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HAUSDORFF MEASURE OF ARCS AND BROWNIAN
MOTION ON BROWNIAN SPATIAL TREES

BY DAVID A. CROYDON

University of Warwick

A Brownian spatial tree is defined to be a pair (T , φ), where T is the
rooted real tree naturally associated with a Brownian excursion and φ is a
random continuous function from T into Rd such that, conditional on T ,
φ maps each arc of T to the image of a Brownian motion path in Rd run for
a time equal to the arc length. It is shown that, in high dimensions, the Haus-
dorff measure of arcs can be used to define an intrinsic metric dS on the set
S := φ(T ). Applications of this result include the recovery of the spatial tree
(T , φ) from the set S alone, which implies in turn that a Dawson–Watanabe
super-process can be recovered from its range. Furthermore, dS can be used
to construct a Brownian motion on S, which is proved to be the scaling limit
of simple random walks on related discrete structures. In particular, a limiting
result for the simple random walk on the branching random walk is obtained.

1. Introduction. Super-processes are measure-valued diffusions that arise
naturally as the scaling limits of discrete branching particle models in Euclidean
space; see [26] for an introduction to this area. Describing the genealogy of super-
processes provided one of the original motivations for the study of continuous
branching structures, which has been intense in recent years; [22] is an up-to-date
survey article. The second key component in defining a super-process is the de-
scription of how “particles” proceed through Rd . A particularly important exam-
ple of a super-process is the Dawson–Watanabe super-process, (Yt )t≥0, say which
has a binary branching structure and whose spatial motion is given by Brown-
ian motion in Rd (see Section 3 for a precise definition). If d ≥ 2, it is known
that, for each fixed t > 0, the measure Yt can almost surely be obtained from its
support S(Yt ) as a Hausdorff measure on this set [12, 23]; when d ≥ 3, another
representation of Yt is provided in [28]. Similarly, when d ≥ 4, for almost-every
realization of the super-process, it is possible to reconstruct the total occupation
measure

∫ ∞
0 Yt dt of the super-process from its range R1, which is defined be-

low at (3.2), as a Hausdorff measure [20]. In high dimensions, by defining an
intrinsic metric on the range of the super-process, we will show that it is possible
to separate the branching structure and spatial motion of the super-process and,
thereby, extend these results. Specifically, we are able to prove that, for d ≥ 8, the
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Dawson–Watanabe super-process (Yt )t≥0 can almost surely be reconstructed from
knowledge of its range R1 alone (see Corollary 5.4).

The framework for this article is the space of spatial trees introduced by
Duquesne and Le Gall in [14]. In particular, we will consider Brownian spatial
trees, by which we mean pairs of the form (T , φ), where T is the rooted real
tree naturally associated with a Brownian excursion and φ is a random continuous
function from T into Rd such that, conditional on T , φ maps each arc of T to the
image of a Brownian motion path in Rd run for a time equal to the arc length (see
Sections 2.1 and 2.2 for details). The key step in establishing the result described at
the end of the previous paragraph is showing that, when d ≥ 8, the set S := φ(T )

almost surely determines the spatial tree (T , φ) (see Corollary 5.3), and to do this,
we apply two main ideas. First, we use known intersection properties of super-
processes to check that, when d ≥ 8, the map φ :T → S is a homeomorphism
(see Section 3). It follows that S is almost surely a dendrite (an arcwise-connected
topological space containing no subset homeomorphic to the circle) and, therefore,
between any two points of S there is a unique arc in S. Second, it was proved in
[7] that, when d ≥ 3, a Brownian motion path in Rd run for a time t has Haus-
dorff measure t , almost surely, with respect to the measure function cdx2 ln lnx−1,
where cd is a deterministic constant that depends only upon d . Since arcs in S
are, by construction, segments of Brownian motion paths, we can combine these
two observations to define a metric dS on S by setting, for x1, x2 ∈ S, the distance
dS(x1, x2) to be equal to the Hausdorff measure, with respect to the measure func-
tion cdx2 ln lnx−1, of the unique arc between x1 and x2 in S. It is then possible to
demonstrate that φ is actually an isometry from (T , dT ), where dT is the natural
metric on T , to (S, dS) almost surely, and, consequently, we obtain that (T , φ)

and (S, I ) are equivalent spatial trees almost surely, where I is the identity map
on Rd (see Proposition 5.2).

A second application of the metric dS is that it allows the construction of a
natural diffusion on the set S. First note that, by applying results of [18], a Dirichlet
form can be constructed on any compact real tree equipped with a suitable Borel
measure, and following the arguments of [9], Section 8, it is possible to check
that the corresponding diffusion is actually, a Brownian motion on the relevant
space, as defined by Aldous in [2]. Since (S, dS) is a real tree, it fits naturally
into this setting and, therefore, to define a Brownian motion XS = (XS

t )t≥0 on S,
it remains to choose an appropriate measure. For d ≥ 8, the canonical measure
on S, which we will denote by μS , is equal to the Hausdorff measure on S with
measure function proportional to x4 ln lnx−1 ([20], Theorem 6.1), and can also be
interpreted as μT ◦ φ−1, where μT is the natural measure on T (see Sections 2.1
and 2.2). Consequently, using the fact that φ is an isometry, it is possible to show
that the resulting process XS can also be written as φ(XT ) almost surely, where
XT is the Brownian motion associated with T and μT (see Proposition 6.1); we
observe that φ(XT ) is actually defined for any d ≥ 1. In addition to defining the
laws of φ(XT ) and XS for almost-every realization of (T , φ) and S respectively,



948 D. A. CROYDON

which are the quenched versions of the laws, by adapting the arguments of [8],
we demonstrate the measurability of the construction, which allows us to define
related annealed laws (where we average out over all realizations of the spatial
trees).

While we do not pursue it in depth here, let us remark that the represen-
tation φ(XT ) of XS , where φ is an isometry, means that we are immediately
able to deduce many properties of the Brownian motion on S from known re-
sults about XT . For example, it follows from results appearing in [9] that, when
d ≥ 8, the diffusion XS on almost-every realization of S admits a transition density
(pS

t (x, y))x,y∈S,t>0 that satisfies

lim
t→0

2 lnpS
t (x, x)

− ln t
= 4

3
∀x ∈ S.

Using the terminology of the diffusion on fractal literature, this result could be in-
terpreted as a version of the statement that the spectral dimension of the Brownian
motion on S is 4/3, almost surely. More detailed transition density asymptotics
are obtained in [9]. Furthermore, asymptotics for the spectrum of the generator of
the diffusion XS are consequences of the results appearing in [10].

One reason for wanting to define a canonical process on the set S is that it
provides an archetype for the scaling limit of the simple random walks on the
graph-based models that converge in some sense to the integrated super-Brownian
excursion, which was originally defined in [4] and can be thought of as the mea-
sure μS conditioned to have total mass equal to one. Examples of discrete models
which fall into this category include conditioned branching random walks, lattice
trees in high dimensions and large critical percolation clusters in high dimensions
(see [27], Section 16, for background). To prove a first result in this direction, we
consider a sequence {(Tn,φn)}n≥1 of random “graph spatial trees,” by which we
mean that Tn is a random (rooted) ordered graph tree and φn is a random embed-
ding of Tn into Rd . Our main assumption is that, for each n, Tn has n vertices,
and also that the discrete tours associated with (n−1/2Tn,n

−1/4φn) converge to the
normalized Brownian tour; in both the discrete and continuous cases, a tour is a
continuous function that encapsulates the branching and spatial motion of the rele-
vant spatial trees (see Sections 2 and 8 for exact definitions). Under the appropriate
versions of this condition, we are able to deduce quenched and annealed versions
of the statement that the process(

n−1/4φn(X
Tn

n3/2t
)
)
t≥0,

where XTn is the usual discrete time simple random walk on the vertices of Tn

started from the root, converges to the process φ(XT ), which, as remarked above,
is identical to the process XS in high dimensions (see Theorems 8.1 and 9.1). To
prove these results, we apply ideas from [8], which demonstrates the convergence
of (n−1/2X

Tn

n3/2t
)t≥0 to XT under a related assumption that does not include any
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spatial component. Branching random walks with a critical offspring distribution
that decays exponentially at infinity and a step distribution that satisfies an o(x−4)

tail bound, conditioned on the total number of offspring, are a special case of graph
spatial trees known to satisfy assumptions that allow the above scaling limit results
to be applied (see Section 10 for details).

The article is arranged as follows. In Section 2 we introduce much of the nota-
tion for real trees, spatial trees and tours that will be used throughout the article.
Section 3 contains a proof of the fact that φ :T → S is a homeomorphism in high
dimensions, and in Section 4 we investigate the Hausdorff measure of arcs of S.
The first half of the article is concluded in Section 5, where we define dS , verify
that φ : (T , dT ) → (S, dS) is an isometry in high dimensions and prove the super-
process result described in our opening paragraph. The second half of the article
is devoted to the study of XS and φ(XT ). We first define the quenched and an-
nealed laws of these processes in Sections 6 and 7, respectively. The quenched and
annealed convergence results for simple random walks on graph spatial trees are
then proved in Sections 8 and 9, respectively. Finally, in Section 10 we apply these
results to the simple random walk on the branching random walk.

2. Notation and preliminaries.

2.1. Real trees and excursions. At the core of our discussion will be the col-
lection of metric spaces known as real trees, for which we use the following de-
finition. Note that much of the notation and many of the definitions used in this
section are borrowed from [14] and other works by the same authors.

DEFINITION 2.1. A metric space (T , dT ) is a real tree if the following prop-
erties hold for every σ1, σ2 ∈ T :

(a) There is a unique isometric map γ T
σ1,σ2

from [0, dT (σ1, σ2)] into T such
that γ T

σ1,σ2
(0) = σ1 and γ T

σ1,σ2
(dT (σ1, σ2)) = σ2.

(b) If γ is a continuous injective map from [0,1] into T such that γ (0) = σ1
and γ (1) = σ2, then γ ([0,1]) = γ T

σ1,σ2
([0, dT (σ1, σ2)]).

A rooted real tree is a real tree (T , dT ) with a distinguished vertex ρ = ρ(T )

called the root.

All the real trees we consider will be rooted, although for brevity we will often
write simply T to represent (T , dT , ρ). The arc between two vertices σ1 and σ2
of a real tree T will be denoted by �T

σ1,σ2
; more specifically, �T

σ1,σ2
is the image

of γ T
σ1,σ2

. An observation that will be useful to us is that between any three points
σ1, σ2, σ3 of a real tree T there is a unique branch-point bT (σ1, σ2, σ3) ∈ T that
satisfies

{bT (σ1, σ2, σ3)} = �T
σ1,σ2

∩ �T
σ2,σ3

∩ �T
σ3,σ1

.(2.1)
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A useful decomposition of a real tree is provided by the subsets containing points
equidistant from the root. In particular, define the subset of T at level t to be

Tt := {σ ∈ T :dT (ρ, σ ) = t}.(2.2)

The height of a real tree is given by h(T ) := sup{dT (ρ, σ ) :σ ∈ T }, and we clearly
have Tt = ∅ for t > h(T ). We will also be interested in the decomposition of a
real tree T into the subset below a certain level and the collection of subtrees of T
that start at this level. To introduce this, define the set

trt (T ) := {σ ∈ T :dT (ρ, σ ) ≤ t}(2.3)

which is the truncation of the real tree T at level t . Furthermore, let T i,o, i ∈ It ,
be the connected components of the open set T \ trt (T ). Note that if h(T ) ≤ t ,
the collection It is empty. Observe that the ancestor of σ at level t [the unique
point on the arc between ρ and σ with dT (ρ, σ ) = t] must be the same for each
σ ∈ T i,o, and we will denote it by ρi . Now define T i := T i,o ∪ {ρi}, which is a
real tree when endowed with the metric induced by dT and we set its root to be ρi .

