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ON THE 2D ISING WULFF CRYSTAL NEAR CRITICALITY

BY R. CERF AND R. J. MESSIKH

Université Paris-Sud

We study the behavior of the two-dimensional Ising model in a finite box
at temperatures that are below, but very close to, the critical temperature. In
a regime where the temperature approaches the critical point and, simultane-
ously, the size of the box grows fast enough, we establish a large deviation
principle that proves the appearance of a round Wulff crystal.

1. Introduction. The Ising model in two dimensions is the first model where
phase transition and non mean-field critical behavior has been established by On-
sager [32] in 1944. It is also for that particular model that phase coexistence was
rigorously studied and led to the first microscopic justification of the Wulff crystal.
The first proof by Dobrushin, Kotecký and Shlosman [18] is valid for temperatures
that are much lower than the critical point. Simplifications by Pfister [33], Ioffe and
Schonmann [24–26] improved the result up to the critical point. These results in
two dimensions rely on the study of contours to analyze large deviations of surface
order. The extension of the Wulff construction to the Ising model in dimensions
greater or equal to three required new techniques such as block coarse graining
and the use of tools coming from geometric measure theory. This was achieved by
Cerf and Pisztora [12] and Bodineau [6]. These results were initially valid up to the
slab “percolation” threshold, and recently Bodineau [7] proved that this threshold
is indeed the usual critical point thus extending the results of [12, 35] up to the
critical temperature Tc. A two-dimensional analogue of the coarse graining devel-
oped in [35] is the subject of [15], thereby providing a unified approach to treat the
problem for all dimensions. The appearance of the Wulff crystal has been proved
in other “percolation”-type models as well, for example, [3, 4] in two dimensions
and [9, 13] for dimensions greater or equal to three.

In all the works described above, the temperature has been kept fixed away from
the critical temperature. Our main goal is to study the impact of the presence of a
second-order phase transition on the phase coexistence phenomenon. We do this
by analyzing phase coexistence in a regime where the temperature approaches the
critical point from below while simultaneously taking the thermodynamical limit.

A priori, one can expect that a second-order phase transition has a non trivial
effect on phase coexistence. Indeed, when approaching the critical point, the ba-
sic quantities describing the model either diverge or stay finite but have divergent
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derivatives. In the second case, they decay as a power law giving rise to critical ex-
ponents. This critical behavior and the existence of these exponents is conjectured
for a wide family of two-dimensional statistical mechanics models. The existence
of some of these critical exponents in a strong sense is an important ingredient
in our analysis. This ingredient is available for the two-dimensional Ising model.
For this particular model, the relevant statistical mechanics quantities can be com-
puted explicitly, giving rise to beautiful identities such as Onsager’s formula for the
magnetization [32] and an explicit formula for the surface tension that describes
the geometry of the Wulff droplet in terms of random walks [30, 31]. Such results
can be obtained, for example, by using the dimer representation of Kasteleyn [27].

The probabilistic understanding of the critical phenomena is a very active field
nowadays. In the case of Bernoulli site percolation on the planar triangular lat-
tice, the existence and the identification of the critical exponents have been rigor-
ously established by Smirnov and Werner [38] after the groundbreaking work of
Schramm [36] and Smirnov [37]. In [38], the existence of the critical exponents
has been explained in a probabilistic manner. Indeed, this work establishes a rig-
orous link with the conformal invariance of the scaling limit of critical percolation
described by the Schramm–Loewner evolution process. Regarding the above men-
tioned results, the reader may wonder why we do not investigate the influence of
a phase transition on phase coexistence in the a priori simpler and better under-
stood independent Bernoulli percolation model instead of the dependent spins of
the Ising model. The reason is that despite the spectacular progress in the under-
standing of criticality of independent percolation, essential properties of the critical
exponents are still unaccessible by other methods than explicit computation (see in
particular the open question 3 at the end of [38]). And since explicit computations
work only for the two-dimensional Ising model, our results are confined to this
particular model.

2. Statement of the main results. Consider the Ising model at temperature
T < Tc, defined on a square box �(n) of side length n ∈ N \ {0} and submitted
to plus boundary conditions. For every spin configuration σ ∈ {−1,1}�(n), we
associate a random signed measure σn,T on the unit square Q = [−1/2,1/2]2 ⊂
R2 defined by

σn,T = 1

m∗(T )n2

∑
x∈�(n)

σ (x)δx/n,

where δx/n is the Dirac mass at x/n, and m∗(T ) is the spontaneous magnetization
at temperature T . The expectation bn under σn,T is

bn =
∫
Q

x dσn,T (x) = 1

m∗(T )n3

∑
x∈�(n)

σ (x)x.

The main result of our paper is the following convergence theorem for σn,T under
a conditioned Ising measure:
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THEOREM 1. Let 0 < δ < π . Let B(δ) be the ball of radius
√

δ/π and wn be
the random measure defined by

wn(x) dx =
(

1Q(x) − 2 · 1B(δ)

(
bn

2
+ x

))
dx.

This is the measure having density −1 on B(δ) − bn/2 and 1 on the complement.
Under the conditional probability,

μ�(n)(·) = μ
+,T
�(n)

(
·
∣∣∣∣ 1

n2

∑
x∈�(n)

σ (x) ≤ (1 − δ)m∗(T )

)
,

the difference between the random measures σn and wn converges weakly in prob-
ability towards 0 when n ↑ ∞ and T ↑ Tc in such a way that n(Tc − T )20 ↑ ∞,
and log(n)/ log(1/(Tc − T )) stays bounded. That is, for any continuous function
f :Q → R,

∀ε > 0 lim
n,T

μ�(n)

(|σn(f ) − wn(f )| ≥ ε
)= 0.(1)

The probabilities of the deviations are of order exp(− constant(Tc − T )n).

The last sentence of the theorem means the following. For any continuous func-
tion f :Q → R, any ε > 0, there exist positive constants b, c depending on f, ε

such that

μ�(n)

(∣∣∣∣ 1

m∗(T )n2

∑
x∈�(n)

σ (x)f

(
x

n

)

+ 2
∫
B(δ)

f

(
−bn

δ
+ x

)
dx −

∫
Q

f (x)dx

∣∣∣∣> δ

)
≤ b exp

(−c(Tc − T )n
)
.

The main assertion of the theorem is that conditioned on having a defect of mag-
netization, the random measure σn,T looks like a measure whose density is an
indicator of the Wulff crystal which turns out to be an ordinary circle near the crit-
ical point. In other words, the defect of magnetization concentrates into a circular
region. Note that in our regime, the shape of the Wulff crystal is no more affected
by the geometry of the square lattice.

Theorem 1 is a consequence of De Giorgi’s isoperimetric inequality [16] and
a large deviation principle (LDP) that we prove in this paper. The assumption on
log(n)/ log(1/(Tc − T )) is a side hypothesis. Although we believe that a proof
in the case where this quantity diverges is possible using the ideas of the current
paper, we could not find a proof that includes both cases. Since we would like to
study regimes that are as close as possible to criticality, we decided to treat the case
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where log(n)/ log(1/(Tc − T )) stays bounded. The exponent 20 in the statement
of the theorem is not optimal. Indeed, if we introduce the quantity

νW = inf
{
γ > 0 such that the convergence (1) is valid when n ↑ ∞
and T ↑ Tc in such a way that n(T − Tc)

γ ↑ ∞
}

,

then our result states that νW ≤ 20. We believe that νW = 1, that is, it should be
the critical exponent for the correlation length. For percolation-type models we can
introduce a similar exponent that characterizes the maximal regime where a Wulff
droplet near criticality appears. We believe that in the case of the two-dimensional
Bernoulli percolation νW = 4/3.

For the two-dimensional Ising model, several difficulties have to be overcome
to obtain the right exponent. In a heuristic manner, what prevents us to go from
νW ≤ 20 to νW ≤ 5 is the lack of the van den Berg–Kesten inequality for the
dependent random cluster model. Then to go from νW ≤ 5 to νW ≤ 2, one has
to have a better understanding of the influence of the boundary conditions when
approaching criticality. More precisely, one has to understand better how weak
mixing properties in the sense of [1] behave close to the critical point. The gap
νW ≤ 2 to νW ≤ 1 is related to the speed of convergence of the empirical magne-
tization to its thermodynamical limit in a regime where we approach the critical
point.

An alternative approach to investigate the identity νW = 1 would be to use the
finer DKS-theory along the work of [18, 26, 33, 34]. Indeed, it appears from the
comments of one of the referees that such an approach might work. Here we chose
to use an approach along the lines of [9, 35]. We believe that such an approach is
interesting by itself. Its advantage is its potential application in studying models
in higher dimensions. The study of phase coexistence near criticality in higher
dimensions, say in the simpler case of Bernoulli percolation, would require some
information on the critical behavior of the surface tension. To our knowledge such
results are, at the present time, not available. If we suppose that a surface tension
near criticality exists in higher dimensions, all our arguments are likely to work in
this case except for the interface lemma. Indeed, our analysis shows that this part
of the proof would need a nontrivial adaptation. We will give more details about
this problem in Section 5.4.

The computation of an explicit bound for νW would not have been realized
without the kind advice of Charles Pfister. We thank him warmly for drawing our
attention to the paper [8].

2.1. The large deviation principle. Next, we give the notions necessary to state
our LDP that describes phase coexistence near the critical point.

2.1.1. Sets of finite perimeter. A fundamental quantity in our study is the
perimeter of a set. In order to prove our LDP, we need to define this quantity for
Borel subsets of Q = [−1/2,1/2]2 that may have irregular boundaries. We give
next the distributional definition of the perimeter.
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DEFINITION 2. Let A be a Borel subset of Q, its perimeter is defined as

P(A) = sup
{∫

A
divf (x) dL2(x) :f ∈ C∞

c (R2,B(0,1))

}
,

where L2 is the Lebesgue measure on R2, C∞
c (R2,B(0,1)) is the set of C∞ vector

fields from R2 to the Euclidean unit ball B(0,1) having a compact support and div
is the usual divergence operator. The set A is said to have finite perimeter if P(A)

is finite.

If the boundary of A is smooth then an application of the Gauss–Green theorem
gives that P(A) = H(∂A) where H is the one-dimensional Hausdorff measure.
We denote by M(Q) the vector space of the finite signed Borel measures on Q.
We equip M(Q) with the weak topology, that is, the coarsest topology for which
the linear functionals

ν ∈ M(Q) �→
∫

f dν, f ∈ Cc(R
2,R),

are continuous where Cc(R
2,R) is the set of the continuous functions from R2 to

R having compact support. The rate function of our LDP is the map

J : M(Q) → [0,+∞],

ν �→ J (ν) =
⎧⎪⎨⎪⎩

τcP(A), if there exists a Borel set A such that
dν

dL2 = −1A + 1Q\A,

∞, otherwise.

The positive constant τc will be defined later; it plays the role of the unit length by
which we measure the perimeter.

THEOREM 3. If T ↑ Tc and n ↑ ∞ in such a way that n(Tc − T )20 ↑ ∞ and
such that log(n)/ log(1/(Tc −T )) stays bounded, then the law of the random mea-

sure σn,T under μ
+,T
�(n) satisfies a large deviation principle in M(Q) with respect to

the weak topology. The speed of the LDP is (Tc − T )n, and the good rate function
is J ; that is, for any Borel subset M of M(Q),

− inf{J (ν) :ν ∈ ◦
M} ≤ lim inf

n,T

1

(Tc − T )n
logμ

+,T
�(n)[σn,T ∈ M]

≤ lim sup
n,T

1

(Tc − T )n
logμ

+,T
�(n)[σn,T ∈ M]

≤ − inf{J (ν) :ν ∈ M}.
2.2. Structure of the paper. In Section 3, we define the Ising model and intro-

duce the basic notions that we will use in the rest of the paper. In this section we
also give the Ising-specific properties on which we rely. This way we isolate and
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minimize the use of the specificities of the Ising model. The other techniques are
more robust and take their roots in the study of the Wulff crystal in dimensions
greater or equal to three. Section 4 contains a decoupling lemma and preliminary
block estimates. These results are based on the paper [11]. Section 5 contains the
proof of the upper bound for our LDP. Finally Section 6 finishes the proof of the
LDP by establishing the corresponding lower bound.

3. Preliminaries. In this section we define the Ising model and its represen-
tation in terms of the random cluster model. In a second part, we isolate the Ising-
specific properties that are required for our study.

3.1. The Ising model. Let Q = [−1/2,1/2]2 be the centered planar unit box.
For a positive integer n, we define the discrete set of sites �(n) = nQ ∩ Z2 that
we turn into a graph by considering the following set of edges:

E(�(n)) = {{x, y} ⊂ �(n) : |x − y| = 1
}
,

where | · | is the usual Euclidean norm. We also define the boundary ∂�(n) of the
graph �(n) by

∂�(n) = {x ∈ �(n) :∃y ∈ �(n)c : |x − y| = 1}.
For every value β = 1/T > 0 of the inverse temperature, the Ising model in �(n)

with +1 boundary conditions is the probability measure on the spin configurations
��(n) = {−1,+1}�(n) defined by

∀σ ∈ {+1,−1}�(n) μ
+,β
�(n)[σ ] = 1

Z
+,β
n

exp(−βH+
n (σ )),

where

H+
n (σ ) = −1

2

∑
x,y∈�(n)\∂�(n)

|x−y|=1

σ(x)σ (y) − ∑
x∈�(n)\∂�(n)

∑
y∈∂�(n)

|x−y|=1

σ(x)

and Z
+,β
n is the adequate normalization constant.

