
The Annals of Statistics
2009, Vol. 37, No. 6A, 3186–3203
DOI: 10.1214/08-AOS591
© Institute of Mathematical Statistics, 2009

ROBUST NEAREST-NEIGHBOR METHODS FOR
CLASSIFYING HIGH-DIMENSIONAL DATA
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University of Melbourne

We suggest a robust nearest-neighbor approach to classifying high-
dimensional data. The method enhances sensitivity by employing a threshold
and truncates to a sequence of zeros and ones in order to reduce the delete-
rious impact of heavy-tailed data. Empirical rules are suggested for choosing
the threshold. They require the bare minimum of data; only one data vector
is needed from each population. Theoretical and numerical aspects of per-
formance are explored, paying particular attention to the impacts of correla-
tion and heterogeneity among data components. On the theoretical side, it is
shown that our truncated, thresholded, nearest-neighbor classifier enjoys the
same classification boundary as more conventional, nonrobust approaches,
which require finite moments in order to achieve good performance. In par-
ticular, the greater robustness of our approach does not come at the price of
reduced effectiveness. Moreover, when both training sample sizes equal 1,
our new method can have performance equal to that of optimal classifiers
that require independent and identically distributed data with known mar-
ginal distributions; yet, our classifier does not itself need conditions of this
type.

1. Introduction. In classification problems where sample size is much
smaller than dimension, nearest-neighbor methods, after truncation to reduce
noise, can enjoy particularly good performance. They have the potential to be
highly adaptive, not least because they do not require explicit assumptions about
marginal distributions.

However, in very high-dimensional settings, conventional nearest-neighbor
methods can be adversely affected by “noise” from vector components that do not
carry useful information for classification. Moreover, they are not robust against
outliers. In particular, they can be influenced considerably by heavy-tailed features
of sampling distributions and can fail to give accurate classification when marginal
distributions do not enjoy finite variance. Their sensitivity to correlation among
data components, particularly in very high-dimensional contexts, is not well un-
derstood. And their performance in high-dimensional, highly heterogeneous cases,
where the tails of distributions can vary from very light to very heavy within the
same data vector, is largely unknown.
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These phenomena occur often in the area of gene microarray analysis. Each
microarray represents thousands of gene expression levels, but the sample size is
typically small. Furthermore, the underlying distributions of the gene expressions
levels are generally unknown and are likely to be heterogeneous, heavy-tailed and
significantly dependent upon each other. With these features, conventional nearest-
neighbor methods for analysis are likely to be ineffective.

In this paper, we shall suggest a robust nearest-neighbor classifier, where thresh-
olding and truncation to zeros and ones are used to increase performance and, in
particular, to remove sensitivity to heavy-tailed behavior. Choosing the threshold
appropriately is the key to good classification accuracy. Threshold selection must
adapt both to distribution type and to the ways in which populations differ from one
another. We suggest a simple and practicable approach to selecting the threshold.
Unlike cross-validation, our technique gives good performance even when there is
only one training data-vector from each population.

We shall use theoretical arguments and numerical simulation to show that our
technique is relatively insensitive to dependence among vector components, and
that it enjoys good classification accuracy in high-dimensional, highly hetero-
geneous cases. In settings such as these, the performance of truncated nearest-
neighbor classifiers can surpass that of competitors, such as methods based on ex-
trema or on false-discovery rate (FDR) ideas. The latter two approaches are often
identical; see Jin [14] and Donoho and Jin [5].

Nearest-neighbor methods are popular because of the wide variety of data
types for which they are appropriate. Their implementation requires only a mea-
sure of distance and, in particular, is not founded on distributional properties of
the data. Therefore, nearest-neighbor classifiers enjoy a high degree of accep-
tance in settings involving complex data, for example, in pattern recognition. See
Dasarathy [3] and Shakhnarovich, Darrell and Indyk [17], for instance.

Properties of nearest-neighbor classifiers in classical settings, where dimension
is small relative to sample size, are quite well understood. See, in particular, De-
vroye, Györfi and Lugosi [4]. Chapter 5 of that monograph is an excellent guide
to the literature. There is a very large number of papers on nearest-neighbor meth-
ods in other settings, and it is possible to mention only a few of them here. Early
contributions include those of Cover and Hart [2] and Cover [1], who gave upper
bounds to risk, and Wagner [18] and Fritz [7], who derived convergence properties
of the error rate. Psaltis, Snapp and Venkatesh [16] extended Cover’s [1] results
to higher dimensional settings, but still with the number of dimensions much less
than sample size. Kulkarni and Posner [15] and Holst and Irle [10] discussed the
case of dependent data vectors.

In these relatively classical treatments, it is common to regard the order, k, of
a nearest-neighbor classifier as a tuning parameter and, perhaps, to attempt to op-
timize over it. However, in a variety of contemporary applications the number of
data in each sample is so small, especially relative to dimension, that there is little
point in taking k larger than 1. We argue that, in such cases, the information that
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is critical to good performance is accumulated not through the number of data, but
through the many components of each data vector. With that in mind, in this paper
we shall optimize performance in a way that is sensitive to dimension, rather than
to sample size.

