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FROM RANDOM MATRICES TO RANDOM
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We consider two families of random matrix-valued analytic functions:
(1) G1 − zG2 and (2) G0 + zG1 + z2G2 + · · · , where Gi are n × n ran-
dom matrices with independent standard complex Gaussian entries. The ran-
dom set of z where these matrix-analytic functions become singular is shown
to be determinantal point processes in the sphere and the hyperbolic plane,
respectively. The kernels of these determinantal processes are reproducing
kernels of certain Hilbert spaces (“Bargmann–Fock spaces”) of holomorphic
functions on the corresponding surfaces. Along with the new results, this also
gives a unified framework in which to view a theorem of Peres and Virág
(n = 1 in the second setting above) and a well-known result of Ginibre on
Gaussian random matrices (which may be viewed as an analogue of our re-
sults in the whole plane).

1. Leading up to the results. Singular points of random matrix-valued an-
alytic functions are a common generalization of eigenvalues of random matrices
and zeros of random polynomials. The setting is that we have an analytic function
of z taking values in the space of n × n matrices. Singular points are those (ran-
dom) z where the matrix becomes singular, that is, the zeros of the determinant.
This notion was introduced in the Ph.D. thesis [12] of the author, where some ba-
sic facts were found. Of course, singular points are just the zeros of the (random
analytic function) determinant, so in what sense is this concept novel?

In the case of random matrices as well as random analytic functions, the follow-
ing features may be observed.

1. For very special models, usually with independent Gaussian coefficients or en-
tries, one may solve exactly for the distribution of zeros or eigenvalues.

2. For more general models with independent coefficients or entries, under rather
weak assumptions on moments, one can usually analyze the empirical measure
of eigenvalues or zeros as the size of the matrix increases or the degree of the
polynomial goes to infinity.

3. Substituting independence with assumptions of particular kinds of symmetry
and dependence of entries or coefficients, eigenvalues and zeros have been stud-
ied with varying degrees of success.
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The point here is that the determinant of a random matrix-valued analytic function
has coefficients that are dependent in a very complicated way and one might not
expect it to be tractable. Nevertheless,

• In this paper we demonstrate that certain special models of random matrix-
valued analytic functions based on independent complex Gaussians have singu-
lar sets that turn out to be determinantal point processes in the two-dimensional
sphere or the hyperbolic plane! This is the exactly solvable situation.

• In a subsequent paper [11], we shall study the asymptotics of the counting
measure on the singular set of random matrix-valued analytic functions, un-
der weak assumptions of independence (and some moment conditions), as the
matrix size goes to infinity. This will be a generalization of the circular law for
non-Hermitian random matrices with independent entries.

• Numerous questions suggest themselves, taking unitary or Hermitian matrix co-
efficients in a random polynomial, for example. Answers are yet to be found.

Despite its natural appeal, the concept of a random matrix-valued analytic function
does not seem to have been considered in the literature, perhaps because the focus
in random matrix theory has been mostly on eigenvalues in one dimension (real
line or the circle). We do not know a way to force singular points to lie on the line
(except the case of eigenvalues of Hermitian matrices).

A notion that is necessary to even state some of our results is that of a determi-
nantal point process, first defined by Macchi [14]. For the reader not familiar with
them, a brief introduction to determinantal processes is given in the Appendix.
This is sufficient for the purposes of this paper, but to know more, the reader may
consult the surveys [7, 19]. The reader interested merely in our results and proofs
may now jump directly to the next section. The rest of this section is devoted to
motivating the results and establishing the context and is not logically necessary to
read the rest of the paper. First some notation.

Notation: D is the unit disk in the complex plane. The two-dimensional
sphere S

2 will always be identified with C ∪ {∞} via stereographic projection.
m denotes Lebesgue measure. g and gi , i ≥ 0, are always independent standard
complex Gaussian random variables, with density π−1 exp{−|z|2} in the plane.
G and Gi , i ≥ 0, are n × n matrices whose entries are i.i.d. standard complex
Gaussians. The group of permutations of a set T will be denoted by S(T ). When
T = {1,2, . . . , k} we just write Sk . We denote the set {1,2, . . . , k} by [k]. And

U(N) is the group of N × N unitary matrices. Lastly, we write “
d→” for conver-

gence in distribution.
The results of this paper are motivated by the following two results, one from

the realm of random matrices [4] and another concerning zeros of random analytic
functions [17].

RESULT 1 (Ginibre [4]). The set of eigenvalues of the n × n matrix G with
i.i.d. standard complex Gaussian entries is a determinantal point process with ker-
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nel

K(z,w) =
n−1∑
k=0

(zw)k

k!(1)

with respect to the reference measure dμ(z) = 1
π
e−|z|2 . The corresponding Hilbert

space H = span{1, z, . . . , zn−1} ⊂ L2(C, e−|z|2
π

dm(z)).

RESULT 2 (Peres and Virág [17]). Let f(z) = g0 + g1z + g2z
2 + · · · be the

random analytic function (the radius of convergence is 1) whose coefficients gi

are i.i.d. standard complex Gaussians. Then the zeros of f form a determinantal
point process on the unit disk D with the kernel (the Bergman kernel of the unit
disk)

K(z,w) = 1

π(1 − zw)2

with respect to the background measure dμ(z) = 1
π

dm(z) on D. The correspond-

ing Hilbert space H = span{1, z, z2, . . .} ⊂ L2(D, dm(z)
π

) is the space of all analytic
functions in L2(D).

Knowing that a point process is determinantal greatly facilitates studying its
properties. This motivates us to ask whether these two are isolated results or
whether they are part of a bigger picture. As a start, consider the following ran-
dom analytic functions whose zero sets are known to be determinantal:

• z − g = 0: One zero, g, with standard complex Gaussian distribution on C.

H = span{1} in L2(C, e−|z|2
π

dm(z)). Determinantal, of course!
• zg1 − g2 = 0: One zero, g2

g1
, that has density 1

π(1+|z|2)2 dm(z). This is just the

push-forward of the uniform measure on S
2 = C∪{∞} under stereographic pro-

jection. Again, a one-point process is determinantal. In this case, H = span{1}
in L2(C ∪ {∞}, 1

π(1+|z|2)2 dm(z)).

• g0 + zg1 + z2g2 + · · · = 0. This is the i.i.d. power series of Result 2.

Our key observation is that Ginibre’s result (Result 1) describes the law of zeros of
the random analytic function det(zI − G), which may in turn be thought of as the
matrix version of the analytic function z − g, the first of the three examples above.
This suggests that we consider the matrix versions of the second and third exam-
ples. This leads us to two families of random matrix-valued analytic functions.

1. zG1 − G2, where G1,G2 are n × n independent matrices with i.i.d. standard
complex Gaussian entries.

2. G0 + zG1 + z2G2 + · · ·, where Gk are independent n × n matrices with each
Gk having i.i.d. standard complex Gaussian entries.
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The analogy with Ginibre’s result strongly suggests that the singular points of these
matrix-valued analytic functions might be determinantal point processes. But how
to guess which determinantal processes?

Invariance to the rescue: The key feature that allows us to guess which deter-
minantal processes is invariance under a large group of transformations. A point
process X on the space � is said to be invariant (in distribution) under a transfor-

mation T :� → � if T (X)
d= X.

• First, consider the matrix-valued analytic function zG1 − G2. We claim that the
singular points (which are just the eigenvalues of G−1

1 G2) are invariant under
all linear fractional transformations

λ → λα − β

λβ − α

with α,β complex numbers satisfying |α|2 +|β|2 = 1. These are precisely rota-
tions of the two-dimensional sphere, when the sphere is identified with C∪{∞}
via stereographic projection.

Let |α|2 + |β|2 = 1 and define

C = αG1 − βG2 and D = βG1 + αG2.