3.2. The FK-representation. There exists a useful and well-known coupling
between the Ising model at inverse temperature β and the random cluster model
with parameter q = 2 and p = 1 − exp(−2β); see [19, 20]. We will use this cou-
pling in order to derive several probabilistic estimates from the corresponding FK-
percolation model. The coupling is a probability measure P+

n on the edge–spin
configuration space {0,1}E(�(n)) × {−1,+1}�(n). To construct P+

n we first con-
sider Bernoulli percolation of parameter p on the edge space {0,1}E(�(n)); then
we choose the spins of the sites in �(n) independently with the uniform distri-
bution on {−1,+1}, and finally we condition the edge–spin configuration on the
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event that there is no open edge in �(n) between two sites with different spin
values. The construction can be summed up with a formula; we have

∀(σ,ω) ∈ {0,1}E(�(n)) × {−1,+1}�(n)

P+
n (σ,ω) = 1

Z

∏
e∈E(�(n))

pω(e)(1 − p)1−ω(e)1(σ (x)−σ(y))ω(e)=0,

where Z is the adequate normalization constant. It can be verified that the marginal
of P+

n on the spin configurations is the Ising model with parameter β given by the
formula p = 1 − exp(−2β), and the marginal on the edge configurations is the
random cluster measure with parameters p, q = 2 and subject to wired boundary
conditions, that is, the probability measure on ��(n) = {0,1}E(�(n)) defined by

∀ω ∈ ��(n) �
p,w
�(n)[ω] = 1

Z
qclw(ω)

∏
e∈E(�(n))

pω(e)(1 − p)1−ω(e),(2)

where clw(ω) is the number of connected components with the convention that two
clusters that touch the boundary ∂�(n) are identified. This coupling says that one
may obtain an Ising configuration by first drawing a FK-percolation configuration
with the measure �

w,p
�(n), then coloring all the sites in the clusters that touch the

boundary ∂�(n) in +1 and finally coloring the remaining clusters independently
in +1 and −1 with probability 1/2 each. Also, the coupling permits one to obtain
a �

w,p
�(n) percolation configuration by first drawing a spin configuration with μ

+,β
�(n),

and then by declaring that all the edges between two sites with different spins are
closed while the other edges are independently declared open with probability p

and closed with probability 1 − p.
Let � ⊂ Z2 and 0 ≤ p ≤ 1. In addition to the wired boundary conditions we

will also work with partially wired boundary conditions. In order to define them,
we consider a partition π of

∂� = {x ∈ � :∃y ∈ Z2 \ �, |x − y| = 1}.
Let us say that π consists of {B1, . . . ,Bk} where the Bi are nonempty disjoint sub-
sets of ∂� and such that

⋃
i Bi = ∂�. For every configuration ω ∈ ��, we define

clπ(ω) as the number of open connected clusters in � computed by identifying
two clusters that are connected to the same set Bi . The π -wired FK-measure �

p,π
�

is defined by substituting clπ(ω) for clw(ω) in (2). We will denote the set of all
partially-wired FK-measures in � by F K(p,�). Note that �

p,w
� corresponds to

π = {∂�}. We define the FK-measure with free boundary conditions �
p,f
� as the

partially-wired measure corresponding to π = ∅.
Let U ⊆ V ⊆ Z2. For every configuration ω ∈ {0,1}E(Z2), we denote by ωV

the restriction of ω to �V = {0,1}E(V ). More generally we will denote by ωU
V

the restriction of ω to �U
V = {0,1}E(V )\E(U). If V = Z2 or U = ∅, then we drop

them from the notation. We will denote by F U
V the σ -algebra generated by the
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finite-dimensional cylinders of �U
V . Note that every configuration η ∈ �V induces

a partially wired boundary condition π(η) on the set U . The partition π(η) is
obtained by identifying the sites of ∂U that are connected through an open path
of ηU . We will denote by �

p,π(η)
U the corresponding FK-measure.

3.3. Planar duality. The duality of the FK-measures in dimension two is well
known. In this paper we will use the notation of [15] that we summarize next.
Let 0 ≤ p ≤ 1 and � be a connected subset of Z2. To construct the dual process
of �

p,w
� , we associate to each edge e ∈ E(�) the unique edge ê linking sites of

Z2 + (1/2,1/2) which crosses orthogonally the edge e. The subgraph of Z2 +
(1/2,1/2) consisting of the edges ê and their sites will be denoted by (�̂,E(�̂)).
To each configuration ω ∈ �� we associate the dual configuration ω̂ ∈ ��̂ defined
by

∀e ∈ E(�) ω̂(̂e) = 1 − ω(e).

Similarly, for every event A ⊂ �� we define the dual event

Â = {η ∈ ��̂ :∃ω ∈ A, ω̂ = η}.
The duality property asserts that

�
p,w
� [A] = �

p̂,f

�̂
[Â],

where p̂ = 2(1 − p)/(2 − p).

3.4. The critical point. It is known that the critical point of the Ising model
on Z2 is given by the fixed point of a duality relation (see [22]). For the random
cluster model with q = 2, the dual point p̂ is related to p through the relation

p

1 − p

p̂

1 − p̂
= 2, and the fixed point is pc =

√
2

1 + √
2
.(3)

The duality relation (3) is translated in the Ising setting into

sinh(2β) sinh(2β̂) = 1, and the critical point is βc = arcsinh(1)

2
.

As we will work in the limit p → pc, it is worth noting that the derivative of the
function p �→ p̂ is nonzero at pc. Thus p −pc is of the same order as pc − p̂ when
p → pc. Also β �→ p = 1 − exp(−2β) has a nonzero derivative at βc, and thus
p − pc is of the same order as β − βc when β → βc.

For the general q-Potts model, the identification of the critical point and the self-
dual point, that is, pc = √

q/(1 + √
q), is still an open problem for the values 2 <

q < 25. When q > 25.72, this identity has been established, and in this situation
the Potts model exhibits a first-order phase transition [21, 28]. Thus the 2d Ising
model is the only two-dimensional Potts model exhibiting a second-order phase
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transition for which the critical point has been rigorously identified to be the self-
dual point.

We end this section by setting the following convention concerning the use of
the word dual in the rest of the paper: we always consider that the original model
is the super-critical one, that is, p > pc which is defined on the edges of Z2. The
dual model is always the dual of the super-critical model. That is, it is a sub-
critical model defined on the edges of Z2 +(1/2,1/2) and at percolation parameter
p̂ = 2(1 − p)/(2 − p) < pc. A dual path, circuit or site will always denote a path,
circuit or site in Z2 + (1/2,1/2). The term open dual will always designate edges
ê of Z2 + (1/2,1/2) that are open with respect to the dual configuration; that is,
ω̂(̂e) = 1. The law of the dual edges ê will always be the dual measure �p̂ which
is sub-critical; that is, p̂ < pc.

3.5. The surface tension and critical exponents.

3.5.1. The surface tension. By duality, the surface tension τβ of the two-
dimensional Ising model at inverse temperature β > βc is given by the directional
dependence of the exponential decay of the correlations at dual inverse tempera-
ture β̂ < βc;

∀x ∈ Z2 τβ(x) = − lim
n→∞

1

n
logμβ̂∞[σ(0)σ (nx)] = − lim

n→∞
1

n
log�p̂∞[0 ↔ nx]

with p̂ = 1 − exp(−2β̂) and where we have used the FK-representation to derive
the second equality. We will also consider the unique continuous extension of τβ

into a norm on R2.
In this paper, we are interested in the situation where the spatial scale n goes

to infinity, and simultaneously β goes to βc. To study phase coexistence in such a
context, we first need to define the joint limit surface tension.

PROPOSITION 4. If n ↑ ∞ and β̂ ↑ βc in such a way that n(βc − β̂)/ logn →
∞, then uniformly on x ∈ Z2, we have that

lim
(n,β̂)→(∞,βc)

− 1

(βc − β̂)n
logμβ̂∞[σ(0)σ (nx)] = τc|x|,(4)

where τc is a positive constant, and | · | is the Euclidean norm on R2.

Note that τc does not depend on x and that the appearance of the Euclidean norm
means that the surface tension is isotropic near the critical point. The presence of
the factor (β − βc) in the denominator of the limit is directly related to the critical
exponent for the correlation length. In the planar Ising model this exponent is equal
to 1.
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The proof of the last proposition is an extension of the computation [14] of the
classical surface tension at fixed temperature. Using subadditivity, it follows that

∀x ∈ Z2 logμβ̂∞[σ(0)σ (x)] ≤ τβ(x).

Thus the upper bound of (4) follows directly from the formula obtained in [14] de-
scribing τβ . On the other hand, the corresponding lower bound is harder to obtain.
It is obtained by extending the asymptotic computations of μ∞(σ (0)σ (nx)) from
a regime where β̂ < βc is kept fixed and n ↑ ∞ to a situation where β̂ ↑ βc, and,
simultaneously, n ↑ ∞. This can be done by using, as in [14], Kasteleyn’s dimer
representation of the 2d Ising model [27]. These computations are long and rely
on quite different mathematical tools, and thus we consider here (4) as a starting
point and we will present the derivation of Proposition 4 in a separate paper [31].
In words, the extension [31] relies on a random walk interpretation of the compu-
tation [14]. This interpretation allows the derivation of Proposition 4 from classical
moderate deviation results for the random walk. In fact, the isotropy of the right-
hand side of (4) follows from the isotropy of the rate function for the moderate
deviation principle of the simple random walk on Z2.

The regime in Proposition 4 is nearly optimal since, from results of [5], it ap-
pears that if (n, β̂) ↑ (∞, βc) in a regime where n(βc − β̂) stays constant, then

μβ̂∞[σ(0)σ (ne1)] ∼ c
1

n1/4 ,

where e1 = (1,0) ∈ Z2 and c is a positive constant. Thus below the regime of
Proposition 4 we do not expect phase coexistence to happen. In this situation the
critical phenomena take over and hence we expect that νW ≥ 1.

3.5.2. The magnetization. We will need to know how fast the magnetization
is going to zero near the critical point. In our case, from Onsager’s famous formula
we know that

μ+,β∞ [σ(0)] ∼ (β − βc)
1/8 when β ↓ βc.(5)

The Ising model is the only Potts model for which this exponent has been com-
puted. For independent site percolation on the planar triangular lattice, this expo-
nent has been derived in [38] along with several other exponents. For the values
q = 1,3,4, the existence of the exponent as well as its values are conjectured by
physicists but currently not proved.

In addition to that, we shall need to estimate the speed of convergence of the
empirical magnetization near the critical point. In order to do so, we rely on cor-
relation inequalities that are specific to the Ising model. Furthermore, we rely on
explicit computations to control the behavior of the relevant quantities near the
critical point.
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4. Block arguments. Besides the Ising-specific properties that we stated in
the last section, our analysis is based on rather robust techniques that have been
developed by Cerf and Pisztora [9, 10, 12, 13] to study phase coexistence in di-
mensions greater or equal to three. The probabilistic estimates are obtained by
translating the relevant Ising events into the random cluster model via the FK-
representation. In this paper, an essential tool in analyzing the random cluster
model is an adaptation of block coarse graining techniques [35] to the situation
where p ↓ pc.

4.1. Notation and preparatory lemmas. In this section, we introduce the nota-
tion used in coarse graining arguments and state useful preliminary estimates that
we will use repeatedly in the rest of the paper.

4.1.1. The rescaled lattice. First we fix a positive integer K that will typically
depend on p later on and will diverge when p ↓ pc. For each x ∈ Z2, we define
the block indexed by x as B(x) = �(K)+Kx. Let A be a region in R2. We define
the rescaled region A;

A = {x ∈ Z2 :B(x) ∩ A �= ∅}.
From now on, underlining means that we are dealing with rescaled objects. For
instance, �(n) means the rescaled box �(n). Note that |�(n)| is now of order
n2/K2 which is the order of the number of boxes necessary to cover �(n).

4.1.2. The lattice L∞. When dealing with block arguments it will be conve-
nient to equip Z2 with another graph structure. We denote by d∞ the distance
associated with the norm | · |∞ defined by

∀(x1, x2) ∈ R2 |(x1, x2)|∞ = max(|x1|, |x2|).
Thus d∞(x, y) = |x − y|∞. For every set E ⊆ R2 and positive real number r , we
define the r-neighborhood of E as

V∞(E, r) = {x ∈ R2 :d∞(x,E) < r}.
We will also use the associated diameter given by

diam∞(E) = sup{|x − y|∞ :x, y ∈ E}.
The new graph structure on Z2 is induced by the set of edges,

E2,∞ = {{x, y} ⊂ Z2 :d∞(x, y) = 1
}
.

Then the lattice L∞ is the graph (Z2,E2,∞). This lattice has the useful property
that the exterior boundary of any connected finite set A in Z2 is itself connected
when regarded as a subgraph of L∞; for a proof we refer the reader to [17].
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4.1.3. Block events. For the renormalization to be useful it is almost always
required to use block events on a set of blocks that are overlapping. Thus in addi-
tion to the partitioning blocks B(x) we define the event blocks B ′(x) by setting

B ′(x) = ⋃
y∈Z2

|y−x|∞≤1

B(y).

4.1.4. Rough estimates on the block process. Given the events that describe
a good block, we define the block process (X(x), x ∈ �(n)) as the dependent
site percolation process on �(n) that indicates if a block is good or not. We cite
several rough estimates on the block process from [10]. The block process can be
viewed as a dependent site percolation process where a site x is occupied if and
only if X(x) = 0. The occupied L∞ cluster of the site x, that is, the L∞ connected
component of the occupied sites containing x, is then denoted by C(x). The next
lemma is a standard counting Peierls argument:

LEMMA 5. Suppose that there exists δ > 0 such that

∀x ∈ Z2 P [X(x) = 0|X(z), |x − z|∞ ≥ 3] ≤ δ.