Of course, there are collections of real trees that are indistinguishable as metric
spaces. We will denote by T the set of equivalence classes of compact rooted real
trees, under the assumption that two rooted real trees are equivalent if and only if
there exists a root preserving isometry between them. The set T can be equipped
with the (pointed) Gromov–Hausdorff distance, dGH, say, and it has been proved
that (T, dGH) is a Polish space; see [16], Theorem 1. In our discussion of the prop-
erties of elements of T it will suffice to consider one particular real tree of each
equivalence class. For detailed remarks about the technicalities of defining objects
such as local times as we do below, see [14].

A particularly useful representation of the real trees that are studied in this ar-
ticle is provided through excursions. Define the space of excursions, V , to be the
set of continuous functions v : R+ → R+ for which there exists a τ(v) ∈ (0,∞)

such that v(t) > 0 if and only if t ∈ (0, τ (v)). Given a function v ∈ V , we define a
distance on [0, τ (v)] by setting

dv(s, t) := v(s) + v(t) − 2mv(s, t),(2.4)

where mv(s, t) := inf{v(r) : r ∈ [s ∧ t, s ∨ t]}, and then use the equivalence

s ∼ t ⇔ dv(s, t) = 0,(2.5)

to define Tv := [0, τ (v)]/ ∼. Denoting by [s] the equivalence class containing s, it
is elementary (see [14], Section 2) to check that dTv ([s], [t]) := dv(s, t) defines a
metric on Tv , and also that with this metric Tv is a real tree. The root of the tree Tv

is defined to be the equivalence class [0], and is denoted by ρv . A natural volume
measure to impose upon Tv is the projection of the Lebesgue measure on [0, τ (v)].
In particular, for open A ⊆ Tv , let

μv(A) := λ
({t ∈ [0, τ (v)] : [t] ∈ A}),(2.6)
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where λ is the usual one-dimensional Lebesgue measure. This defines a Borel
measure on (Tv, dTv ), with total mass equal to τ(v). We will usually suppress the
dependence on v from the notation for all of these objects when it is clear which
excursion is being considered.

We will be interested in the measure 	 on T, which is defined by

	(A) := N({v :Tv ∈ A})(2.7)

for measurable A ⊆ T, where N is the usual Itô excursion measure, normalized so
that the tail of the height of a tree chosen from 	 is given by

	
(
h(T ) > ε

) = ε−1.(2.8)

A real tree T chosen according to 	 is an example of a Lévy tree, as introduced in
[14], and an important result of [14] is that a Lévy tree admits an intrinsic “local
time” measure, as described by the following theorem.

THEOREM 2.2 ([14], Theorem 4.2). For every t ≥ 0 and 	-a.e. T ∈ T, we
can define a finite measure �t on T in such a way that the following properties
hold:

(a) �0 = 0 and, for every t > 0, �t is supported on Tt , 	-a.e.
(b) for every t > 0, {�t �= 0} = {h(T ) > t}, 	-a.e.
(c) for every t > 0, we have 	-a.e. for every bounded continuous function ϕ

on T , ∫
T

ϕ d�t = lim
ε→0

∑
i∈It

εϕ(ρi)1{h(T i )≥ε} = lim
ε→0

∑
i∈It−ε

εϕ(ρi)1{h(T i )≥ε}.

The measures (�t )t≥0 can, in fact, be defined simultaneously in such a way
that t → �t is 	-a.e. cadlag for the weak topology on finite measures on T ([14],
Theorem 4.3). Moreover, we can N -a.e. recover the measure μv , defined at (2.6),
from Tv using the local time measures. In particular, if we define a measure μT by
integrating the local time measures in the following way:

μT :=
∫ ∞

0
�t dt,(2.9)

then μv = μTv , N -a.e. This demonstrates that μv is indeed a natural measure for
the real tree Tv , and that it depends on the underlying excursion only through the
real tree that is constructed from it. Note that alternative descriptions of (�t )t≥0

and μT in terms of Hausdorff measures are provided in [15]. Finally, it also
demonstrated in [14] that the topological support of μT is T , 	-a.e.
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2.2. Spatial trees, snakes and tours. Consider a pair (T , φ), where T is a
compact rooted real tree and φ is a continuous mapping from T into Rd ; we will
denote the usual Euclidean metric in Rd by dE . We say two such pairs (T , φ) and
(T ′, φ′) are equivalent if and only if there exists a root preserving isometry from T
to T ′, π , say, that also satisfies φ = φ′ ◦ π . The set of equivalence classes under
this relation will be denoted Tsp, and elements of this set are called spatial trees. As
with real trees, we will frequently identify an equivalence class with a particular
element of it. We now explain how to define a metric on this space. First, we
say that a correspondence between two compact rooted real trees, T and T ′, is a
subset C ⊆ T ×T ′ such that for every σ ∈ T there exists at least one σ ′ ∈ T ′ such
that (σ, σ ′) ∈ C and, conversely, for every σ ′ ∈ T ′ there exists at least one σ ∈ T
such that (σ, σ ′) ∈ C. Moreover, we assume that (ρ,ρ′) ∈ C. The distortion of the
correspondence C is defined by

dis(C) := sup{|dT (σ1, σ2) − dT ′(σ ′
1, σ

′
2)| : (σ1, σ

′
1), (σ2, σ

′
2) ∈ C}.

Now define, for (T , φ), (T ′, φ′) ∈ Tsp, a distance by

dsp((T , φ), (T ′, φ′)) = inf
C∈C(T ,T ′)

{
dis(C) + sup

(σ,σ ′)∈C
dE(φ(σ ),φ′(σ ′))

}
,(2.10)

where the set C(T ,T ′) is the collection of all correspondences between T and T ′.
From [14], we have that (Tsp, dsp) is a separable metric space (we note that it
is not complete as claimed in [14]). We set S := φ(T ), which is well-defined
on equivalence classes of spatial trees. Note that, although the notation (T , φ)

is used as shorthand for (T , dT , ρ,φ), the notation S will only ever be used
to denote the compact subset of Rd given by φ(T ). Moreover, when we con-
sider the usual Hausdorff metric on compact subsets of Rd , which we denote
by dH, it is easy to check that if (T , φ), (T ′, φ′) ∈ Tsp, then dH(φ(T ), φ′(T ′)) ≤
dsp((T , φ), (T ′, φ′)). Thus, the map from (T , φ) to the compact subset S is con-
tinuous, and therefore measurable.

In the remainder of this section we introduce the class of spatial trees which
are obtained when the mapping φ is a “Brownian embedding” of a real tree into
Euclidean space, so that an arc of length t in the real tree is mapped to the range
of a Brownian motion run for a time t . Fix x ∈ Rd , and let T be a compact
rooted real tree. Consider the Rd -valued Gaussian process (φ(σ ))σ∈T , built on
a probability space with probability measure P, whose distribution is character-
ized by Eφ(σ) = x, cov(φ(σ1), φ(σ2)) = dT (ρ, bT (ρ, σ1, σ2))I , where I is the
d-dimensional identity matrix. As remarked in [14], it is possible to chose this
process to be continuous P-a.s. for 	-a.e. T . Assuming that we have a real tree T
that allows us to construct a P-a.s. continuous φ, we will denote the law of (T , φ)

on Tsp by QT
x . This allows us to construct a σ -finite measure on Tsp by setting

Mx :=
∫

T
	(dT )QT

x ;
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we note that the measures QT
x satisfy the necessary measurability for this integral

to be well-defined. We also define M := M0 and QT := QT
0 . Observe that, for

Mx-a.e. spatial tree, we have φ(ρ) = x. A spatial tree chosen according to Mx will
be called a Brownian spatial tree started from x.

Pushing forward, the local time measures �t from T onto Rd using the map φ

provides us with a cadlag (with respect to the topology induced by the weak con-
vergence of measures on Rd ) measure-valued process Z = (Zt )t≥0. In particular,
we set

Zt := �t ◦ φ−1,(2.11)

which defines the process Z at least Mx-a.e. for any x ∈ Rd . We will describe
in Section 3 how a certain Poisson sum of these processes yields a super-process
in Rd . The property of spatial trees that allows this connection to be made is their
Markovian branching under the measures of the form Mx . To describe this pre-
cisely, first recall the notation trt (T ) and (T i )i∈It introduced at (2.3). The infor-
mation about the spatial tree (T , φ) below level t is (trt (T ), φ|trt (T )), and we will
denote this by Et . We will also write φi := φ|T i and Si := φi(T i ). The Markov
branching property of Brownian spatial trees can be stated as follows.

LEMMA 2.3. Fix t > 0. Under the probability measure M(·|h(T ) > t) and
conditional on Et , the collection (T i , φi), i ∈ It , forms a Poisson point process
on Tsp with intensity measure ∫

Tt

�t (dσ )Mφ(σ).(2.12)

PROOF. This result can be proved by a simple modification of the proof of
[13], Proposition 4.2.3, using the Markov branching property of T that is proved
in [14], Theorem 4.2. �

We define a Borel measure on S by setting μS := μT ◦ φ−1, which exists and
has support S, Mx-a.e. It is possible to deduce that μS can also be represented
as

∫ ∞
0 Zt dt , or, as remarked in the introduction, for d ≥ 4, it can be expressed

in terms of a Hausdorff measure on S; see [20], Theorem 6.1. Note that this final
remark immediately implies that μS is a measurable function of S, at least for
d ≥ 4 (the measurability of Hausdorff measures as functions of compact subsets
of Rd is investigated in [25]).

In the previous section we saw how continuous excursions are useful for en-
coding a certain class of real trees. To perform the role of encoding the Brownian
spatial trees introduced above, we will use objects called snakes and tours ([21]
is a good primer for the Brownian snake). A snake is a pair of functions, (v,w),
say, with v ∈ V and w a continuous function from R+ to the space of continu-
ous paths in Rd , which satisfy w(s)(t) = w(s)(v(s)) for every t ≥ v(s), and also
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w(s)(t) = w(s′)(t) for every t ≤ mv(s, s
′). In fact, Theorem 2.1 of [24] shows that

a snake carries some redundant information, and it suffices to consider the space of
tours, where a tour is a pair (v, r) ∈ C(R+,R+)×C(R+,Rd), with v ∈ V , and r a
continuous Rd -valued function which is constant on the equivalence classes given
by the relation at (2.5). More precisely, in [24] it is shown that the natural map from
snakes to tours given by, for t ≥ 0, (v(t), r(t)) = (v(t),w(t)(v(t))), is a homeo-
morphism. Due to this relationship, the process r is known as the head of the
snake.

