) only, ψ(C, ·) by νrψ(C, ·).
By (24), (36) and (37), for any 0 < δ < 1, C ∈ Wδ ,  ∈ Sd , and k = 0,1,2, . . . ,

the kth differential of G(ν) from (22) with respect to C, cf. (35), is given by

dk
CG(ν)(y,A)⊗k = Kk(A)⊗k + gk(y,A,),(39)

where

gk(y,A,) = ν + d

2
(−1)kk! (y′y)k+1

(ν + y′Cy)k+1

for some k-homogeneous polynomial Kk(A) not depending on y. For  ∈ Sd , by
the Cauchy inequality,

∑d
i,j=1 |ij | ≤ ‖‖F d , so gk(·,A,) ∈ Y 1

δ/ν,k+1,d with

‖gk(·,A,)‖∗,1
δ/ν,k+1,d ≤ (ν + d)k!(‖‖F d/ν)k+1.(40)

Thus dk
CG(ν)(·,A)⊗k ∈ R ⊕ Y 1

δ/ν,k+1,d .
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