There exists a constant b such that, for any bounded open subset O of R2, any
s, t > 0, any K,n ∈ N with n ≥ K ,

P
[∣∣{x ∈ Z2 :B(x) ∩ O �= ∅, |C(x)| ≥ t}∣∣≥ s

]
≤ 2

∑
j≥s

exp j

(
1

t
log L2(V(O,2)) + logb + 1

9
log δ

)
,

where V(O,2) = {x ∈ R2 :d(x,O) ≤ 2}.
Here is the last rough estimate:

LEMMA 6. We consider the box �(n) rescaled by a factor K ;

�(n) = {x :B(x) ∩ �(n) �= ∅}.
If there exists δ > 0 such that

∀x ∈ Z2 P [X(x) = 0|X(z), |x − z|∞ ≥ 3] ≤ δ,

then for any n,K, ε satisfying n ≥ 6K,δ < ε, we have

P

[
1

|�(n)|
∑

x∈�(n)

1X(x)=0 ≥ ε

]
≤ 9 exp

(
−�∗(ε, δ)

⌊
n

6K

⌋2)
,

where

�∗(ε, δ) = ε log
ε

δ
+ (1 − ε) log

1 − ε

1 − δ

is the Cramér transform of a Bernoulli variable with parameter δ.
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We finish with Hoeffding’s inequality that will be useful.

LEMMA 7 (Theorem 1 of [23]). If (Xi)1≤i≤n are independent random vari-
ables with values in [−1,1] and with mean m, then

∀t ∈]0,1 − m[ P

[
n∑

i=1

(Xi − m) ≥ nt

]
≤ exp(−nt2).

4.2. Decoupling and preliminary block estimates near criticality. This sec-
tion is devoted to preliminary FK-percolation estimates near criticality. These re-
sults are the subject of an independent paper [11] and are included here for self-
consistency.

4.2.1. Decoupling. In order to decouple distant events near criticality, we rely
on an adaptation of weak mixing results in a situation where p → pc. This adap-
tation is contained in [11] from which we derive the following decoupling lemma.

LEMMA 8. Let p �= pc, a > 5, � a box and � ∈ F K(p,�). There exist two
positive constants λ and c = c(a) such that for every two sets �,� ⊂ � satisfying

d(�,�) > c

(
|p − pc|−a ∨ log |�|

|p − pc| ∨ log |�|
|p − pc|

)
and for every two events A ∈ F� and B ∈ F�, we have

|�[A ∩ B] − �[A]�[B]| ≤ exp[−λ(p − pc)d(�,�)]�[A]�[B].

PROOF. Let a > 5. First one needs to have a control of the exponential decay
of connectivities in finite boxes when p ↑ pc and the size n of the box goes to
infinity faster than (pc − p)−a . This is the subject of Proposition 9 of [11]. Once
this has been established, an analogue of the weak mixing result contained in The-
orem 3.1 of [1] can be obtained. From there, an adaptation of the arguments in
Lemma 3.2 of [3] establishes the result. �

4.2.2. Block estimates near criticality. This subsection contains the prelimi-
nary block estimates established in [11] which are needed to implement a proper
coarse graining. In the following we will use the boxes

�̃(n) = {x ∈ Z2 :d(x,�(n)) ≤ n/10}.
We take these bigger boxes in order to give estimates on events that occur in �(n)

uniformly over the boundary conditions on �̃(n). In fact, an adaptation of [2] to
our regime would spare us this precaution.

We will say that a FK-cluster C of a box � is a crossing cluster or that C

crosses the box � if C connects all the sides of �. Note that in dimension two if
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there exists a crossing cluster in a box then it is necessarily unique. We will give
estimates on the following block events:

U(�) = {∃ an open crossing cluster C∗ in �}.
For M > 0, we define

R(�,M) = U(�) ∩ {every open path γ ⊂ � with diam(γ ) ≥ M is in C∗}
∩ {C∗ crosses every sub-box of � with diameter ≥ M}.

For δ > 0, we define

V (�, δ) = U(�) ∩ {|C∗| ≥ (1 − δ)θ |�|},

F (�, δ) =
⎧⎨⎩∃ an open circuit γ enclosing a volume ≥ (1 − δ)|�|

and such that sup
x∈γ

d(x, ∂�) ≤ δ|∂�|
⎫⎬⎭ ,

W(�, δ) = {|{x ∈ � :x ↔ ∂�}| ≤ (1 + δ)θ |�|},
T (�, δ) =

{∣∣∣∣ ∑
x∈� : x�∂�

σ(x)

∣∣∣∣≤ δθ |�|
}
.

Notice that the last event involves the FK-Ising coupling. Let us begin with the
first two events.

LEMMA 9. Let a > 5. There exist two positive constants λ, c = c(a) such that
if p > pc and n > c(p − pc)

−a then

∀� ∈ F K(�̃(n),p) log�[U(�(n))c] ≤ −λ(p − pc)n.

Moreover, if M is such that

logn

κ(p − pc)
< M ≤ n(6)

with κ > 0 small enough, then

∀� ∈ F K(�̃(n),p) log�[R(�(n),M)c] ≤ −λ(p − pc)M.

Now we turn to the following estimation of the crossing cluster’s size:

LEMMA 10. Let p > pc and δ > 0. Let a > 5 and α ∈]0, (1 + 1
8a

)−1[. There
exists a positive constant c = c(a,α) such that, if n ↑ ∞ and p ↓ pc in such a way
that nα(p − pc)

a > c, then

sup
�∈F K(�̃(n),p)

�[V (�(n), δ)c]

≤ exp
(−λδ(p − pc)n

α)+ exp
(
−δ2θ2(p)

4
n2−2α

)
,
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where λ is a positive constant. In particular,

lim
n,p

inf
�∈F K(�̃(n),p)

�[V (�(n), δ)] = 1.

Next, we consider the deviations from above for the size of the crossing cluster.

LEMMA 11. Let p > pc and δ > 0. If n > 8msup(δ,p)/δ where

msup(δ,p) = inf
{
m ≥ 1 :∀n ≥ m

1

|�(n)|�
w,p
�(n)

[
M�(n)

]≤ (1 + δ/2)θ

}
,

then

log�
w,p
�(n)[W(�(n), δ)c] ≤ −

(
δθn

4msup(δ,p)

)2

.(7)

In particular, for every a > 5/4, there exists a positive constant c = c(a, δ) such
that whenever n ↑ ∞ and p ↓ pc in such a way that n > c(p − pc)

−a then

lim sup
(n,p)

1

(p − pc)2a+1/4n2 log�
w,p
�(n)[W(�(n), δ)c] < 0.

LEMMA 12. Let a > 5 and δ > 0. There exist two positive constants λ, c =
c(a, δ) such that for all p > pc and n > 4 such that n > c(p − pc)

−a , we have

log�[F(�(n), δ)c] ≤ −λδn(p − pc)

uniformly in � ∈ F K(�̃(n),p).

PROOF. It suffices to note that

�[F(�(n), δ)c] ≤ �
[
∂�
(
n(1 − 2δ)

)↔ ∂�(n) by an open dual path
]
. �

Finally, we consider the event T where the edge and the spin configuration of
the FK-Ising coupling P+

n , defined in Section 3.2, is involved.

LEMMA 13. Let δ > 0 and a > 5. If p ↓ pc and n ↑ ∞ in such a way that
n > (p − pc)

−a , then

lim
n,p

P+
n [T (�(n), δ)] = 1.

PROOF. Let C be the collection of the open clusters which do not touch the
boundary ∂�(n). Let p,n,M = (logn)/κ(p − pc) where κ is as in Lemma 9. Let
ω ∈ R(�(n),M). Using Chebyshev’s inequality,

P+
n [T (�(n), δ)c|ω] ≤ P+

n

[
1

|�(n)|
∣∣∣∣∑
C∈C

σ(C)|C|
∣∣∣∣≥ δθ

∣∣∣ω]

≤ 1

δ2θ2|�(n)|2
∑
C∈C

|C|2 ≤ M4

δ2θ2n2 .
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Imposing logn/((p − pc)
√

θn) → 0, using Lemma 9 and the previous inequali-
ties, we get the desired result. �

5. The upper bound. Let x be a point of R2. The closed ball of center x and
Euclidean radius r > 0 is denoted by B(x, r). For w in the unit sphere S1, we
define the half balls

B−(x, r,w) = B(x, r) ∩ {y ∈ R2 : (y − x) · w ≤ 0},
B+(x, r,w) = B(x, r) ∩ {y ∈ R2 : (y − x) · w ≥ 0}.

To prove the local upper bound we need to estimate an FK-percolation event
which occurs when the locally averaged magnetization exhibits a jump. We will
do this by showing that this event implies the existence of an interface. The relevant
event is that there exists a collection G of open clusters in B(nx,nr) such that∑

C∈G
|C ∩ B−(nx,nr,w)| ≥ (1 − θδ)L2(B−(nx,nr,w)),

∑
C∈G

|C ∩ B+(nx,nr,w)| ≤ δθ L2(B+(nx,nr,w)).

We will denote this event by Sep(n, x, r,w, δ). Next, we state the so-called inter-
face lemma whose proof is given after some preliminary work.

LEMMA 14. Let x ∈ Q and 0 < r ≤ 1 such that B(x, r) ⊂ Q. Let δ > 0 and
w ∈ S1. If p ↓ pc and n ↑ ∞ in such a way that n(p − pc)

20 → ∞ and such that
log(n)/ log(1/(p − pc)) stays bounded, then

lim sup
(n,p)

1

(p − pc)n
log�

w,p
�(n)[Sep(n, x, r,w, δ)]

≤ −2rτc(1 − c′δ1/2),

where c′ is a positive constant.

In [9, 10, 12, 13] a cutting procedure has been used to create an interface from
the event Sep without altering the probability too much. In our context such an
approach does not work. This stems from the fact that the monotone perturbation
lemma (Lemma 6.3 of [12]) is not appropriate when p ↓ pc. We thus have to
proceed differently. We start by showing that the event Sep is well approximated
by a similar event involving filled clusters instead of clusters with a lot of small
holes; then instead of cutting some edges in order to create the interface, we will
detect a piecewise interface. Let us fix a small positive η that will be determined
later and ρ such that

0 < η < ρ < r, 0 < 2η <

√
r2 − ρ2,
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a+

b+

b−

a−
B−(nx, nr, w)

nr

nx

w

w⊥

ηn

ρn

FIG. 1. The interface.

and we restrict our attention to the rectangle,

R = {y ∈ B(nx,nr) :−ηn ≤ (y − nx) · w ≤ ηn,−ρn ≤ (y − nx) · w⊥ ≤ ρn},
where w⊥ is the vector perpendicular to w such that (w⊥,w) is a direct basis.

We define the right to be the direction at which w⊥ points and the top the di-
rection at which w points and accordingly we define the left and the bottom. We
consider the graph D ⊂ �(n) whose edges are the boundaries of the squares cen-
tered in Z2 + (1/2,1/2) that intersect R. In this way, the set ∂D is a simple closed
circuit. We denote by a+ the upper left site of the square that contains the upper
left point of ∂D. Going clockwise we define successively and in a similar way b+,
b− and a−, see the Figure 1. We define the top boundary ∂+D as the path of ∂D

that joins clockwise a+ to b+. Similarly, the bottom boundary ∂−D is the path of
∂D that joins counterclockwise a− to b−. We define also D+ = B+(nx,nr,w)∩D

and D− = B−(nx,nr,w) ∩ D. Since the interface is an open dual path that goes
from the left to the right, we need also to consider the dual graph D̂ of D which
is depicted in the previous figure. This permits us to define the right boundary
∂RD̂ as the piece of the boundary ∂D̂ that joins clockwise the center of the square
containing b+ to the center of the square containing b−. Similarly we define the
left boundary ∂LD̂. The definitions of ∂+D,∂−D,∂LD̂ and ∂RD̂ guarantee that,
if a configuration ω ∈ �D does not contain any open cluster that connects ∂+D

to ∂−D then, in the dual configuration ω̂ ∈ �D̂ , there exists an open cluster that
connects ∂LD̂ to ∂RD̂.

In order to prove the upper bound, it is sufficient to consider the consequence
of Sep(δ) on the configuration restricted to D which is a convenient set for duality
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arguments. To depict our restriction to D, we denote by C the clusters in D that
connect ∂+D to ∂−D and suppose that there exists a collection G of open clusters
in B(nx,nr,w) that realizes Sep(δ). In this situation, we can make the decompo-
sition C = C− ∪ C+ where C− is the collection of the open clusters in C that are
contained in a cluster of the collection G , and C+ is the collection of the open clus-
ters in C that are not contained in any cluster of the collection G . By the definition
of the event Sep, the cardinality of the intersection of D+ with the clusters in C−
is less than θδL2(B+(nx,nr,w)), and the cardinality of the intersection of D−
with the clusters in C+ is also less than θδL2(B−(nx,nr,w)). Thus the event Sep
implies the following event involving only the clusters in D:

SepD(δ) =
{

there exists a decomposition C = C− ∪ C+ such that∑
C∈C−

|C ∩ D+(nx,nr,w)| ≤ πδθ(nr)2,(8)

∑
C∈C+

|C ∩ D−(nx,nr,w)| ≤ πδθ(nr)2
}
.

5.1. Elimination of the small holes. In our situation it is necessary to fill the
small holes of the clusters that enter in the definition of Sep in order to give an
adequate upper bound. Namely, we will replace the event Sep with an event Sep′
that uses only filled clusters and we will show that the probability of Sep is well
approximated by the probability of the auxiliary event Sep′. In order to construct
our filling procedure we need some definitions. Let C ∈ C . We introduce the notion
of holes of C. For this we consider the dual ̂E(D) \ E(C) of the complement of C.
Each maximally connected set F̂ of ̂E(D) \ E(C) that is isolated from the other
clusters of C by C will be designated as a hole of C. For each hole we also define
the following notion of boundary:

�F̂ = {
ê ∈ F̂ :d(̂e,E(C)) = 1

2

}
.

Note that by the definition of a hole, the edges of �F̂ are all open dual edges.
Next, we fix M < n and say that a hole F̂ is small (respectively big) if

diam(F̂ ) < M [respectively, if diam(F̂ ) ≥ M]. For each C ∈ C we define its filling
fillC as

fillC = C ∪⋃
F̂

F,

where the union runs over all the small holes of C and where F is the set of edges
in D whose dual is F̂ . Note that if C1 �= C2 then fillC1 �= fillC2.