The connection of snakes and tours with spatial trees can be explained as fol-
lows. Fix (v, (Tv, φ)) ∈ V × Tsp, and define, for s ≤ v(t), t ≥ 0,

w(t)(s) := φ
(
γ

Tv

ρ,[t](s)
)
,(2.13)

where [t] is the equivalence class containing t under the equivalence defined
at (2.5). Also define w(t)(s) = w(t)(v(t)) for s ≥ v(t). The pair (v,w) is then
a snake and, moreover, it is possible to check using (2.13) that the correspond-
ing tour (v, r) satisfies r(t) = φ([t]). Clearly, we can recover the spatial tree from
the tour (v, r) by setting Tv to be the real tree associated with v and using the
final observation of the previous sentence to determine φ. We can use this rela-
tionship to show that if two tours are close with respect to the uniform norm on
C(R+,R+) × C(R+,Rd), then so are the related spatial trees with respect to the
metric dsp. The proof of this result is similar to that of Lemma 2.3 of [14], and the
result obviously implies that the map (v, r) �→ (T , φ) is measurable.

PROPOSITION 2.4. If (T , φ) and (T ′, φ′) are the spatial trees correspond-
ing to the tours (v, r) and (v′, r ′) respectively, then dsp((T , φ), (T ′, φ′)) ≤ 4‖v −
v′‖∞ + ‖r − r ′‖∞.

PROOF. Define a correspondence between T and T ′ by C := {([t], [t]′) : t ∈
R+}, where [t] is the equivalence class containing t under the equivalence de-
fined at (2.5) for v, and [t]′ is the corresponding quantity for v′. As in the
proof of [14], we have dis(C) ≤ 4‖v − v′‖∞. It is also easy to check that
sup(σ,σ ′)∈C dE(φ(σ ),φ′(σ ′)) = ‖r − r ′‖∞. The proof follows on recalling the de-
finition of dsp from (2.10). �

To complete this section, we will introduce the law of the Brownian tour. First,
let (v, (Tv, φ)) be chosen in C(R+,R+) × Tsp, so that v has law N and, condi-
tional on v, the pair (Tv, φ) is a spatial tree with law QTv

x . Note that the marginals
of this distribution are N and Mx , so v is a Brownian excursion and (Tv, φ) is a
Brownian spatial tree started from x. Define (v,w) and (v, r) from (v, (Tv, φ))

as above, and denote their laws on the appropriate spaces by M̃ ′
x and M̃x respec-

tively. As observed in [22], Section 6, the measure M̃ ′
x is the law of the Brownian

snake started from x, and we will call M̃x the law of the Brownian tour started
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from x. Accordingly, the pairs (v,w) and (v, r) are called the Brownian snake and
Brownian tour, respectively. Note that if the subscript x is missing from one of the
measures defined in this paragraph, then we are working under the assumption that
x = 0.

2.3. CRT, ISE and normalized Brownian tour. There is a normalization of real
and spatial trees that will be of particular interest in the sections of this article
where we investigate the scaling limit of simple random walks on random graph
trees embedded into Euclidean space, and this is when we condition the mea-
sure μT , as defined at (2.9), to have total mass equal to one. In particular, let
N(1) := N(·|τ(f ) = 1) be the probability measure on the space of excursions V
that is the law of the Brownian excursion, scaled to return to zero for the first time
at time one. Define 	(1) from N(1) analogously to (2.7), and set

M(1)
x :=

∫
T

	(1)(dT )QT
x ,

which is a probability measure on Tsp. Also denote M(1) := M
(1)
0 . If T is a ran-

dom element of T with law 	(1), then it is precisely (up to a deterministic scaling
constant) the continuum random tree of Aldous; see [1]. Moreover, if (T , φ) is
a random spatial tree with law M(1), then we call the measure μS := μT ◦ φ−1,
which has support S, the integrated super-Brownian excursion. This measure was
first discussed by Aldous in [4], and in Section 8 we provide another characteriza-
tion of it as a scaling limit, which shows how our definition matches Aldous. For
an overview of the occurrence of the integrated super-Brownian excursion as the
scaling limit of measures that arise in statistical mechanical models, see [27].

The normalized Brownian tour is defined similarly to the Brownian tour, except
we use the above normalization in choosing the excursion. In particular, define
(v, (Tv, φ)) to be a random variable taking values in C([0,1],R+) × Tsp such
that v has law N(1) and, conditional on v, the pair (Tv, φ) is a spatial tree with law
QTv

x . Defining the normalized head process r ∈ C([0,1],Rd) similarly to above,
we call (v, r) the normalized Brownian tour started from x, and its law will be
denoted M̃

(1)
x , with M̃(1) := M̃

(1)
0 .

3. Homeomorphism between T and S . The purpose of this section is to
show that when d ≥ 8 the continuous map φ is actually a homeomorphism from
(T , dT ) to (S, dE), M-a.e. In fact, because (T , dT ) is compact and (S, dE) is
Hausdorff, M-a.e., it is sufficient to show that φ is injective, M-a.e. We will prove
that this is the case by applying results proved in [11] about the multiple points of
super-processes. Although our main conclusion is suggested by comments made
in Section 3.4 of [4], we can find no rigorous proof in the literature and so continue
to prove it here.

We start by describing briefly the connection between spatial trees and super-
processes that has been developed by Duquesne and Le Gall for further details
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see [13] and [14]. First, let (T i , φi)i∈I be a Poisson process on Tsp with inten-
sity measure M . For each i ∈ I, define (Zi

t )t≥0 to be the measure-valued process
associated with (T i , φi) by the formula at (2.11). If we then define the process
Y = (Yt )t≥0 by setting, for t > 0,

Yt := ∑
i∈I

Zi
t ,(3.1)

and Y0 := δ0, where δ0 is the probability measure on Rd that places all of its mass
at the origin, then Y is a Dawson–Watanabe super-process, started from δ0 ([14],
Proposition 6.1). We assume that the Poisson process (T i , φi)i∈I is built on an
underlying probability space with probability measure P.

In particular, it will be important for the arguments that we apply to have a
description of the range of the super-process Y in terms of the sets (Si

t )t>0,i∈I,
where Si

t := φi(T i
t ), and T i

t is the level t subset of T i defined by (2.2). For a
Borel measure ν on Rd , denote by S(ν) it closed support in Rd , and set, for s ≤ t ,
R(s, t) to be the closure of

⋃
s≤r≤t S(Yr) with respect to the Euclidean metric.

Furthermore, define

R1 := ⋃
0<s≤t<∞

R(s, t),

(3.2)
R2 := ⋃

0<s1≤t1<s2≤t2<∞
R(s1, t1) ∩ R(s2, t2),

which are the range (or one-multiple points) and two-multiple points of Y re-
spectively. As noted in the proof of [14], Proposition 6.2, P-a.s., we have that
S(Yt ) ⊆ ⋃

i∈I Si
t for every t > 0, with equality holding for all but a countable col-

lection of times, D, say. Furthermore, since M(h(T ) > s) is finite for any s > 0
and φi is continuous for every i ∈ I, P-a.s., there can only be a finite number of
sets

⋃
s≤r≤t S

i
r which are nonempty, and because each set of the form

⋃
s≤r≤t S

i
r is

closed, we must have that R(s, t) ⊆ ⋃
s≤r≤t

⋃
i∈I Si

r for every s ≤ t , P-a.s. Using
the continuity of the maps φi and the countability of D, we are also able to deduce
that

⋃
s≤r≤t

⋃
i∈I Si

r ⊆ R(s, t) for every s ≤ t , s /∈ D, P-a.s. Hence, again apply-
ing the countability of D, we have the following alternative expression for R1,
P-a.s.:

R1 = ⋃
t>0

⋃
i∈I

Si
t .(3.3)

Before we proceed with our main argument, we collect some other properties
of R1 and R2 that are proved in [11], Theorems 1.5 and 1.6. With regards to
part (a) of the following lemma, note that the precise Hausdorff measure functions
of R1 for d ≥ 4 are found in [20], Theorem 1.1.

LEMMA 3.1. (a) If d > 4, R1 has σ -finite Hausdorff measure with respect to
the measure function x4 ln lnx−1, P-a.s.
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(b) If d > 4 and A ⊆ Rd is null for the Hausdorff measure with respect to the
measure function xd−4, then R1 ∩ A = ∅, P-a.s.

(c) If d ≥ 8, then R2 = ∅, P-a.s.

A useful corollary of parts (a) and (b) of this result is the following, which
demonstrates that “independent” spatial trees do not intersect when they are started
from different points of Rd and d is large.

COROLLARY 3.2. (a) Fix x, y ∈ Rd . If d ≥ 8, then Mx ⊗My -a.e. we have S ∩
S′ = {x} ∩ {y}, where S := φ(T ), S′ := φ′(T ′) and ((T , φ), (T ′, φ′)) represents
an element of T2

sp.
(b) Part (a) holds when the measure Mx ⊗ My is replaced by the probability

measure Mx(·|h(T ) > t) ⊗ My(·|h(T ) > t), for any t > 0.

PROOF. By Lemma 3.1(a), we know that R1 has σ -finite Hausdorff measure
with respect to the measure function x4 ln lnx−1, P-a.s. Thus, from the expression
at (3.3) and the Poisson process construction of the super-process, we see that
S = φ(T ) also satisfies this property, M-a.s. Since we are assuming that d ≥ 8, it
follows that S is null for (d − 4)-dimensional Hausdorff measure, Mx-a.s.

Now suppose that (S, y + R1) is chosen according to Mx ⊗ P, where R1 is the
range of the super-process as described above. From Lemma 3.1(b) and the con-
clusion of the previous paragraph, we have that (y + R1) ∩ S = ∅, Mx ⊗ P-a.s.
Again applying (3.3) and the Poisson process description of the super-process, it
follows that S ∩ S′ ⊆ {y}, Mx ⊗ My -a.s. Using symmetry, part (a) is a straightfor-
ward consequence of this. Part (b) follows immediately. �

In the next lemma we combine the above result with the Markov branching
property of spatial trees to deduce the disjointness of a particular collection of
subsets of spatial trees. Recall from Section 2.1 the definition of subtrees above a
certain level, (T i )i∈It , and also the definition of the spatial trees (T i , φi)i∈It from
Section 2.2.

LEMMA 3.3. Let d ≥ 8 and fix t > 0. Under the measure M , the sets Si,o,
i ∈ It , where Si,o := φi(T i ) \ {φi(ρi)}, are almost surely disjoint.

