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IMPROVED MIXING TIME BOUNDS FOR THE THORP
SHUFFLE AND L-REVERSAL CHAIN1

BY BEN MORRIS

University of California, Davis

We prove a theorem that reduces bounding the mixing time of a card
shuffle to verifying a condition that involves only pairs of cards, then we use
it to obtain improved bounds for two previously studied models.

E. Thorp introduced the following card shuffling model in 1973: Suppose
the number of cards n is even. Cut the deck into two equal piles. Drop the
first card from the left pile or from the right pile according to the outcome of
a fair coin flip. Then drop from the other pile. Continue this way until both
piles are empty. We obtain a mixing time bound of O(log4 n). Previously, the
best known bound was O(log29 n) and previous proofs were only valid for n

a power of 2.
We also analyze the following model, called the L-reversal chain, intro-

duced by Durrett: There are n cards arrayed in a circle. Each step, an interval
of cards of length at most L is chosen uniformly at random and its order is re-

versed. Durrett has conjectured that the mixing time is O(max(n, n3

L3 ) logn).

We obtain a bound that is within a factor O(log2 n) of this, the first bound
within a poly log factor of the conjecture.

1. Introduction. Card shuffling has a rich history in mathematics, dating back
to the work of Markov [11] and Poincaré [15]. A basic problem is to determine the
mixing time, that is, the number of shuffles necessary to mix up the deck (see Sec-
tion 1.1 for a precise definition). A natural first step (used as far back as Borel and
Cheron [2] in 1940) is to determinine the number of steps necessary to randomize
single cards and pairs. Clearly this is always a lower bound for the mixing time.
On the other hand, it is often not far from an upper bound as well; for a number
of models of card shuffling (see, e.g., Diaconis and Shahshahani [7], Wilson [16]
or Bayer and Diaconis [1]) the the mixing time is only a small factor [e.g., O(1)

or O(logn)] larger than the time required to mix pairs. This suggests finding a
general method that reduces bounding the mixing time (in the global sense that the
distribution on all n! permutations is roughly uniform) to verifying a local condi-
tion that involves only pairs of cards. In this paper, we introduce such a method
and use it to analyze two previously studied models. In both cases we find an upper
bound for the mixing time, that is, within a poly-logarithmic factor of optimal.
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We study card shuffles that can be viewed as generalizations of three card
Monte. In three card Monte, the cards are spread out face down on a table. In
one step, the dealer chooses two cards, puts them together and then separates them
quickly so that an observer cannot tell which is which. We call this operation a col-
lision, and model it mathematically as a random permutation, that is, an even mix-
ture of a transposition and the identity. We prove a general theorem that applies
to any method of shuffling that uses collisions. The theorem bounds the change in
relative entropy after many steps of the chain, based on something, that is, related
to the interactions between pairs of cards. Next we use the theorem to analyze two
card shuffling models, the Thorp shuffle and Durrett’s L-reversal model.

1.1. Applications. In this section we describe two applications of our main
theorem. First, we give a formal definition of the mixing time. Let p(x, y) be
transition probabilities for a Markov chain on a finite state space V with a uniform
stationary distribution. For probability measures μ and ν on V , define the total
variation distance ‖μ − ν‖ = ∑

x∈V |μ(x) − ν(x)|, and define the mixing time

Tmix = min
{
n :‖pn(x, ·) − U‖ ≤ 1

4 for all x ∈ V
}
,(1)

where U denotes the uniform distribution.
Our first application is the Thorp shuffle, which is defined as follows: Assume

that the number of cards, n, is even. Cut the deck into two equal piles. Drop the
first card from the left pile or the right pile according to the outcome of a fair coin
flip; then drop from the other pile. Continue this way, with independent coin flips
deciding whether to drop LEFT-RIGHT or RIGHT-LEFT each time, until both piles
are empty.

The Thorp shuffle, despite its simple description, has been hard to analyze. De-
termining its mixing time has been called the “longest-standing open card shuffling
problem” [5]. In [14] the author obtained the first poly-log upper bound, proving
a bound of O(log44 n) valid when n is a power of 2. Montenegro and Tetali [13]
built on this to get a bound of O(log29 n). In the present paper, we dispense with
the power-of-two assumption and get an improved bound of O(log4 n).

We also analyze a Markov chain that was introduced by Durrett [9] as a model
for evolution of a genome (see [10]). In the L-reversal chain there are two pa-
rameters, n and L. The cards are located at the vertices of an n-cycle, which we
label 0, . . . , n − 1. Each step, a (nonempty) interval of cards of length at most L

is chosen uniformly at random and its order is reversed. By the coupon collector
problem, O(n logn) steps are needed to break adjacencies between neighboring
pairs. Furthermore, the mixing time for a single card is on the order n3

L3 , because
for each step the probability that a particular card moves is on the order of L/n and
each time a card moves it performs a step of a symmetric random walk with typi-
cal displacement on the order L. These considerations led Durrett to the following
conjecture.
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CONJECTURE (Durrett). The mixing time for the L-reversal chain is
O(max(n, n3

L3 ) logn).

In [9], Durrett proves the corresponding lower bound using Wilson’s tech-
nique [16] based on eigenfunctions. The spectral gap was determined to be within
constant factors of max(n, n3

L3 ) by Cancrini, Caputo and Martinelli [3]. The best
previously-known bound for the mixing time, which could be obtained by apply-
ing standard comparison techniques, was within a factor O(n2/3) of the Durrett’s
conjecture in the worst case.

Durrett’s conjecture has presented a challenge to existing techniques. As shown
by Martinelli et al., the log Sobolev constant does not give the conjectured mixing
time. Furthermore, the mixing time in L2 [defined by replacing total variation dis-
tance by an appropriate L2 distance in (1)] can be nearly n1/3 times the conjecture,
as the following example shows: let L = n2/3, so that the conjectured mixing time
is O(n logn). We claim that in this case the L2 mixing time is at least cn4/3 for a
constant c. Let A be the event that cards 1, . . . , n/2 occupy positions 1, . . . , n/2
in any order. If the initial ordering is the identity permutation, then after t shuffles
we have

P(A) ≥ P(none of the reversed intervals contained cards 1 or n/2)

≥
(

1 − 2L

n

)t

,

which is much larger than
( n
n/2

)−1 unless t ≥ cn4/3 for a constant c. Since mixing

in L2 implies convergence of transition probabilities, the L2 mixing time is at least
on the order of n4/3, which is higher than the conjecture. This means that in order
to prove the conjectured bound on the mixing time in total variation, one cannot
use any method for bounding mixing times that gives a bound in L2.

In the present paper, we prove that the mixing time is O((n ∨ n3

L3 ) log3 n). This
is the first upper bound, that is, within a poly-log factor of the conjecture.

The remainder of this paper is organized as follows: in Section 2 we give some
necessary background on entropy and prove some elementary inequalities. In Sec-
tion 3 we define Monte shuffles, the general model of card shuffling to which our
main theorem will apply. In Section 4 we prove the main theorem. In Section 5 we
analyze the Thorp shuffle and in Section 6 we analyze the L-reversal chain.