For ∗ = −,+, let

C fill∗ = {fillC :C ∈ C∗}.
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We define then a modified SepD event that involves only the following filled clus-
ters:

Sep′
D(n, x, r,w, δ) =

{
there exists a decomposition C = C− ∪ C+ such that∑
S∈C filled−

|S ∩ D+| ≤ δπ(nr)2,
∑

S∈C filled+

|S ∩ D−| ≤ δπ(nr)2
}
.

Note that the event Sep′
D involves only the filled clusters of D, and even if Sep has

been defined originally in B(nx,nr), we will only use its consequence (8). Now
we show that the event SepD is well approximated by the event Sep′

D :

LEMMA 15. Let δ > 0, a > 5 and α ∈]0, (1 + 1
8a

)−1[. There exists a positive
constant c = c(a,α, δ) > 0 such that if

ηrn > M > c(p − pc)
−a/α,

then uniformly in n,M,x, r,w we have that

log�
w,p
�(n)[SepD(n, x, r,w, δ) \ Sep′

D(n, x, r,w,4δ)]

≤ −λ
n2

M2 δ(p − pc)
1/8 log

(
1

p − pc

)
,

where λ is a positive constant.

PROOF. First we renormalize D into D by partitioning it with blocks B(x) of
size M/2. We say that a block B(x) is good if and only if the event

V (B(x), δ) ∩ W(B(x), δ) ∩ F(B(x), δ) ∩ R
(
B ′(x),M/4

)
occurs. Recalling the definitions of V,W,F,R, the above event is{∃ crossing cluster C∗ in B(x)

and |C∗| ≥ (1 − δ)θ |B(x)|
}

∩ {|{x ∈ B(x) :x ↔ ∂B(x)}| ≤ (1 + δ)θ |B(x)|}
∩
⎧⎨⎩∃ an open circuit γ in B(x) enclosing a volume ≥ (1 − δ)|B(x)|

and such that sup
x∈γ

d(x, ∂B(x)) ≤ δ|∂B(x)|
⎫⎬⎭

∩ {∃ crossing cluster C̃∗ in B ′(x)}
∩
{

Every open path γ ′ ⊂ B ′(x) with
diamγ ′ ≥ M/4 is included in C̃∗

}
∩ {C̃∗ crosses every sub-box of B ′(x) of diam ≥ M/4}.
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We define the block process (X(x), x ∈ D) by X(x) = 1B(x) is good for x ∈ D. We
have∑

C∈C−
|C ∩ D+| ≤ ∑

x∈D+

∑
C∈C−

|C ∩ B(x)|

= ∑
x∈D+

B(x) is good

∑
C∈C−

|C ∩ B(x)| + ∑
x∈D+

B(x) is bad

∑
C∈C−

|C ∩ B(x)|.

When B(x) is good and fill(C)∩B(x) �= ∅ then C ∩B(x) �= ∅. We also have that

|C ∩ B(x)| ≥ |C∗| ≥ (1 − δ)θ |B(x)|.(9)

The first inequality holds because when B(x) is good, then every cluster C ∈ C−
that intersects B(x) will contain a path of diameter at least M/2 in the box B ′(x);
this path is included in C̃∗, and thus the cluster C contains C̃∗ which also con-
tains C∗. Next

|C ∩ B(x)| ≤ |{x ∈ B(x) :x ↔ ∂B(x)}| ≤ (1 + δ)θ |B(x)|.(10)

This inequality is true because for reasons of diameter no cluster C ∈ C− fits into
a box B(x). Thus all the connected components of C ∩ B(x) have to be connected
to ∂B(x). Next, as before, when B(x) is good then C̃∗ ∩ B(x) ⊂ C ∩ B(x). And
since diamγ > M/4, we have that γ ⊂ C̃∗ ∩ B(x) ⊂ C ∩ B(x). But the diameter
of γ is less than M , and thus the interior of γ is included in fillC; hence

(1 − δ)θ |B(x)| ≤ θ |fill(C) ∩ B(x)| ≤ θ |B(x)|.(11)

By (9), (10), (11) we get

−2δθ |B(x)| ≤ |fill(C) ∩ B(x)|θ − |C ∩ B(x)| ≤ 2δθ |B(x)|.
Since two different clusters of C cannot intersect the same good block, we obtain∑
C∈C−

∣∣|C ∩ D+| − θ |fill(C) ∩ D+|∣∣≤ ∑
x good

2δθ |B(x)| + ∑
x bad

|B(x)|

≤ 2δθπ(nr)2 + |{x ∈ D :X(x) = 0}|
|D| 2π(nr)2.

Doing the same reasoning for D− with C+, we get∑
C∈C+

∣∣|C ∩ D−| − θ |fill(C) ∩ D−|∣∣≤ 2δθπ(nr)2 + |{x ∈ D :X(x) = 0}|
|D| 2π(nr)2.

From this, we conclude that

SepD(δ) ∩
{ |{x ∈ D :X(x) = 0}|

|D| ≤ δθ

2

}
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is included in Sep′
D(4δ). Thus

�
w,p
�(n)[SepD(n, x, r,w, δ) \ Sep′

D(n, x, r,w,4δ)]

≤ �
w,p
�(n)

[ |{x ∈ D :X(x) = 0}|
|D| ≥ δθ

2

]
.

Finally, we show that it is possible to tune our regime so that with probability very
close to one, the fraction of bad boxes in D remains negligible. Fix a > 5 and
α ∈]0, (1 + a

8 )−1[. There exists a positive c = c(α, a, δ) such that by Lemmas 9,
10, 11, 12,

sup
�∈F K(p,D)

�[X(x) = 0|X(y), |x − y|∞ ≥ 3] = ρ(M,p) ↓ 0,

when M ↑ ∞ and p ↓ pc in such a way that Mα > c(p − pc)
−a . Thus, by Lem-

ma 6 we get that

log�
w,p
�(n)[SepD(n, x, r,w, δ) \ Sep′

D(n, x, r,w,4δ)] ≤ −δθ log
δθ

ρ(M,p)

⌊
nr

3M

⌋2

.

By using Onsager’s formula we get that θ ∼ (p − pc)
1/8 when p ↓ pc. The con-

clusion follows from the speed of the convergence ρ(M,p) ↓ 0 provided by Lem-
mas 9, 10, 11, 12. �

5.2. The piecewise interface. In this section we will detect a piecewise in-
terface from the occurrence of the event Sep′

D . We suppose that the event Sep′
D

occurs, and let C−, C+ be a decomposition of C realizing it. We define

C filled = C filled− ∪ C filled+ ,

where C filled∗ has been defined in Section 5.1. Note that there is a natural order in
C filled and thus it is possible to enumerate the elements of C filled from the left to the
right from S1 to S|C filled|. Next, for each h ∈ R, we define the line

π(h) = {y ∈ R2 : (y − nx) · w = h}.
Let

E+ = ⋃
S∈C filled−

E(S ∩ D+)

be the set of the edges in D+ that belong to a filled cluster of C filled− . We define
similarly E− as the set of the edges in D− that belong to a filled cluster of C filled+ .
Then ∫ 2ηn/3

ηn/3
|{e ∈ E+ : e ∩ π(h) �= ∅}|dh ≤ |E+|,
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where η has been defined in the paragraph after Lemma 14. Since C−, C+ real-
ize the event Sep′

D(n, x, r,w, δ), then we have that |E+| ≤ δπ(nr)2 and by the
previous inequality, there exists h ∈ [ηn/3,2ηn/3] such that

|{e ∈ E+ : e ∩ π(h) �= ∅}| ≤ 3δ

η
nπr2.(12)

Let h∗ be the infimum in [ηn/3,2ηn/3] of the real numbers h satisfying this in-
equality. If we increase the value of h by a small ε > 0, then the inequality (12)
still holds and π(h∗ + ε) ∩ Z2 ∩ D = ∅. We choose one such h∗ + ε and we call
it h+. Moreover any edge of E+ which intersects π(h+) has an endpoint in each
of the two half spaces delimited by π(h+). In a symmetric way we get from E−
a value h− in [−2ηn/3,−ηn/3]. The edges in {e ∈ E− : e ∩ π(h−) �= ∅} ∪ {e ∈
E+ : e ∩ π(h+) �= ∅} will be designated as bad edges. We end with a horizontal
segment π(h+) in D+ that crosses at most 3πδnr2/η edges belonging to a cluster
C ∈ C− and a horizontal segment π(h−) in D− that crosses at most 3πδnr2/η

edges belonging to a cluster C ∈ C+. Note that if these 6πδnr2/η bad edges were
closed then by duality, there would exist an open dual path connecting ∂LD̂ to
∂RD̂. For ∗ = −,+, we introduce the following sets of edges:

�∗ = {e ∈ E(D) : e ∩ π(h∗) �= ∅}, �̂∗ = {̂e ∈ E(D̂) : e ∈ �∗)}.
The set �∗ is the set of all the edges that intersect π(h∗) and �̂∗ is its dual set.
Note that �̂∗ is always a simple dual path connecting ∂LD̂ to ∂RD̂.

In order to capture the relevant dual connections, we introduce for each dual
path γ ⊂ D̂, its w-diameter:

diamw(γ ) = max
x,y∈γ

(y − x) · w⊥.

LEMMA 16. If the event Sep′
D(n, x, r,w, δ) occurs, then there exists a family

of open dual paths (̂ξ1, ξ̂2, . . . , ξ̂K) such that

diamw(̂ξ1) + · · · + diamw(̂ξK) ≥ 2nρ − 6δ

η
nπr2,

where ρ has been defined just after Lemma 14. Moreover the number K − 1 is
bounded above by the number of open dual clusters of diameter ≥ M that intersect
π(h+) ∪ π(h−).

PROOF. First choose ω ∈ Sep′(n, x, r,w, δ). If there is no top–bottom cross-
ing cluster in D then by duality, there exists an open dual path connecting ∂LD̂ to
∂RD̂, and we are done. If there are crossing clusters, then we construct an algo-
rithm that detects in every dual configuration ω̂ of ω ∈ Sep′(n, x, r,w, δ), a way
to move from ∂LD̂ to ∂RD̂ by using either open dual paths or paths of bad edges,
that is, edges of (�̂+ ∩ Ê+)∪ (�̂− ∩ Ê−). Note that the paths of bad edges are not
necessarily open dual paths and we will denote them by tunnels. Using tunnels will
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mean following a path of bad edges along �̂+ ∪ �̂− from the left to the right until
we reach an edge that is not bad. Note already that the total length of the tunnels
is bounded by

|(�̂+ ∩ Ê+) ∪ (�̂− ∩ Ê−)| ≤ 6δπr2n/η.

Let us first sketch the idea behind the algorithm: we want to move from the left to
the right along open dual paths. The only obstacles preventing us from doing that is
the existence of top–bottom crossing clusters. To overcome the problem, when we
meet such a filled crossing cluster S, we check if S is in C fill− or in C fill+ . Accordingly,
we move to �̂+ or �̂− and traverse the obstacle using a tunnel. After such a tunnel,
we meet holes F̂ of S that we traverse using open dual paths included in �F̂ . We
continue like this until we reach the right-hand side of S. After this, we find an
open dual path that reaches the next top–bottom crossing cluster and so on. At the
end, the total number of closed dual edges that we have used is negligible. But this
is not enough as the number of segments of open dual paths may be very large and
this may prevent us from decoupling properly the probability of these segments.
It is at this point that the filling of the small holes is important. Indeed, with our
filling, we are guaranteed that at each time we produce a new open dual path, we
will meet a large open dual cluster that intersects �̂+ ∩ �̂−. The number of such
clusters can be controlled in order to decouple the relevant dual connections.

Next, we give the precise description of our algorithm:

Initialization. First we check the leftmost edge e1+ of �+ and the leftmost
edge e1− of �−.

(1) If e1+ is in C fill− , then we use the tunnel included in �̂+ that starts in ê1+ and
ends at an edge of �̂+ that is not bad.

(2) If e1+ is in C fill+ , then two subcases arise according to e1−:
(2a) If e1− ∈ S1, where S1 is the first, from the left, top–bottom filled crossing

cluster. We use the tunnel included in �̂− that starts at ê1− and ends at
an edge which is not bad.

(2b) If e1− /∈ S1, then e1− is isolated from ∂RD̂ by S1. So there exists an open
dual path from ∂LD̂ to a site in �̂−. Let ξ̂1 be such a path whose endpoint
on �̂− is rightmost. By doing so, the right successor edge of ξ̂1 on �̂−
must be a bad edge and thus the entrance of a tunnel. We use this tunnel
until we reach an edge that is not bad.

Intermediate steps. Next, we suppose that we have reached an edge êj ∈ �̂+ ∪
�̂− that is not a bad edge and describe how to proceed with the algorithm in order
to reach an other edge êj+1 ∈ �̂+ ∪ �̂− that is not bad. Whether êj is in �̂+ or
�̂− is completely symmetric. We thus suppose that êj ∈ �̂+ and the other case
can be deduced by symmetry. If êj is described as above, then it is either included
in a hole of a cluster in C fill or it is at the right of the rightmost top–bottom crossing
path of a cluster in C fill.
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(1) If êj is in a hole F̂ of a filled cluster S ∈ C fill, then we choose a path from
�F̂ that takes us to the rightmost edge of �̂+, and then we are again at the
entrance of a tunnel that we cross. We denote by êj+1 the successor on �̂+ of
the exit of the just traversed tunnel. By definition êj+1 is not a bad edge.