PROOF. Write M ′ := M(·|h(T ) > t). From Lemma 2.3 we have that under
the probability measure M ′, conditional on Et , the collection (T i , φi), i ∈ It is
a Poisson process on Tsp with intensity measure given by (2.12). Now, choose
ε > 0 and note that it is possible to deduce from (2.8) and Theorem 2.2(b) that∫
Tt

�t (dσ )Mφ(σ)(h(T ) > ε) ∈ (0,∞), M ′-a.e. Thus, it makes sense to further con-
dition on the size of It,ε := {i ∈ It :h(T i ) > ε}. In particular, under the measure
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M ′(·|Et ,#It,ε = n), the elements of {(T i , φi) : i ∈ It,ε} are distributed as a sample
of n independent random variables, each with law∫

Tt

�t (dσ )Mφ(σ)

(·|h(T ) > ε
)
�t (Tt ).

By first conditioning on the locations of the points φi(ρi), it is straightforward to
apply Corollary 3.2(b) to deduce from this that

M ′((Si,o)i∈It,ε are disjoint
) = 1.

There is no problem in extending this result to deduce that

M ′((Si,o)i∈It are disjoint
) = 1,

which completes the proof, because on {h(T ) ≤ t} the set It is empty. �

The above result provides the first ingredient in our proof of the fact that φ is
injective. The second is given by the following lemma, which shows that the image
under φ of the level sets of T are disjoint.

LEMMA 3.4. Let d ≥ 8. M-a.e., the sets St := φ(Tt ), t ≥ 0, are disjoint.

PROOF. First assume that at all but a countable collection of points, D, say,
we have S(Yt ) = ⋃

i∈I Si
t , where Y is the measure-valued process defined at (3.1)

from the Poisson collection of spatial trees. As remarked earlier in this section, a
proof that this fact holds P-a.s. appears within the proof of [14], Proposition 6.2.

Now suppose there exists an x ∈ Rd such that x ∈ (
⋃

i∈I Si
s) ∩ (

⋃
i∈I Si

t ), for
some 0 < s < t . Set ε := (t − s)/2. Clearly, for some i ∈ I, we can find σ ∈ T i

such that φi(σ ) = x and dT i (ρi, σ ) = s, where ρi is the root of T i . By considering
the arc in T i from ρi to σ , we can find a sequence (σn)n≥0 that converges in T i to
σ with dT i (ρi, σn) ∈ [0, s] \ D for each n. Similarly, for some j ∈ I, we can find
σ ′ ∈ T j such that φj (σ ′) = x and dT j (ρj , σ ′) = t , and also a sequence (σ ′

n)n≥0

converging in T j to σ ′ with dT j (ρj , σ ′
n) ∈ [0, t] \ D for each n. It follows that

there exists an N such that, for n ≥ N ,

dT i (ρ
i, σn) ∈ [s/2, s], dT j (ρ

j , σ ′
n) ∈ [t − ε, t].

Since dT i (ρi, σn), dT j (ρj , σ ′
n) /∈ D, we have, for n ≥ N ,

φi(σn) ∈ Si
dT i (ρ

i ,σn)
⊆ S

(
YdT i (ρ

i ,σn)

) ⊆ R(s/2, s),

and also φj (σ ′
n) ∈ R(t −ε, t). By continuity, we have φi(σn),φ

j (σ ′
n) → x. Hence,

x ∈ R(s/2, s) ∩ R(t − ε, t) ⊆ R2, where R2 is the set of two-multiple points of
our super-process. However, by Lemma 3.1(c), R2 = ∅, and so no such x exists,
P-a.s. Consequently, the sets

⋃
i∈I Si

t , t > 0 are disjoint, P-a.s.
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Observe that
⋃

i∈I Si
0 = {0} and also, from (3.3),

⋃
t>0

⋃
i∈I Si

t = R1. Hence, to
show that the sets

⋃
i∈I Si

t , t ≥ 0 are disjoint, P-a.s., it suffices to show that R1 ∩
{0} = ∅, P-a.s. However, this is a consequence of Lemma 3.1(b). The result now
follows easily on recalling the Poisson process definition of the super-process Y .

�

We are now ready to proceed with the main result of this section.

PROPOSITION 3.5. Let d ≥ 8. M-a.e., the map φ :T → S is injective.

PROOF. The following proof holds M-a.e. Suppose that there exist distinct
σ1, σ2 ∈ T that satisfy φ(σ1) = φ(σ2). By the previous lemma, we know that
σ1, σ2 ∈ Tt , for some t > 0. Necessarily we must also have that bT (ρ, σ1, σ2) ∈ Ts

for some s < t [recall the notation for a branch-point of T from (2.1)]. Choose
r ∈ (s, t) ∩ Q, and consider the collection of spatial trees above level r , which, us-
ing the notation introduced above Lemma 2.3, can be written as (T i , φi), i ∈ Ir .
Since bT (ρ, σ1, σ2) ∈ Ts for some s < r , we have that σ1 ∈ T i and σ2 ∈ T j

for some i �= j . Moreover, if φ(σ1) = φi(ρi), then φ(σ1) ∈ Sr ∩ St . However,
by Lemma 3.4, we can assume that Sr ∩ St = ∅, and so φ(σ1) ∈ Si,o. Thus, by
symmetry, we have that φ(σ1) ∈ Si,o ∩ Sj,o. After extending Lemma 3.3 using a
countability argument, the sets Si,o, i ∈ Iq , can be assumed to be disjoint for any
q ∈ Q. In particular, the sets Si,o, i ∈ Ir , are disjoint. Consequently, no such σ1
and σ2 exist, which implies that φ is injective. �

4. Hausdorff measure of spatial tree arcs. In the previous section we
showed that when the dimension d is large enough, the map φ is a homeomor-
phism, M-a.e. Consequently, the set S is a dendrite and, as remarked in the Intro-
duction, between any two points of S there is a unique arc in S, M-a.e. We show
in this section how the natural way to measure the distance along the arcs of S is
to use the Hausdorff measure with respect to the measure function cdx2 ln lnx−1,
where cd is a deterministic constant that depends only on the dimension d . The
following result will be fundamental in proving this; it determines the Hausdorff
measure of Brownian paths in high dimensions. The description of the Hausdorff
measure H that appears in the lemma should be considered to be a definition.

LEMMA 4.1 ([7], Theorem 5). Suppose that (Bt )t≥0 is a standard d-
dimensional Brownian motion built on a probability space (�,F ,P). If d ≥ 3,
then

H({Bs : s ∈ [0, t]}) = t ∀t ≥ 0,P-a.s.,

where H is the Hausdorff measure calculated with respect to the function
cdx2 ln lnx−1, and cd is a deterministic constant that depends only upon d .
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Recall from Section 2.1 that the path in T of unit speed between σ1 and σ2 is
denoted by γ T

σ1,σ2
, and its image by �T

σ1,σ2
. The following result applies the above

lemma to describe the Hausdorff measure of the sets φ(�T
ρ,σ ) for σ ∈ T .

LEMMA 4.2. Let d ≥ 3. For M-a.e. (T , φ),

H(φ(�T
ρ,σ )) = dT (ρ, σ ) ∀σ ∈ T .

PROOF. Fix a countably dense sequence (t∗n)n≥0 in R+. Given an excursion
v ∈ V , we will denote by σ ∗

n the vertex [t∗n ] of the corresponding real tree T , where
[t] represents the equivalence class of t under the equivalence defined at (2.5).

We start the proof of the lemma by demonstrating the claim that M̃-a.e.,

H(φ(�T
ρ,σ )) = dT (ρ, σ ) ∀σ ∈ �T

ρ,σ ∗
n
, n ≥ 0,(4.1)

where M̃ is the law of the Brownian tour introduced in Section 2.2. By count-
ability, it will suffice to prove the above result holds for one particular n. Observe
that, conditional on v, the process φ ◦ γ T

ρ,σ ∗
n

is a standard d-dimensional Brownian
motion run for a time v(t∗n) = dT (ρ, σ ∗

n ). Consequently, by Lemma 4.1, it satisfies

H
({φ(γ T

ρ,σ ∗
n
(s)) : 0 ≤ s ≤ t}) = t ∀t ∈ [0, dT (ρ, σ ∗

n )],(4.2)

M̃-a.e. Now, for σ ∈ �T
ρ,σ ∗

n
, we have that σ = γ T

ρ,σ ∗
n
(dT (ρ, σ )), because γ T

ρ,σ ∗
n

traverses the arc �T
ρ,σ ∗

n
at a unit speed. Furthermore, it is clear from the definitions

that γ T
ρ,σ ∗

n
|[0,dT (ρ,σ )] = γ T

ρ,σ and, thus, γ T
ρ,σ ∗

n
([0, dT (ρ, σ )]) = �T

ρ,σ . Hence, we

can rewrite (4.2) to obtain that H(φ(�T
ρ,σ )) = dT (ρ, σ ) for σ ∈ �T

ρ,σ ∗
n

, M̃-a.e.,
which completes the proof of the claim at (4.1).

Suppose we have a realization of (v, r) for which the claim at (4.1) holds, and
let σ ∈ T . Since T ∗ := {σ ∗

n :n ≥ 0} is dense in T , there exists a sequence (σn)n≥0
in T ∗ such that dT (σn, σ ) → 0. Clearly, if we define bn := bT (ρ, σn, σ ), then bn ∈
�T

ρ,σn
for each n, and so the claim at (4.1) implies that H(φ(�T

ρ,bn
)) = dT (ρ, bn).

It is also straightforward to check that dT (bn, σ ) → 0, and so

lim
n→0

H(φ(�T
ρ,bn

)) = dT (ρ, σ ).(4.3)

Furthermore, since dT (ρ, bn) ≤ dT (ρ, σ ) for every n, it is possible to choose a
subsequence of (bni

)i≥0 such that dT (ρ, bni
) is increasing. It follows that the set

sequence (�T
ρ,bni

)i≥0 is also increasing and we must have that
⋃

i �
T
ρ,bni

is equal to

either �T
ρ,σ or �T

ρ,σ \ {σ }. Since the H -measure of a set is unaffected by removing
one point, we have that H(φ(�T

ρ,σ )) = limi→∞ H(φ(�T
ρ,bni

)), and combining this

with the result at (4.3) implies that H(φ(�T
ρ,σ )) = dT (ρ, σ ).

From the conclusions of the two previous paragraphs we obtain that
H(φ(�T

ρ,σ )) = dT (ρ, σ ) for every σ ∈ T , M̃-a.e., and since the marginal law

of (T , φ) under M̃ is M , this completes the proof. �
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As remarked above, when φ is injective, S is a dendrite, and there exists a unique
arc between any two points in S. We will denote the arc between x1 and x2 in S by
�S

x1,x2
; this is defined to be the image of any continuous injection from [0,1] to S

that takes the value x1 at zero and x2 at one. Observe that when φ is injective, we
clearly have �S

φ(σ1),φ(σ2)
= φ(�T

σ1,σ2
), for any σ1, σ2 ∈ T . The main result of this

section is the following, which describes precisely the Hausdorff measure of arcs
in S.

PROPOSITION 4.3. Let d ≥ 8. For M-a.e. (T , φ),

H
(
�S

φ(σ1),φ(σ2)

) = dT (σ1, σ2) ∀σ1, σ2 ∈ T .