Then

det(zC − D) = det
(
(zα − β)G1 − (zβ − α)G2

)
= (zβ − α)n det

(
zα − β

zβ − α
G1 − G2

)
.

Thus the zeros of det(zC −D) are precisely {λiα−β
λiβ−α

}, where {λi} are the zeros of
det(zG1 −G2). On the other hand, (C,D) has the same distribution as (G1,G2).
This implies that {

λiα − β

λiβ − α

}
1≤i≤n

d= {λi}1≤i≤n(2)

for any α,β with |α|2 + |β|2 = 1 which is the claimed invariance.
• Next consider the matrix-valued analytic function M(z) := ∑∞

k=0 Gkz
k ,

where Gk are independent random matrices with i.i.d. standard complex
Gaussian entries. We claim that the set of singular points is invariant in distrib-
ution under the isometries of the hyperbolic plane, namely the linear fractional
transformations

ϕ(λ) = αλ + β

βλ + α
, |α|2 − |β|2 = 1,

that map the unit disk injectively onto itself. These are precisely the conformal
automorphisms of the unit disk.
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Let M(z) = (Mi,j (z)), so that Mi,j are i.i.d. copies of the random power
series of Result 2. It was discovered by Leboeuf [13] (or see [18]) that

M1,1(ϕ(·)) d= ϕ′(·)−1/2M1,1(·).(3)

This is because M1,1 is the Gaussian element of the Hilbert space of analytic
functions with the boundary inner product

∫ 2π
0 f (eiθ )g(eiθ ) dθ

2π
(first define this

inner product for analytic functions that extend continuously to the boundary,
and then take the completion). On this Hilbert space, f → ϕ′(·)−1/2f (ϕ(·))
is a unitary transformation. When a unitary transformation is applied to the
Gaussian element of the Hilbert space, we get again the Gaussian element of
the Hilbert space, yielding (3) (of course, the Gaussian element is itself not an
element of the Hilbert space, almost surely).

An alternate way is to just check that the centered Gaussian processes on
the two sides of (3) have the same covariance kernel 1

1−ϕ(z)ϕ(w)
. Anyhow, the

independence of distinct Mi,j and the fact that ϕ′ is nonrandom shows that

det(M(ϕ(·))) d= ϕ′(·)−n/2 det(M(·)).
Since ϕ′ is a nowhere vanishing analytic function on the unit disk it follows that
the singular set of M(·) is invariant in distribution under the action of hyperbolic
isometries.

These are two special cases of a large class of invariant zero sets introduced in [12].
The general situation is that one applies a homogeneous polynomial of several
complex variables (“det” in our case) to a bunch of i.i.d. copies of a Gaussian ana-
lytic function (zg1 −g2 or g0 + zg1 + z2g2 +· · · in the two cases). If the individual
Gaussian analytic functions have invariant zero sets, then so will the homogeneous
polynomial of copies of them. Thus constructions (applying a homogeneous poly-
nomial to i.i.d. copies of an analytic function) that are simple at the level of func-
tions are not simple at all at the level of zeros and may give something drastically
new.

Let us return to our original question, which led to a digression into the issue of
invariance: What determinantal processes might the singular sets of the two fami-
lies of random matrix-analytic functions (zG1 − G2 and G0 + zG1 + z2G2 + · · ·)
be? Now we have obtained a strong restriction: The determinantal process must be
isometry-invariant in S

2 or D, respectively. Further, from the fact that we are look-
ing at zeros of analytic functions, we expect that these determinantal processes will
be defined by Hilbert spaces of analytic functions. Such determinantal processes
were studied first by Caillol [1] under the name “one-component plasma on the
sphere” and by Jancovici and Téllez [8] on the hyperbolic plane. The underlying
Hilbert spaces here, the Bargmann–Fock spaces, also came up in the context of
quantum Hall effect [5] and in the earlier mentioned work of Leboeuf [13]. In [12]
(see Theorem 3.0.5 therein) we showed that, under certain restrictive assumptions,
these are the only possible invariant determinantal processes.
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1. On the sphere (C ∪ {∞}) we have for each n ∈ {1,2, . . .} an invariant determi-
nantal point process with kernel

K(z,w) = (1 + zw)n−1

with respect to the background measure dμn(z) = n
π(1+|z|2)n+1 dm(z). Invari-

ance of the point process under an analytic transformation T is equivalent to
saying that the joint intensities (correlation functions) with respect to Lebesgue
measure satisfy

ρk(T z1, . . . , T zk)|T ′(z1)|2 · · · |T ′(zk)|2 = ρk(z1, . . . , zk).

For the case at hand, this is easily checked from the fact

T ′(z)T ′(w)

(1 + T (z)T (w))2
= 1

(1 + zw)2 .

The parameter n is the total number of points in the point process, or equiv-
alently, it denotes the first intensity of the point process with respect to the
spherical area measure 1

π(1+|z|2)2 .
2. On the unit disk, we have for each n > 0, an invariant determinantal point

process with kernel

K(z,w) = 1

(1 − zw)n+1

with respect to the background measure dμn(z) = n
π
(1−|z|2)n−1 dm(z). Again

it is easy to check that these are invariant, now using

ϕ′(z)ϕ′(w)

(1 − ϕ(z)ϕ(w))2
= 1

(1 − zw)2 .

The parameter n denotes the first intensity of the point process with respect to
the hyperbolic measure 1

π(1−|z|2)2 .

Thus, on the sphere and the disk, we have a family of invariant singular sets
and a family of invariant determinantal processes, respectively. Then by compar-
ing the first intensities of these determinantal processes and the set of singular
points of our matrix-analytic functions, we match the singular sets to determinan-
tal processes.

2. Statements of results. We now state our results.

THEOREM 3. Let G1,G2 be i.i.d. n × n matrices with i.i.d. standard complex
Gaussian entries. The zeros of det(zG1 − G2) form a determinantal point process
on S

2 with kernel

K(z,w) = (1 + zw)n−1
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with respect to the background measure dμn(z) = n
π

dm(z)

(1+|z|2)n+1 . Equivalently, we
may say that the defining Hilbert space is the subspace of analytic functions in
L2(C ∪ {∞},μn).

THEOREM 4. Let Gk be i.i.d. n × n matrices with i.i.d. standard complex
Gaussian entries. Then for each n ≥ 1, the zeros of det(G0 + zG1 + z2G2 + · · ·)
form a determinantal point process on D with kernel

K(z,w) = 1

(1 − zw)n+1

with respect to the background measure dμn(z) = n
π
(1 − |z|2)n−1 dm(z). Equiv-

alently, we may say that the defining Hilbert space is the subspace of analytic
functions in L2(D,μn).

Theorem 3 is proved in Section 3 via the Schur decomposition of the matrix
G−1

1 G2, along the lines of Ginibre’s proof of Result 1. Theorem 4 will be proved
in Section 5 as a corollary of the following more general theorem which appears to
be of potential interest beyond the specific application to Theorem 4. Theorem 5
is proved in Section 4.

THEOREM 5. Fix n ≥ 1 and let AN be a sequence of n × n matrices such that√
NAN

d→ X0 as N → ∞, for some random matrix X0. Independently of A, pick
P,Q independent matrices chosen from Haar measure on U(N) and define the
N × N matrix V by

V = Q∗
[
AN 0
0 IN−n

]
P ∗.(4)

Set fN(z) := det(zI+V )
det(I+zV ∗) . Let X0 and Gi , i ≥ 1, be independent n × n random ma-

trices, where Gi have independent standard complex Gaussian entries. Then

Nn/2fN(z)
d→ det

(
X0 + ∑

k≥1

Gkz
k

)

in the sense that any finite set of coefficients in the power series expansion of
Nn/2fN(·) converge jointly in distribution to the corresponding vector of coeffi-
cients in the power series expansion of the right-hand side.