2. Methodology.

2.1. Sparsity and truncation. Assume we observe random p-vectors X1, . . . ,

Xm and Y1, . . . , Yn, drawn from X- and Y -populations, respectively. We wish to
construct a classifier, for the purpose of ascribing a new p-vector, Z say, to either
population.

Suppose it is known that the respective components of X and Y distributions are
similar, except that one of them has, for a potentially sparsely arrayed sequence of
component indices, generally higher mean than the other. We can formalize at
least part of this assumption, by asking that, if X = (X(1), . . . ,X(p))T and Y =
(Y (1), . . . , Y (p))T, then,

for each k, (a) X(k) − E(X(k)) and Y (k) − E(Y (k)) have similar distribu-
tions, and (b) E(Y (k)) ≥ E(X(k)); and, for a potentially sparsely distrib-
uted sequence of indices k, (c) E(Y (k)) > E(X(k)).

(2.1)

The one-sided nature of parts (b) and (c) of (2.1) motivates a one-sided classifier.
Alternative methodology and theory, very similar to that which we shall develop
below, are available in the two-sided case.

In view of the possible sparsity, it seems reasonable to truncate components of
the data vectors by deleting those that do not attain a threshold, t say. This has
the effect of reducing the amount of noise that is present in coordinate values that
convey little or no information for classification.

There are a variety of ways of implementing a procedure such as this. For
example, we may do it by replacing each component by 0 if it is less than t ,
and by 1 otherwise. That is, defining I

(k)
i = I (X

(k)
i > t), J

(k)
i = I (Y

(k)
i > t),

Ii = (I
(1)
i , . . . , I

(p)
i )T and Ji = (J

(1)
i , . . . , J

(p)
i )T, we may build the classifier

using the indicator data vectors I1, . . . , Im, J1, . . . , Jn. Alternatively, we could
base the classifier on X′

1, . . . ,X
′
m,Y ′

1, . . . , Y
′
n, where X

(k)
i

′ = X
(k)
i I (X

(k)
i > t),
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(k)
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(k)
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′, . . . ,X(p)
i

′)T and Y ′
i = (Y

(1)
i

′, . . . , Y (p)
i

′)T.
Using the indicator data, we could conclude that Z came from the X population

if

min
1≤i≤m

p∑
k=1

(
I

(k)
i − K(k))2 ≤ min

1≤i≤n

p∑
k=1

(
J

(k)
i − K(k))2

,(2.2)

where K(k) = I (Z(k) > t); and that Z was from the Y population otherwise. Al-
ternatively, in place of (2.2) we could use the criterion

min
1≤i≤n

p∑
k=1

(
X

(k)
i

′ − Z(k)′)2 ≤ min
1≤i≤m

p∑
k=1

(
Y

(k)
i

′ − Z(k)′)2
,(2.3)
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where Z(k)′ = Z(k)I (Z(k) > t). In this case, if (2.3) were true, then we would
conclude that Z was from the X population. However, relative to methods based
on (2.2), this approach would suffer more from stochastic variability and, hence,
be less robust, in cases where X and Y had heavy-tailed distributions.

2.2. Empirical choice of t . We suggest a method based on thresholding, as
follows. Let iX and iY denote the respective values of i at which the minima on the
left- and right-hand sides of (2.2) are achieved. In this notation, (2.2) is equivalent
to T ≤ 0, where

T = T (t) =
p∑

k=1

(
I

(k)
iX

− J
(k)
iY

)(
1 − 2K(k)).(2.4)

Let ξp denote a sequence diverging to infinity; put

zp = ξp logp,(2.5)

denoting a threshold; let

S2 = S(t)2 =
p∑

k=1

(
I

(k)
iX

+ J
(k)
iY

)
(2.6)

and define t = θ by:

θ is the infimum of values t ≥ 0 such that |T (t)|/S(t) > zp; or, if no such
t exists, take t to be a default value, for example, t = 0 or t = −∞.

(2.7)

In the case of independent components, it is feasible to use a smaller threshold,
defining zp by

zp = ξp(logp)1/2,(2.8)

where ξp → ∞, instead of by (2.5). Nevertheless, (2.5) is also appropriate in the
case of independence. If, in (2.7), it were necessary to pass to the default value,
then we would conclude that the classification problem was marginal. That is, there
was insufficient information to solve the problem reliably.

With t = θ given by (2.7), the classifier suggested by (2.2) is as follows:

Classify Z as coming from the X population, if T (θ) ≤ 0 and as coming
from the Y population otherwise.