2. Background. For a probability distribution {pi : i ∈ V }, define the (rela-
tive) entropy of p by ENT(p) = ∑

i∈V pi log(|V |pi), where we define 0 log 0 = 0.
The following well-known inequality links relative entropy to total variation dis-
tance. Let U denote the uniform distribution over V . Then

‖p − U‖ ≤
√

1
2 ENT(p).(2)
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If X is a random variable (or random permutation) taking finitely many val-
ues, define ENT(X) as the relative entropy of the distribution of X. Note that
if P(X = i) = pi for i ∈ V then ENT(X) = E(log(|V |pX)). We shall think of
the distribution of a random permutation in Sn as a sequence of probabilities of
length n!, indexed by permutations in Sn. If F is a sigma-field, then we shall
write ENT(X | F ) for the relative entropy of the conditional distribution of X

given F . Note that ENT(X | F ) is a random variable. If π is a random permu-
tation in Sn, then for 1 ≤ k ≤ n, define Fk = σ(π−1(k), . . . , π−1(n)), and define
ENT(π, k) = ENT(π−1(k) | Fk+1) [where we think of the conditional distribution
of π−1(k) given Fk+1 as being a sequence of length k]. The standard entropy chain
rule (see, e.g., [4]) gives the following proposition.

PROPOSITION 1. For any i ≤ n we have

ENT(π) = E(ENT(π | Fi )) +
n∑

k=i

E(ENT(π, k)).

To compute the relative entropy in the first term on the right-hand side, we think
of the distribution of π given Fi as a sequence of probabilities of length (i − 1)!.

REMARK. Substituting i = 1 into the formula gives ENT(π) =∑n
k=1 E(ENT(π, k)).

If we think of π as representing the order of a deck of cards, with π(i) =
location of card i , then this allows us to think of E(ENT(π, k)) as the portion of
the overall entropy ENT(π), that is, attributable to the location k. If S ⊂ {1, . . . , n}
is a set of positions, then we shall refer to the quantity

∑
k∈S ENT(π, k) as the

entropy, that is, attributable to S.

DEFINITION 2. For p,q ≥ 0, define d(p, q) = 1
2p logp + 1

2q logq − p+q
2 ×

log(
p+q

2 ).

We will need the following proposition.

PROPOSITION 3. Fix p ≥ 0. The function d(p, ·) is convex.

PROOF. A calculation shows that the second derivative is positive. �

Observe that d(p, q) ≥ 0, with equality iff p = q by the strict convexity of the
function x → x logx. Furthermore, some calculations give

d(p, q) = p + q

2
f

(
p − q

p + q

)
,(3)
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where f (�) = 1
2(1 + �) log(1 + �) + 1

2(1 − �) log(1 − �). If p = {pi : i ∈ V }
and q = {qi : i ∈ V } are both probability distributions on V , then we can define the
“distance” d(p, q) between p and q , by d(p, q) = ∑

i∈V d(pi, qi). [We use the
term distance loosely and do not claim that d(·, ·) satisfies the triangle inequality.]
Note that d(p, q) is the difference between the average of the entropies of p and q

and the entropy of the average (i.e., an even mixture) of p and q .
We will use the following projection lemma.

LEMMA 4. Let X and Y be random variables with distributions p and q , re-
spectively. Fix a function g and let P and Q be the distributions of g(X) and g(Y ),
respectively. Then d(p, q) ≥ d(P,Q).

PROOF. Let Si = {x :g(x) = i}. Then

Pi = ∑
x∈Si

px; Qi = ∑
x∈Si

qx.

We have

d(p, q) = ∑
i

∑
x∈Si

d(px, qx)(4)

= ∑
i

∑
x∈Si

px + qx

2
f

(
px − qx

px + qx

)
(5)

= ∑
i

[
Pi + Qi

2

] ∑
x∈Si

px + qx

2

[
Pi + Qi

2

]−1

f

(
px − qx

px + qx

)
.(6)

Note that f has a positive second derivative, hence it is convex. Thus by Jensen’s
inequality, the quantity (6) is at least

∑
i

[
Pi + Qi

2

]
f

( ∑
x∈Si

px + qx

2

[
Pi + Qi

2

]−1 px − qx

px + qx

)
(7)

= ∑
i

[
Pi + Qi

2

]
f

(
Pi − Qi

Pi + Qi

)
= ∑

i

d(Pi,Qi)(8)

= d(P,Q).(9) �

Let U denote the uniform distribution on V . Note that if μ is an arbitrary dis-
tribution on V , then ENT(μ) and d(μ,U) are both notions of a distance from μ

to U. The following lemma relates the two.
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LEMMA 5. For any distribution μ on V we have

d(μ,U) ≥ c

log |V | ENT(μ)

for a universal constant c > 0.

PROOF. Let n = |V |, define μ̂ = nμ and define g : (0,∞) → R by g(x) =
x logx − (x − 1). Then

ENT(μ) = ∑
i∈V

μ(i) log(nμ(i))(10)

= 1

n

∑
i∈V

μ̂(i) log μ̂(i) − (
μ̂(i) − 1

)
(11)

= 1

n

∑
i∈V

g(μ̂(i)),(12)

where the second equality holds because
∑

i∈V (μ̂(i) − 1) = 0. Thus it is enough
to show for a universal constant c we have

d

(
μ(i),

1

n

)
≥ c

n logn
g(μ̂(i))(13)

for all i ∈ V . Fix i ∈ V and let x = μ̂(i). Then by (3) we have

d

(
μ(i),

1

n

)
= 1

n
d(x,1)(14)

= 1

n

(
x + 1

2

)
f

(
x − 1

x + 1

)
,(15)

where f (�) = 1
2(1 + �) log(1 + �) + 1

2(1 − �) log(1 − �). Thus it remains to
show that the function R(x) defined by

R(x) = g(x)

((x + 1)/2)f ((x − 1)/(x + 1))
(16)

is at most c−1 logn on the interval [0, n], for a constant c > 0. Note that R(x) is
bounded on the interval [0,2]. (This can be seen by applying l’Hôpital’s rule twice
for the point x = 1.) Let x ∈ [2, n]. The denominator in (16) is at least

x

2
f

(
x − 1

x + 1

)
≥ x

2
f

(
1

3

)
,

since the function x → f (x − 1/x + 1) is increasing on [2,∞). The numerator is
g(x) ≤ x logx ≤ x logn. Thus R(x) ≤ 2 logn/f (1

3) on the interval [2, n] and the
proof is complete. �

3. General set-up: card shuffles with collisions.

3.1. Collisions. We shall now define a collision, which is the basic ingredient
in all of the card shuffles analyzed in the present paper. If π is a random permuta-
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tion in Sn such that

π =
{

id, with probability 1
2 ,

(a, b), with probability 1
2 ,

for some a, b ∈ {1,2, . . . , n} [where we write id for the identity permutation and
(a, b) for the transposition of a and b], then we will call π a collision. If π and μ

are permutations in Sn, then we write πμ for the composition μ ◦ π .
A card shuffle can be described as a random permutation chosen from a certain

probability distribution. If we start with the identity permutation and each shuffle
has the distribution of π , then after t steps the cards are distributed like π1 · · ·πt ,
where the πi are i.i.d. copies of π . In this paper, we shall consider shuffling per-
mutations π that are written in the form

π = νc(a1, b1)c(a2, b2) · · · c(ak, bk),(17)

where ν is an arbitrary random permutation, the numbers a1, . . . , ak, b1, . . . , bk are
distinct, and c(aj , bj ) is a collision of aj and bj . The values of aj and bj and the
number of collisions (which can be zero) may depend on ν, but conditional on ν

the c(aj , bj ) are independent collisions. We shall call shuffles of this type Monte.
For t ≥ 1, define π(t) = π1 · · ·πt .