The relevance of this theorem to Theorem 4 is through a result of Życzkowski
and Sommers [20], who found random matrix models whose eigenvalue distrib-
utions are determinantal processes with kernels that are truncated versions of the
kernels in Theorem 4. Theorem 5 gives the distribution of the limiting random
analytic function as the matrix size increases, while the result of Życzkowski and
Sommers gives the limiting distribution of zeros. Putting the two together we get
the distribution of zeros of the limiting random analytic function.
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REMARK 6. The statements of Theorems 3 and 4 may already be found in the
thesis [12]. Theorem 3 appeared there with a proof but is being published here for
the first time. Theorem 4 was conjectured in [12] and a partial proof was given,
showing that the first and second joint intensities (correlation functions) of the
singular set of G0 + zG1 + z2G2 + · · · are as claimed. While in [12] we tried
to prove Theorem 4 by starting with the random matrix-valued analytic function
and then finding the distribution of its zeros, in this paper we take the opposite
direction.

REMARK 7. It is natural to ask whether there are other (perhaps even many)
singular sets that are also determinantal. Without claiming that there are not, we
would like to emphasize that the determinantal processes in Result 1 together with
those in Theorems 3 and 4 are the most natural determinantal point processes in
the three canonical surfaces of constant curvature, namely, the plane, the sphere
and the hyperbolic plane, respectively.

3. Spherical ensembles. Let X denote the set of singular points of zG1 −G2.
Since the number of points is exactly n, Theorem 3 is equivalent (see the facts
stated after Definition A.1 in the Appendix) to saying that the joint density of the
singular points is proportional to

∏
i<j

|zi − zj |2
n∏

k=1

1

(1 + |zk|2)n+1 .

(If {P1, . . . ,Pn} are the points on the two-dimensional sphere obtained by stere-
ographic projection of z1, . . . , zn, then the density of these points with respect to
Lebesgue measure on (S2)n turns out to be simply

∏
i<j ‖Pi −Pj‖2

R3 , where ‖·‖R3

is the Euclidean norm in R
3.)

The following lemma will greatly simplify the job of integrating out auxiliary
variables later.

LEMMA 8. Let X be a point process on C with n points almost surely. Assume
that the vector of points (in uniform random order) has density

p(z1, . . . , zn) = |
(z1, . . . , zn)|2V (|z1|2, . . . , |zn|2).
Here 
(z1, . . . , zn) denotes the Vandermonde factor

∏
i<j (zj − zi).

Suppose also that X has a distribution invariant under isometries of the
sphere S

2, that is, under the transformations ϕα,β(z) = αz+β

−βz+α
, for any α,β satis-

fying |α|2 + |β|2 = 1. Then

V (|z1|2, . . . , |zn|2) = Const.
n∏

k=1

1

(1 + |zk|2)n+1 .(5)
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PROOF. The claim is that the probability density of the n points of X (in
uniform random order) with respect to Lebesgue measure is

q(z1, . . . , zn) := Const. |
(z1, . . . , zn)|2
n∏

k=1

1

(1 + |zk|2)n+1 .

First let us check that the density q is invariant under the isometries of S
2. For this

let ϕ = ϕα,β . Then,

ϕ′(z) = 1

(−βz + α)2
,(6)

1 + |ϕ(z)|2 = 1 + |z|2
|−βz + α|2 ,(7)

ϕ(z) − ϕ(w) = z − w

(−βz + α)(−βw + α)
.(8)

From (6), (7) and (8), it follows that

q(ϕ(z1), . . . , ϕ(zn))

n∏
k=1

|ϕ′(zk)|2 = q(z1, . . . , zn),(9)

which shows the invariance of q .
Invariance of X under the transformation ϕ means that for every z1, . . . , zn, we

have

p(ϕ(z1), . . . , ϕ(zn))

n∏
k=1

|ϕ′(zk)|2 = p(z1, . . . , zn).(10)

Then W(z1, . . . , zn) := p(z1,...,zn)
q(z1,...,zn)

has the following properties:

• W(z1, . . . , zn) is a function of |z1|2, . . . , |zn|2 only, by the assumption on p and
the definition of q .

• W(ϕ(z1), . . . , ϕ(zn)) = W(z1, . . . , zn) for every z1, . . . , zn from (10) and (9).

We claim that these two statements imply that W is a constant. To see this fix
z1 = r1 > 0 and zk = rke

iθk for 2 ≤ k ≤ n. Let α = 1√
1+r2

1

, β = − r1√
1+r2

1

. Then

|α|2 + |β|2 = 1 and hence ϕ = ϕα,β is an isometry of S
2. From the above-stated

properties of W , we deduce

W(z1, . . . , zn) = W(ϕ(z1), . . . , ϕ(zn))

= W

(
0,

z2 − z1

1 + z2z1
, . . . ,

zn − z1

1 + znz1

)

= W

(
0,

∣∣∣∣ r2e
iθ2 − z1

1 + r2eiθ2z1

∣∣∣∣, . . . ,
∣∣∣∣ rne

iθn − z1

1 + rneiθnz1

∣∣∣∣
)
.
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Take z1 = 1 and 1 < rk < 1 + ε. Then as θk , 2 ≤ k ≤ n vary independently over

[0,2π ], the quantities | rke
iθk −z1

1+rke
iθk z1

| vary over the intervals [ rk−1
rk+1 , rk+1

rk−1 ]. However,

even as θks vary, the quantity W(z1, . . . , zn) does not change because W is a func-
tion of rks only. By our choice of rks, this means that

W(0, t2, . . . , tn) = Const. ∀tk ∈
[
ε,

1

ε

]
.

ε is arbitrary, hence W(0, t2, . . . , tn) is constant. This implies that W(0, z2, . . . , zn)

is constant and therefore W(z1, . . . , zn) is constant.
This shows that p(z1, . . . , zn) = Const. q(z1, . . . , zn). �

PROOF OF THEOREM 3. Recall (2) which asserts that X is invariant in distri-
bution under the action of automorphisms of S

2. By Lemma 8, it suffices to show
that the density of points in X is of the form given in (5). We use the following
well-known matrix decomposition (see the book [6], Section 2.3).

Schur decomposition: Any diagonalizable matrix M ∈ GL(n,C) can be written
as

M = U(Z + T )U∗,(11)

where U is unitary, T is strictly upper triangular and Z is diagonal. Moreover, if
the eigenvalues of M are distinct, then the decomposition is almost unique in the
following sense:

M = V (W +S)V ∗ in addition to (11), with V,S,W being, respectively, unitary,
strictly upper triangular, and diagonal, if and only if the following hold:

1. The entries of W are a permutation of the elements of Z.
2. If this permutation is identity, then V = U� and �S�∗ = T for some � that

is both diagonal and unitary, that is, for � of the form Diagonal(eiθ1, . . . , eiθn).

Fix an arbitrary total order on C
n (e.g., lexicographic order). Then for any M with

distinct eigenvalues, there is a unique diagonal matrix Z with z1 < z2 < · · · < zn

and a unitary U and strictly upper triangular T that are unique up to (U,T ) →
(U�,�∗T �), such that (11) holds.

Corresponding to the matrix decomposition (11) there is the following mea-
sure decomposition due to Ginibre [4] and Dyson (see [15], Appendix 35). Note
that the eigenvalues of M are a.s. [Lebesgue] distinct, whence an almost unique
decomposition exists.

Ginibre’s measure decomposition: If M is decomposed as in (11), with the ele-
ments of Z in a uniformly randomly chosen order, then

∏
i,j

dm(Mij ) =
(∏

i<j

|zi − zj |2
∏
k

dm(zk)

)(∏
i<j

dm(Tij )

)
dν(U),(12)
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where ν is the Haar measure on the on the unitary group U(n). Equivalently, if we
choose (Z,T ,U) according to the product measure on the right of (12), and define
M by (11), then M has the measure on the left of (12).