(2) êj is just at the right of the rightmost top–bottom crossing path of a filled clus-
ter S ∈ C fill. Let S′ be the next filled crossing cluster of C fill. If S′ ∈ C fill+ , then
we go along an open dual path that joins êj to the rightmost dual intersection
ê ′

j+1 of �̂− with the top–bottom crossing open dual path that is just on the left
of the leftmost top–bottom crossing path of S′. The edge ê ′

j+1 is the entrance

of a tunnel that we take until we reach an edge in �̂− that is not a bad edge.
We call this edge êj+1.

The final step. It is reached when an edge of ∂RD̂ has been seen. This must
happen in a finite number of steps since we explore partially without repetition the
edges of �̂− ∪�̂+ from the left to the right. The number of the edges in the tunnels
is bounded by 6δπr2n/η; thus the created open dual paths ξ̂1, . . . , ξ̂K satisfy

diamw(̂ξ1) + · · · + diamw(̂ξK) ≥ 2nρ − 6δ

η
nπr2.

In addition to that, the just described algorithm has the property that the creation
of a new open dual path corresponds to an additional open dual cluster of diameter
larger than M that intersects �̂+ ∪ �̂−. Thus we can bound K − 1 as stated in the
lemma. �

5.3. Separating the pieces of the interface. In order to get the right probabilis-
tic upper bound from the existence of the piecewise interface, we have to factorize
the probability of the dual connections obtained in Lemma 16 without altering our
estimates too much. If we were working in independent Bernoulli percolation then
we would simply apply the van den Berg–Kesten inequality. Unfortunately this
inequality does not hold in dependent FK-percolation models. To decouple our
events, we start by constructing a new family of paths from (̂ξ1, . . . , ξ̂K). The new
paths will be well separated from each other by a distance of at least 0 < � < δn.
In order to simplify the notation, we consider without loss of generality that our
domain D̂ is centered at the origin. For −ρn < h < ρn we define the line v(h)

parallel to w and at a relative distance hnρ from the origin,

v(h) = {x ∈ R2 :x · w⊥ = h}.
In addition to that we will need vertical strips that separate the events, so we define
for every site x ∈ R2 the strip of width � on the right of x,

H�(x) = {y ∈ R2 : 0 < (y − x) · w⊥ < �}.
Now we give the construction of our new well-separated dual open paths. First we
start with the value h = −n and we increase h until the first time we find at least
one dual open path γ̂ that satisfies:
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(i) γ̂ is part of one of the paths of the piecewise interface (̂ξ1, . . . , ξ̂K);
(ii) γ̂ starts at a site on v(h) and does not intersect the left half plane defined

by v(h);
(iii) diamw(γ̂ ) ≥ �.

Let us call h1 the first value of h where we stopped. Since � < δn, it is clear that
h1 < n as soon as Sep′

D occurs. Let us pick, among the above mentioned paths,
a path γ̂ of maximal w-diameter. On γ̂ we choose two sites x̂1, ŷ1 ∈ γ̂ that satisfy

(ŷ1 − x̂1) · w⊥ = diamw(γ̂ )

and we define γ̂1 as a dual open path that joins x̂1 to ŷ1. Right after this path we
put the strip H�(ŷ1).

Now suppose that γ̂1, . . . , γ̂j and H�(ŷ1), . . . ,H�(ŷj ) have been constructed.
Then we start with the value h = hj + � = yj ·w⊥ + �, we increase h until we find
a path γ̂ that satisfies the above three criteria, (i)–(iii), and we define γ̂j+1 in the
same way that we defined γ̂1.

We continue this process until we reach the boundary ∂RD̂.
After this construction, we end with a sequence of strips separating a family of

dual open paths (γ̂1, . . . , γ̂K ′) (see Figure 2).
The constructed paths verify the following:

- For every 1 ≤ j ≤ K ′, we have that diamw(γ̂j ) ≥ �.
- The number K ′ of the new paths is bounded above by the number of paths K in

the original piecewise interface. Indeed, two different paths γ̂i , γ̂j cannot be part
of the same path ξ̂ of the original interface because when defining the paths γ̂j

we always choose one with maximal w-diameter.
- The total w-diameter of the new family of paths satisfies

K ′∑
k=1

diamw(γ̂k) ≥ 2nρ − 6δ

η
nπr2 − 2K�.(13)

Indeed, we lost from the original total w-diameter only for two reasons. The first
reason is the fact that we have chosen paths of w-diameter larger than �; this

FIG. 2. The separated pieces of the interface.
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gives a maximal loss of �K . The second reason is the fact that the construction
separates the pieces of the interface by strips. These strips are of width �, and
this gives in the worst case another loss of �K .

For each j , we denote by �̂j the region of D̂ between H�(yj ) and H�(yj+1), and
for each k > 0, we define �(k) as the set of families (�̂1, . . . , �̂k) that partition
the set D̂ as above. Also we define ϒ(k) as the set of the families (s1, . . . , sk) ⊂ Rk

such that

∀j ∈ {1, . . . , k}, sj ≥ �,

k∑
j=1

sj ≥ 2nρ − 6δ

η
nπr2 − 2k�.(14)

From Lemma 16 and from the last construction, we get the following result.

LEMMA 17. Suppose that the event Sep′
D(n, x, r,w, δ) occurs, and let K be

the number of open dual clusters of diameter larger than M that cross π(h+) ∪
π(h−).

Then there exist k ≤ K , (�̂1, . . . , �̂k) ∈ �(k) and (s1, . . . , sk) ∈ ϒ(k) such that
the event

A(�̂1, . . . , �̂k; s1, . . . , sk)

=
k⋂

j=1

{∃ an open dual path γ̂j ⊂ �̂j with diamw γ̂j = sj }

occurs.

5.3.1. Control of the big dual clusters. Let h ∈ (−2rηn/3,−rηn/3)∪(rηn/3,

2rηn/3). In what follows, we estimate the number of big open dual clusters that
intersect the set �̂(h) = {̂e ∈ E(D̂) : e ∩π(h) �= ∅}. Here big cluster means a clus-
ter whose diameter exceeds a certain threshold M > 0. This estimate is crucial in
order to decouple the different pieces of our spatially separated piecewise inter-
face.

LEMMA 18. Let p > pc and fix h ∈ (−2rηn/3,−rηn/3) ∪ (rηn/3,2rηn/3).
Let K(h) be the number of big open dual clusters of D̂ intersecting �̂(h). If ξ > 0
and a > 2ξ + 1 then there exist two positive constants c = c(a, ξ) and λ = λ(a, ξ)

such that

c(p − pc)
−a < M < rηn/3

⇒ log�[K(h) ≥ (p − pc)
ξn] ≤ −λ(p − pc)

4ξ+2nM

uniformly over � ∈ F K(p,D).
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PROOF. For a given h ∈ (−2rηn/3,−rηn/3) ∪ (rηn/3,2rηn/3), let

�̂+(M) = {y ∈ D̂ : 0 ≤ (y − nx) · w − h ≤ M, |(y − nx) · w⊥| ≤ n + M},
�̂−(M) = {y ∈ D̂ :−M ≤ (y − nx) · w − h ≤ 0, |(y − nx) · w⊥| ≤ n + M}.

Let Ĉ be an open dual cluster of diameter ≥ M which intersects �̂(h). Since
|Ĉ| ≥ M , either �̂−(M) ∩ Ĉ contains at least M/2 sites connected inside �̂−(M)

to ∂�̂−(M) or �̂+(M) ∩ Ĉ contains at least M/2 sites connected inside �̂+(M)

to ∂�̂+(M). Thus for ξ > 0, we have that

�[K ≥ (p − pc)
ξn] ≤ �

[
M̂�̂−(M) ≥ (p − pc)

ξ Mn

4

]
+ �

[
M̂�̂+(M) ≥ (p − pc)

ξ Mn

4

]
,

where M̂�̂ = |{x̂ ∈ �̂ : x̂ ↔ ∂�̂}|. We choose a > 2ξ +1 and partition �̂−(M) and
�̂+(M) into blocks B(x) of size m = c(p − pc)

ξ−a/4. We assume that

min
(

1

6
,
ηr

3

)
n > M > 10c(p − pc)

−a,(15)

where c is a positive constant that will be determined later. Next, we define for
∗ = +,−,

�̂′∗(M) = ⋃
x∈Z2 : B(x)∩�̂∗(M)�=∅

B(x).

Also, the number of partitioning blocks |�̂′
∗(M)| satisfies

nM

m2 ≤ |�̂′
∗(M)| ≤ 2(M + m)(n + M + m)

m2 ≤ 7
nM

m2 .

By subadditivity, one gets

M̂�̂∗(M)

Mn
≤ 7

|�̂′
∗(M)|

∑
x∈�̂

′
∗(M)

M̂B(x)

|B(x)| .

Thus, by using the FKG inequality we have that

�

[
M̂�̂∗(M) ≥ (p − pc)

ξ

4
Mn

]
≤ �

[
1

|�̂′
∗(M)|

∑
x∈�̂

′
∗(M)

M̂B(x)

|B(x)| ≥ (p − pc)
ξ

28

∣∣∣E],
where E is the event that all the dual edges of the boundaries of the blocks B(x)

are open. Furthermore, from Proposition 5 of [11], we have that for every a′ ∈
(ξ + 1, a − ξ), there exists a positive constant c′ = c′(a′) such that for every x ∈
�̂

′
−(M) ∪ �̂

′
+(M), we have

m > c′(p − pc)
−b′ ⇒ �

[
M̂B(x)

|B(x)|
∣∣∣E]≤ �

p̂,w
B(x)

[
M̂B(x)

|B(x)|
]

≤ (p − pc)
ξ

56
.
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Observe that the random variables (M̂B(x)/|B(x)|, x ∈ �̂
′
−(M) ∪ �̂

′
+(M)) that

take their values in [0,1], are independent and identically distributed under �[·|E].
Also, by choosing c = c′/10 in (15), we obtain that their mean is bounded above
by (p − pc)

ξ /56. Therefore, we can apply Lemma 7 to get

log�

[
M̂�̂∗(M) ≥ (p − pc)

ξ Mn

4

]
≤ −λ(p − pc)

2ξ nM

m2 ,

where ∗ = −,+ and λ > 0 is a positive constant. �

5.3.2. Proof of the interface lemma. Now we have all the ingredients to give
an upper bound on the probability of Sep that captures the existence of an interface.

PROOF OF LEMMA 14. First we approximate Sep with Sep′, and we have

�[Sep(δ)] ≤ �[SepD(δ) \ Sep′
D(4δ)] + �[Sep′

D(4δ)].(16)

Let a > 5, α ∈ (0, (1 + 1
8a

)−1). Lemma 15 ensures the existence of a positive con-
stant c1 such that for every M satisfying

c1(p − pc)
−a/α < M < ηrn/3,(17)

we can bound the first term of (16) by

log�[SepD(δ) \ Sep′
D(4δ)] ≤ −c1

n2

M2 δ(p − pc)
1/8 log

(
1

p − pc

)
.(18)

Next, we turn to the estimation of the second term of (16). We fix ξ > 2 and
decompose the event under consideration as follows:

�[Sep′
D(4δ)] ≤ �[∃h K(h) ≥ (p − pc)

ξn]
(19)

+ �[{∀h K(h) < (p − pc)
ξn} ∩ Sep′

D(4δ)],
where K(h) is the number of big open dual clusters that intersect �̂(h) [�̂(h)

is defined before Lemma 18], and h takes its values in (−2rηn/3,−rηn/3) ∪
(rηn/3,2rηn/3). Next, we impose further to the exponent a to be larger than
2ξ + 1 so that by (17) and by Lemma 18, there exists a positive λ = λ(a, ξ) such
that for p close enough to pc, we have

�[∃h K(h) ≥ (p − pc)
ξn] ≤ n exp

(−λ(p − pc)
4ξ+2nM

)
.(20)

Now we turn to the second term of (19). By Lemma 17 we can bound from above
�[{∀h K(h) < (p − pc)

ξn} ∩ Sep′
D(4δ)] by

�(p−pc)
ξ n�∑

k=1

∑
(�̂1,...,�̂k)∈�(k)

(s1,...,sk)∈ϒ(k)

�[A(�̂1, . . . , �̂k; s1, . . . , sk)],(21)
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where �(k) and ϒ(k) have been defined just before Lemma 17. By Stirling’s for-
mula, for all 1 ≤ k ≤ �(p − pc)

ξn�, the cardinality of the sets �(k) and ϒ(k) are
uniformly bounded from above by

|�(k)| ≤
(

2n

k

)
≤ exp

(
4(p − pc)

ξn logn
)
,

(22)

|ϒ(k)| ≤
(

2n + k

k

)
≤ exp

(
4(p − pc)

ξn logn
)
.

Next, we fix k ∈ [1, �(p − pc)
ξn�], (�̂1, . . . , �̂k) ∈ �(k) and (s1, . . . , sk) ∈ ϒ(k)

and we use Lemma 8 to decouple the occurrence of the k separated dual open con-
nections appearing in the event A(·). To do so, we must require that the distance �

separating the regions �̂j ’s is large enough. More precisely, there exists a positive
constant c2 such that if

δn ≥ � = c2(p − pc)
−a,(23)

then we can apply Lemma 8 k times and use (14) to obtain

�[A(�̂1, . . . , �̂k; s1, . . . , sk)]

≤ 2k
k∏

j=1

�[∃ an open dual path γ̂j ⊂ �̂j of diamw γ̂j = sj ](24)

≤ (2n)k exp
[
−τp(w)n

(
2ρ − 6δπ

η
r2 − 2k�

n

)]
.

Combining (24) and (22) we can bound (21) from above by

exp
(
−τp(w)n

(
2ρ − 6δπ

η
r2
)

+ 8(p − pc)
ξn logn

)
(25)

×
�n(p−pc)

ξ �∑
k=1

exp
(
k
(
log(2n) + 2τp(w)�

))
.