REMARK. Of course any shuffle can be written in Monte form in a trivial way
(i.e., with no collisions). The trick is to present any given shuffle in Monte form in
a useful way.

3.2. Warm-up lemma. In this section we prove a simple lemma with a short
proof that brings out many of the central ideas of our main theorem (Theorem 9
below). We start with an easy proposition.

PROPOSITION 6. Suppose that π is any fixed permutation. Then

ENT(μπ) = ENT(μ).

PROOF. Up to a re-labeling of indices, the random permutation μπ has the
same distribution as μ, hence the same relative entropy. �

If π is random and independent of μ then ENT(μπ) ≤ ENT(μ), which follows
by using Jensen’s inequality (applied to the function x → x logx) to condition
on π , and then applying Proposition 6. It follows that if π1, π2, . . . are i.i.d. copies
of π then ENT(π1 · · ·πk) is nonincreasing in k. In this section we study the decay
of entropy ENT(μπ)−ENT(μ) in the case where the permutation π is a collision.

The following lemma relates to the case where π is a collision between the j th
card and another card of smaller index. The lemma says that the relative entropy
is reduced by at least c ENT(μ, j)/ logn, on average (where “on average” means
with respect to the different possible choices of indices i ≤ j ).
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LEMMA 7. Let μ be a random permutation. Then for a universal constant c

we have

j−1
∑
i≤j

ENT(μc(i, j)) ≤ ENT(μ) − c ENT(μ, j)/ logn.

PROOF. Using the abuse of notation 1
2π1 + 1

2π2 for a random permutation
whose distribution is an even mixture of the distributions of π1 and π2, we have

μc(i, j) = 1
2μ + 1

2μ(i, j).

Let L(X | F ) denote the conditional distribution of random variable (or ran-
dom permutation) X given the sigma field F . Let μ̂ = μ(i, j) [i.e., the prod-
uct of μ and the transposition (i, j)]. Note that μ̂ and μ are the same, except
that μ̂−1(i) = μ−1(j) and μ−1(i) = μ̂−1(j) and recall that i ≤ j . It follows that
ENT(μ̂ | Fj+1) = ENT(μ | Fj+1) and hence ENT(μc(i, j) | Fj+1) − ENT(μ |
Fj+1) = −d(L(μ̂ | Fj+1),L(μ | Fj+1)). But by the projection lemma,

d(L(μ̂ | Fj+1),L(μ | Fj+1)) ≥ d(L(μ̂−1(j) | Fj+1),L(μ−1(j) | Fj+1))

= d(L(μ−1(i)|Fj+1),L(μ−1(j) | Fj+1)).

Hence

j−1
∑
i≤j

ENT(μc(i, j) | Fj+1) − ENT(μ | Fj+1)

≤ −j−1
∑
i≤j

d(L(μ−1(i) | Fj+1),L(μ−1(j) | Fj+1))

≤ −d

(
j−1

∑
i≤j

L(μ−1(i) | Fj+1),L(μ−1(j) | Fj+1)

)
(18)

= −d(U,L(μ−1(j) | Fj+1))

≤ − c

logn
ENT(L(μ−1(j) | Fj+1)),

where the first inequality is by Proposition 3 and the second is by Lemma 5.
Here U denotes the uniform distribution over {1, . . . , n} − {μ−1(j + 1), . . . ,

μ−1(n)}. Taking expectations gives

j−1
∑
i≤j

E(ENT(μc(i, j) | Fj+1)) − E(ENT(μ | Fj+1))

(19)
≤ − c

logn
ENT(μ, j).

Since ENT(μ, k) = ENT(μc(i, j), k) for all k ≥ j + 1, Proposition 1 and (19)
yield the lemma. �
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4. Main theorem. Let π be a random permutation in Sn, that is, Monte [i.e.,
can be written in the form (17)] and let π1, π2, . . . be independent copies of π . For
t ≥ 1 let π(t) = π1 · · ·πt .

CONVENTION. We shall use the following convention throughout: we denote
by card x the card initially in position x.

For cards x and y, say that x collides with y at time m if for some i and j we
have π−1

(m)(i) = x, π−1
(m)(j) = y, and πm has a collision of i and j .

We will need the following definition.

DEFINITION 8. For a random variable X, a finite set S and a real number
A ∈ [0,1], say that the distribution of X is A-uniform over S if

P(X = i) ≥ A|S|−1

for all i ∈ S.

REMARK. If A < 1 then the distribution of X need not be concentrated on S.
(But if A = 1, then X is uniform over S.)

Our main theorem is a generalization of Lemma 7. It generalizes from a colli-
sion to an arbitrary Monte shuffle, and it bounds the loss in relative entropy after
many steps.

THEOREM 9. Let π be a Monte shuffle on n cards. Fix an integer t > 0 and
suppose that T is a random variable taking values in {1, . . . , t}, which is indepen-
dent of the shuffles {πi : i ≥ 0}. For a card x, let b(x) denote the first card to collide
with x after time T [or b(x) = x if there is no such card]. Define the match m(x)

of x by

m(x) :=
{

b(x), if x = b(b(x)),
x, otherwise.

Suppose that for every card i there is a constant Ai ∈ [0,1] such that the distribu-
tion of m(i) is Ai -uniform over {1, . . . , i}. Let μ be an arbitrary random permuta-
tion, that is, independent of {πi : i ≥ 0}. Then

ENT
(
μπ(t)

) − ENT(μ) ≤ −C

logn

n∑
k=1

AkEk,

where Ek = E(ENT(μ, k)) and C is a universal constant.
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PROOF. Let M = (m(i) : 1 ≤ i ≤ n). For i and j with j ≤ i, let c(i, j) be
a collision of i and j . Assume that all of the c(i, j) are independent of μ, π(t) and
each other. Note that [ ∏

i : m(i)≤i

c(i,m(i))

]
π(t)

has the same distribution as π(t), so it is enough to bound the relative entropy
of the distribution of μ[∏i : m(i)≤i c(i,m(i))]π(t). By expressing this as a mixture
of conditional distributions given M and π(t), and then using Jensen’s inequality
applied to x → x logx, the entropy can be bounded above by the expected value
of

ENT

(
μ

[ ∏
i : m(i)≤i

c(i,m(i))

]
π(t) | M, π(t)

)
(20)

= ENT

(
μ

[ ∏
i : m(i)≤i

c(i,m(i))

] ∣∣∣ M, π(t)

)

= ENT

(
μ

[ ∏
i : m(i)≤i

c(i,m(i))

] ∣∣∣ M

)
,(21)

where the first equality holds by Proposition 6 and the second equality holds be-
cause the permutation μ, the product of collisions c(i,m(i)) and π(t) are condi-
tionally independent given M. For 1 ≤ k ≤ n, let

νk = ∏
i : m(i)≤i≤k

c(i,m(i)).