Conditional on G1, the matrix M := G−1
1 G2 has the density

e−tr(M∗G∗
1G1M)|det (G1)|2n

with respect to the Lebesgue measure on GL(n,C) ⊂ C
n2

. From the measure de-
composition (12) we get the density of Z, T , U , G1 to be(∏

i<j

|zi − zj |2
n∏

k=1

dm(zk)

)
e−tr(G∗

1G1(I+MM∗))|det (G1)|2n

with respect to the measure dν(U)
∏

i<j dm(Tij )
∏

i,j dm(G1(i, j)) (we have
omitted constants entirely—they can be recovered at the end). Thus the density
of Z is obtained by integrating over T ,U,G1. Now write zk = rke

iθk so that
Z = �R where � = Diagonal(eiθ1, . . . , eiθn) and R = Diagonal(r1, . . . , rn). Then

MM∗ = U�(R + �∗T )(R + �∗T )∗�∗U∗.
As ν is the Haar measure, dν(U�) = dν(U). The elements of �∗T are the same
as elements of T , but multiplied by complex numbers of absolute value 1. Hence,
�∗T has the same “distribution” as T . Thus replacing U by �∗U and T by �∗T
we see that the density of Z is of the form V (r1, . . . , rn)

∏
i<j |zi − zj |2. This is

the form of the density required to apply Lemma 8. Thus we conclude that the
eigenvalue density is

Const.
∏
i<j

|zi − zj |2
n∏

k=1

1

(1 + |zk|2)n+1 .(13)

To compute the constant, note that{√
n

π

(
n − 1

k

)
zk

(1 + |z|2)(n+1)/2

}
0≤k≤n−1

is an orthonormal set. Projection on the Hilbert space generated by these functions
gives a determinantal process whose kernel is as given in the statement of the
theorem. �

4. Proof of Theorem 5. We first find the coefficients in the power series ex-
pansion of fN prior to taking limits using the following lemma. Randomness plays
no role here.

LEMMA 9. Let V be an N × N matrix and define f (z) = det(zI+V )
det(I+zV ∗) . Then

f (k)(0) = det(V )
∑

π∈Sk

sgn(π)
∏
c∈π

[
Tr

(
V −|c|) − Tr

(
V ∗|c|)],

where we write c ∈ π to mean that c is a cycle of π .
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PROOF. Let χ(z) = det(I +zV −1) and let ψ(z) = det(I +zV ∗). Then f (z) =
det(V )χ(z)

ψ(z)
. Hence,

f (k)(z) = det(V )

k∑
p=0

(
k

p

)
χ(k−p)(z)

(
1

ψ

)(p)

(z).(14)

First let us find the derivatives of ψ and χ . Let V[j1,...,jk] be the k × k matrix
obtained from V by deleting all rows and columns except the j1, . . . , jkth ones.

ψ(k)(0) = k! ∑
j1<···<jk

det
(
V ∗[j1,...,jk]

)

= ∑
(j1,...,jk)

det
(
V ∗[j1,...,jk]

)
(summand vanishes if j1 = j2)

= ∑
(j1,...,jk)

∑
π∈Sk

sgn(π)

k∏
i=1

V ∗
ji ,jπ(i)

= ∑
π∈Sk

sgn(π)
∑

(j1,...,jk)

k∏
i=1

V ∗
ji ,jπ(i)

.

The inner sum factors over cycles of π . Let us write c ∈ π to mean that c is a cycle
of π and let |c| denote the size of the cycle c. Then we may write

ψ(k)(0) = ∑
π∈Sk

sgn(π)
∏
c∈π

Tr
(
V ∗|c|).(15)

Analogously, we have

χ(k)(0) = ∑
π∈Sk

sgn(π)
∏
c∈π

Tr
(
V −|c|).(16)

To compute the derivatives of f using (14), we need the derivatives of ϕ := 1/ψ

at 0. These will be given by the sequence that we shall provisionally call {bk}. Set
b0 = 1 and for k ≥ 1 define

bk = ∑
π∈Sk

sgn(π)
∏
c∈π

[−Tr
(
V ∗|c|)].

Then for any k ≥ 1 we calculate using (15)

k∑
j=0

(
k

j

)
bk−jψ

(j)(0)

= ∑
T ⊂[k]

( ∑
π∈S(T c)

sgn(π)
∏
c∈π

Tr
(
V ∗|c|))( ∑

π∈S(T )

sgn(π)
∏
c∈π

[−Tr
(
V ∗|c|)]).
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Fix a subset T ⊂ [k]. A permutation of T and a permutation of T c together give
a permutation of [k]. Let π = c1 · · · cl be a permutation of [k]. Then it can arise
from summands in which T is a union (possibly empty) of some of the cycles cis.
Thus for k ≥ 1

k∑
j=0

(
k

j

)
bk−jψ

(j)(0) = ∑
π∈Sk

π=c1···cl

sgn(π)
∑

B⊂[l]

∏
i∈B

Tr
(
V ∗|ci |) ∏

i∈Bc

[−Tr
(
V ∗|ci |)]

= ∑
π∈Sk

sgn(π)
∏
c∈π

[
Tr

(
V ∗|c|) − Tr

(
V ∗|c|)]

= 0.

However, the equation ϕ · ψ = 1 implies that

k∑
j=0

(
k

j

)
ϕ(k−j)(0)ψ(j)(0) =

{
1, if k = 0,
0, if k �= 0.

It is also clear that from these equations one may inductively recover ϕ(k)(0) in
terms of the derivatives of ψ . This shows that ϕ(k)(0) = bk . That is,

ϕ(k)(0) = ∑
π∈Sk

sgn(π)
∏
c∈π

[−Tr
(
V ∗|c|)].(17)

Now we return to the derivatives of f . From (14), (16) and (17) we deduce that

f (k)(0) = det(V )

k∑
p=0

(
k

p

)
χ(k−p)(0)ϕ(p)(0)

= det(V )
∑

T ⊂[k]
χ |T c|(0)ϕ|T |(0)

= det(V )
∑

T ⊂[k]

( ∑
π∈S(T c)

sgn(π)
∏
c∈π

Tr
(
V −|c|))

×
( ∑

π∈S(T )

sgn(π)
∏
c∈π

[−Tr
(
V ∗|c|)]).

Just as before, a permutation of T and a permutation of T c together give a permu-
tation of [k] and a permutation π ∈ Sk can arise from summands in which T is a
union (possibly empty) of some of the cycles of π . Therefore

f (k)(0) = det(V )
∑

π∈Sk
π=c1···cl

sgn(π)
∑

B⊂[l]

∏
i∈B

Tr
(
V −|ci |) ∏

i∈Bc

[−Tr
(
V ∗|ci |)]

= det(V )
∑

π∈Sk

sgn(π)
∏
c∈π

[
Tr

(
V −|c|) − Tr

(
V ∗|c|)]. �
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The probabilistic part of the theorem comes from the following lemma on Haar-
distributed unitary matrices:

LEMMA 10. Let U be an N × N random unitary matrix sampled from the
Haar measure. Fix n ≥ 1. After multiplication by

√
N , the principal n × n sub-

matrices of Up , p ≥ 1, converge in distribution to independent matrices with i.i.d.
standard complex Gaussian entries. In symbols,

√
N([U ]i,j≤n, [U2]i,j≤n, . . .)

d→ (G1,G2, . . .),

where Gi are independent n × n matrices with i.i.d. standard complex Gaussian
entries. More precisely, any finite number of random variables

√
N [Up]i,j , p ≥ 1,

i, j ≤ n, converge in distribution to independent standard complex Gaussians.