In order to satisfy condition (23), we are limited to regimes where n ≥ c2δ
−1(p −

pc)
−a . By making c2 a bit bigger and by using Proposition 4, we can find n0 > 1

such that for every n > n0, we have

�[{∀h K(h) < (p − pc)
ξn} ∩ Sep′

D(4δ)]
≤ exp

(
10(p − pc)

ξn logn + τcc2(p − pc)
−a+ξ+1n

)
(26)

× exp
(
−τc(p − pc)n

(
2ρ − 14δπ

η
r2
))

.

By choosing a > ξ + 1 and logn/ log(1/(p − pc)) bounded from above, the first
exponential becomes negligible. It remains to specify a regime satisfying (17) and
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(23) such that the bounds (18) and (20) are smaller than (26). That is, we have to
choose ξ > 2, a > 2ξ + 1, α ∈ (0, (1 + 1

8a
)−1) and n ↑ ∞,p ↓ pc,M such that

ηrn/3 ≥ M ≥ max
(
c1(p − pc)

−a/α,(
2ρτc(p − pc) + logn

n

)/(
λ(p − pc)

4ξ+2)),(27)

n ≥ max
(

c2

δ
(p − pc)

−a,
2ρ

δc1
τcM

2 (p − pc)
7/8

− log(p − pc)

)
.

For the choice ξ > 2, a = 2ξ + 2, α = (1 + 1
8a

)−1,M = (p − pc)
4ξ+1, n = (p −

pc)
−8ξ−9/8, it is easy to check that there exists n0 > 1 such that for all n > n0,

the conditions (27) are satisfied. Since ξ has to be larger than 2, we obtain that
for every γ > 20, if n ↑ ∞,p ↓ pc in such a way that n(p − pc)

γ → ∞ then
it is possible to find ξ, a,α,M such that asymptotically the conditions (27) are
satisfied. Finally, we obtain

lim sup
(n,p)→(∞,pc)

1

(p − pc)n
log�[Sep(δ)] ≤ −2ρτc + 14δ

η
r2τc.

By choosing η = r
√

2δ/14 and ρ = r
√

1 − ρ, we get the desired result. �

5.4. Potential applications in higher dimensions. As promised in the Intro-
duction, we include some comments about the adaptability of our arguments to,
say, Bernoulli percolation near criticality in dimensions greater than two. Even if
we suppose that an adequate surface tension in a joint limit p ↓ pc and n ↑ ∞
exists, the proof of the interface lemma would still need nontrivial adaptation. In-
deed, if the critical exponent for the surface tension is greater than the one for the
density of the infinite cluster then it is not possible to apply the cutting procedure
as in [9]. Furthermore, collecting the surface energy of piecewise interfaces as we
did here would be more difficult in higher dimensions. Apart from this obstacle,
we believe that the rest of our arguments are robust enough to be adapted in such
a situation.

5.5. The local upper bound. First we give a result of geometric measure the-
ory. To state this result, let us mention that for every set of finite perimeter A, it is
possible to define his essential boundary ∂∗A which is a subset of the topological
boundary ∂A. Also, for each point x of ∂∗A, it is possible to define a measure the-
oretical normal vector νA(x) to ∂A which is taken to point to the exterior of A. In
order to prove the upper bound we will need the following approximation result.

LEMMA 19. Let A be a subset of Q having finite perimeter. For any positive
ε, δ, there exists a finite collection of disjoint balls B(xi, ri), i ∈ I ∪I bd, such that:
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- ∀i ∈ I xi ∈ ∂∗A ∩ ◦
Q and B(xi, ri) ⊂ ◦

Q;
- ∀i ∈ I bd xi ∈ ∂∗A ∩ ∂Q and B−(xi, ri, νQ(xi)) ⊂ Q;
- ∀i ∈ I ∪ I bd L2((A ∩ B(xi, ri))�B−(xi, ri, νA(xi))) ≤ δr2;
- Finally ∣∣∣∣P(A) − ∑

i∈I∪I bd

2ri

∣∣∣∣≤ ε.

PROOF. The proof can be found in Lemma 82 of [10]. �

LEMMA 20. Let ν ∈ M(Q) be such that J (ν) < +∞. If β ↓ βc and n ↑ ∞
in such a way that n(β −βc)

20 → ∞, and such that log(n)/ log(1/(β −βc)) stays
bounded, then for every ε > 0 there exists a weak neighborhood U of ν in M(Q)

such that

lim sup
(n,β)

1

n(β − βc)
logμ

+,β

�̃(n)
(σn ∈ U ) ≤ −(1 − ε)J (ν).

PROOF. By definition of J , since J (ν) < +∞, there exists a Borel subset
A of Q such that ν is the measure with density −1A + 1Q\A with respect to the
Lebesgue measure, and

J (ν) = τcP(A) = τcP(Q \ A).

If P(A) = 0, there is nothing to prove. Suppose that P(A) > 0. Let δ0, ε
′ ∈ ]0,1[

that we will tune later. Let B(xi, ri), i ∈ I ∪ I bd, be a finite collection of disjoint
balls associated with A,ε′ and δ0/3, as given in Lemma 19. For i in I ∪ I bd, let
fi, gi be two continuous functions having compact support and taking values in
[0,1] such that

∀x ∈ R2 \ ◦
B−(xi, ri, νA(xi)) fi(x) = 0,

∀x ∈ B+(xi, ri, νA(xi)) gi(x) = 1,(
1

2
− δ0

4

)
πr2

i ≤
∫

fi dL2,

∫
gi dL2 ≤

(
1

2
+ δ0

4

)
πr2

i ,

where νA(xi) is the exterior normal vector of A at xi and where
◦
B− and B+ denote

the interior and the closure of the half balls. Also, we require that there exists si > 0
such that, if we set

Di− = {
y ∈ B−(xi, ri, νA(xi)) : d

(
y,R2 \ B−(xi, ri, νA(xi))

)≤ si
}
,

Di+ = {y /∈ B+(xi, ri, νA(xi)) : d(y,B+(xi, ri, νA(xi))) ≤ si},
then we have

L2(Di−) ≤ δ0

8
πr2

i , ∀x ∈ B−(xi, ri, νA(xi)) \ Di− fi(x) = 1,

L2(Di+) ≤ δ0

8
πr2

i , ∀x ∈ Rd \ B+(xi, ri, νA(xi)) \ Di+ gi(x) = 0.
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These conditions imply that

ν(fi) = −
∫
A

fi dL2 +
∫
Q\A

fi dL2

≤ −
∫

fi dL2 + 2L2(B−(xi, ri, νA(xi)) \ A
)

≤ (−1 + δ0)
1

2
πr2

i ,

ν(gi) = −
∫
A

gi dL2 +
∫
Q\A

gi dL2

≥
∫

gi dL2 − 2L2(A ∩ B+(xi, ri, νA(xi))
)− 2L2(Di+).

≥ (1 − δ0)
1

2
πr2

i .

Let U be the weak neighborhood of ν in M(Q) defined by

U =
{
� ∈ M(Q) :∀i ∈ I ρ(fi) < ν(fi) + δ0

2
πr2

i , ρ(gi) > ν(gi) − δ0

2
πr2

i

}
.

Next, we choose γ > 20 and consider n ↑ ∞,p ↓ pc in such a way that n(p −
pc)

γ → ∞. We rescale the lattice by a factor M = √
n and choose L = √

M . Let
δ > 0, for x ∈ Z2, the block variable X(x) is defined as the indicator function of
the event

R(B ′(x),L) ∩ V (B(x), δ) ∩ W(B(x), δ) ∩ T (B(x), δ).

Let us fix i ∈ I . Let ∗ be a symbol representing either − or +. We define

B∗(n, i) = B∗(nxi, nri, νA(xi)),

B∗(n, i) = {x ∈ Z2 :B(x) ⊂ ◦
B∗(n, i)}.

By the above choice of n,p and M , for n large enough we have

L2
(
B∗(n, i)

∖ ⋃
x∈B∗(n,i)

B(x)

)
≤ θδL2(B∗(n, i)).

We define S∗ as the collection of the clusters which are included in one of the
boxes B(x), x ∈ B∗(n, i), but which do not intersect their boundaries;

S∗ = ⋃
x∈B∗(n,i)

{C cluster in B(x) such that C ∩ ∂B(x) = ∅}.

Let x ∈ B∗(n, i) be such that X(x) = 1. Then∑
C∈S∗

|C ∩ B(x)| ≥ |B(x)| − |{x ∈ B(x) :x ↔ ∂B(x)}| ≥ (1 − θ − δθ)|B(x)|.
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Summing these inequalities, we get∑
C∈S∗

|C ∩ B∗(n, i)| ≥ (1 − θ − 2δθ)L2(B∗(n, i)).(28)

We define also C as the collection of the B(n, i) clusters which do not belong to
S+∪ S−. For a cluster C, we denote by σ(C) its color. For x ∈ B−(n, i)∪B+(n, i),
we have

θn2σn(B(x)) = ∑
C∈C

σ(C)|C ∩ B(x)| + ∑
x∈B(x)

x �↔∂B

σ (x).

Whenever X(x) = 1, the event T occurs and the modulus of the last sum is less
than δθ |B(x)|. Suppose that, for ∗ = − and ∗ = +

M2
∑

x∈B∗(n,i)

1X(x)=0 ≤ δθ L2(B∗(n, i)).

Summing the previous inequalities, we get

θn2σn(
◦
B+(n, i)) ≤ ∑

C∈C
σ(C)|C ∩ B+(n, i)| + 5δθ L2(B+(n, i)),

θn2σn(B−(n, i)) ≥ ∑
C∈C

σ(C)|C ∩ B−(n, i)| − 5δθ L2(B−(n, i)).

Let us denote by C− (respectively, C+) the collection of the negatively (respec-
tively, positively) colored clusters of C . Notice that the collections S+∪ S−, C−, C+
are disjoint. Suppose in addition that σn ∈ U . The very definition of the neighbor-
hood U , the two previous inequalities and (28) yield that∑

C∈C−∪S−
|C ∩ B+(n, i)| ≤ θ(8δ + δ0)L2(B+(n, i)),

∑
C∈C−∪S−

|C ∩ B−(n, i)| ≥ (1 − θ(8δ + δ0)
)

L2(B−(n, i)).

Thus the collection C− ∪ S− realizes the event Sep(n, xi, ri,wi,8δ + δ0). In fact,
some care is needed on the boundary of Q, and one needs to define a variant of the
event Sep for the balls that intersect the boundary. As the same reasoning holds in
this situation, we omit the details. Choosing δ < δ0/8, we conclude that

μ
+,β
�(n)[σn ∈ U ] ≤ ∑

∗=−,+

∑
i∈I∪I bd

P+
n

(
M2

∑
x∈B∗(n,i)

1X(x)=0 > θδL2(B∗(n, i))

)

+ �
w,p
�(n)

[ ⋂
i∈I∪I bd

Sep(n, xi, ri, νA(xi),2δ0)

]
.

Since we chose γ > 20, p ↓ pc, n ↑ ∞ in such a way that n(p − pc)
γ → ∞,

M = √
n,L = √

M , we can apply Lemmas 9, 10, 11, 12 to conclude that the block
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process (X(x)) satisfies the hypothesis of Lemma 6 and that for all i ∈ I ∪ I bd

and for ∗ = +,− the mean of the normalized sum below converges faster to zero
than θ . Thus

lim sup
(n,p)

1

n(p − pc)
log P+

n

[
M2

L2(B∗(n, i))

∑
x∈B∗(n,i)

1X(x)=0 > δθ

]
= −∞.

Next, the sets B(xi, ri), i ∈ I ∪ I bd, are compact and disjoint. Also I ∪ I bd is finite
and fixed, thus applying Lemma 14 with Lemma 8, we get

lim sup
(n,β)

1

(β − βc)n
logμ

+,β
�(n)[σn ∈ U ] ≤ − ∑

i∈I∪I bd

2riτc

(
1 − c′√2δ0

)
≤ −τc

(
P(A) − ε′)(1 − c′√2δ0

)
,

where c′ is the constant appearing in Lemma 14. Let ε > 0. By choosing ε′ such
that ε = ε′(1 + 1/P(A)) and δ0 such that c′√2δ0 < ε′, we finally get the desired
upper bound. �

5.6. Exponential tightness. In order to prove the exponential tightness, we
proceed as in [10]. The same approach works in our context with the exception
that one has to be careful with the scales of renormalization and some extra care
is needed because θ converges to 0 when p ↓ pc. As in [10], we will first define
a roughening σ̃n of the random measure σn. This auxiliary measure will be reg-
ular enough to produce suitable surface energy estimates, and the proof will be
completed by proving that the two random measures σn and σ̃n are exponentially
contiguous.

5.6.1. The rough measure σ̃n and surface energy estimates. In order to con-
struct σ̃n we will work with the box �(n) rescaled by a factor K that will depend
on p in a way to be made precise in the course of our analysis. The renormalized
box will be denoted by

�(n) = {x ∈ Z2 :B(x) ∩ �(n) �= ∅}.
On �(n) we define the 0–1 valued random field X(x), x ∈ �(n), by

∀x ∈ �(n) X(x) = 1R(B ′(x),K),

where R(B ′(x),K) has been defined just before Lemma 9. When X(x) = 1 we
will say that the block B(x) is good, and if X(x) = 0 the block will be said to be
bad. We also need a very similar filling procedure as before but in the renormalized
lattice. Namely, for every connected subset A of �(n) we define

fillA = A ∪⋃R,
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where the union runs over the residual L∞-connected components R of A such
that diam∞ R < logn and R ∩ ∂�(n) = ∅. For each cluster C, we define its
coarse graining C = {x ∈ �(n) :B(x) ∩ C �= ∅}. We say that a cluster C is large if
diamC ≥ K logn, in which case we have diamC ≥ logn.