PROOF. By Proposition 3.5 and Lemma 4.2, we can assume that φ is injective
and H(�S

0,φ(σ )) = dT (ρ, σ ) for every σ ∈ T . Applying this and the identity

�S
φ(σ1),φ(σ2)

= (
�S

0,φ(σ1)
\ �S

0,φ(b)

) ∪ (
�S

0,φ(σ2)
\ �S

0,φ(b)

) ∪ {φ(b)},
which holds for each σ1, σ2 ∈ T , where b is the branch-point of ρ, σ1 and σ2 in T ,
it is readily checked that H(�S

φ(σ1),φ(σ2)
) = dT (ρ, σ1) + dT (ρ, σ2) − 2dT (ρ, b),

from which the result follows. �

5. Recovering spatial trees in high dimensions. The result about the Haus-
dorff measure of Brownian paths stated as Lemma 4.1 can be used to recover the
path (Bt )t≥0 from its range, R := {Bt : t ≥ 0}, when d ≥ 4. In particular, let d ≥ 4,
so that t �→ Bt is injective and R is a dendrite, P-a.s. If we define the function
H :R → R+ by H(x) := H(�R

0,x), where �R
0,x is the unique arc between 0 and x

in R, then it is easy to check using Lemma 4.1 that H−1(t) = Bt for all t ≥ 0,
P-a.s. Thus, the following result holds.

LEMMA 5.1. Suppose that B = (Bt )t≥0 is a standard d-dimensional Brown-
ian motion built on a probability space (�,F ,P), and R := {Bt : t ≥ 0} is its
range. If d ≥ 4, then there exists a set �∗ ⊆ � such that P(� \ �∗) = 0 and also,
if ω, ω̃ ∈ �∗, then

Rω = Rω̃ ⇔ Bω = Bω̃,

where the superscript ω illustrates the dependence of the random variables on
ω ∈ �.

In this section we will show an analogous result demonstrating that it is possible
to recover the spatial tree (T , φ) from the compact set φ(T ) ⊆ Rd , M-a.e., if the
dimension d is large enough. As a consequence of this, we will also exhibit how to
recover the super-process Y , as defined at (3.1), from its range R1. As in the case
of recovering a Brownian path from its range, the key to our proof will be using
the Hausdorff measure H to measure distance along arcs.
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When φ is injective, S = φ(T ) is a dendrite, and so the function dS : S × S →
R+ obtained by setting

dS(x1, x2) := H(�S
x1,x2

)

is well-defined. We now show that, in fact, (S, dS,0) is a real tree equivalent to
(T , dT , ρ), M-a.e.

PROPOSITION 5.2. Suppose d ≥ 8. For M-a.e. choice of spatial tree (T , φ),
the pointed metric space (S, dS,0) is a rooted real tree equivalent to (T , dT , ρ)

and, moreover, if we define the map I :S → Rd to be the restriction of the identity
map in Rd , then (S, I ) and (T , φ) are equivalent spatial trees.

PROOF. By Proposition 4.3, we can assume that φ is a bijection and
dS(φ(σ1), φ(σ2)) = dT (σ1, σ2), for every σ1, σ2 ∈ T . Thus, φ : (T , dT ) → (S, dS)

is actually an isometry. Consequently, because we also have that φ(ρ) = 0, the
pointed metric space (S, dS,0) is a rooted real tree equivalent to (T , dT , ρ). The
equivalence of spatial trees is a result of the identity φ ≡ I ◦ φ. �

A corollary of this result is that, if we are given the set S, we can determine the
spatial tree (T , φ) that was used to construct it, M-a.e. Recalling that under M the
tree T is constructed from a Brownian excursion and φ is a Brownian embedding,
the following corollary is reminiscent of the result proved in [6] about recovering
from an iterated Brownian motion the two underlying Brownian motions used in
its construction. Also closely related to this result is Corollary 5.5.

COROLLARY 5.3. For d ≥ 8, there exists a set T∗
sp ⊆ Tsp that satisfies

M(Tsp \ T∗
sp) = 0 and also, if (T , φ), (T̃ , φ̃) ∈ T∗

sp, then the compact sets φ(T )

and φ̃(T̃ ) are equal if and only if (T , φ) and (T̃ , φ̃) are equivalent spatial trees.

We continue by presenting a further corollary of Proposition 5.2 which shows
that given the range of a certain super-process we can determine the super-process
itself if the dimension is large enough.

COROLLARY 5.4. Suppose that Y is the Dawson–Watanabe super-process
in Rd , d ≥ 8, started from δ0, with range R1, built on a probability space
(�,F ,P). There exists a set �∗ ⊆ � such that P(� \ �∗) = 0 and also, if
ω, ω̃ ∈ �∗, then

Rω
1 = Rω̃

1 ⇔ Yω = Y ω̃,

where the superscript ω illustrates the dependence of the random variables on
ω ∈ �.
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PROOF. As in Section 3, we can assume that Y is built from a Poisson process
of spatial trees (T i , φi)i∈I, with intensity measure M . By Corollary 5.3, we can,
in fact, regard this as a Poisson process on T∗

sp, so that each Si := φi(T i ) deter-

mines the spatial tree (T i , φi) ∈ T∗
sp uniquely, P-a.s. Furthermore, by applying an

argument almost identical to that of Lemma 3.3, we are able to deduce that the sets
Si,o := φi(T i ) \ {0}, i ∈ I, are disjoint P-a.s, and also, from (3.3), we have that
R1 = ⋃

i∈I
⋃

t>0 Si
t , P-a.s. By the injectivity of the maps φi , which follows from

Proposition 3.5, we must have that
⋃

t>0 Si
t = Si,o for each i, P-a.s. Combining

these facts, we can conclude that there exists a set �∗ ⊆ � which has probability
one and upon which R1 = ⋃

i∈I Si,o, (Si,o)i∈I are disjoint, and (T i , φi) ∈ T∗
sp for

each i ∈ I.
Now consider Rω

1 , for some ω ∈ �∗. Applying the first two properties that
are assumed to hold on �∗, we are able to deduce that the set of path-connected
components of Rω

1 , Cω, say, is precisely equal to the set {Si,o : i ∈ Iω}. Hence,
the set Cω

0 := {A ∪ {0} :A ∈ Cω} must be equal to {Si : i ∈ Iω}. Therefore, by the
definition of T∗

sp, each set A ∈ Cω
0 determines uniquely a spatial tree (TA,φA) ∈

T∗
sp. Now the collection {(TA,φA) :A ∈ Cω

0 } is completely determined by Rω
1 , and

is equal to {(T i , φi) : i ∈ Iω}. Thus, Rω
1 determines the super-process Yω, and if

Rω
1 = Rω̃

1 for some ω, ω̃ ∈ �∗ then, Yω = Y ω̃ as claimed. �

Finally, we state the analogue of Corollary 5.3 in the case of ordered trees. More
precisely, the previous results of this section lead easily to the fact that in high di-
mensions the Brownian tour, (v, r) and, consequently, the Brownian snake, are
determined by the Brownian head process, r , thus, showing that there is enough
information in the ordered spatial embedding to determine the ordered tree struc-
ture.

COROLLARY 5.5. For d ≥ 8, there exists a set C∗ ⊆ C(R+,R+)×C(R+,Rd)

such that M̃(C(R+,R+) × C(R+,Rd) \ C∗) = 0 and, furthermore, if (v, r), (ṽ,

r̃) ∈ C∗, then

r = r̃ ⇔ (v, r) = (ṽ, r̃).

PROOF. From the construction of (v, r) and the definition of M̃ we can use
Proposition 5.2 to deduce that there exists a set C∗ whose complement is M̃-null
such that, if (v, r) ∈ C∗, the topological space S = r(R+) is a dendrite whose
cdx2 ln lnx−1-Hausdorff measure along arcs gives a metric dS on r(R+). The
proof is completed on observing that we can also take as an assumption that on C∗
the function v can be recovered via the relationship v(t) = dS(0, r(t)), for every
t ∈ R+. �
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6. Brownian motion on spatial trees: quenched law. Now that we have con-
structed the metric dS on S ⊆ Rd for d ≥ 8, there is very little we have to do to
build a canonical Markov process, XS , say, on S in high dimensions. We show in
this section how the process XS , which we will call the Brownian motion on S, can
be obtained directly from S or, alternatively, it can be defined as φ(XT ), where XT

is a natural Markov process on the real tree T . In the case when we normalize μT

(and μS) to have total mass one, we are able to describe these Markov processes
as scaling limits of simple random walks on random graph trees embedded into
Euclidean space; see Sections 8 and 9.

Let us start by introducing some known results about Dirichlet forms and
Brownian motion on a compact real tree. Suppose (T , dT ) is a real tree and ν

is a finite Borel measure on T that satisfies ν(A) > 0 for every nonempty open
set A ⊆ T . Given a local, regular Dirichlet form (ET ,FT ) on L2(T , ν), we can
use the standard association to define a nonnegative self-adjoint operator, −�T ,
which has domain dense in L2(T , ν) and satisfies

ET (f, g) = −
∫
T

f �T g dν ∀f ∈ FT , g ∈ D(�T ).

We can use this to define a reversible strong Markov process,

XT ,ν = (
(X

T ,ν
t )t≥0,PT ,ν

σ , σ ∈ T
)

with semi-group given by Pt := et�T . In fact, the locality of our Dirichlet form
ensures that the process XT ,ν is a diffusion on T . A fundamental example of a
local, regular Dirichlet form is obtained as the electrical energy when we consider
(T , dT ) to be an electrical network. In particular, the existence of a Dirichlet form
for which the metric dT describes the resistance between points of T , so that

dT (x, y)−1 = inf{ET (f, f ) :f ∈ FT , f (x) = 1, f (y) = 0}
for every x, y ∈ T , x �= y, is guaranteed by Theorem 5.4 of [18]. The unique
quadratic form with this property is known as the resistance form associated with
(T , dT ) (see [19] for an introduction to resistance forms).

We follow Aldous [2] in defining a Brownian motion on (T , dT , ν) to be a
strong Markov process with continuous sample paths that is reversible with respect
to its invariant measure ν and satisfies the following properties:

(i) For σ1, σ2 ∈ T , σ1 �= σ2, we have

PT ,ν
σ (Tσ1 < Tσ2) = dT (bT (σ, σ1, σ2), σ2)

dT (σ1, σ2)
∀σ ∈ T

where Tσ := inf{t > 0 :XT
t = σ } is the hitting time of σ ∈ T .

(ii) For σ1, σ2 ∈ T , the mean occupation measure for the process started at σ1
and killed on hitting σ2 has density

2dT (bT (σ, σ1, σ2), σ2)ν(dσ ) ∀σ ∈ T .
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These properties guarantee the uniqueness of Brownian motion on (T , dT , ν),
and to construct the process we can use the resistance form described above. The
following result can be proved using ideas from [9], Section 8.

PROPOSITION 6.1. Let (T , dT ) be a compact real tree, ν be a finite Borel
measure on T that satisfies ν(A) > 0 for every nonempty open set A ⊆ T ,
and (ET ,FT ) be the resistance form (ET ,FT ) associated with (T , dT ). Then
(1

2ET ,FT ) is a local, regular Dirichlet form on L2(T , ν), and the corresponding
Markov process XT ,ν is Brownian motion on (T , dT , ν).