In the literature, there are many results which are similar in spirit to Lemma 10.
For instance, Diaconis and Shahshahani [3] (a slight mistake in that paper was
corrected in Diaconis and Evans [2]) showed that if U is sampled from Haar mea-

sure on U(N), then (Tr(U),Tr(U2), . . .)
d→ (g1,

√
2g2, . . .). Jiang [9], answering

a question of Diaconis, proved that if pN,qN are negligible compared to
√

N ,
then the entries of the principal pN × qN submatrix of a unitary random matrix U

sampled from Haar measure on U(N) are approximately independent complex
Gaussians. Our requirement is somewhere between the two. We need only subma-
trices of fixed size, but of all powers of U . We give a complete proof of Lemma 10
in Section 6.

PROOF OF THEOREM 5. Define f as in the statement of the theorem. Lemma 9
asserts that

f(k)(0) = det(V )
∑

π∈Sn

sgn(π)
∏
c∈π

[
Tr

(
V −|c|) − Tr

(
V ∗|c|)].(18)

We want to find the limit distribution of {f(k)(0) : 0 ≤ k < ∞}. First let us consider
Tr(V −p) − Tr(V ∗p) for p ≥ 1. Setting P = [P1 :P2] and Q∗ = [Q∗

1 :Q∗
2], where

P1,Q
∗
1 are N × n matrices, from (4) we get

V −1 = P1A
−1Q1 + P2Q2 and V ∗ = P1A

∗Q1 + P2Q2.(19)

Then write

Tr(V −p) − Tr(V ∗p)

= ∑
i1,...,ip

(V −1)i1,i2 · · · (V −1)ip,i1 − (V ∗)i1,i2 · · · (V ∗)ip,i1

= ∑
i1,...,ip

p∏
j=1

(P1A
−1Q1 + P2Q2)ij ,ij+1 −

p∏
j=1

(P1A
∗Q1 + P2Q2)ij ,ij+1 .
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Here it is implied that ip+1 = i1. Expand each of the products to get a sum of 2p

terms. Each of these terms is identified uniquely by an integer 0 ≤ r ≤ p and a
vector q = (q1, . . . , qr) of integers q1 < q2 < · · · < qr which are the values of j

for which we choose (P1A
−1Q1)ij ,ij+1 [or (P1A

∗Q1)ij ,ij+1 ], while for other j we
choose (P2Q2)ij ,ij+1 in both products.

A most important observation is that all summands with r = 0 cancel. What
remains is

∑
i1,...,ip

∑
r≥1

∑
q

∏
j /∈q

(P2Q2)ij ,ij+1

(
r∏

l=1

(P1A
−1Q1)iql

,iql+1

(20)

−
r∏

l=1

(P1A
∗Q1)iql

,iql+1

)
.

We are using q to denote the vector (q1, . . . , qr) as well as the set {q1, . . . , qr} but
this should not lead to any confusion. Now write for each l = 1, . . . , r

(P1A
−1Q1)iql

,iql+1 =
n∑

αl=1

n∑
βl=1

(P1)iql
,αl

(A−1)αl,βl
(Q1)βl,iql+1,

(P1A
∗Q1)iql

,iql+1 =
n∑

αl=1

n∑
βl=1

(P1)iql
,αl

(A∗)αl,βl
(Q1)βl,iql+1 .

Fix a choice of r ≥ 1, q and αl, βl , 1 ≤ l ≤ r . Sum over i1, . . . , ip in (20). When
we sum over ij for q1 < j ≤ q2, in both the summands corresponding to A−1

and A∗, we get a factor of (we have displayed only those factors that depend on ij
for q1 < j ≤ q2)

∑
iq1+1,...,iq2

(Q1)β1,iq1+1

[ q2−1∏
j=q1+1

(P2Q2)ij ,ij+1

]
(P1)iq2 ,α2

= (Q1(P2Q2)
q2−q1−1P1)β1,α2 .

Similarly we sum over ij for j between ql +1 to ql+1 for every l (where r +1 = 1).
Write λl = ql+1 − ql − 1 for l ≤ r − 1 and λr = r − qr + q1 − 1. Then for a fixed
value of r ≥ 1, q and αl, βl , 1 ≤ l ≤ r , as we sum over all ij s in (20) we get

[
r∏

l=1

(A−1)αl,βl
−

r∏
l=1

(A∗)αl,βl

]
·

r∏
l=1

(Q1(P2Q2)
λl−1P1)βl,αl+1 .

Any choice of (λ1, . . . , λr) comes from p different choices of q [by cyclically
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rotating (q1, . . . , qr)]. Therefore Tr(V −p) − Tr(V ∗p) is equal to

p
∑

r≥1,(λ1,...,λr )

λi≥1,
∑

λi=p

∑
αl,βl

l≤r

[
r∏

l=1

(A−1)αl,βl
−

r∏
l=1

(A∗)αl,βl

]

(21)

×
r∏

l=1

(Q1(P2Q2)
λl−1P1)βl,αl+1 .

As before, here r + 1 = 1. Since PQ has Haar distribution, from Lemma 10 and
the assumption on A, we know that

√
N(A,Q1(PQ)0P1,Q1(PQ)1P1,Q1(PQ)2P1, . . .)

d→ (X0,G1,G2, . . .),

where Gi , i ≥ 1 are independent n × n matrices with i.i.d. standard complex
Gaussian entries and independent of X0. [Pre-multiplication by Q1 and post-
multiplication by P1 serve to pick out the first n × n principal sub-matrix of
(QP )m.]

Now consider Q1(PQ)mP1. For m = 0,

Q1(PQ)0P1 = Q1(P2Q2)
0P1.

Hence
√

NQ1(P2Q2)
0P1

d→ G1. Next take m = 1. Since PQ = P1Q1 + P2Q2,

Q1(PQ)1P1 = Q1(P2Q2)
1P1 + (Q1P1)

2.

From the m = 0 case, we know that the second summand is Op(N−1), whence,√
N(Q1(P2Q2)

0P1,Q1(P2Q2)
1P1)

d→ (G1,G2). Continuing inductively, for
any m, we get Q1(QP )mP1 = Q1(P2Q2)

mP1 + Op(N−1). Thus
√

N(A, [Q1(P2Q2)
0P1], [Q1(P2Q2)

1P1], . . .) d→ (X0,G1,G2, . . .)

in the sense that any finite subset of random variables on the left converge in dis-
tribution to the corresponding random variables on the right.

In (21) divide each of the r factors in the products inside the brackets by
√

N

and multiply each factor in the product outside the brackets by
√

N . A∗ itself
converges to 0 in probability and thus after dividing by

√
N ; in the first product

only A−1 survives in the limit. Thus we get

Tr(V −p) − Tr(V ∗p)

d→ p
∑
r≥1

∑
(λ1,...,λr )

λi≥1,
∑

λi=p

∑
αl,βl,l≤r

r∏
l=1

X−1
0 (αl, βl) ·

r∏
l=1

Gλl
(βl, αl+1)

= p
∑
r≥1

∑
(λ1,...,λr )

λi≥1,
∑

λi=p

∑
αl,l≤r

r∏
l=1

(X−1
0 Gλl

)(αl, αl+1).
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Use this in (18) and observe that det(V ) = det(A)det(P ∗Q∗) = det(A)eiθ ,
where θ is uniform on [0,2π ] and independent of A. Absorb eiθ into X0 and
denote Hp = X−1

0 Gp . Then we see that Nn/2f(k)(0) converges in distribution to
(jointly for k ≥ 0, of course)

det(X0)
∑

π∈Sk

sgn(π)
∏
c∈π

(
|c|∑

r≥1

∑
(λ1,...,λr )

λi≥1,
∑

λi=|c|

∑
αl,l≤r

r∏
l=1

(X−1
0 Gλl

)(αl, αl+1)

)
,(22)

where |c| is the number of elements in the cycle c. We must reduce this further.
When we completely expand the products in (22) we see that the right-hand side
is equal to (as usual ri + 1 = 1)

∑
π∈Sk

π=c1···cm

sgn(π)

m∏
i=1

|ci |
∑
ri≥1

1≤i≤m

∑
(λi

1,...,λ
i
ri

)

λi
j≥1,

∑
j λi

j=|ci |

∑
αi

l ≤n

l≤ri ,i≤m

m∏
i=1

ri∏
j=1

Hλi
j
(αi

j , α
i
j+1).(23)

The point is that many of the terms
∏

i

∏
j Hλi

j
(αi

j , α
i
j+1) can arise from more than

one permutation π and thus there is a lot of cancellation. This we investigate now.
Consider any term

∏L
l=1 Hμl

(sl, tl) where L ≥ 1, μl ≥ 1 for each l ≤ L and
1 ≤ sl, tl ≤ n. We compute the coefficient of such a term in (23).