(2.9)

Our theoretical justification for (2.5) will be based on the assumption that the
components X(k) and Y (k) are produced by a generalized form of an infinite-order
moving average. The generalization permits marginal distributions to vary exten-
sively from one component to the next, so that they are heavy-tailed for some
indices k but light-tailed for others. Alternative models for weak dependence, for
example based on autoregressive processes, can be shown to also lead to the thresh-
old choice at (2.5).
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From at least a theoretical viewpoint, exact choice of ξp is largely unimpor-
tant. Any sequence, for example, ξp = logp, which diverges more slowly than
any polynomial is appropriate. In this way, the sensitivity of the tuning-parameter
selection problem is greatly reduced; we pass from the parameter t , to which the
classifier is very sensitive, to ξp , to which the classifier is largely insensitive. Prac-
tical, empirical choices of ξp will be discussed in Section 4.

Motivation for a threshold-based approach to choosing t can be provided as
follows. Neglecting, for the moment, the fact that iX and iY at (2.4) are random
variables; taking the components I

(k)
iX

and J
(�)
iY

to be completely independent, for
each k and �, and conditioning on the new data vector Z; the random variable T ,
at (2.4), is seen to have variance equal to

p∑
k=1

var
(
I

(k)
iX

− J
(k)
iY

)(
1 − 2K(k))2 =

p∑
k=1

{
var

(
I

(k)
iX

) + var
(
J

(k)
iY

)}
,(2.10)

where the identity follows from the independence assumed earlier in this para-
graph and from the fact that 1 − 2K(k) = ±1. Under the assumptions, var(I (k)

iX
) =

(EI
(k)
iX

)(1 − EI
(k)
iX

) ≤ E(I
(k)
iX

), with an analogous result holding for var(I (k)
iY

).

Therefore, S2, at (2.6), tends to overestimate the right-hand side of (2.10):

E(S2) ≥
p∑

k=1

{
var

(
I

(k)
iX

) + var
(
J

(k)
iY

)}
.

This slight conservatism, and the log factor in the threshold zp , provide opportu-
nities for repairing errors that arise from failure of the independence assumption.

In the argument above, we defined T to be the difference between the two sides
of (2.2), rather than between the two sides of (2.3). Indeed, it can be awkward to
estimate the variance of T if we use (2.3) and do not have a good model for the
distributions of X(k) and Y (k). There are ways of overcoming this difficulty, but we
do not find them as attractive as working with (2.2).

An alternative approach to selecting t could be based on standard cross-valida-
tion, taking θ to be the infimum of values t that minimize the error-rate estimator,

CV(t) = 1

m

m∑
i=1

I

(
min
i1 �=i

‖X′
i1

− X′
i‖ > min

1≤j≤n
‖Y ′

j − X′
i‖

)

+ 1

n

n∑
j=1

I

(
min
j1 �=j

‖Y ′
j1

− Y ′
j‖ > min

1≤i≤m
‖X′

i − Y ′
j‖

)
.

However, this technique has the disadvantage that it works only when m and n

both exceed 1. Moreover, in most problems there is a continuum of values of t that
minimize CV(t), and so cross-validation does not give an explicit answer to the
tuning-parameter choice problem.
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2.3. Example of mixed light- and heavy-tailed components. When both light-
and heavy-tailed data components are present in each data vector, and only a very
small proportion of the components differ through perturbations, it can be partic-
ularly difficult to achieve good classification using standard distance-based meth-
ods, such as support vector machines. In the case of these approaches, the accu-
mulation of noise from irrelevant components can drown out the signal in those
few components that convey information for classification. Methods such as FDR,
based on extrema, can bring substantial improvements in performance. However,
when data distributions are heterogeneous, those techniques too can have difficulty.

To illustrate this point, assume for the sake of simplicity that all vector compo-
nents are mutually independent. Suppose that X consists of just p1−β components
with standard normal distributions, where β ∈ (0,1), and p − p1−β components
having exponential distributions, for which P(X(k) > x) = e−x when x ≥ 0. Con-
struct the Y variable by adding μ = r logp, where r > 0, to just p1−β of the
components of X, leaving the others unaltered.

If these special p1−β components are among those that have an exponential
distribution, then we can write

max
1≤k≤p

X(k) = Q1 + logp + op(1),(2.11)

max
1≤k≤p

Y (k) = max{Q1 + logp,Q2 + (1 − β + r) logp} + op(1),(2.12)

where Q1 and Q2 are asymptotically independent and have the extreme-value
distribution function exp(−e−x). In both these expansions, we can consider
Q1 + logp to equal the maximum of the p − 2p1−β components of X that have
an exponential distribution and which exclude the p1−β components to which the
perturbation μ is added to form Y , and Q2 + (1 −β + r) logp to be the maximum
of the p1−β components of Y that are obtained by perturbing components of X.

It follows from (2.11) and (2.12) that if r > β , then maxk Yk − maxk Xk → ∞.
More specifically, when r > β , the maximum of the components of a new vector Z

can be used to obtain asymptotically correct classification. This result does not
hold if r ≤ β .