For a large cluster C we define

Ĉ =⋃
fill A,

where the union runs over all the connected components A of good blocks such
that C ∩ A �= ∅. Lemma 18.1 of [10] ensures that if C1,C2 are two distinct large
clusters, then Ĉ1 ∩ Ĉ2 = ∅. We define σ̃n as the random measure on Q whose
density with respect to the Lebesgue measure is 1Pn − 1Mn + 1(Q\Pn)\Mn where

Pn = ⋃
C large cluster

σ(C)=+

⋃
x∈Ĉ

1

n
B(x) ∪

(
Q
∖

�

(
1 − 6K

n

))
,

Mn = ⋃
C large cluster

σ(C)=−

⋃
x∈Ĉ

1

n
B(x)

∖(
Q
∖

�

(
1 − 6K

n

))
.

This measure σ̃n is regular enough to establish the required exponential tightness.
To do this, we consider the set F̂ of all the L∞-connected components of bad
blocks in �(n) that intersect �(n − 6K logn) and one of the sets,

∂out∞ Ĉ = {x /∈ Ĉ :∃y ∈ Ĉ, |x − y|∞ = 1},
where C is a large cluster.

LEMMA 21. Let a > 5. There exist two positive constants λ and c = c(a) such
that if K > c(p − pc)

−a and n is such that n > K logn, then, for u > 0,

�w
�(n)[|F̂ | ≥ u] ≤ exp

(−λ(p − pc)Ku
)

and

P+
n [P(Pn) + P(Mn) ≥ u] ≤ exp

(
−λ

u − 16

8
(p − pc)n

)
.

PROOF. Let C be a large cluster. By definition, the L∞ outer boundary of Ĉ

consists of bad blocks whenever Ĉ �= ∅. In the case Ĉ = ∅, we define ∂out∞ Ĉ as Ĉ

which again consists only of bad blocks. Let F be an L∞-connected component
of bad blocks intersecting ∂out∞ Ĉ and the rescaled box �(n − 6K logn). As proved
in Lemma 18.2 of [10], we have |F | ≥ logn. Thus

�w
�(n)[|F̂ | ≥ u] ≤ �w

�(n)

[∣∣{x ∈ �(n − 6K logn) : |C(x)| ≥ logn}∣∣≥ u
]
,
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where C(x) denotes the L∞-connected component of occupied sites containing
x [a site y is said to be occupied if X(y) = 0]. Let a > 5, Lemma 9 ensures the
existence of two positive constants λ and c = c(a) such that if K > c(p − pc)

−a ,
then

sup
x∈�(n)

log�[X(x) = 0|X(z), |x − z|∞ ≥ 3] ≤ −λ(p − pc)K.

Combining this with Lemma 5, we get that

�w
�(n)[|F̂ | ≥ u] ≤ 2

∑
j≥u

exp
(
j

(
c − 1

9
λ(p − pc)K

))
,

which yields the first claim.
For the second claim, note that the boundaries of Pn and Mn are located either

on ∂Q ∪ ∂�(1 − 6K logn/n) or on the faces of the blocks of F̂ . Thus P(Pn) +
P(Mn) ≤ 16 + 8K

n
|F̂ | so that

P+
n [P(Pn) + P(Mn) ≥ u] ≤ �w

�(n)

[
|F̂ | ≥ (u − 16)

n

8K

]
≤ exp

(
−(p − pc)λK(u − 16)

n

8K

)
,

which yields the desired result. �

5.6.2. Exponential contiguity. Here we show that the rough measure σ̃n is a
good approximation of the original random measure σn. Let f : R2 → R be a con-
tinuous function having compact support. In order to estimate |σn(f )− σ̃n(f )|, we
use another block coarse graining with scale L = K logn. We fix ε > 0 and define
for y ∈ Z2 the block variable Y(y) as the indicator function of the event

R
(
B ′(y),

√
L
)∩ V (B(y), ε) ∩ W(B(y), ε).

Let

A = {y ∈ Z2 :B(y) ∩ �(n − 6L) �= ∅}.
Note that |A|L2 ≤ n2. We further introduce

∀x ∈ �(n) Bn(x) = 1

n
B(x),

A0 = ⋃
y∈A : Y (y)=0

Bn(y),

A1 = ⋃
y∈A : Y (y)=1

Bn(y)
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and make the following decomposition:

|σn(f ) − σ̃n(f )| ≤
∣∣∣∣∫

A0

f (x)
(
dσn(x) − dσ̃n(x)

)∣∣∣∣
+
∣∣∣∣∫

(Q\A0)\A1

f (x)
(
dσn(x) − dσ̃n(x)

)∣∣∣∣(29)

+
∣∣∣∣∫

A1

f (x)
(
dσn(x) − dσ̃n(x)

)∣∣∣∣.
We bound the first term of (29) as follows:∣∣∣∣∫

A0

f (x)
(
dσn(x) − dσ̃n(x)

)∣∣∣∣≤ 2‖f ‖∞
1

θ |A|
∑
y∈A

1Y (y)=0.

In a similar way we bound the second term:∣∣∣∣∫
(Q\A0)\A1

f (x)
(
dσn(x) − dσ̃n(x)

)∣∣∣∣
≤ L2(�(n) \ �(n − 6L))

n2

(
1

θ
+ 1

)
‖f ‖∞ ≤ 24L

θn
‖f ‖∞.

For the third term of (29), we further decompose it into∣∣∣∣∫
A1

f (x)
(
dσn(x) − dσ̃n(x)

)∣∣∣∣
≤ 1

θn2

∣∣∣∣ ∑
y∈A : Y (y)=1

∑
C⊂B(y)

C∩∂ inB(y)=∅

σ(C)
∑
x∈C

f (x/n)

∣∣∣∣
(30)

+ 1

θn2

∣∣∣∣ ∑
y∈A : Y (y)=1

∑
x∈B(y)\C(y)

x↔∂ inB(y)

σ (x)f (x/n)

∣∣∣∣

+
∣∣∣∣ 1

θn2

∑
y∈A

Y(y)=1

σ(C(y))
∑

x∈C(y)

f (x/n) −
∫
A1

f (x) dσ̃n(x)

∣∣∣∣,
where C(y) denotes the unique crossing cluster of B(y) whenever Y(y) = 1. Using
the definition of the good blocks, we further bound the second term of the right-
hand side in (30):

1

θn2

∣∣∣∣ ∑
y∈A : Y (y)=1

∑
x∈B(y)\C(y)

x↔∂ inB(y)

σ (x)f (x/n)

∣∣∣∣≤ 2ε‖f ‖∞.
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Since f is continuous and has compact support, we have for K logn/n small
enough that for all y ∈ Z2 supx,z∈Bn(y) |f (x) − f (z)| ≤ ε‖f ‖∞. Using this ob-
servation and the properties of the good blocks, we can bound the third term of
(30) by∣∣∣∣ 1

θn2

∑
y∈A

Y(y)=1

σ(C(y))
∑

x∈C(y)

f (x/n) −
∫
A1

f (x) dσ̃n(x)

∣∣∣∣

≤
∣∣∣∣[ ∑

y∈A

Y(y)=1

(
1

θn2 σ(C(y))|C(y)| − σ̃n(Bn(y))

)]
max

x∈Bn(y)
f (x)

∣∣∣∣

+ 1

θn2

∣∣∣∣ ∑
y∈A

Y(y)=1

σ(C(y))
∑

x∈C(y)

(
f

(
x

n

)
− max

z∈Bn(y)
f (z)

)∣∣∣∣(31)

+
∣∣∣∣ ∑

y∈A

Y(y)=1

∫
Bn(y)

f (x) − max
z∈Bn(y)

f (z) dσ̃n(x)

∣∣∣∣

≤ ‖f ‖∞
∑
y∈A

Y(y)=1

∣∣∣∣ 1

θn2 σ(C(y))|C(y)| − σ̃n(Bn(y))

∣∣∣∣+ ε(ε + 2)‖f ‖∞.

Next, we study the sum in the above inequality. Let y ∈ A such that Y(y) = 1.
Several cases arise.

- Bn(y) ⊂ Mn and σ(C(y)) = −1. We have then∣∣∣∣ 1

θn2 σ(C(y))|C(y)| − σ̃n(Bn(y))

∣∣∣∣= 1

n2

∣∣∣∣−|C(y)|
θ

+ |B(y)|
∣∣∣∣≤ ε

|B(y)|
n2 .

- Bn(y) ⊂ Pn and σ(C(y)) = 1: this case is symmetric to the previous one and∣∣∣∣ 1

θn2 σ(C(y))|C(y)| − σ̃n(Bn(y))

∣∣∣∣≤ ε
|B(y)|

n2 .

- Bn(y) ∩ Mn �= ∅ and Bn(y) �⊂ Mn, then Bn(y) meets the boundary of Mn.
- Bn(y) ∩ Pn �= ∅ and Bn(y) �⊂ Pn, then Bn(y) meets the boundary of Pn.

In the two last cases, we bound crudely as follows:∣∣∣∣ 1

θn2 σ(C(y))|C(y)| − σ̃n(Bn(y))

∣∣∣∣≤ (2 + ε)
|B(y)|

n2 .

This will suffice because in this case

Bn(y) ⊂
{
x ∈ R2 :d∞

(
x, (∂Pn ∪ ∂Mn) ∩ �(1 − 3L/n)

)≤ L

n

}
.
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Moreover,

L2
({

x ∈ R2 :d∞
(
x, (∂Pn ∪ ∂Mn) ∩ �(1 − 3L/n)

)≤ L

n

})

≤ (|∂ innPn| + |∂ innMn|)
(

2L + 2

n

)2

≤ (P(Mn) + P(Pn)
)9L2

n
.

- (Bn(y) ⊂ Mn and σn(Bn(y)) > 0) or (Bn(y) ⊂ Pn and σn(Bn(y)) < 0). These
conditions imply that the whole block Bn(y) has been added to Mn or Pn by the
filling operation. Yet the regions which are added by the filling operation have a
diameter at most K(logn − 1), so this case cannot occur.

- Bn(y) ∩ Mn = ∅ and Bn(y) ∩ Pn = ∅. In this case, B(y) ⊂ F̂ .

Summing the previous inequalities, we get

|σn(f ) − σ̃n(f )|
≤ 1

θn2

∣∣∣∣∑
C∈S

σ(C)
∑
x∈C

f (x/n)

∣∣∣∣
+ ‖f ‖∞

(
2

θ |A|
∑
y∈A

1Y (y)=0 + L2

θn2 |F̂ | + 9(2 + ε)
L2

n

(
P(Mn) + P(Pn)

))

+ ‖f ‖∞
(

24L

θn
+ ε(ε + 6)

)
,

where

S = ⋃
y∈A : Y (y)=1

{C ∈ B(y) :C ∩ ∂ inB(y) = ∅}.

Note that by the definition of a good block, any cluster C of a good block B(y) that

has a diameter larger than
√

L = √
K logn is connected to the crossing cluster of

B ′(y), and thus, such a cluster C is connected to ∂ inB(y). Therefore, any cluster
of S has a diameter that is smaller than

√
K logn. Next, we analyze the deviations

of the first term in the last inequality.
Since |S| ≤ n2, we have

P+
n

[
1

θn2

∣∣∣∣∑
C∈S

σ(C)
∑
x∈C

f

(
x

n

)∣∣∣∣> ε‖f ‖∞
]

≤ ∑
ω∈��(n)

P+
n

[
1

|S|
∣∣∣∣∑
C∈S

YC

∣∣∣∣> εθ

K logn

∣∣∣ω]�w,p
�(n)[ω],

where YC = σ(C)
∑

x∈C f (x/n)/(‖f ‖∞K logn).
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Under P+
n [·|ω], the sequence (YC,C ∈ S(ω)) is independent and takes its values

in [−1,1] (recall that the diameters of the clusters of S are bounded by
√

K logn).
Therefore we can apply Theorem 7 to get

P+
n

[
1

θn2

∣∣∣∣∑
C∈S

σ(C)
∑
x∈C

f

(
x

n

)∣∣∣∣> ε‖f ‖∞
]

≤ 2
∑

ω∈��(n)

exp
[
−
(

εθ

K logn

)2

|S|
]
�

w,p
�(n)[ω]

≤ 2�
w,p
�(n)

[
1

|A|
∑
y∈A

1Y (y)=0 ≥ ε

]

+ 2 exp
(
−(1 − ε)(1 − (1 + ε)θ)ε2θ2n2

(K logn)3

)
,

where we used the fact that

|S| ≥ |{y ∈ A :Y(y) = 1}|L2(1 − (1 + ε)θ)

supC∈S (diam2(C))
.

Therefore, by imposing

n ≥ 24K

εθ
logn,(32)

we have

μ+,β
n [|σn(f ) − σ̃n(f )| > ‖f ‖∞(ε + 10ε)]

≤ �
w,p
�(n)

[
|F̂ | > εθ

n2

L2

]
+ P+

n

[
P(Mn) + P(Pn) > ε

n

L2

]
(33)

+ 2 exp
(
−(1 − ε)(1 − (1 + ε)θ)ε2θ2n2

(K logn)3

)

+ 3�
w,p
�(n)

[
1

|A|
∑
y∈A

1X(y)=0 ≥ εθ

2

]
.

By Lemma 21, for any a > 5, there exists a positive constant c such that if we
impose that

K > c(p − pc)
−a and n > K logn,(34)

then

�
w,p
�(n)

[
|F̂ | > εθ

n2

L2

]
≤ exp

(
−λ(p − pc)

εθ

K

n2

log2 n

)
.(35)
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If we further impose that

εn

(K logn)2 > 32,(36)

then Lemma 21 gives

P+
n

[(
P(Mn) + P(Pn)

)
> ε

n

L2

]
≤ exp

(
−λε

16

p − pc

K2

n2

log2 n

)
.(37)

Furthermore, under condition (34), Lemmas 9, 10, 11 imply that the block process
(Y (y), y ∈ A) satisfies the hypothesis of Lemma 6 and that the mean of the nor-
malized sum below converges to zero faster than θ . Thus

lim sup
n↑∞,p↓pc

1

(p − pc)
log�

w,p
�(n)

[
1

|A|
∑
y∈A

1Y (y)=0 ≥ εθ

2

]
= −∞.(38)

Finally, we verify that if we choose a > 5 and c large enough and impose

K > c(p − pc)
−a and n > K3 log3 n,(39)

then for p close enough to pc, conditions (32), (34) and (36) are satisfied. More-
over, if n ↑ ∞ and p ↓ pc in a regime where (39) is satisfied, then (35), (37) and
(38) imply that all the terms of (33) decay exponentially fast with a speed larger
than (p−pc)n. Thus, when n ↑ ∞ and p ↓ pc in such a way that n(p−pc)

20 ↑ ∞,
we have for every positive ε

lim sup
(n,p)

1

n(p − pc)
log P+

n

(|σn(f ) − σ̃n(f )| > ε
)= −∞.