To organize the combinatorics that will emerge, for the term
∏L

l=1 Hμl
(sl, tl) let

us associate a directed multi-graph with edge weights as follows: We assume that∑L
l=1 μl = k as only such terms can appear in (23).
The graph will have vertices {1,2, . . . , n}. For each l ≤ L, put a directed edge

from sl to tl and give it weight μl . Let us also put self loops with edge weight 0
at each vertex v ∈ {1, . . . , n} \ {sl, tl : l ≤ L}. Let us call this graph G (depends on
μl , sl etc., of course, but it would be horrifying to include that dependence in the
notation). We group terms together by the graph they generate and find the total
contribution for each graph.

The graph G can arise from a term in (23) only if the edges of G can be parti-
tioned into edge-disjoint directed cycles. Note that G is a multi-graph and hence if
i → j occurs twice in G, the two instances will occur in two distinct cycles, but
the cycles will be deemed disjoint. Also, a cycle may visit the same vertex more
than once.

Furthermore, each such decomposition of G into disjoint cycles corresponds to
some (usually more than one) choice of the permutation π in (23). Once π is fixed,
the numbers ri are just the sizes of cycles in this cycle decomposition of G and λi

j ,

αi
j are also determined. An example is given below to elucidate the matter.

EXAMPLE 11. Suppose n = 6 and let k = 11. Suppose we look at the term

H1(1,3)H2(3,2)H2(2,1)H1(2,1)H3(1,4)H2(4,2).(24)
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This term can actually arise in (23) because the sum of the μls is equal to k and
the associated graph may be decomposed into disjoint cycles in two distinct ways:
First as {(1,3,2), (1,4,2)} and second as (1,3,2,1,4,2).

The first case, {(1,3,2), (1,4,2)}, can arise from any permutation π ∈ S11 that
has two cycles of lengths 5 and 6 (these numbers come from adding the edge
weights in each cycle). There are

(11
5

)
4!5! such permutations and they all have

sign −1. Taking into account the weight
∏ |ci | in (23), the contribution to the

term (24) from all such permutations is −11!.
The second case, (1,3,2,1,4,2), can arise from any π ∈ S11 that is itself a

cycle of length 11. There are 10! such permutations and they all have sign +1.
Their total contribution is +11!. When put together, we see that the coefficient
of (24) is zero. This is no coincidence and prepares the reader for what is stated
next in general.

CLAIM. If G can be decomposed into disjoint cycles in more than one way,
then the coefficient of the corresponding term in (23) is zero. On the other hand,
if G can be decomposed in a unique way into � disjoint cycles, then the coefficient
of the corresponding term is (−1)k−�k!.

PROOF. Suppose G can be decomposed into disjoint cycles in more than one
way. Then some vertex, say 1 without losing generality, belongs to more than one
cycle of G. Then in G there are in-edges i1, . . . , iM leading to 1 and out-edges
j1, . . . , jM leading away from 1, for some M ≥ 2. In any decomposition of G into
cycles, we have the obvious matching of in-edges with out-edges, by associating to
each in-edge the out-edge that follows it in the cycle. Consider any cycle decompo-
sition of G, and suppose that in-edges i1, i2 are matched with j1, j2, respectively.
We pair this cycle decomposition with a new cycle decomposition obtained by
switching the matches i1 → j1, i2 → j2 to i1 → j2, i2 → j1 and leaving every-
thing else intact. This leads to a pairing of all cycle decompositions of G. We show
that the total contribution from each pair is zero.

One can go from one cycle decomposition to its pair by splitting a cycle into two
cycles or merging two cycles into one. Let us take the first one among them to have
cycle sizes θ1, . . . , θ� and the second one to have cycle sizes θ1 +θ2, θ3, . . . , θ�. Let
the sums of edge weights along cycles in the first decomposition be w1,w2, . . . ,w�

so that in the second cycle decomposition the sums of edge weights of cycles are
w1 + w2,w3, . . . ,w�.

The permutations in Sk that respect the first cycle decomposition of G are pre-
cisely those with � cycles of sizes w1, . . . ,w�. The number of such permutations
is

k!∏�
i=1 wi !

�∏
i=1

(wi − 1)!.(25)
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Each of these comes with the weight
∏�

i=1 wi in (23), whence the total contribution
of these terms is (−1)k−�k!.

The number of permutations that respect the second cycle decomposition of G
is

k!
(w1 + w2)!∏�

i=3 wi !
(w1 + w2 − 1)!

�∏
i=3

(wi − 1)!.

Each of these comes with the weight (w1 + w2)
∏�

i=3 wi in (23), whence the total
contribution of these terms is (−1)k−�+1k!.

Thus the two cycle decompositions cancel each other out exactly and it is seen
that the total contribution is zero. This proves the first part of the claim.

For the second part, there is only one cycle decomposition by assumption, and
the same calculations that led to (25) show that the coefficient is (−1)k−�k!. This
completes the proof of the claim. �

Now consider a G that has a unique cycle decomposition. Then that cycle de-
composition may be regarded as a permutation τ ∈ Sn, where all those vertices that
do not occur among {sl, tl} are fixed points of τ (this is why we added self-loops
to all these vertices when defining G). Recall that the edge-weights of these self-
loops is 0. It will be convenient to set H0 = In. Observe that sgn(τ ) = (−1)n−�.
Then using the claim above to simplify (23) we finally have

Nn/2f(k)(0)
d→ (−1)k−nk!det(X0)

∑
τ∈Sn

sgn(τ )
∑

(w1,...,wn)

wi≥0,
∑

i wi=k

n∏
i=1

(Hwi
)i,τi

.(26)

Here Hp = X−1
0 Gp for p ≥ 1 and H0 = In. If we forget the (−1)k−n factor, the

right-hand side of (26) is precisely k! times the coefficient of zk in the power
series expansion of det(X0 + zG1 + z2G2 + · · ·) as may be seen by expanding the
determinant as

det(X0)
∑
τ∈Sn

sgn(τ )

n∏
i=1

(I + zH1 + z2H2 + · · ·)i,τ (i).

The factor (−1)k−n is rendered irrelevant by changing z to −z and multiplying the
whole function by (−1)n.

Thus we have proved that any the power series coefficients of Nn/2fN converge
jointly in distribution to the coefficients in the power series of det(G0 + zG1 +
z2G2 + · · ·), in the sense that any finite number of coefficients in the former con-
verge jointly in distribution to the corresponding coefficients in the latter. This
completes the proof of the theorem. �
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5. Hyperbolic ensembles. In this section we prove Theorem 4. We shall
make use of the following result of Życzkowski and Sommers [20]:

RESULT 12 (Życzkowski and Sommers [20]). Let U be an (N +n)× (N +n)

unitary matrix sampled from Haar measure on U(N + n). Let V be the N × N

principal sub-matrix obtained by deleting any n rows and n columns of U . Then
the eigenvalues of V form a determinantal process in the unit disk D with kernel

K
(n)
N (z,w) =

N−1∑
k=0

(−n − 1
k

)
(−1)kzkwk

with respect to the reference measure dμn(z) = n
π
(1 − |z|2)n−1 dm(z).