Note that the right-hand side of (21) is ENT(μνn | M) and ν0 = id. Since μ is
independent of M, we have ENT(μ | M) = ENT(μ) and hence

ENT(μνn | M) − ENT(μ) =
n∑

k=1

ENT(μνk | M) − ENT(μνk−1 | M).

Thus, it is enough to show that for every k we have

E
(
ENT(μνk | M) − ENT(μνk−1 | M)

) ≤ −CAkEk

logn
.(22)

Note that if m(k) > k, then νk = νk−1. If m(k) ≤ k, then νk = νk−1c(k,m(k)). We
can now proceed in a way, that is, analogous to the proof of Lemma 7. Note that
when m(k) ≤ k we have

μνk = 1
2μνk−1 + 1

2μνk−1(k,m(k)).

Fix i ≤ k, let λ = μνk−1 and let λ̂ = λ(k, i). Note that λ̂ and λ are the same,
except that λ̂−1(k) = λ−1(i) and λ−1(k) = λ̂−1(i). Note also that νk−1 has k +
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1, . . . , n as fixed points, so (λ−1(k +1), . . . , λ−1(n)) = (μ−1(k +1), . . . ,μ−1(n)).
Let

Fk+1 = σ
(
μ−1(k + 1), . . . ,μ−1(n)

)
= σ

(
λ−1(k + 1), . . . , λ−1(n)

)
and define F̂k+1 = σ(Fk+1,M). Then we have ENT(̂λ | F̂k+1) = ENT(λ | F̂k+1)

and hence

ENT(λc(k, i) | F̂k+1) − ENT(λ | F̂k+1) = −d(L(̂λ | F̂k+1),L(λ | F̂k+1)).

But by the projection lemma,

d(L(̂λ | F̂k+1),L(λ | F̂k+1)) ≥ d(L(̂λ−1(k) | F̂k+1),L(λ−1(k) | F̂k+1))

= d(L(λ−1(i)|F̂k+1),L(λ−1(k) | F̂k+1)).

Thus, since m(k) is F̂k+1-measurable, on the event that m(k) ≤ k we have

ENT(μνk | F̂k+1) − ENT(μνk−1 | F̂k+1)

= ENT(λc(k,m(k)) | F̂k+1) − ENT(λ | F̂k+1)

≤ −d(L(λ−1(m(k))|F̂k+1),L(λ−1(k) | F̂k+1))

= −∑
i≤k

1(m(k) = i)d(L(μ−1(i) | Fk+1),L(μ−1(k) | Fk+1)),

where in the third line we replaced λ by μ because νk−1 does not contain the
collision c(k,m(k)) and hence has k and m(k) as fixed points, and we replaced the
sigma field F̂k+1 by Fk+1 because μ is independent of M. Taking expectations
gives

E
(
ENT(μνk | F̂k+1) − ENT(μνk−1 | F̂k+1)

)
≤ −E

(∑
i≤k

P
(
m(k) = i

)
d(L(μ−1(i) | Fk+1),L(μ−1(k) | Fk+1))

)
(23)

≤ −E

(
Akk

−1
∑
i≤k

d(L(μ−1(i) | Fk+1),L(μ−1(k) | Fk+1))

)

≤ −E

(
Akd

(
k−1

∑
i≤k

L(μ−1(i) | Fk+1),L(μ−1(k) | Fk+1)

))
,

where the second inequality follows by the Ak-uniformity of m(k) and the inde-
pendence of m(k) and μ, and the third inequality is by Proposition 3. The first
argument of d(·, ·) in the right-hand side of (23) is the uniform distribution over
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{1, . . . , n} − {μ−1(k + 1), . . . ,μ−1(n)}. Thus the right-hand side of (23) is

−AkE(d(U,L(μ−1(k) | Fk+1)))(24)

≤ −CAk

logn
E(ENT(L(μ−1(k) | Fk+1))) = −CAkEk

logn
,(25)

where the inequality holds by Lemma 5. Since μνk and μνk−1 agree in positions
k + 1, . . . , n, the portion of their respective entropies that are attributable to those
positions coincides, hence Proposition 1 and (25) yield the theorem. �

REMARK. Since for any distribution p we have d(p,p) = 0, (23) is still true
if m(k) is only Ak-uniform over {0, . . . , k − 1}. So the assumptions of the theorem
can be relaxed so that there is no lower bound necessary on the probability that
m(k) = k.

5. Thorp shuffle. In this section we show that Theorem 9 implies an im-
proved bound for the Thorp shuffle. Recall that the Thorp shuffle has the following
description: assume that the number of cards, n, is even. Cut the deck into two
equal piles. Drop the first card from the left pile or the right pile according to the
outcome of a fair coin flip; then drop from the other pile. Continue this way, with
independent coin flips deciding whether to drop LEFT-RIGHT or RIGHT-LEFT each
time, until both piles are empty.

We will actually work with the time reversal of the Thorp shuffle, which is
well known and easily shown to have the same mixing time. Suppose that we
label the positions in the deck 0,1, . . . , n − 1. Note that the Thorp shuffle can be
described in the following way: with each step, for x with 0 ≤ x ≤ n

2 − 1, the
cards at positions x and x + n/2 collide and are moved to positions 2x mod n and
2x + 1 mod n. Thus, the time reversal can be described as follows: each step, for
even numbers x ∈ {0, . . . , n − 2}, the cards in positions x and x + 1 collide and
are moved to positions x/2 and x/2+n/2. More precisely, a reverse Thorp shuffle
can be written in Monte form as

νc(0, n/2)c(1, n/2 + 1) · · · c(n/2 − 1, n − 1),

where ν is the (deterministic) permutation that moves the card in position x either
to position x/2 or to position x/2 + n/2, according to whether x is even or odd.

We write π(t) for a product of t i.i.d. copies of the reverse Thorp shuffle. Our
main lemma is the following:

LEMMA 10. Let t = �log2 n�. There is a universal constant C such that for
any random permutation μ we have

ENT
(
μπ(t)

) ≤ (1 − C/ log2 n)ENT(μ).
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PROOF. Partition the locations 0, . . . , n − 1 into intervals Im as follows:
let I0 = {0}, and for m = 1,2, . . . , �log2 n�, define Im = {2m−1, . . . ,2m − 1} ∩
{0, . . . , n − 1}.

For i ∈ {0, . . . , n− 1}, define Ei = ENT(μ, i). We can write the entropy of μ as

ENT(μ) = ∑
m

∑
i∈Im

Ei.

Let m∗ be the value of m that maximizes
∑

i∈m Ei . Then∑
j∈Im∗

Ej ≥ c

logn
ENT(μ)

for a constant c. Since the reverse Thorp shuffle is in Monte form, we may use
Theorem 9. We will also use the remark immediately following Theorem 9, which
says that the distribution of the card matched with i need only be Ai uniform
over {j : j < i} in order for the conclusions of the theorem to hold. Fix m with
1 ≤ m ≤ �log2 n�. We will show that the assumptions of the theorem hold with
t = �log2 n�,

Ai =
{

1/4, if i ∈ Im,
0, otherwise,

and the random variable T defined as follows: let T be any random variable that
satisfies

P(T = r) ≥ 2r−m−1(26)

for r = 0, . . . ,m.
Fix i ∈ Im. We shall show that for any j < i we have P(m(i) = j) ≥ 1/4i.