On the other hand, if the perturbation μ is added to each of the p1−β compo-
nents of X that have a normal N(0,1) distribution, and if none of the exponentially
distributed components of X is perturbed, then

max
1≤k≤p

Y (k) = max[Q1 + logp, {2(1 − β)(logp)}1/2 + r logp] + op(1)

and P(maxk Xk = maxk Yk) → 1, unless r ≥ 1. In particular, in this case, only
when r ≥ 1 is it possible to discriminate between the X and Y populations using
extrema or FDR.

By way of contrast, we shall show in Section 3 that, no matter where the per-
turbations are added, the nearest-neighbor method produces asymptotically cor-
rect classification whenever r > 2β − 1. Since 1 > β > 2β − 1, then the nearest-
neighbor classifier enjoys greater sensitivity than the method based on extrema or
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FDR, no matter whether the perturbations are added to light- or heavy-tailed data
components.

2.4. Discussion of nearest-neighbor methods. The versatility, performance
and simplicity of NN classifiers are important factors in their popularity. As we
show in this paper, NN methods also have significant potential for “robustifica-
tion” and for fine-tuning through thresholding; both of these modifications lead
to further improvements in performance. Nevertheless, well-known caveats about
NN techniques should be mentioned.

Nearest-neighbor algorithms are most clearly suited to problems where the ma-
jor departures among distributions are the results of differences in means, rather
than differences in variances. To appreciate why NN classifiers can face challenges
when the differences are principally in terms of variance, consider the elementary
case where the variables X(k), for 1 ≤ k ≤ p, are independent and identically dis-
tributed with zero mean and variance σ 2

X; the Y (k)’s are likewise i.i.d., with zero
mean and variance σ 2

Y ; and σ 2
X < σ 2

Y . If Z comes from population X then, as p

increases, the probability that the inequality

1

p

p∑
k=1

(
X(k) − Z(k))2

<
1

p

p∑
k=1

(
Y (k) − Z(k))2(2.13)

holds tends to 1, since the left-hand side and right-hand side are, respectively,
equal to 2σ 2

X + op(1) and σ 2
X + σ 2

Y + op(1). The probability that (2.13) holds
when Z is from population Y also converges to 1, since in this setting the two
sides of (2.13) are, respectively, σ 2

X + σ 2
Y + op(1) and 2σ 2

Y + op(1). Therefore, no
matter what population Z is from, the simple NN classifier will, with probability
converging to 1 as p → ∞, assign Z to the population with smaller variance, that
is, to population X. This will hold true for samples of any sizes m and n, provided
those quantities are kept fixed as p diverges.

The result is quite different if the two populations have equal variances but un-
equal means. There, the probability that Z is correctly allocated by a NN classifier
typically converges to 1 as p → ∞, if there are sufficiently many sufficiently large
differences among means. Although in Section 3 we shall permit distributions to
take very different forms among components, the differences with real leverage
for classification will be those among means. The process of thresholding, which
converts continuous measurements into zero–one data, tends to remove problems
caused by differences among variances, although to some extent it converts dif-
ferences among means into differences among variances; recall that a zero–one
variable with mean q has variance q(1 − q). However, as we shall show in Sec-
tion 3, this does not cause significant difficulty.

3. Theoretical properties.

3.1. Summary. The models that we shall use to describe the X and Y vectors
will differ through perturbations (location changes), μ(k), added to individual com-
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ponents. The models will be constructed so as to admit considerable heterogeneity
among the distributions, as well as to allow dependence; see Section 3.6 for dis-
cussion of the latter. In Sections 3.2 and 2.3 we shall describe the density, size and
scalability of the perturbations and marginal distributions. Classification bound-
aries will be discussed in Section 3.4. The principles introduced there will dictate
the context of the main theoretical results given in Sections 3.5 and 3.6. These
results will reflect difficult classification problems, where configurations are close
to optimal classification boundaries. Our main theorems will be stated under the
assumption that the number of dimensions, p, diverges, while the sample sizes, m

and n, are held fixed.

3.2. Relationship between marginal distributions of X and Y . For sequences
bp and cp depending on p, we write bp 
 cp to mean that the ratio bp/cp is
bounded above zero and below infinity, as p diverges. Given a sequence ap di-
verging to infinity, and a constant β ∈ (1

2 ,1), we shall say that

the sequence μ(1), . . . ,μ(p) “has asymptotic density p−β and is on the
scale ap,” if (i) the number, Np say, of nonzero μ(k)’s satisfies Np 
 p1−β

and (ii) none of the nonzero μ(k)’s is less than ap.
(3.1)

The perturbations μ(k) will be added to the respective components of X to create
a vector with the distribution of Y . Therefore, our model for the way in which the
marginal distributions of X and Y are related will be that

for 1 ≤ k ≤ p, Y (k) is distributed as X(k) + μ(k), where the sequence
μ(1), . . . ,μ(p) has asymptotic density p−β and is on the scale ap, with
β ∈ (1

2 ,1).
(3.2)

Condition (3.2) relates only to the number of μ(k)’s that are different from zero,
not to the order of the nonzero values in the sequence μ(1), . . . ,μ(p). In particular,
the assumption is much less stringent than it would be if it were supposed that
the indices of the nonzero μ(k)’s were distributed according to a particular random
process. The latter constraint is implicit whenever mixture models are assumed.