REMARK 13. If V is a matrix, then det(zI−V )
det(I−zV ∗) is just the Blaschke product of

the eigenvalues {λk} of V . That is

det(zI − V )

det(I − zV ∗)
=

k∏
j=1

z − λk

1 − zλk

.(27)

That being the case, the function fN in Theorem 5 depends only on the eigenvalues
and not the matrix V that we choose. Why then, do we use the truncated unitary
matrix of Result 12 instead of directly using the diagonal matrix whose entries are
a determinantal process with the truncated kernels? It may indeed be possible to
prove Theorem 4 directly from the properties of determinantal processes without
having to use Result 12. However, that would involve proving a bevy of central
limit theorems (of nonlinear statistics) for determinantal processes that can substi-
tute Lemma 10. We do not know if that is easy.

The advantages of the truncated unitary matrix over the diagonal matrix of its
eigenvalues are: (1) The former is invariant under left and right multiplication by
unitary matrices (which allows us to apply the rather easy Lemma 10). (2) The
truncated unitary matrix has only n nondeterministic singular values, even as the
matrix size goes to infinity. The cost is that we use the (far from trivial) result of
Życzkowski and Sommers but this has the positive value of forging a direct link
between random matrices and random analytic functions.

Applying Theorem 5 to truncated unitary matrices we almost get Theorem 4, but
there is one snag. Theorem 5 gives convergence of coefficients in the power series,
whereas to deduce convergence of zeros we need uniform convergence on compact
sets. For instance, in the sequence fn(z) = nnzn, all the power series coefficients
converge to zero but fn(z) does not converge for any z �= 0. The following lemma,
deduced directly from properties of determinantal point processes, will establish
the required tightness, a priori.
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LEMMA 14. Fix n ≥ 1. Let {λk : 1 ≤ k ≤ N}, be determinantal on the unit disk
with kernel KN with respect to the measure μn as in Result 12. Set

fN(z) =
N∏

k=1

z − λk

1 − zλk

.

Then for any compact subset K ∈ D, the set {fN(z) : z ∈ K} is tight, uniformly
in N .

We postpone the proof of Lemma 14 to Section 7 and proceed to prove Theo-
rem 4 assuming the lemma.

PROOF OF THEOREM 4. Let U be an (N + n) × (N + n) unitary matrix and
write

U =
[
A C∗
B V

]
,

where A has size n × n. By the unitarity of U , we have the following equations:

A∗A + B∗B = In and BB∗ + V V ∗ = IN .

As BB∗ and B∗B have the same nonzero eigenvalues, it follows that V V ∗ has the
same eigenvalues as A∗A, except that it has N −n more eigenvalues all equal to 1.
Thus there must exist unitary matrices P,Q ∈ U(N) such that

V = P

[
A 0
0 IN−n

]
Q.(28)

Now suppose U was sampled according to Haar measure on U(N + n). Then for
any unitary matrices P0,Q0 ∈ U(N), we have[

In 0
0 P0

][
A C∗
B V

][
In 0
0 Q0

]
d=

[
A C∗
B V

]
,

because Haar measure is invariant under left and right multiplication by group

elements. This shows that P0V Q0
d= V , which, together with (28) implies that

V = P

[
A 0
0 IN−n

]
Q,

where P,Q,A are independent, P,Q are distributed according to Haar measure
on U(N) and A is the principal n × n submatrix of an (N + n) × (N + n) unitary
matrix.

Lemma 10 shows that
√

NA
d→ G0 where G0 is an n × n matrix of i.i.d. stan-

dard complex Gaussians. Thus Theorem 5 applies and we get

Nn/2 det(zI − V )

det(I − zV ∗)
d→ det

( ∞∑
k=0

Gkz
k

)
,
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where all Gk , k ≥ 0 are i.i.d. matrices of i.i.d. standard complex Gaussians.
This convergence is only in the sense of pointwise convergence of coefficients

in the power series. But in case of truncated unitary matrices, Result 12 and
Lemma 14 together strengthen it to uniform convergence on compact subsets of D.
Therefore the zeros of fN converge in distribution to the zeros of the limiting ana-
lytic function.

The upshot is that the point process of eigenvalues of V (which are exactly the
zeros of fN ) converge in distribution to the zeros of det(G0 + zG1 + z2G2 + · · ·).
Use the result of Życzkowski and Sommers and let N → ∞. The kernels KN

increase (in the sense of operators, i.e., the associated Hilbert spaces increase) to
the kernel K(z,w) = (1 − zw)−n−1. From the facts stated after Definition A.1 in
the Appendix, it follows that the determinantal process with kernel KN converges
to the determinantal process with kernel K and the proof is complete. �

6. Proof of Lemma 10. In proving Lemma 10, we shall make use of the fol-
lowing result on the joint moments of entries of a unitary matrix from the book of
Nica and Speicher [16], page 381 (we state a weaker form suited to our purpose):

RESULT 15. Let U = ((ui,j ))i,j≤N be chosen from Haar measure on U(N).
Let k ≤ N and fix i(�), j (�), i ′(�), j ′(�) for 1 ≤ � ≤ k. Then

E

[
k∏

�=1

ui(�),j (�)

k∏
�=1

ui′(�),j ′(�)

]
= ∑

π,σ∈Sk

Wg(N,πσ−1)

k∏
�=1

1i(�)=i′(∏�)
1j (�)=j ′(σ�),

where Wg (called “Weingarten function”) has the property that as N → ∞,

Wg(N, τ) =
{

N−k + O(N−k−1), if τ = e (“identity”),
O(N−k−1), if τ �= e.

PROOF OF LEMMA 10. We want to show that
√

N(Uk)α,β , k ≥ 1, 1 ≤ α,
β ≤ n converge (jointly) in distribution to independent standard complex Gaus-
sians. To use the method of moments consider two finite products of these random
variables

S =
m∏

i=1

[(Uki )αi ,βi
]pi and T =

m′∏
i=1

[(Uk′
i )α′

i ,β
′
i
]p′

i ,

where m,m′,pi,p
′
i , ki, k

′
i ≥ 1 and 1 ≤ αi, βi, α

′
i , β

′
i ≤ n are fixed. We want to find

E[ST ] asymptotically as N → ∞.
The idea is simple. We expand each (Uk)α,β as a sum of products of entries

of U . Then we get a huge sum of products and we evaluate the expectation of each
product using Result 15. Among the summands that do not vanish, most have the
same contribution and the rest are negligible. We now delve into the details.
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Let Pk(α,β) denote all “paths” γ of length k connecting α to β . This just means
that γ ∈ [N ]k+1, γ (1) = α and γ (k + 1) = β . Then we write

(Uk)α,β = ∑
γ∈Pk(α,β)

k∏
j=1

uγ (j),γ (j+1).

Expanding each factor in the definition of S like this, we get

S = ∑
γ �
i ∈Pki

(αi ,βi)

i≤m;�≤pi

m∏
i=1

pi∏
�=1

ki∏
j=1

uγ �
i (j),γ �

i (j+1).

In other words, we are summing over a packet of p1 paths of length k1 from α1
to β1, a packet of p2 paths of length k2 from α2 to β2, etc. T may similarly be
expanded as

T = ∑
��

i ∈Pk′
i
(α′

i ,β
′
i )

i≤m′;�≤p′
i

m′∏
i=1

p′
i∏

�=1

k′
i∏

j=1

u��
i (j),��

i (j+1).