Define f : Z → Z by f (t) = �t/2�. Note that if Xs(j) denotes the position of
card j at time s, then

Xs(j) = f (Xs−1(j)) + Zs(j),(27)

where Zs(j) is a random “offset” whose distribution is uniform over {0, n/2}. Note
that in step of the shuffle, the distance between a pair of cards is cut roughly in half
if they have the same offsets. More precisely, if x > y then

f (x) − f (y) ≤
{

(x − y)/2, if x is odd or y is even,
(x − y)/2 + 1

2 , otherwise.(28)

It follows that �log2(f (x)−f (y))� ≤ �(log2(x −y))� and �log2(f (x)−f (y))� ≤
�(log2(x − y))� − 1 unless x = y + 1 and x is even.

Say that two positions x and y are neighbors if |x − y| = 1 and min(x, y) is
even. (Note that in each step of the reverse Thorp shuffle, the neighbors collide.)
Since n is even we can write n/2 = 2kl for some k ≥ 0 and odd integer l. Fix i

and j with j ≤ i. We shall show that P(m(i) = j) ≥ 1/4i.
First, we claim that P(Xm(j) is even) ≥ 1

2 . To see this for the case m ≤ k we
shall use the following lemma. Let f r denote the r-fold iterate of f .
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LEMMA 11. If s ≤ k, then Xs(j) = f s(j) + ∑s−1
r=0 2−rZs−r (j).

PROOF. The proof will be by induction on s. The base case s = 1 follows
from (27). Now suppose that s < k and

Xs(j) = f s(j) +
s−1∑
r=0

2−rZs−r (j).(29)

Since n/2 = 2kl, and each of the terms Zs−r is either 0 or n/2, the sum in (29) is
even. It follows that

Xs+1(j) = f (Xs(j)) + Zs+1

=
(
f s+1(j) + 1

2

s−1∑
r=0

2−rZs−r (j)

)
+ Zs+1

= f s+1(j) +
s∑

r=0

2−rZs+1−r (j).
�

Since f m(j) = 0, Lemma 11 implies that if m ≤ k, then Xm(j) = ∑m−1
r=0 2−r ×

Zm−r (j). It follows that Xm(j) is even since each of the Zm−r (j) is either 0 or 2kl,
so each term in the sum is even.

Assume now that m > k. Suppose that the value of Zm−k(j) (which is either 0
or n/2) is determined by an unbiased coin flip. For m − k ≤ s ≤ m, let X′

s(j)

be what the position of card j at time s would have been if the outcome of the
coin flip determining Zm−k had been different. Since f (x) − f (y) = 1

2(x − y)

if x − y is even, it follows that |X′
s(j) − Xs(j)| = 2m−s l for m − k ≤ s ≤ m.

Thus |X′
m(j) − Xm(j)| = l, which is odd. So one of X′

m(j) and Xm(j) is odd and
the other is even. Since they have the same distribution, they are each even with
probability 1

2 .
Let y0 = X0(i), and for s ≥ 1 let ys = f (ys−1) + Zs(j), that is, where card i

would be located after s steps if its offsets were the same as those for j . Let
τ = min{s : |ys − Xs(j)| = 1 and Xs(j) is even}. Since |i − j | ≤ 2m (28) and the
sentence immediately following it imply that there must be a value of s ≤ m such
that |ys − Xs(j)| = 1. Combining this with the fact that Xm(j) is even with prob-
ability at least 1

2 gives P(τ ≤ m) ≥ 1
2 . Furthermore, given τ = r , the conditional

probability that Xs(i) = ys for 0 ≤ s ≤ r (and hence i and j collide at time τ )
is 2−r . Finally, since assumption (26) gives P(T = r) ≥ 2r−m−1, it follows that
P(m(i) = j) ≥ 2−m−2 ≥ 1

4i
.

We have shown that the assumptions of Theorem 9 are met with t = �log2 n�
and Ai = 1/4 for i ∈ Im. Applying this with m = m∗ shows that for any permuta-
tion μ, we have ENT(μπ(t)) ≤ (1−C/ log2 n)ENT(μ), for a universal constant C.
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It follows that for any B ∈ {1,2, . . .} we have

ENT
(
π(Bt log3 n)

) ≤ (1 − C/ log2 n)B log3 n ENT(id)

≤ n1−CB logn,

since ENT(id) = logn! ≤ n logn and 1 − u ≤ e−u for all u. If B is large
enough so that n1−CB logn ≤ 1

8 for all n, then ENT(π(Bt log3 n)) ≤ 1
8 and hence

‖π(Bt log3 n) −U‖ ≤ 1
4 by (2). It follows that the mixing time is at most Bt log3 n =

O(log4 n). �

6. L-reversal chain. In this section we analyze Durrett’s L-reversal chain.
Recall that the L-reversal chain has two parameters, n and L. The cards are located
at the vertices of an n-cycle, which we label {0, . . . , n−1}. For each step, a vertex v

and a number l ∈ {0, . . . ,L} is chosen independently and uniformly at random.
Then the interval of cards v, v + 1, . . . , v + l is reversed, where the numbers are
taken mod n. Equivalently, for each step a (nonempty) interval of length at most L

(i.e., of size between 1 and L + 1) is chosen uniformly at random and reversed.
We shall assume that L > L0 for a suitable value of L0 and n ≥ 4L. The cases
where L is constant and where n ≤ cL for a constant c were both treated in [9].

We put the shuffle in Monte form as follows: let μi,j denote the permutation that
reverses the cards in positions i, i + 1, . . . , j and leaves the rest unchanged. Let Z

be uniform over {1, . . . ,L}. Choose v uniformly at random from {0, . . . , n − 1}
and let

π =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μv,v+L, with probability
1

2(L + 1)
,

μv,v+L−1, with probability
1

2(L + 1)
,

μv,v+Zc(v,Z), with probability
L

(L + 1)
.

(30)

It will be convenient to think of the permutations μv,v+2(v, v + 2) and
μv,v+1(v, v + 1) as being μv,v . (We can do this since they are all just the identity
permutation.) Using this convention, for any r ∈ {0, . . . , n − 1} we have

P(π is assigned the value μr,r )

= P(v = r)P(Z ∈ {1,2})P(
c(v,Z) = (v,Z)

) L

L + 1

= 1

n(L + 1)
.