In (3.1) and (3.2), we choose β ∈ (1
2 ,1) since classification in the case β ≤ 1

2
is relatively easy (indeed, root-n consistent estimation is generally possible when
β < 1

2 ), and since nontrivial, asymptotically correct classification is impossible if
β = 1.

3.3. Scalability. We shall use the phrase, “the marginal distributions of X are
continuous and scalable,” to mean that, for each r ∈ (0,1), the equation

p∑
k=1

P
(
X(k) > ap

) = p1−r(3.3)
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has a unique solution ap = ap(r), and that for each ε ∈ (0, r) there exists C =
C(ε) ∈ (0,1) such that, for all sufficiently large p,

p∑
k=1

P
(
X(k) > Cap

) ≤ p1−r+ε.(3.4)

In particular, if the X(k)’s are identically distributed as X(0), then the common
distribution is scalable if, when ap is defined by P(X(0) > ap) = p−r , for each
ε ∈ (0, r) there exists C ∈ (0,1), such that P(X(0) > Cap) ≤ p1−r+ε . Scalable
distributions include the normal, and other exponentially decreasing distributions
such as the Subbotin, with probability density function f given by

f (x) = C−1
γ exp(−|x|γ /γ ),(3.5)

where γ > 0 and Cγ = 2	(1/γ )γ (1/γ )−1. See Donoho and Jin [5] for an account
of the interest in, and applications of, the Subbotin distribution. Scalable distribu-
tions also include regularly varying distributions such as the Pareto, for which

P
(
X(k) > x

) = x−γ ,(3.6)

when x > 1, where γ > 0. Nonscalable distributions have extremely light up-
per tails, for example, the extreme-value distribution for which P(X > x) =
exp(−ex).

Of course, scalability of the marginal distributions of X does not require the
X(k)’s to be identically distributed. A particularly simple, nonidentically dis-
tributed example is that where N1(p) of the components X(k) are distributed
as X(0), say; the other N2(p) = p − N1(p) components have distribution func-
tions that dominate that of X(0), in the sense that P(X(k) ≤ t) ≥ P(X(0) ≤ t) for
all 1 ≤ k ≤ p and all t ≥ t0, say; the distribution of X(0) is scalable, in the sense
described in the previous paragraph; and N1(p) ∼ p as n → ∞. This model, and
Theorems 1 and 2 below, permit a rigorous account of performance of the nearest-
neighbor classifier in the context of the examples discussed in Section 2.3.

3.4. Detection and classification boundaries. In this subsection, we assume
that all the marginal distributions of X are identical to that of X(0), say, and we
take each of the p1−β nonzero values of μ(k) to equal ap , defined by P(X(0) >

ap) = p−r , where β ∈ (1
2 ,1) and r ∈ (0,1). Theorems 1 and 2, below, imply that in

this case the robust nearest-neighbor classifier defined by (2.9) will asymptotically
correctly classify data, provided that

1 − 2β + r > 0.(3.7)

That is, if (3.7) holds, and even when m = n = 1 (i.e., when there is only one
training data value from each population), the probability that the classifier at (2.9)
correctly assigns Z, no matter whether it comes from the X or the Y population,
converges to 1 as p → ∞.
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Conversely, if (β, r) lies strictly below the boundary described by the line

1 − 2β + r = 0,(3.8)

then the probability of correct classification fails to converge to 1. Moreover, the
same boundary plays the same role (i.e., as the border that separates classifiable
and nonclassifiable cases) if we use a truncated standard nearest-neighbor method.
The latter technique requires the data distributions to have several finite moments,
whereas the approach suggested in our paper is far more robust than convention-
ally truncated nearest-neighbor methods. It is significant that the boundaries are
identical in the cases of robust and nonrobust nearest-neighbor methods. In partic-
ular, the greater robustness of our approach does not come at the price of reduced
effectiveness.

To define standard truncated nearest-neighbor classifiers, let Xtr
ij = Xij I (Xij >

t), Y tr
ij = Yij I (Yij > t) and Ztr

j = ZjI (Zj > t), respectively, where t denotes the
truncation point. The corresponding truncated vectors are Xtr

i = (Xtr
ij ), Y tr

i = (Y tr
ij )

and Ztr = (Ztr
j ). We apply the standard nearest-neighbor classifier to the truncated

datasets {Xtr
1 , . . . ,Xtr

m} and {Y tr
1 , . . . , Y tr

n }, instead of to the original data. That is,
we assign Z to the X population if Ztr is nearer to at least one of Xtr

i ’s than it
is to any of the Y tr

i ’s, and we assign it to the Y population otherwise. Assume
that the random variables Xi1j1 − E(Xi1j1) and Yi2j2 − E(Yi2j2) are all inde-
pendent and identically distributed, with the distribution of U , say, and that the
scalability condition holds. It can be proved that if q = p1−β ; if the truncation
point t does not exceed ν; if ν = ap , where ap satisfies (3.3) [or equivalently,
P(U > ap) = p−r ]; and if (β, r) lies strictly below the boundary given by (3.8);
then pE{U4I (U > t)}/(qν2)2 is bounded away from zero. Moreover, it is shown
by Hall, Pittelkow and Ghosh [8] that if, along a subsequence of values of p,
pE{U4I (U > t)}/(qν2)2 does not converge to zero, then the probability of cor-
rect classification fails to converge to 1. Similarly, if (β, r) lies above the bound-
ary, then the probability of correct classification converges to 1. This establishes
the implications of the boundary in the case of standard truncated nearest-neighbor
classifiers, and its implications for our truncated form are similar.