From the above result, we are easily able to obtain the following. Note that,
since we only consider one measure on T and one on S, we henceforth drop the
measure from the superscripts of the Brownian motions on these spaces.

PROPOSITION 6.2. (a) For 	-a.e. T , the Brownian motion XT on the space
(T , dT ,μT ) exists.

(b) Let d ≥ 8. For M-a.e. (T , φ), the Brownian motion XS on the space
(S, dS,μS) exists and, moreover, XS = φ(XT ).

PROOF. In view of Propositions 5.2 and 6.1, it remains to prove that XS =
φ(XT ), M-a.e. when d ≥ 8. To do this, it will be sufficient to check that
φ(XT ) satisfies the defining properties of Brownian motion on (S, dS,μS). This is
straightforward given the fact that φ is an isometry from (T , dT ) to (S, dS) which
satisfies μS = μT ◦ φ−1. �

Since the map φ :T → Rd is continuous for M-a.e. spatial tree (T , φ), the law
PT

ρ ◦ φ−1 of φ(XT ) is a well-defined probability measure on C(R+,Rd), M-a.e.
Using the language of random walks in random environments, we say this is the
quenched law of φ(XT ). Similarly, if d ≥ 8, applying the fact that the identity map
I : (S, dS) → (Rd, dE) is continuous for M-a.e. spatial tree (T , φ), we have that
the law of the Brownian motion on S, PS

0 , is a well-defined probability measure on
C(R+,Rd), M-a.e., and we will call this the quenched law of the Brownian motion
on S. To allow us to define the annealed laws of φ(XT ) and XS by averaging
over the possible choices of environments, we need to show that there exists a
probability space on which PT

ρ ◦ φ−1 and PS
0 can be constructed measurably, and

we will do this in the next section.

7. Brownian motion on spatial trees: annealed law. In the proofs of the
measurability of the laws PT

ρ ◦ φ−1 and PS
0 , and the convergence results of later

sections, it will be useful to approximate the spaces T and S by tree-like sets
with only a finite number of branches. To this end, we introduce the concept of
a (rooted ordered) graph spatial tree. This is a pair (T ,φ), where T is a (rooted)
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ordered finite graph tree with finite edge lengths, and φ is a continuous Rd -valued
map whose domain is the real tree T naturally associated with T by adding line
segments to T along its edges and extending the graph distance on T to a metric
dT on T in the natural way so that the line segment corresponding to an edge with
weight |e| is isometric to [0, |e|]. We will assume that φ maps the root of T to the
origin in Rd . Note that for each graph spatial tree the pair (T ,φ) is an element
of Tsp, and, since T is finite, T is compact. Moreover, the fact that T is finite
means that we can define a probability measure λT on T to be the renormalized
Lebesgue measure (so that the λT -measure of a line segment in T is proportional
to its length), and by Proposition 6.1, there is no problem in defining the Brownian
motion on (T ,λT ).

The topology we consider on the space of graph spatial trees is a generalization
of the topology considered in Section 4 of [8]. For (T ,φ) a graph spatial tree,
write T = (T ∗; |e1|, . . . , |el|), where T ∗ represents the “shape” of T (the ordered
graph tree without edge lengths) and |e1|, . . . , |el| represents the collection of edge
lengths. Then, if (T ,φ) and (T ′, φ′) are two graph spatial trees, define a distance
d1 between T and T ′ by setting d1(T , T ′) := ∞, when T ∗ �= T ′∗, and

d1(T , T ′) := sup
i

∣∣|ei | − |e′
i |

∣∣
otherwise. When T ∗ = T ′∗, we have a homeomorphism ϒT ,T ′ :T → T ′, under
which the point x ∈ T , which is a distance α along an edge e (considered from the
vertex at the end of e which is closest to the root), is mapped to the point x′ ∈ T ′
which is a distance |e′|α/|e| along the corresponding edge e′, and so we can define

d2(φ,φ′) := sup
x∈T

dE(φ(x),φ′(ϒT ,T ′(x)))

which yields a metric d0((T ,φ), (T ′, φ′)) := (d1(T , T ′) + d2(φ,φ′)) ∧ 1. It is
straightforward to check that, when equipped with the topology induced by this
metric, the collection of graph spatial trees is separable. In [8], it was shown that if
(Tn)n≥1 is a sequence of ordered graph trees that converge with respect to the dis-
tance d1 to an ordered graph tree T , then ϒT n,T (Bn), where Bn = (Bn

t )t≥0 is the

Brownian motion on (T n, λ
T n) started from the root, converges in distribution in

the space C(R+, T ) to B , the Brownian motion on (T ,λT ) started from the root.
By mapping this result into Rd in the obvious way, we are easily able to deduce
from this the following lemma.

LEMMA 7.1. Suppose that {(Tn,φn)}n≥1 is a sequence of graph spatial trees
that converge with respect to the metric d0 to a graph spatial tree (T ,φ). For
each n, let Bn = (Bn

t )t≥0 be the Brownian motion on (T n, λ
T n) started from the

root, and let B = (Bt )t≥0 be the Brownian motion on (T ,λT ) started from the root,
then (φn(B

n))n≥1 converges in distribution to φ(B) in the space C(R+,Rd).
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Let us continue by considering a vector (σ1, . . . , σk) of elements of a real tree T .
Define the reduced subtree T (σ1, . . . , σk) to be the graph tree with vertex set

V (T (σ1, . . . , σk)) := {
bT (σ, σ ′, σ ′′) :σ,σ ′, σ ′′ ∈ {ρ,σ1, . . . , σk}},

and graph tree structure induced by the arcs of T , so that two elements σ and
σ ′ of V (T (σ1, . . . , σk)) are connected by an edge if and only if σ �= σ ′ and also
�T

σ,σ ′ ∩ V (T (σ1, . . . , σk)) = {σ,σ ′}. We set the length of an edge {σ,σ ′} to be
equal to dT (σ, σ ′). Furthermore, we can use the order of the vector (σ1, . . . , σk)

to induce an ordering of vertices in the graph tree T (σ1, . . . , σk). If (T , φ) ∈
Tsp, it is possible to restrict φ to T (σ1, . . . , σk) to obtain a graph spatial tree
(T (σ1, . . . , σk), φ). In the following result, by considering the Brownian motions
on an increasing sequence of reduced subtrees of graph spatial trees, we show that
the law PT

ρ ◦ φ−1 is a measurable function of the tour defining (T , φ).

PROPOSITION 7.2. The map from the tour (v, r) to PT
ρ ◦ φ−1 is measur-

able with respect to the M̃-completion of the standard topology on the space
C(R+,R+) × C(R+,Rd) and the topology induced by the weak convergence of
probability measures on C(R+,Rd).

PROOF. Let {(vn, rn, un)}n≥1 be a sequence in C(R+,R+) × C(R+,Rd) ×
[0,1]N converging to (v, r, u), where {(vn, rn)}n≥1 and (v, r) are tours. We will
write un = (um

n )m≥1 and u = (um)m≥1, and rescaled versions of these by ũn =
(τ (vn)u

m
n )m≥1 and ũ = (τ (v)um)m≥1, where τ(·) is the length of excursion func-

tion, as defined in Section 2.1. By [24], Theorem 2.1, we also have that the corre-
sponding sequence of snakes {(vn,wn)}n≥1 converges to a limit snake, (v,w), say.
This implies, for every fixed k ≥ 1, that the vector(

vn

(
ũ(1)

n

)
,wn

(
ũ(1)

n

)
,mvn

(
ũ(1)

n , ũ(2)
n

)
, . . . ,

vn

(
ũ(2)

n

)
,wn

(
ũ(2)

n

)
, . . . ,mvn

(
ũ(k−1)

n , ũ(k)
n

)
, vn

(
ũ(k)

n

)
,wn

(
ũ(k)

n

))
,

where (ũ
(m)
n )km=1 is a nondecreasing ordering of (ũm

n )km=1, converges to(
v
(
ũ(1)),w(

ũ(1)),mv

(
ũ(1), ũ(2)), v(

ũ(2)),w(
ũ(2)), . . . ,

mv

(
ũ(k−1), ũ(k)), v(

ũ(k)),w(
ũ(k))),

where (ũ(m))km=1 is a nondecreasing ordering of (ũm)km=1. If we set

T (k)
v,u := Tv

([
ũ(1)], . . . , [

ũ(k)]),(7.1)

where [t] represents the equivalence classes under the equivalence defined at (2.5),
and define T

(k)
vn,un similarly, then it follows that, if T

(k)
v,u has no vertex of de-

gree greater than three, then the graph spatial tree (T
(k)
vn,un, φvn,rn) converges to
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(T
(k)
v,u , φv,r ) with respect to the metric d (cf. the proof of [3], Theorem 20); con-

sequently, by Lemma 7.1, the law of φvn,rn(B
n,k), where Bn,k is the Brownian

motion on (T
(k)

vn,un
, λT

(k)
vn,un ) started from the root, converges to the law, PS(k)

0 , say,

of φv,r (B
(k)), where B(k) is the Brownian motion on (T

(k)

v,u, λ
T

(k)
v,u) started from the

root.
It is known (see [14], Theorem 4.6) that, for N -a.e. realization of v, the

set Tv \ {x} has at most three connected components for any x ∈ Tv . Hence,
by applying the conclusion of the previous paragraph, we are able to deduce
that there exists a measurable set � ⊆ C(R+,R+) × C(R+,Rd) × [0,1]N with
M̃ ⊗ λ⊗N

[0,1](�c) = 0, where λ[0,1] is the Lebesgue measure on [0,1], such that the

map from (v, r, u) ∈ � to PS(k)
0 is continuous on �, and therefore measurable on

C(R+,R+) × C(R+,Rd) × [0,1]N with respect to the M̃ ⊗ λ⊗N
[0,1]-completion of

the standard product topology on this space.
By following the proof of [8], Lemma 3.1, we obtain that, for M̃ ⊗ λ⊗N

[0,1]-a.e.

realization of (v, r, u), the law of B(k) converges weakly in the space of Borel prob-
ability measures on C(R+,Tv) to the law PTv

ρv
. Hence, by the continuity of φv,r ,

we have that PS(k)
0 converges weakly to PTv

ρv
◦ φ−1

v,r , M̃ ⊗ λ⊗N
[0,1]-a.e. Since a limit

of measurable functions is again measurable, the map from (v, r, u) to PTv
ρv

◦ φ−1
v,r

is measurable with respect to the topology described in the previous paragraph.
Noting that

PTv
ρv

◦ φ−1
v,r =

∫
[0,1]N

PTv
ρv

◦ φ−1
v,rλ

⊗N
[0,1](du),

the result follows. �

As an immediate consequence of the above result, it is possible to define a
measure M on C(R+,R+) × C(R+,Rd)2 which satisfies

M(A × B) :=
∫
A

PT
ρ

(
φ(XT ) ∈ B

)
M̃(d(v, r)),(7.2)

for measurable A ⊆ C(R+,R+) × C(R+,Rd) and B ⊆ C(R+,Rd). This repre-
sents first choosing a tour (v, r) by the measure M̃ [which means that the resulting
spatial tree (T , φ) has marginal M], and then observing the Brownian motion on
the real tree T mapped into Euclidean space by φ; in the random walk in ran-
dom environment terminology, the law of φ(XT ) under M is the annealed law of
φ(XT ). For d ≥ 8, we can apply Proposition 6.2 to simplify the formula at (7.2)
so that the integrand only depends on the set S rather than the whole spatial tree
(T , φ). In particular, M satisfies

M(A × B) :=
∫
A

PS
0 (XS ∈ B)M̃(d(v, r))
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for measurable A ⊆ C(R+,R+) × C(R+,Rd) and B ⊆ C(R+,Rd). In this high-
dimensional case, we call the law of XS under M the annealed law of the Brownian
motion on S.