The following remark shows that for any s with 1 ≤ s ≤ L the probability that π

is assigned the value μr,r+s is also 1
n(L+1)

, and hence π has the distribution of an
L-reversal shuffle.
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REMARK. Fix r ∈ {0, . . . , n − 1} and s with 1 ≤ s ≤ L. Note that for any
value of s there are two ways for π to be μr,r+s . The first way is to have v = r ,
Z = s, c(v,Z) = id, and to make the bottom choice for π in (30). This happens
with probability 1

2n(L+1)
. The second way depends on the value of s. If s < L − 1,

then the second way to have π = μr,r+s is to have v = r − 1, Z = s + 1, and
c(v,Z) = (v,Z); this occurs with probability 1

2n(L+1)
. If s = L or s = L − 1, then

the second way to have π = μr,r+s is to have v = r and to make the top or middle
choice, respectively, for π in (30); this occurs with probability 1

2n(L+1)
. It follows

that P(π = μr,r+s) = 1
n(L+1)

for every r and s; furthermore, given that π = μr,r+s ,

the conditional probability that π contains the collision c(r, s) is 1
2 . This fact will

be used in the sequel.

We write π(t) for a product of t i.i.d. copies of the L-reversal shuffle. Our main
technical lemma is the following:

LEMMA 12. There is a universal constant C such that for any random permu-

tation μ there is a value of t ∈ {1, . . . , Cn3

L3 } such that

ENT
(
μπ(t)

) ≤ (
1 − f (t)

)
ENT(μ),

where f (t) = γ

log2 n
( t
n

∧ 1), for a universal constant γ .

Before proving Lemma 12, we first show how it gives the claimed mixing time
bound.

LEMMA 13. The mixing time for the L-reversal chain is O((n ∨ n3

L3 ) log3 n).

PROOF. Let t and f be as defined in Lemma 12. Then

t

f (t)
= γ −1(log2 n)t

(
n

t
∨ 1

)
= γ −1 log2 n(n ∨ t) ≤ T ,(31)

where T = γ −1 log2 n[n ∨ Cn3

L3 ]. Note that 1/T is a bound on the long run rate of

entropy loss per unit of time. Lemma 12 implies that there is a t1 ∈ {1, . . . , Cn3

L3 }
such that

ENT(π1 · · ·πt1) ≤ (
1 − f (t1)

)
ENT(id)

and a t2 ∈ {1, . . . , Cn3

L3 } such that

ENT(π1 · · ·πt1+t2) ≤ (
1 − f (t2)

)
ENT(π1 · · ·πt1),
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etc. Continue this way to define t3, t4, and so on. For j ≥ 1 let τj = ∑j
i=1 ti . Then

ENT
(
π(τj )

) ≤
[ j∏

i=1

(
1 − f (tj )

)]
ENT(id)(32)

≤ exp

(
−

j∑
i=1

f (tj )

)
ENT(id).(33)

But since tj ≤ Tf (tj ) by (31), we have

τj =
j∑

i=1

tj ≤ T

j∑
i=0

f (tj ).

It follows that

ENT
(
π(τj )

) ≤ exp
(−τj

T

)
ENT(id).(34)

Since ENT(id) = logn! ≤ n logn, it follows that if τj ≥ T log(8n logn) we have
ENT(π(τj )) ≤ 1

8 and hence ‖π(τj ) −U‖ ≤ 1
4 by (2). It follows that the mixing time

is O(T log(8n logn)) = O((n ∨ n3

L3 ) log3 n). �

We shall now prove Lemma 12.

PROOF OF LEMMA 12. Let m = �log2(n/L)�. Then we can partition the set
of locations {0, . . . , n− 1} into m + 1 intervals as follows: let I0 = {0, . . . ,L}, and
for 1 ≤ k ≤ m define Ik = {2k−1L + 1, . . . ,2kL} ∩ {0, . . . , n − 1}. Define Ek =
E(ENT(μ, k)). Note that we can write the entropy of μ as

ENT(μ) =
m∑

k=0

∑
j∈Ik

Ej .(35)

Thus, if k∗ maximizes
∑

j∈Ik
Ej , then

∑
j∈I∗

k

Ej ≥ 1

m + 1
ENT(μ).

Suppose first that k∗ = 0. In this case we can take t = 1, as we now show. Let π be
a random permutation corresponding to one move of the L-reversal chain. Let E

be the event that π reverses a, a + 1, . . . , b for a, b ∈ {0, . . . ,L}. Then (using an
abuse of notation similar to that in Section 3.2) we can write π as

π = απ1 + (1 − α)π2,
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where α = P(E), π1 is π conditioned on E, and π2 is π conditioned on Ec. Then
μπ = αμπ1 + (1 − α)μπ2 and hence

ENT(μπ) = ENT
(
αμπ1 + (1 − α)μπ2

)
(36)

≤ α ENT(μπ1) + (1 − α)ENT(μπ2)(37)

≤ α ENT(μπ1) + (1 − α)ENT(μ),(38)

where both inequalities follow from the convexity of x → x logx. It follows that

ENT(μπ) − ENT(μ) ≤ α[ENT(μπ1) − ENT(μ)].(39)

Note that π1 does not move any of the cards in locations {L + 1, . . . , n}.
Hence by Proposition 1, the entropy difference ENT(μπ1) − ENT(μ) is the ex-
pected loss in entropy attributable to positions {0, . . . ,L}, that is, E(ENT(μπ1 |
FL+1) − ENT(μ | FL+1)), where FL+1 = σ(μ−1(L + 1), . . . ,μ−1(n − 1)). The
permutation π1 is a step of a modified L-reversal chain on the L + 1 cards in
the line graph {0, . . . ,L}, reversing an interval of the form a, a + 1, . . . , b for
0 ≤ a ≤ b ≤ L.

In Theorem 6 of [9], it is shown (by comparison with shuffling through ran-
dom transpositions [7]; see [6] for background on comparison techniques) that the
log Sobolev constant for the L-reversal chain on n cards is at most B n3

L2 logn for
a constant B . This remains true if we consider the modified L-reversal process on
the line graph. Thus π1 has a log Sobolev constant, that is, at most 2BL logL, and
hence (by the well-known relationship between the log Sobolev constant and decay
of relative entropy; see, e.g., [12]) multiplying μ by π1 reduces the relative entropy
by at least 1/B ′L logL times the entropy attributable to positions {0, . . . ,L}, for
a constant B ′. Thus the right-hand side of (39) is at most

−α(B ′L logL)−1
∑
j∈I1

Ej ≤ −(8B ′n logL)−1
∑
j∈I1

Ej(40)

= −(8B ′n log2 n)−1 ENT(μ),(41)

where the second line follows from the fact that α ≥ L
8n

.
Next we shall consider the case where k∗ ≥ 1, so that the interval is of the form

{2k−1L+ 1, . . . ,2kL} ∩ {0,1, . . . , n− 1}. We will use Theorem 9 to get a decay of
entropy in this case. We make the following claim.

CLAIM 14. Fix k ≥ 1. There are universal constants C and α > 0 such that if
t = 4kCn/L3, T = t/2 and

Ay =
⎧⎨⎩α

(
t

n
∧ 1

)
, if y ∈ Ik ,

0, otherwise,

then the assumptions of Theorem 9 are satisfied by t, T and the Ay .
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In order to prove this claim, it is helpful to know that the L-reversal chain en-
joys certain monotonicity properties. Roughly speaking, the closer two cards are
together, the more likely they are to collide after a given number of steps. Before
proving Claim 14, we shall verify these monotonicity properties.