In some problems, and when m = n = 1, the boundary at (3.8) is identical to
that for an optimal classifier, implying that the robust nearest-neighbor approach
has asymptotically optimal performance. However, the classifiers for which this
boundary is known require the marginal distribution to be known; our truncated,
thresholded nearest-neighbor approach is not subject to that requirement.

For example, in the Subbotin case represented by (3.5), with 0 < γ ≤ 1; and in
the Pareto case given by (3.6), when γ > 0; it is known [5, 14] that the bound-
ary represented by (3.8) is the optimal boundary for signal detection. It can be
proved from this result that it is also the optimal boundary for classification,
when m = n = 1. In the Subbotin case where γ > 1, alternative methods, such
as Donoho and Jin’s [5] higher-criticism method and the approaches suggested by
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Ingster [11–13], give a lower optimal boundary even when m = n = 1 and, hence,
permit classification in cases where robust nearest-neighbor methods do not.

3.5. Case of independent components. The error rates of the classifier at (2.8)
are defined to be the probability that Z is misclassified as coming from Y when it
is really from X and the probability of misclassification of Z as coming from X

when it is actually from Y .
Note that, if t is sufficiently small, then it is possible to have P(X(k) > t) =

P(Y (k) > t) = 1, uniformly in 1 ≤ k ≤ p and in p. In this case, the ratio T (t)/S(t)

is not well defined. To remove pathologies such as this, we modify the definition
of θ , at (2.7), by insisting that, for some fixed t0 sufficiently large, only values
t ≥ t0 be considered. In the theorem below, we hold m and n fixed and let p in-
crease without bound.

THEOREM 1. If the components of X are independent, and the components
of Y are independent; if the marginal distributions are related by (3.2), and
are continuous and scalable; if, for r ∈ (0,1), the quantity ap = ap(r), defined
by (3.3), diverges to infinity but at a rate no faster than pD for some D > 0,
as p increases; if the pair (β, r) is above the classification boundary, in the sense
that (3.7) holds; and if zp is given by (2.8), where ξp diverges more slowly than pε

for each ε > 0; then, as p → ∞ for fixed m and n, the error rates of the classifier
at (2.9) converge to zero.

The assumption in Theorem 1 that ap = O(pD), for some D > 0, is satisfied if,
for example, supk E(|X(k)|ε) < ∞ for some ε > 0.

3.6. Case of dependent components. As in (3.2), we take the distributions of
the components of Y to be translations of those of the respective components of X.
In particular, given stochastic processes U1, . . . ,Up and U#

1 , . . . ,U#
p , each with the

same p-variate distribution, we define

X(k) = Uk + νk, Y (k) = U#
k + νk + μ(k).(3.9)

The challenge is to model the degree of dependence among marginals and, at the
same time, to permit the marginal distributions to vary in shape, as well as location,
from one component to another. This is done through an exponentiated moving
average process, defined in part (a) of (3.10):

(a) Uk = ∑
j≥1 ωjW

αk

j+k , where the nonnegative random variables Wj

are independent and identically distributed as W ; (b) for all w, P(W ≤
w) < 1; (c) for some c > 0, E(Wc) < ∞; (d) the distribution of W has
a bounded probability density; (e) the constants αk are permitted to be
functions of p as well as k, and for some C > 1, for all p and for all
1 ≤ k ≤ p, C−1 ≤ αk ≤ C; (f) for some C > 0, for some ω ∈ (0,1) and
for all j ≥ 1, |ωj | ≤ Cωj ; and (g) at least one ωj is strictly positive.

(3.10)
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The νk’s are taken to be uniformly bounded, and the μ(k)’s to have properties
similar to those at (3.2):

(a) νk and μ(k) are functions of p as well as k; (b) for a fixed constant
C > 0, |νk| ≤ C for all p and for all 1 ≤ k ≤ p; and (c) given r ∈ (0,1)

and β ∈ (1
2 ,1) and with ap defined by (3.3), the sequence μ(1), . . . ,μ(k)

has asymptotic density p−β and is on the scale ap.