8. Quenched convergence. The aim of this section is to prove convergence
results for the simple random walks on a family of graph spatial trees, given that
the associated discrete tours converge to a typical realization of the normalized
Brownian tour. In particular, we consider a family {(Tn,φn)}n≥1 of graph spatial
trees, as defined in the previous section, such that each graph Tn has n vertices and
is unweighted, by which we mean that each edge has length one. We define μTn

to be the uniform probability measure on the vertices of Tn and, analogous to the
definitions of S and μS , set

Sn := φn(T n), μSn := μTn ◦ φ−1
n .

Furthermore, let XTn = ((X
Tn
m )m≥0,PTn

x , x ∈ Tn) be the usual discrete time simple
random walk on the vertices of Tn. To define XTn at all positive times, we linearly
interpolate between integers (for this to make sense, we suppose that the walk takes
values in the real tree version T n of Tn obtained by adding unit line segments along
edges).

Since the excursion description of ordered graph trees and the corresponding
discrete tour and snake description are well documented in [3] and [24] respec-
tively, we will not present the full details, but simply highlight the results that will
be important here. Define Ṽn : {1, . . . ,2n − 1} → Tn to be the depth-first search
around the vertices of the ordered graph tree Tn, starting from the root at time one.
Extend this map to the interval [0,2n] by setting Ṽn(0) = Ṽn(2n) = ρn, where ρn

is the root of Tn, and linearly interpolating (similarly to the extension of the sim-
ple random walk, we now consider that Ṽn takes values in the real tree T n). The
search-depth function Vn ∈ C([0,1],R+) is given by, for t ∈ [0,1],

Vn(t) := dT n
(ρn, Ṽn(2nt)),

where dT n
is the metric on T n. A related function in Rd is given by, for t ∈ [0,1],

Rn(t) := φn(Ṽn(2nt)),

which is the discrete head process and is an element of C([0,1],Rd). The process
(Vn,Rn) is the discrete tour associated with (Tn,φn), although from now on we
will commonly refer to the normalized discrete tour, which is defined by setting

(vn, rn) := (n−1/2Vn,n
−1/4Rn).

It is easy to check that the normalized discrete tour (vn, rn) contains all the infor-
mation about the graph spatial tree (Tn,φn). The corresponding normalized dis-
crete snake wn is a continuous function taking its values in the space of Rd -valued
stopped paths, and is defined to satisfy

wn(t)(s) := n−1/4φn

(
γ

T n

ρn,Ṽn(2nt)
(n1/2s)

)
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for s ≤ vn(t), and wn(t)(s) = rn(t) otherwise.
We can now state and prove the main result of this section. Note that, for

(T , φ) ∈ Tsp, we write (αT , βφ) to represent the real tree (T , αdT , ρ) and map
σ �→ βφ(σ), for σ ∈ T ; graph spatial trees will be rescaled similarly. The defini-
tion of the measure M̃(1) should be recalled from Section 2.3.

THEOREM 8.1. There exists a set C∗ ⊆ C([0,1],R+) × C([0,1],Rd) with
M̃(1)(C∗) = 1 such that, if (vn, rn) → (v, r) in C([0,1],R+) × C([0,1],Rd) for
some (v, r) ∈ C∗, then the following statements hold, where (T , φ) is the spatial
tree associated with (v, r):

(a) (n−1/2T n,n
−1/4φn) → (T , φ) in the space Tsp.

(b) n−1/4Sn → S with respect to the Hausdorff topology on compact subsets
of Rd .

(c) μSn(n1/4·) → μS weakly as Borel probability measures on Rd .
(d) (n−1/4φn(X

Tn

tn3/2))t≥0 → φ(XT ) in distribution in C(R+,Rd).

PROOF. Assume that (vn, rn) → (v, r) in C([0,1],R+) × C([0,1],Rd). For
each n, define a correspondence Cn between n−1/2T n and T by

Cn := {(σ, σ ′) :σ = Ṽn(2nt), σ ′ = [t], for some t ∈ [0,1]},
where [t] represents the equivalence classes of [0,1] under the equivalence defined
at (2.5), and, since n−1/2T n := (T n, n

−1/2dT n
, ρn), we note that the function Ṽn

can indeed be considered as a function from [0,2n] to n−1/2T n. Similarly to the
proof of Proposition 2.4, this correspondence allows us to deduce that

dsp((n
−1/2T n,n

−1/4φn), (T , φ)) ≤ 4‖vn − v‖∞ + ‖rn − r‖∞
and, therefore, part (a) holds. As noted in Section 2.2, the map (T , φ) �→ φ(T )

is continuous, hence, part (b) is an immediate consequence of part (a). To prove
part (c), we start by considering the Lebesgue measure λ[0,1] on [0,1]. By the
characterization of μT at (2.6), it is clear that λ[0,1] ◦r−1 is identical to μT ◦φ−1 =
μS . For graph trees, the analogous representation is not quite as straightforward,
because the uniform measure on [0,1] does not map to the uniform measure on the
vertices on Tn in such a simple way. However, this problem is not major. Define
the function αn : [0,1] → [0,1] by setting

αn(t) :=
{ �2nt�/2n, if vn(�2nt�/2n) ≥ vn(�2nt�/2n),

�2nt�/2n, otherwise.

It is clear from the definition that supt∈[0,1] |t − αn(t)| ≤ 1/2n, regardless of the
value of vn. Furthermore, by applying an argument similar to Lemma 12 of [3], it is
possible to show that if U is a random variable with law λ[0,1], then Ṽn(2nαn(U))

is uniform on the vertices of Tn. Since by assumption n−1/4φn(Ṽn(2nαn(U))) =
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rn(αn(U)) → r(U), it follows that μSn(n1/4·) → μS , as required for part (c) to
hold.

To prove part (d), we will use the idea of reduced subtrees, as in the proof of
Proposition 7.2. First, note that [24], Theorem 2.1, implies that (vn,wn) converges
to (v,w), where wn is the normalized discrete snake associated with (vn, rn) and w

is the snake associated with (v, r). Thus, we can proceed similarly to the proof of
Proposition 7.2 to deduce that if we let u = (um)m≥1 be a sequence taking values
in [0,1], define T (k) = T

(k)
v,u as at (7.1), and introduce a reduced subtree of T n by

setting

T (k)
n := T n

(
Ṽn

(
2nαn

(
u(1))), . . . , Ṽn

(
2nαn

(
u(k)))),

where (u(m))km=1 is a nondecreasing ordering of (um)km=1, then(
n−1/2T (k)

n , n−1/4φn

) → (
T (k), φ

)
(8.1)

in the space of graph spatial trees whenever T (k) has no vertex of degree greater
than three. Recalling that (see [14], Theorem 4.6), for N -a.e. realization of v, the
set Tv \ {x} has at most three connected components for any x ∈ Tv , we can take
the convergence of the previous sentence as an assumption. Consequently, if we
let

XT
(k)
n = (

X
T

(k)
n

t

)
t≥0

be the nearest neighbor discrete time simple random walk on the vertices of Tn

contained in T
(k)

n , extended to a continuous time process taking values in T
(k)

n by
linear interpolation, then [8], Lemma 4.2, implies that, for N ⊗ λ⊗N

[0,1]-a.e. realiza-
tion of (v, u),

ϒ
n−1/2T

(k)
n ,T

(k)

(
X

T
(k)
n

tn�
(k)
n

) → B(k)

as n → ∞, in distribution in C(R+, T
(k)

), where �
(k)
n is the sum of the lengths

of the edges of T
(k)
n , and B(k) is defined, as in the proof of Proposition 7.2, to be

the Brownian motion on (T
(k)

, λT
(k)

) started from the root. Applying (8.1), it is
possible to deduce by mapping this conclusion into Rd using φ that, for M̃(1) ⊗
λ⊗N

[0,1]-a.e. realization of (v, r, u),

n−1/4φn

(
X

T
(k)
n

tn�
(k)
n

) → φ
(
B(k))(8.2)

in distribution in C(R+,Rd). Note that, as in the proof of Proposition 7.2, we also
have that

φ
(
B(k)) → φ(XT )(8.3)

as k → ∞, in distribution in C(R+,Rd), for M̃(1) ⊗ λ⊗N
[0,1]-a.e. realization of

(v, r, u).
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Finally, (cf. [8], Proposition 7.1) we can define XTn and XT
(k)
n on the same

probability space (with probability measure P) in such a way that

lim
k→∞ lim sup

n→∞
P

(
n−1/2 sup

t∈[0,t0]
dT n

(
X

Tn

tn3/2,X
T

(k)
n

tn�
(k)
n

)
> ε

)
= 0,(8.4)

for every ε, t0 > 0. The desired conclusion will follow easily from (8.2) and (8.3)
by applying [5], Theorem 3.2, if we are able to replace the above tightness condi-
tion by

lim
k→∞ lim sup

n→∞
P

(
n−1/4 sup

t∈[0,t0]
dE

(
φn

(
X

Tn

tn3/2

)
, φn

(
X

T
(k)
n

tn�
(k)
n

))
> ε

)
= 0,(8.5)

for every ε, t0 > 0. First, for δ > 0, we have

sup
dT n

(σ1,σ2)<δn1/2
n−1/4dE(φn(σ1), φn(σ2)) = sup

dvn(s,t)<δ

dE(rn(s), rn(t)),

where dvn is defined by the formula at (2.4). By assumption, this expression con-
verges to

sup
dv(s,t)<δ

dE(r(s), r(t)) = sup
dT (σ1,σ2)<δ

dE(φ(σ1), φ(σ2))

as n → ∞. Since φ is continuous on T , which is compact, it follows that

lim
δ→0

lim sup
n→∞

sup
dT n

(σ1,σ2)<δn1/2
n−1/4dE(φn(σ1), φn(σ2)) = 0.(8.6)

Combining this with (8.4), we obtain (8.5). �

As the subsequent theorem demonstrates, the convergence of reduced subtrees
deduced in the above proof is intrinsically linked with the convergence of tours.
This result is a quenched generalization of [3], Theorem 20, which details condi-
tions for the convergence of the search-depth processes of random ordered graph
trees to the normalized Brownian excursion; we will prove the corresponding an-
nealed version in the next section. To state our result, we continue to use the nota-
tion T

(k)
n and T (k) introduced in the proof of Theorem 8.1. For a compact subset A

of a compact real tree T , we set

�(T ,A) := sup
σ1∈T

inf
σ2∈A

dT (σ1, σ2),

which measures the usual Hausdorff distance between A and T . Finally, we define

φ
(k)
n to be the map from T

(k)

n to Rd which is equal to φn on the graph vertices of

T
(k)
n and linear along the line-segments between them, and define φ(k) :T

(k) → Rd

similarly.
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THEOREM 8.2. There exists a set D∗ ⊆ C([0,1],R+) × C([0,1],Rd) ×
[0,1]N with M̃(1) ⊗ λ⊗N

[0,1](D∗) = 1 such that if (v, r, u) ∈ D∗, then the following
three conditions are equivalent:

(a) (vn, rn) → (v, r) in the space C([0,1],R+) × C([0,1],Rd).
(b) The convergence at (8.1) holds for each k ∈ N. Furthermore,

lim
k→∞ lim sup

n→∞
n−1/2�

(
T n,T

(k)

n

) = 0(8.7)

and also (8.6) is satisfied.
(c) The convergence at (8.1) holds for each k ∈ N when φn, φ are replaced by

φ
(k)
n , φ(k) respectively. Furthermore, (8.6) and (8.7) are satisfied.