Two types of monotonocity. Fix x and y in {0, . . . , n} and let xm and ym

denote the positions of cards x and y, respectively, at time m. Define Zm = |xm −
ym|, that is, the graph distance between xm and ym in the n-cycle. Note that Zm is
a Markov chain. We shall need the following lemma.

LEMMA 15. Let P̂ denote the transition matrix of Zm. Then P̂ is monotone,
that is, if b ≥ a then P̂ (b, ·) � P̂ (a, ·), where � denotes stochastic domination.

PROOF. Fix positions u and a with a ≤ n/2, and let N(a,u) denote the num-
ber of legal intervals (i.e., intervals of length at most L) that move the card in
position a to position u without moving the card in position 0. Then

N(a,u) =
{

min
(
u,

⌊1
2(L − a + u) + 1

⌋)
, if u < a,

min
(
a,

⌊1
2(L − u + a) + 1

⌋)
, if u > a.

(Recall that we assume that n ≥ 4L.) Suppose that |xm − ym| = a. For u ≤ n/2,
let M(a,u) denote the number of legal intervals whose reversal at time m would
make |xm+1 − ym+1| = u. If a �= u then M(a,u) counts intervals that move x but
not y and intervals that move y but not x. Thus we have M(a,u) = 2(N(a,u) +
N(a,n − u)). It is easily verified that M(a,u) is nonincreasing in a for u < a ≤
n/2 and nondecreasing in a for 0 < a < u. It follows that Zm is monotone. �

We now prove that Zm has another type of monotonicity property. Note that in
each move of the L-reversal process, there are exactly four cards that are adjacent
to a different pair of cards after the move than they were before. We say that those
cards are cut and write, for example, “card i is cut at time m.” We say that a location
is cut if the card in that location is cut.

The cut-stopped process. It will be convenient to consider a modified version
Z′

m of Zm, where we introduce two absorbing states 0 and ∞, and have the fol-
lowing occur when either x or y is cut. If x and y are within a distance L of each
other, then Z′

m transitions to 0; otherwise, it transitions to ∞.
We shall call this modified process the cut-stopped process. We can impose

an order on the state space of {Z′
m :m ≥ 0} based on the order of the positive

integers, with the additional states 0 and ∞ as the minimum and maximum states,
respectively.

Our next lemma says that the cut-stopped process Z′
m is monotone with respect

to this order. Let Q denote the transition matrix of the cut-stopped process.
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LEMMA 16. The cut-stopped process is monotone, that is, if b ≥ a, then
Q(b, ·) � Q(a, ·), where � denotes stochastic domination.

PROOF. The proof is a slight modification of the proof of Lemma 15. Suppose
that Z′

m = z. Note that the probability of absorbing in 0 in the next step is a non-
increasing function of z, and the probability of absorbing in ∞ in the next step is
a nondecreasing function of z. The rest of the argument is almost identical to the
proof of Lemma 15. Fix positions u and a with a ≤ n/2, and let N ′(a, u) denote
the number of intervals of length at most L that move the card in position a to po-
sition u, but neither move the card in position 0, cut position 0, nor cut position a.
Then

N ′(a, u) =
{

max
(
0,min

(
u − 2,

⌊1
2(L − a + u)

⌋))
, if u < a,

max
(
0,min

(
a − 2,

⌊1
2(L − u + a)

⌋))
, if u < a.

Suppose that |xm − ym| = a. For u ≤ n/2, let M ′(a, u) denote the number of le-
gal intervals that do not cut x or y and whose reversal at time m would make
|xm+1 − ym+1| = u. If a �= u, then M ′(a, u) = 2(N ′(a, u) + N ′(a, n − u)). It is
easily verified that M ′(a, u) is nonincreasing in a for u < a ≤ n/2 and nonde-
creasing in a for 0 < a < u. It follows that Z′

m is monotone. �

We are now ready to prove Claim 14. For the convenience of the reader, we state
the claim again. Recall that Ik = {2k−1L + 1, . . . ,2kL} ∩ {0, . . . , n − 1}.

CLAIM 14. There are universal constants C and α > 0 such that if t =
4kCn/L3, T = t/2 and

Ay =
⎧⎨⎩α

(
t

n
∧ 1

)
, if y ∈ Ik;

0, otherwise,

then the assumptions of Theorem 9 are satisfied by t, T and the Ay .

PROOF. Let y ∈ Ik . We need to show that if x ≤ y, then with probability at
least Ay , cards x and y collide between time T and time t , and this is the first
collision in which either is involved after time T .

Fix y ∈ Ik and x with x < y. Let τ be the first time after time T that either x

or y is cut. Note that if x and y collide at time τ and τ ≤ t then m(x) = y. Thus,
given that |xτ − yτ | ≤ L and τ ≤ t the conditional probability that m(x) = y is
at least 1/8L. This is because the number of intervals that cut either x or y is at
most 4L, so the conditional probability that x and y are at the endpoints of the
interval, that is, reversed at time τ is at least 1/4L. The conditional probability
that x and y collide is at least half of this by the remark following (30).
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Thus it is enough to show that for a universal constant α we have

P(|xτ − yτ | ≤ L,τ ≤ t) ≥ α

(
t

n
∧ 1

)
L/y.(42)

For m ≥ 0 let Zm = |xm − ym|. Let β > 0 be a constant and suppose that L > 2β .
We claim that with probability bounded away from 0 we have |Zm| ≤ βL for
some m < T . To see this, let M = min{m :Zm ≤ L}. First, we will show that with
probability bounded away from zero we have M ≤ T ′, where T ′ = T/2. Suppose
that Z0 > L. Note that we can write xm = x + Wx

1 + · · · + Wx
m(modn), where

Wx
j ∈ {−L, . . . ,L} is the displacement of card x at time j . Define x ′

m = x +Wx
1 +

· · · + Wx
m (i.e., like xm, but without the modn), with a similar definition for y′

m.
Define z′

m = y′
m − x′

m. Note that the conditional distribution of z′
m+1 − z′

m, given
that |xm −ym| = r , does not depend on r if r > L. Let X be a random variable with
this common distribution, and let X1,X2, . . . be i.i.d. copies of X. Then the random
variable z′

T ′ −z′
0 can be coupled with the Xi in such a way that z′

T ′ −z′
0 = ∑T ′

1=1 Xi

on the event that M > T ′. Since M ≤ T ′ whenever z′
T ′ − z′

0 ≤ −Z0, it follows that
P(M ≤ T ′) ≥ P(

∑
i≤T ′ Xi ≤ −Z0). But since, when X is nonzero (which happens

with probability on the order of L/n), it has a typical value on the order of L, it has
second and third moments satisfying σ 2 ≥ C2L

3/n and ρ ≤ C3L
4/n, respectively.

Furthermore, we have E(X) = 0. Thus, Berry-Esséen bounds (see, e.g., [8]) imply
that for a universal constant CB we have

|FT ′(x) − �(x)| ≤ CBρ

σ 3
√

T ′ ≤ C′L
Cy

,(43)

where FT ′ is the cumulative distribution function (c.d.f.) of 1
σ
√

T ′
∑

i≤T ′ Xi ; � is
the standard normal c.d.f.; C′ is a constant that incorporates C2,C3 and CB ; and C

is the constant appearing in the definition of t . For the final inequality we use the
fact that t = 4T ′ is within constant factors of Cy2n/L3, since y ∈ Ik .