(3.11)

The “continuity” part of the assumption, in Theorem 1, that the marginal dis-
tributions of X are continuous and scalable, is taken care of by (3.10)(d). How-
ever, we also need scalability, as well as a version of that condition in the case
of logarithmically spaced marginals. For the latter, (3.12) is sufficient: defining
πk(t) = P(X(k) ≥ t), we ask that

for each B,ε > 0, there exists t ′ = t ′(B, ε) such that, if �p denotes the in-
teger part of B logp, then pε ∑

0≤k≤(p−h)/�p
πk�p+h(t) ≥ ∑

1≤k≤p πk(t)

for all 0 ≤ h ≤ �p and all t ≥ t ′.
(3.12)

In assumption (3.10), parts (a) and (e) imply that the Uk process is a general-
ized moving average with geometrically decaying coefficients. The generalization,
through raising Wj+k to the power αk , allows the distribution of Uk to be varied
substantially from one component to another. In particular, the tail weights can be
very different; smaller αk’s give distributions with lighter tails.

To interpret parts (b) and (g) of (3.10), note that if P(Uk ≤ C) = 1 for some
C > 0 and for all k, then the problem of discriminating between X and Y , on
the basis of location shifts to the right, is relatively simple. Part (b), which asserts
that the upper tail of the distribution of W is unbounded, together with (g), which
asks that at least one contribution ωjW

αk

j+k to Uk be positive, permit us to avoid this
degeneracy. Part (c) of (3.10) is a very weak moment assumption and, in particular,
permits the distribution of W to be so heavy tailed that it lies in the domain of
attraction of a stable law.

In (3.11), parts (a) and (b) permit the νk’s to vary quite generally, subject only
to being bounded. Condition (3.12) holds true trivially if the marginal distributions
are all identical and can be shown to be valid under other heterogeneous models.

Theorem 2, below, is a version of Theorem 1 for dependent data. As in the case
of Theorem 1, we modify the definition of θ , at (2.7), by considering only values
t ≥ t0, for t0 fixed but sufficiently large.

THEOREM 2. If the joint distributions of the components of X and Y are given
by (3.9), with the quantities there generated as described by (3.10) and (3.11); if
the marginal distributions of X(k) are scalable, and satisfy (3.12); if, for r ∈ (0,1),
the quantity ap = ap(r), defined by (3.3), diverges no faster than pD for some
D > 0, as p increases; if the pair (β, r) lies above the classification boundary,
in the sense that (3.7) holds; and if zp is given by (2.5), where ξp diverges more
slowly than pε for each ε > 0; then, as p → ∞ for fixed m and n, the error rates
of the classifier at (2.9) converge to zero.
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4. Numerical properties.

4.1. Microarray data. As a practical example, we compared the performance
of the thresholded method with the nearest-neighbor method on the BRCA
dataset [6, 9], which we obtained from http://www.nejm.org/general/content/
supplemental/hedenfalk/index.html. This dataset contains microarray data from
patients with breast cancer, caused by two different types of mutations, labelled
BRCA1 and BRCA2. The expression level of each of 3226 genes was measured in
each patient, and there are 7 patients with BRCA1 and 8 patients with BRCA2.

This dataset (and indeed many gene microarray datasets) is very suited to our
thresholded method. For a start, it is a dataset with very high dimension and low
sample size. Furthermore, it is expected that only a few genes will be differen-
tially expressed between the two types of cancer, so the difference between the
populations is sparse. Lastly, the underlying distributions of the gene expressions
are likely to be both heavy-tailed and with significant dependence among genes,
which nearest-neighbor traditionally does poorly at, especially in comparison with
the thresholded method.

We tested the two methods on this dataset by calculating the cross-validation
performance, where we classify each patient according to all the other patients and
calculate the classification rate. For the nearest-neighbor method, cross-validation
correctly classified 11 out of the 15 patients. Our thresholded method did a lot
better; with zp = 0.5(lnp)1/2, all 15 patients were classified correctly under cross-
validation. In fact, this happened when we set the coefficient of (lnp)1/2 in zp to
be anywhere between 0.35 and 0.5.

4.2. Simulated data. As an additional test, we also compared the thresholded
method with the nearest-neighbor method for simulated data. We compare the two
methods in the area of the β–r plane where classification is possible (r > 2β − 1),
but not easy (β < 1

2 or r > 1). Overall, we found that in cases where standard
nearest-neighbor does not perform well, the thresholded method improves on it.
We look at some of these cases.

4.2.1. Independent heavy-tailed marginal distributions. Nearest-neighbor
methods do not do very well when the marginal distributions of the components
of X (and Y ) are heavy-tailed (i.e., go to 0 slower than a normal distribution).
We compared the methods for simple models where m = n = 1 and each of the
components of X are independent and have identical Student’s-t distributions.
By varying the degrees of freedom, we can observe the behavior of the methods
relative to the heaviness of the tails.

For this case, if we are given a threshold t , the success rate of the algorithm can
be approximated very accurately, for any β and r , by looking at the contribution
of each dimension to T (t). By varying t we can calculate the optimal threshold,
which we call the a priori optimal threshold, and also the best possible performance

http://www.nejm.org/general/content/supplemental/hedenfalk/index.html
http://www.nejm.org/general/content/supplemental/hedenfalk/index.html
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of the classifier. However, we are not usually given the threshold, so this is an
upper limit on the success rate. Instead, we compare the classifiers with empirically
chosen thresholds, on simulated data with p up to 20,000.