PROOF. The existence of a set D∗ with M̃(1) ⊗ λ⊗N
[0,1](D∗) = 1 upon which

condition (a) implies (8.1) and (8.6) was demonstrated in the proof of the previous
result. To prove (8.7), we can apply a deterministic version of the proof of [3],
Theorem 20. Thus, (a) implies (b), from which (c) follows easily.

To prove (a) from (c), we start by noting that the convergence of subtrees implies
that (

vn

(
u(1)), rn(

u(1)), . . . , vn

(
u(k)), rn(

u(k)))
→ (

v
(
u(1)), r(

u(1)), . . . , v(
u(k)), r(

u(k))),
where (u(m))km=1 is a nondecreasing ordering of (um)km=1. Since we can take as
an assumption that on D∗ the sequence u is dense in [0,1], to complete the proof
it remains to show that (vn)n≥1 is tight in C([0,1],R+) and (rn)n≥1 is tight in
C([0,1],Rd) whenever (c) holds. To obtain the tightness of (vn)n≥1, we can again
apply a deterministic version of the proof of [3], Theorem 20. Finally, we note that

sup
|s−t |<δ

dE(rn(s), rn(t)) ≤ sup
dT n

(σ1,σ2)<3ε(n,δ)n1/2
n−1/4dE(φn(σ1), φn(σ2)),

where ε(n, δ) := sup|s−t |<δ |vn(s) − vn(t)|. Applying this bound, the tightness of
(vn)n≥1 and (8.6), it is an elementary exercise to deduce the tightness of (rn)n≥1.

�

To complete this section, let us briefly comment on the difference between (b)
and (c) in the above theorem. First, observe that φn could be any continuous func-
tion on the edges of T

(k)
n , whereas φ

(k)
n simply records the increments of φn along

the edges. Thus, condition (b) requires that the image under φn of an edge con-
verges to a (typical) segment of a Brownian motion path in Rd . In contrast, con-
dition (c) requires the weaker condition that the increment of φn along each edge
converges to the corresponding Brownian increment.
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9. Annealed convergence. Applying the measurability of the map (v, r) →
PT

ρ ◦ φ−1 and the quenched convergence result that was proved in the previ-
ous section, we are able to establish a distributional convergence property for
the simple random walks on a sequence of random graph spatial trees whose
normalized discrete tours converge in distribution to the normalized Brownian
tour. More specifically, we start by assuming that for each n ∈ N we have a
probability measure M̃n on normalized discrete tours such that if (vn, rn) is in
the support of M̃n, then the graph tree Tn corresponding to vn has n vertices
and is unweighted. We can subsequently define a probability measure Mn on
C([0,1],R+) × C([0,1],Rd) × C(R+,Rd) that satisfies

Mn(A × B) =
∫
A

PTn
ρn

((
n−1/4φn(X

Tn

tn3/2)t≥0
) ∈ B

)
M̃n(d(vn, rn)),(9.1)

for measurable A ⊆ C([0,1],R+) × C([0,1],Rd) and B ⊆ C(R+,Rd) (the nec-
essary measurability of the simple random walk laws is easily checked). Given
these measures, which are the annealed measures of the normalized discrete tours
and the associated simple random walks embedded into Rd , the main result of this
section is that if the laws of the discrete tours M̃n converge to the law of the normal-
ized Brownian tour M̃(1), then Mn converges to M(1), where we assume that M(1)

is a probability measure on C([0,1],R+) × C([0,1],Rd) × C(R+,Rd) defined
similarly to the annealed law M with M̃ replaced by M̃(1) in (7.2) (to justify this
replacement, we note that it is straightforward to check that Proposition 7.2 holds
when M̃ is replaced by M̃(1)).

THEOREM 9.1. If M̃n → M̃(1) weakly as probability measures on the space
C([0,1],R+) × C([0,1],Rd), then Mn → M(1) weakly as probability measures
on the space C([0,1],R+) × C([0,1],Rd) × C(R+,Rd).

PROOF. Following the proof of [8], Theorem 1.2, it is elementary to check
that this result is a consequence of Theorem 8.1. �

Before continuing, we remark that Theorem 8.1 allows us to deduce that the
convergence of M̃n → M̃(1) also implies the convergence of the laws of the sets
n−1/4Sn and measures μSn(n1/4·) under M̃n to the laws of S and μS , respectively,
under M̃(1). To complete this section, we state the annealed version of Theo-
rem 8.2, which can be proved by making the obvious changes to the proof of
Theorem 8.2.

THEOREM 9.2. The following three conditions are equivalent:

(a) M̃n → M̃(1) weakly as probability measures on the space C([0,1],R+) ×
C([0,1],Rd).
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(b) For each k ∈ N, then

M̃n ⊗ λ⊗N
[0,1]

((
n−1/2T (k)

n , n−1/4φn

) ∈ ·) → M̃(1) ⊗ λ⊗N
[0,1]

((
T (k), φ

) ∈ ·)(9.2)

weakly as probability measures on the space of graph spatial trees. Furthermore,

lim
k→∞ lim sup

n→∞
M̃n ⊗ λ⊗N

[0,1]
(
n−1/2�

(
T n,T

(k)

n

)
> ε

) = 0,

and also

lim
δ→0

lim sup
n→∞

M̃n

(
sup

dT n
(σ1,σ2)<δn1/2

n−1/4dE

(
φn(σ1), φn(σ2)

)
> ε

)
= 0,

for every ε > 0.
(c) Part (b) holds when φn, φ are replaced by φ

(k)
n , φ(k) respectively in (9.2).

10. Example: scaling limit for SRW on BRW. To illustrate the results of
the previous sections, we will demonstrate how the simple random walks on the
graphs generated by conditioned branching random walks converge to the Brown-
ian motion on the support of the integrated super-Brownian excursion. Let us start
by introducing some notation. For an unweighted graph tree T with root ρ, let ET

be its edge set, and, for each σ1, σ2 ∈ T , denote by ET
σ1,σ2

the subset of ET contain-
ing the dT (σ1, σ2) edges in the shortest path from σ1 to σ2 in T . Given a function
y :ET → Rd , we can define a map φ :T → Rd by setting φ(ρ) := 0,

φ(σ) := ∑
e∈ET

ρ,σ

y(e) ∀σ ∈ T \ {ρ}

and linearly interpolating along edges. Clearly, y(e) records the increment of φ

along the edge e ∈ ET .
We can now describe the family of random graph spatial trees

{(Tn,φn)}n≥1

that we will consider throughout the remainder of this article. First, for each n ∈ N,
the random ordered graph tree Tn is the family tree generated by a Galton–Watson
branching process started from a single ancestor with offspring distribution Z con-
ditioned to have n vertices. Following [17], we will assume that Z satisfies

EZ = 1, σ 2
Z := VarZ ∈ (0,∞), EeλZ < ∞

for some λ > 0. To describe the spatial element of (Tn,φn), we suppose that, con-
ditional on Tn, the function y : ETn → Rd is defined so that (y(e))e∈ETn are inde-
pendent, each distributed as a random variable Y , which is assumed to satisfy

EY = 0, VarY = �2
Y , P

(
dE(0, Y ) ≥ x

) = o(x−4)

for some positive definite d × d-matrix �Y , and then define φn :T n → Rd from y

as in the previous paragraph. Observe that, conditional on Tn, if ρ,σ1, . . . , σl is
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an injective path in Tn, then the path φ(ρ),φ(σ1), . . . , φ(σl) is a simple random
walk in Rd with step distribution Y . Thus, taking into account the independence
properties of y, it is easy to check that the collection of paths in Rd obtained
by mapping the paths which emanate from the root of Tn into Rd using φn form
a branching random walk, conditioned to have a total of n particles. The one-
dimensional version of the following result was proved in [17]; the generalization
to d dimensions is straightforward. Note that, given the other assumptions that we
are making, [17], Theorem 2, implies that the o(x−4) condition on the tail of the
distribution of Y is actually necessary to obtain this convergence of tours.

PROPOSITION 10.1 (cf. [17], Theorem 2). If we define (vn, rn) to be the
random normalized discrete tour associated with the random graph spatial tree
(Tn,φn) for each n ∈ N, and set

σT := 2

σZ

, �φ := �Y

√
2

σZ

,

then (vn, rn) → (σT v,�φr) in distribution in C([0,1],R+)×C([0,1],Rd), where
(v, r) is a random tour with law M̃(1).

By rescaling Theorem 9.1 appropriately using σT and �Y , we are subsequently
able to deduce the convergence of the annealed laws of the simple random walks
on Tn mapped into Rd by φn.

COROLLARY 10.2. If M̃n is the law of the random normalized discrete tour
(vn, rn) associated with (Tn,φn), then Mn, as defined by (9.1), converges to

M
({(v, r, φ(XT )) : (σT v,�φr, (�φφ(XT

tσ−1
T

))t≥0) ∈ ·})
weakly as probability measures on C([0,1],R+) × C([0,1],Rd) × C(R+,Rd).

In terms of random variables, this result has the following consequences (recall
also Theorem 8.1). We use the notation ⇒ to represent convergence in distribution.

COROLLARY 10.3. If (vn, rn,φn(X
Tn)) has law Mn and (v, r, φ(XT )) has

law M(1), then

(n−1/2T n,n
−1/4φn) ⇒ (σT T ,�φφ),

n−1/4φn(Tn) ⇒ �φφ(T ),

μSn(n1/4·) ⇒ μS(�−1
φ ·),

(n−1/4φn(X
Tn

tn3/2))t≥0 ⇒ (�φφ(XT
tσ−1

T

))t≥0,

simultaneously, in Tsp, as compact subsets of Rd , weakly as Borel probability mea-
sures on Rd , and in C(R+,Rd), respectively.
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