Together with Lemma 21, this concludes the proof of the exponential tightness.

6. The lower bound. We are only left with the lower bound in order to finish
our large deviation principle.

6.1. Preparatory lemmas. To prove the lower bound we will consider an event
whose probability is of the correct order. For this we will use the following lemma
to approximate sets of finite perimeter with polyhedral sets.

LEMMA 22. Let A be a subset of Q = [−1,1]2 having finite perimeter. For
any ε > 0, there exists a finite union of polyhedral sets D such that

D ⊂ ◦
Q, L2(A�D) ≤ ε, P(D) ≤ P(A) + ε.

PROOF. For the proof, we refer the reader to [10]. �
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In addition to that, in order to create pieces of the interface that are well local-
ized we will need a lower bound for the existence of an interface inside a certain
region. Let x be a site in Z2 + (1/2,1/2), and let

H
(
0, nx,

√
n
)= {

y ∈ R2 :d∞
(
y, [(1/2,1/2), nx])≤ √

n
}

be the region formed by the points of R2 that are at a ∞-distance less than
√

n

from the segment [(1/2,1/2), nx]. We will need a lower bound on the following
event:

Wall
(
0, nx,

√
n
)= {

(1/2,1/2) ↔ nx by an open dual path in H
(
0, nx,2

√
n
)}

.

LEMMA 23. Let x ∈ Q + (1/2,1/2) be a dual site and let a > 5. If p ↓ pc

and n ↑ ∞ in such a way that n > (p − pc)
−a , then

lim inf
(n,p)

1

(p − pc)n
log�

w,p
�(n)

[
Wall

(
0, nx,

√
n
)]≥ −τc|x|.

PROOF. We consider the case x = (1,0) + (1/2,1/2), the proof for a general
x is similar. Let M > 0 be an integer. We denote by n = Mq + r the Euclidean
division of n by M . Using translation invariance and the FKG inequality, we get
that

log�p∞
[
Wall

(
0, nx,

√
n
)]≥ q log�p∞

[
Wall

(
0,Mx,

√
M
)]

+ log�p∞
[
Wall

(
0, rx,

√
r
)]

.

Now, note that the event Wall(0,Mx,
√

M) is realized as soon as 0 ↔ Mx by
an open dual path and there exists no open dual path from H(0, nx,

√
n/2) to

H(0, nx,
√

n)c. Thus, by Proposition 4,

�p∞
[
Wall

(
0,Mx,

√
M
)]≥ �p∞[0 ↔ Mx by an open dual path]

− 4n3/2e−λ(p−pc)
√

n,

where λ is a positive constant. This gives us the following lower bound:

1

(p − pc)n
log�p∞

[
Wall

(
0, nx,

√
n
)]

≥ q

(p − pc)n
log�p∞[0 ↔ Mx by an open dual path]

(40)

+ q

(p − pc)n
log
[
1 − 4n3/2 exp(−λ(p − pc)

√
n)

�
p∞[0 ↔ Mx by an open dual path]

]

+ 1

(p − pc)n
log�p∞

[
Wall

(
0, rx,

√
r
)]

.

Now we consider a double sequence M ↑ ∞,p ↓ pc such that M(p−pc)/ logM ↑
∞, and we suppose also that (p−pc)

√
n/M ↑ ∞. Then, by Proposition 4 we have
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that:

• q

(p − pc)n
∼ 1

(p − pc)M
,

• lim
M,p

1

(p − pc)M
log�p∞[0 ↔ Mx by an open dual path] = −τc,

• lim
n,M,p

log
[
1 − 4n3/2 exp(−λ(p − pc)

√
n)

�
p∞[0 ↔ Mx by an open dual path]

]
= 0.

Since r < M we have by the finite energy property that there exist two constants
c, λ > 0 such that �

p∞[Wall(0, rx,
√

r)] ≥ c exp(−λM); thus in the regime speci-
fied above we have that

lim
n,M,p

1

(p − pc)n
log�p∞

[
Wall

(
0, rx,

√
r
)]= 0.

Thus, from (40) we get that for every sequence (n,p) → (∞,pc) such that there
exists M satisfying (p − pc)

√
n/M ↑ ∞ and M(p − pc)/ logM ↑ ∞, then

lim inf
(n,p)

− 1

(p − pc)n
log�p∞

[
Wall

(
0, nx,

√
n
)]≥ τc.

The result for the finite volume measure �
w,p
�(n) follows from Lemma 8. �

6.2. Proof of the lower bound. Now we have all the ingredients to complete
the last part of the large deviation principle, namely the proof of the lower bound.

PROPOSITION 24. Let a > 5 and ν ∈ M(Q). If n ↑ ∞ and β ↓ βc in such a
way that n(β − βc)

a ↑ ∞, then for any weak neighborhood U of ν

lim inf
(n,p)

1

n(β − βc)
logμ+

�(n)[σn ∈ U ] ≥ −J (ν).

PROOF. Let ν ∈ M(Q). The statement is not trivial only if J (ν) < +∞. In
this case, by the definition of the rate function J , there exists a Borel set A of Q

such that ν is the measure with density −1A + 1Q\A with respect to the Lebesgue
measure and J (ν) = τcP(A). Let U be a weak neighborhood of ν, and let ε > 0.
By Lemma 22, there exists a polyhedral set D such that D ⊂ ◦

Q, the measure ν̃

with density −1D + 1Q\D with respect to the Lebesgue measure belongs to U
and P(D) < P(A) + ε. By definition, the boundary ∂D is a union of s segments
included in

◦
Q which we denote by [ai, ai+1], 1 ≤ i ≤ s. Thus∑

1≤i≤s

|ai − ai+1| ≤ P(A) + ε.

Now we will give a lower bound for the probability that σn stays in a neighborhood
of ν̃. Let f be a continuous function on Q. For reasons that will be clear a bit later,
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we choose

δ = θ

6(1 + θ)(P(Q) + P(D))
.(41)

In order to evaluate the probability that |σn(f )− ν̃(f )| ≤ ε, we assume that we are
in a regime where n ↑ ∞ and p ↓ pc in such a way that nδ ↑ ∞ and rescale the
lattice by a factor L = �δn�. Next, we define the sets

A = {y ∈ Z2 :Bn(y) ∩ Q �= ∅}
and

E = {y ∈ A :Bn(y) ∩ Dc = ∅}, F = {y ∈ A :Bn(y) ∩ D = ∅}.
By choosing p close enough to pc, we can assume that

L2
(
Q
∖( ⋃

y∈E∪F

Bn(y)

))
≤ 6

(
P(Q) + P(D)

)
δ.(42)

Moreover |E|+|F | ≤ 1/δ2. The set E (respectively, F ) can be regarded as a coarse
graining of the region inside D (respectively, outside D). To evaluate σn(f )− ν̃(f )

we will restrict ourselves to an event E that gives nice properties to the blocks and
such that E has the right probability of decay. For this let us define the block
process, (Y (x), x ∈ Z2), as the indicator functions of the events

R(B ′(x),L1/8) ∩ V (B(x), ε) ∩ W(B(x), ε), x ∈ Z2.

We choose E to be the intersection of the events

{Y(x) = 1}, x ∈ E ∪ F, Wall
(
Ai,Ai+1, n,

√
n
)
, 1 ≤ i ≤ s,

where Ai is a site on the dual of �(n) that is closest to nai . Let us evaluate the
probability of E

P+
n (E ) ≥ P+

n

[ ⋂
x∈E∪F

{Y(x) = 1}
∣∣∣ ⋂

1≤i≤s

Wall
(
Ai,Ai+1, n,

√
n
)]

(43)

× �
w,p
�(n)

[ ⋂
1≤i≤s

Wall
(
Ai,Ai+1, n,

√
n
)]

.

First observe that
⋂

1≤i≤s Wall(Ai,Ai+1, n,
√

n) occurs outside the set⋃
x∈E∪F B̃ ′(x) where

B̃ ′(x) = {y ∈ Z2 :d(y, B̃(x)) ≤ L/10}.
Let a > 5. The estimates of Lemmas 9, 10, 11 ensure that, uniformly over the
boundary conditions on B ′(x), the probability P+

n [Y(x) = 1] goes to one when
n ↑ ∞ and p ↓ pc in such a way that

n(p − pc)
aδ(p) ↑ ∞.(44)
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Thus by [29] the first factor of (43) goes to 1. On the other hand, by the FKG
inequality and by Lemma 23, if n > (p − pc)

−a , then

lim inf
n,p

1

n(p − pc)
log�

w,p
�(n)

[ ⋂
1≤i≤s

Wall
(
Ai,Ai+1, n,

√
n
)]

≥ − ∑
1≤i≤s

|Ai+1 − Ai |τc.

Combining the previous inequalities we get

lim inf
n,p

1

n(p − pc)
log P+

n [E ] ≥ −τcP(A) − τcε.(45)

Now we are left with the evaluation of |σn(f ) − ν̃(f )| when E occurs. Suppose
that E occurs and let Ei, i ∈ I (respectively, Fj , j ∈ J ) be the connected com-
ponents of E (respectively, F ). For i ∈ I (respectively, j ∈ J ), all the crossing
clusters of the good blocks B(x), x ∈ Ei (respectively, x ∈ Fj ) are connected and

belong to one big cluster that we denote by Ci− (respectively, C
j
+). The events

Wall(Ak,Ak+1, n,
√

n),1 ≤ k ≤ s isolate completely the set E from F ; thus for
every i ∈ I and j ∈ J , the two clusters Ci− and C

j
+ are disjoint, and, moreover,

Ci− cannot be connected to ∂�(n). Now suppose for a while that all the clusters

Ci−, i ∈ I , are colored negatively and that all the clusters C
j
+, j ∈ J , are colored

positively. We will see later that this restriction does not decrease the probability
too much.

Next, we define

S = ⋃
y∈E∪F

{C ⊂ B(y) :C ∩ ∂ inB(y) = ∅}

and keeping in mind the suppositions made in the last paragraph, we do the fol-
lowing decomposition:

|σn(f ) − ν̃(f )| ≤ 1

θn2

∣∣∣∣∑
C∈S

σ(C)
∑
x∈C

f (x/n)

∣∣∣∣
+ 1

θn2

∣∣∣∣ ∑
y∈E∪F

∑
x∈B(y)\C(y)

x↔∂ inB(y)

σ (x)f (x/n)

∣∣∣∣

+
∣∣∣∣ ∑
y∈E∪F

(
σ(C(y))

θn2

∑
x∈C(y)

f (x/n) −
∫
Bn(y)

f (x) dν̃(x)

)∣∣∣∣
+
∣∣∣∣∫

Q\⋃y∈E∪F Bn(y)
f (x)

(
dσn(x) − dν̃(x)

)∣∣∣∣.
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The second and the third term can be bounded as in the proof of the exponential
contiguity by using the properties of the good blocks and the imposed coloring of
the clusters (Ci−, i ∈ I ) and (C

j
+, j ∈ J ). To deal with the fourth term of the last

inequality, we use (41) and (42) to get

|σn(f ) − ν̃(f )| ≤ 1

θn2

∣∣∣∣∑
C∈S

σ(C)
∑
x∈C

f

(
x

n

)∣∣∣∣+ 2ε‖f ‖∞ + ε(ε + 4)‖f ‖∞.

Thus, the estimate burns down to the analysis of the deviations of the first term
in the last inequality. Let E ′ be the event E intersected with the color constraint
made above. By the same sort of computations as in the proof of the exponential
contiguity, we obtain

P+
n

[
1

θn2

∣∣∣∣∑
C∈S

σ(C)
∑
x∈C

f

(
x

n

)∣∣∣∣> ε‖f ‖∞
∣∣∣E ′
]

≤ P+
n

[
1

|S|
∣∣∣∣∑
C∈S

YC

∣∣∣∣> εθ

(δn)1/4

∣∣∣E ′
]
,

where YC = σ(C)
∑

x∈C f (x/n)/(‖f ‖∞(δn)1/4). Fix ω ∈ E ′. Observe that under
the measure P+

n [·|ω], the random variables (YC,C ∈ S) are independent and take
their values in [−1,1]. So we can apply Theorem 7 to control this deviation, and
we get

μ+,β
n

(|σn(f ) − ν̃(f )| ≥ ‖f ‖∞(7ε + ε2)
)

≥ 1

2|E|+|F |
(
1 − exp(−cε2θ3/2n3/2)

)
P+

n [E ],
where c is a positive constant.

We can do the same reasoning with any finite number of continuous functions
f1, . . . , fk to get

μ+
n [∀l ∈ {1, . . . , k} |σn(fl) − ν̃(fl)| ≥ ε]

≥ 1

2|E|+|F |
(
1 − exp(−cε2θ3/2n3/2)

)
P+

n [E ].

Finally, since |E| + |F | ≤ 1/δ2(p) and by (45) we get that if n ↑ ∞ and p ↓ pc in
such a way that (44) is satisfied, then for every weak neighborhood U of ν,

∀ε > 0 lim inf
n,β

1

n(β − βc)
logμ+,β

n [σn ∈ U ] ≥ −J (ν) − ετc.

Sending ε to 0 yields the desired lower bound. �
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