We found that, for sufficiently heavy tails, the thresholded method dominates
standard nearest-neighbor in all areas of the β–r plane. In fact, the success rate of
the thresholded method actually improves for heavier tails. As the tails get lighter
(the d.f. gets larger), the success rate declines, and nearest-neighbor does better
in a small area in the plane, which grows and moves around as the tail weight
decreases. For small d.f., this area occurs at high β and r [see Figure 1(a)]; for
larger d.f., this area occurs at low β and r neither high nor low [see Figure 1(b)].

The thresholded method also dominates nearest-neighbor if we use the a priori
optimal thresholds, for sufficiently heavy tails. If the tails are not heavy enough,
nearest-neighbor works better for low β and r .

We found that the best performance of the thresholded method is achieved when
we take zp in (2.7) to be c(lnp)1/2, where c is a constant. The value of c, which
maximizes the success rate, lies between 0.3 and 0.9, depending on β and r . How-
ever, the best success rate achieved with an empirically chosen threshold is worse
than that achieved with the a priori threshold, because the empirical threshold is not
constant for constant zp . Figure 2 estimates the distribution of the chosen thresh-
old for various cases when zp is close to optimal. Figure 3 shows how the value
of the threshold affects the success rate, while Figure 4 shows how the value cho-
sen for zp affects the success rate. In both of these figures, the curves represent
the thresholded method, while the horizontal lines show the performance of the
nearest-neighbor method for comparison.

4.2.2. Dependent normal marginal distributions. Another case where stan-
dard nearest-neighbor methods perform badly is when the components of X are

(a) (b)

FIG. 1. Areas where the two methods perform better, for heavy-tailed distributions. The near-
est-neighbor method performs better in the shaded area; otherwise, the thresholded method is better.
(a) t distributions, d.f. = 4, (b) t distributions, d.f. = 10.
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FIG. 2. Estimated distribution of thresholds produced with t distributions at
zp = 0.55(lnp)1/2,p = 20,000, at various (β, r) and degrees of freedom.

dependent on each other. We compared the methods for varying degrees and types
of dependence; for example, when the components of X are moving averages of
independent standard normal variables, or weighted moving averages, or an au-
toregressive process X(i+1) = αX(i) + (1 − α)N(i), where N is a sequence of
independent standard normal variables.

Again, we found that for sufficient levels of dependence, the thresholded method
dominates nearest-neighbor for all (β, r). For weaker levels of dependence, the
nearest-neighbor method works better in a small area at small β and r neither small
nor large (see Figure 5), and this region grows with decreasing dependence. We
found that the strength of the dependence [e.g., cov(X(i),X(i+1))] affects the size

FIG. 3. Success rate vs. threshold (as a proportion of shift amount) for
p = 20,000, (β, r) = (0.7,0.4).
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FIG. 4. Success rate vs. c for p = 20,000, (β, r) = (0.7,0.4), where zp = c(lnp)1/2.

of this region more than the length of the dependence (the number of components
of X dependent on a given component).

As with the heavy-tailed case, taking zp = c(logp)1/2 optimizes the success
rate, with c taking similar values as before. However, the overall success rate of the
thresholded method is worse than for an equivalent independent case. The behavior
of the chosen threshold, and its effect on the success rate, is similar to its behavior
for heavy-tailed distributions.

4.2.3. Independent normal marginal distributions. For comparison, we also
looked at the case where the components of X were independent and normally dis-
tributed. Here, the thresholded method does not dominate nearest-neighbor, which
works better for low β (approximately β < 0.65). This is consistent with heavy-
tailed distributions as the tails get lighter. The behavior of the chosen threshold,
and its effect on the success rate, is again similar to its behavior for heavy-tailed

FIG. 5. Areas where the two methods work best, for moving averages of 5 normal random variables.
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distributions. The overall success rate is worse than for heavy-tailed distributions,
but better than that for dependent distributions.

4.2.4. Larger samples. The above scenarios all involved m = n = 1. As the
sample sizes m and n increase, but are kept equal, the classification success rate of
both methods increase. As m and n increase, the thresholded method outperforms
the nearest-neighbor method for a greater range of the β–r plane, although the
difference is slight up to m = n = 10 (the upper limit of our testing).

When the sample sizes are not equal, the thresholded method performs better
when m is smaller, if m + n is kept constant. In fact, although increasing m or n

while keeping the other fixed generally increases the classification rate, it is possi-
ble to decrease the classification rate by increasing m while keeping n fixed (e.g.,
when n = 1). As the effectiveness of the nearest-neighbor method stays largely the
same, the thresholded method outperforms the nearest-neighbor method for much
larger areas of the β–r plane, when m < n, and is much less effective for m > n.
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