Since y ≥ L, the quantity (43) can be made arbitrarily close to zero for suffi-
ciently large C. It follows that

∑
i≤T ′ Xi is roughly normal with standard deviation

a large constant times y, hence is less than −Z0 with probability bounded away
from zero. (Recall that Z0 = y − x ≤ y.) It follows that with probability bounded
away from zero we have Zm ≤ L for some m ≤ T/2. Now note that if x and y are
within distance L, then given that one of them moves in the next step, the condi-
tional probability that they are brought to within a distance βL is bounded away
from zero. Since t is much larger than n/L, there is probability bounded away
from zero that either x or y is moved between time m and m + T/2. This verifies
the claim.

The above claim and the strong Markov property imply that in order to
show (42), it is enough to show that if |i − j | ≤ βL, m′ ≤ T/2 and τ is the first
time that i or j is cut after time m′, then for a universal constant α > 0 we have
P(|iτ − jτ | ≤ L,τ ≤ m′ + t/2) ≥ α( t

n
∧ 1)L/y.
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For every pair of cards i and j , let T (i, j) be the first time that either i or j is
cut after time m′. Define t ′ = min(t/2, n). Let A(i, j) be the event that T (i, j) ≤
m′ + t ′ and at time T (i, j) the distance between i and j is most L. Let f (i, j) =
P(A(i, j)). Since t ′ ≤ t/2, it is enough to prove that if |i − j | ≤ βL, then

f (i, j) ≥ α

(
t

n
∧ 1

)
L/y.(44)

Since the probability that either i or j is involved in a cut on any given step is
at most 8/n, we have

f (i, j) ≤ min(1,8t ′/n).(45)

Also, note that

∑
i,j

f (i, j) =
m′+t ′∑

l=m′+1

∑
i,j

P
(
T (i, j) ≥ l, |il − jl| ≤ L, either i or j is cut at time l

)

=
t ′∑

k=1

∑
u<v

|u−v|≤L

g(u, v, k),

where g(u, v, k) is the probability that cards in locations u and v are cut at time
m′ + k, but neither had been cut since time m′. Since the L-reversal process is
symmetric it is its own time-reversal. Thus, g(u, v, k) is the probability that either
location u or v is cut in the first move, but neither the card in location u at time 1
nor the card in location v at time 1 is cut in the next k − 1 moves. This probability
is at least 1

n
(n−8

n
)t

′−1. Since there are nL such pairs (u, v), summing over u, v

and k gives

∑
i,j

f (i, j) ≥ t ′nL
1

n

(
n − 8

n

)t ′−1

≥ c′Lt ′

for a universal constant c′, where the second inequality holds because t ′ ≤ n. It
follows that for any i we have∑

j

f (i, j) = 1

n

∑
i,j

f (i, j) ≥ c′Lt ′/n.(46)

Let g(i, j) = P(A(i, j) ∩ B(i, j)) where B(i, j) is the event that at no time before
time T (i, j) was the distance between i and j greater than Dy, where the con-
stant D is to be specified below. We shall now show that g(i, j) is nonincreasing
in |i − j |. Let Zm and Z′

m be as defined in Lemmas 15 and 16. Let {Um} be a (not
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time-homogeneous) Markov chain whose transition rule is the same as Zm when
m < m′ and the same as Z′

m, when m > m′. Then

g(i, j) = P
(
Um′+t ′ = 0, max

m≤m′+t ′
Um ≤ Dy|U0 = |i − j |

)
.(47)

The quantity (47) is nonincreasing in |i − j | since, by Lemmas 15 and 16, the
process {Um} is monotone (in the sense that if r < s, then the conditional distri-
bution of Um given U0 = s stochastically dominates the conditional distribution
of Um given U0 = r).

Note also that∑
j

g(i, j) = ∑
j

f (i, j) − P
(
A(i, j) ∩ Bc(i, j)

)
,(48)

where Bc(i, j) denotes the complement of B(i, j). We claim that
∑

j g(i, j) ≥
cLt ′/n for a universal constant c. To see this, fix a card i and k ≤ t ′ and say
that a card u is bad if |i0 − u0| ≤ L, and max0≤r≤m′+k |ir − ur | > Dy. Since the
L-reversal process is symmetric, and the probability that i or u is cut in any given
step is at most 8/n, we have∑

j

P
(
A(i, j) ∩ Bc(i, j) ∩ [T (i, j) = m′ + k]) ≤ 8

n
E(B),(49)

where B is the number of bad cards. Let u be a card initially within distance
L of card i. If um is the position of card u at time m, then we can write
um = u + W1 + · · · + Wm(modn), where Wj ∈ {−L, . . . ,L} is the displacement
of card u at time j . Define u′

m = u + W1 + · · · + Wm (i.e., like um, but without
the modn), with a similar definition for i ′m. Then u′

m is a symmetric random walk
on the integers. For each step there is a jump with probability on the order of L/n

and the sizes of jumps are at most L. It follows that for sufficiently large A, the
probability that max1≤m≤k |u′

m − u′| > A(kL
n

)1/2L can be made arbitrarily close

to zero. Since k is at most a constant times y2n

L3 , we have A(kL
n

)1/2L ≤ A′y for a
constant A′. A similar argument applies to i′m. Finally, since |im −um| ≤ |i′m −u′

m|
(where the first | · | refers to distance in the n-cycle), it follows that for any ε > 0,
if D is large enough, then P(max1≤m≤k |im − um| > Dy) < ε. Thus, since there
are at most 2L cards initially within a distance L of card i, we have E(B) ≤ 2Lε.

Hence, summing (49) over k ≤ t ′ gives∑
j

P
(
A(i, j) ∩ Bc(i, j)

) ≤ 16Lεt ′/n.(50)

Combining this with (48) and (46) gives∑
j

g(i, j) ≥ cLt ′/n(51)
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for a constant c, if ε is small enough. We now define β to be a constant smaller
than c/32. Since for any j we have g(i, j) ≤ f (i, j) ≤ 8t ′/n [by (45)], we have∑

j : |i−j |≤βL g(i, j) ≤ 16βLt ′/n ≤ cLt ′/2n, and hence∑
j : |i−j |>βL

g(i, j) ≥ cLt ′/2n,

by (51). Since g(i, j) = 0 for |j − i| > Dy, the average value of g(i, j) where j

ranges over values such that βL < |i − j | ≤ Dy must be at least cLt ′/4Dyn ≥
αL( t

n
∧ 1)/y for a constant α. Since g(i, j) is nonincreasing in |i − j | [as shown

in the discussion following (46)], it follows that g(i, j) ≥ αL( t
n

∧ 1)/y if |i − j | ≤
βL. Since g ≤ f , this verifies (44), which completes the proof of Claim 14. �

Using Claim 14 with k = k∗ and applying Theorem 9 gives

ENT
(
μπ(t)

) − ENT(μ) ≤ −C

log2 n

(
t

n
∧ 1

)
ENT(μ)

for a universal constant C and the proof of Lemma 12 is complete. �
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