To evaluate E[ST ], for each pair of collections γ = {γ �
i } and � = {��

i }, we must
find

E

[(
m∏

i=1

pi∏
�=1

ki∏
j=1

uγ �
i (j),γ �

i (j+1)

)(
m′∏
i=1

p′
i∏

�=1

k′
i∏

j=1

u��
i (j),��

i (j+1)

)]
.(29)

Fix a collection of packets γ �
i ∈ Pki

(αi, βi). For which collections ��
i ∈ Pk′

i
(α′

i , β
′
i)

does (29) give a nonzero answer? For that to happen, the number of ui,j s and the

number of ui,j s inside the expectation must be the same (because eiθU
d= U for

any θ ∈ R). Assume that this is the case.
It will be convenient to write γ (i, �, j) in place of γ �

i (j). From Result 15, to get
a nonzero answer in (29) we must have bijections

{(i, �, j) : i ≤ m,� ≤ pi,1 ≤ j ≤ ki}
π→ {(i, �, j) : i ≤ m′, � ≤ p′

i ,1 ≤ j ≤ k′
i},

{(i, �, j) : i ≤ m,� ≤ pi,2 ≤ j ≤ ki + 1}
σ→ {(i, �, j) : i ≤ m′, � ≤ p′

i ,2 ≤ j ≤ k′
i + 1}

such that

(γ (i, �, j))i≤m,�≤pi,1≤j≤ki
= (�(π(i, �, j)))i≤m,�≤pi,1≤j≤ki

,

(γ (i, �, j))i≤m,�≤pi,2≤j≤ki+1 = (�(σ (i, �, j)))i≤m,�≤pi,2≤j≤ki+1.
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And for each such pair of bijections π,σ , we get a contribution of Wg(N,πσ−1).
Let us call the collection of packets γ typical, if all the paths γ �

i are pairwise
disjoint (except possibly at the initial and final points) and also nonself-intersecting
(again, if αi = βi , the paths in packet i intersect themselves, but only at the end
points).

If γ is typical, then it is clear that for � to yield a nonzero contribution, � must
consist of exactly the same paths as γ . This forces ki = k′

i , pi = p′
i , αi = α′

i and
βi = β ′

i for every i. If this is so, then the only pairs of bijections (π,σ ) that yield
a nonzero contribution are those for which:

• π = σ (from the disjointness of the paths).
• π permutes each packet of paths among itself. In particular there are

∏k
i=1 pi !

such permutations.

This shows that for a typical γ , the expectation in (29) is equal to

1�=γ

(
m∏

i=1

pi !
)

Wg(N, e).(30)

Here γ = � means that the two sets of paths are the same. Now suppose γ is atypi-
cal. For any fixed γ , typical or atypical, the number of � for which (29) is nonzero
is clearly bounded uniformly by m and pi, ki , i ≤ m. In particular it is independent
of N . Therefore the expected value in (29) is bounded in absolute value by

C sup
τ

Wg(N, τ).(31)

Now for an atypical γ , at least two of γ �
i (j), 1 ≤ i ≤ m, 1 ≤ � ≤ pi , 2 ≤ j ≤ ki ,

must be equal (our definition of “typical” did not impose any condition on the
initial and final points of the paths, which are anyway fixed throughout). Thus, if
we set r = p1(k1 − 1) + · · · + pm(km − 1), then it follows that the total number
of atypical γ is less than r2Nr−1. Since the total number of γ is precisely Nr ,
this also tells us that there are at least Nr − r2Nr−1 typical γ . Put these counts
together with the contributions of each typical and atypical path, as given in (30)
and (31), respectively. Note that we get nonzero contribution from typical paths
only if S = T . Also, the total number of factors in S is r + ∑

pi (this is the “k” in
Result 15). Hence

E[ST ] = 1S=T Nr(1 − O(1/N)
)

Wg(N, e)

m∏
i=1

pi ! + O(Nr−1) sup
τ∈Sr+∑

pi

Wg(N, τ)

= 1S=T N−∑
pi

(
m∏

i=1

pi !
)(

1 + O

(
1

N

))

by virtue of the asymptotics of the Weingarten function, as given in Result 15.
The factor N

∑
pi is precisely compensated for, once we scale (Uk)α,β by

√
N ,

as in the statement of the lemma. Since the moments of standard complex Gaussian
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are easily seen to be E[gpgq] = p!1p=q , we have shown that
√

N(Uk)α,β , k ≥ 1,
α,β ≤ n, converge to independent standard complex Gaussians. �

7. Proof of Lemma 14. We prove Lemma 14 in this section. We shall make
use of the following fact, which is a direct consequence of [7], Theorem 26.

RESULT 16. Fix n > 0. Let {λ1, . . . , λN } be determinantal on the unit disk
with kernel

KN(z,w) =
N−1∑
k=0

(−n − 1
k

)
(−1)kzkwk

with respect to the background measure dμn(z) = n
π
(1−|z|2)n−1 dm(z). Then the

set {|λk|2 : 1 ≤ k ≤ N} has the same distribution as {Yk : 0 ≤ k ≤ N −1}, where Yks
are independent random variables and Yk has distribution Beta(k + 1, n).

As a consequence of this result, it is very easy to see that Nn/2fN(0) is tight.
For,

E[|fN(0)|2] = Nn
N−1∏
k=0

E[Yk]

= Nn
N−1∏
k=0

k + 1

n + k + 1

= Nn n!
(N + 1)(N + 2) · · · (N + n)

→ n!
as N → ∞. For z �= 0 it is not as simple, because for finite N , the distribution of
{| z−λk

1−zλk
|} is not the same as that of a set of independent random variables. It is in

the N → ∞ limit, but this is of no use to us.

PROOF OF LEMMA 14. Write ϕz(λ) = z−λ

1−zλ
. Write

N∑
k=1

log |ϕz(λk)|2 = −
N∑

k=1

(
1 − |ϕz(λk)|2) +

N∑
k=1

hz(λk),

where hz(λ) := log |ϕz(λ)|2 + (1 − |ϕz(λ)|2). The lemma will be proved by show-
ing that the following are tight (uniformly over z in compact sets, as N varies).

(1)
N∑

k=1

hz(λk), (2) − n logN +
N∑

k=1

(
1 − |ϕz(λk)|2)

.

We consider them one by one.
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1. Consider
∑N

k=1 hz(λk). For each z ∈ D, the function ϕz maps the unit disk onto
itself and the unit circle onto itself. Therefore, given K , a compact subset of
the unit disk, we may find T < 1 such that for any z ∈ K and |λ| > T we have
|ϕz(λ)|2 > 1

2 . From the power series expansion of log(1 − x), we then get

|hz(λ)| < (
1 − |ϕz(λ)|2)2 for z ∈ K, |λ| > T.

Observing that

1 − |ϕz(λ)|2 = (1 − |z|2)(1 − |λ|2)
|1 − zλ|2 ,

it follows that∣∣∣∣∣
N∑

k=1

hz(λk)

∣∣∣∣∣ ≤ ∑
|λk |<T

|hz(λk)| + C
∑

|λk |>T

(1 − |λk|2)2

for a constant C (does not depend on N or z, as long as z ∈ K). The first sum-
mand is tight because the set {λk : |λk| < T } converges to the set of points in T D

in the limiting determinantal process. The second summand may be stochasti-
cally bounded by

∑N−1
k=0 (1 − Yk)

2 by Result 16. From the explicit distribution
of Yks, we may compute the expected value of this sum as

E

[
N−1∑
k=0

(1 − Yk)
2

]
=

N−1∑
k=0

n(n + 1)

(n + k + 1)(n + k + 2)
.

The random variables on the left are stochastically increasing in N and hence,
a uniform bound on the expectations shows tightness.

2. Consider −n logN +∑N
k=1(1−|ϕz(λk)|2). We shall show tightness by proving

that the expected value and variance of these random variables are bounded
uniformly in N (and z ∈ K).

Expected value: As always, it is simpler for us to deal with |λk|2. Therefore,
write

1 − |ϕz(λ)|2 = (1 − |z|2)(1 − |λ|2)
|1 − zλ|2

= (1 − |z|2)(1 − |λ|2)
∞∑

p,q=0

zpzqλqλ
p
.

Set λ = λk , sum over k and take expectations. Any term with p �= q vanishes,
because of rotation invariance of {λk}. For p = q , we get terms with |λk|2,
which may be replaced by independent Beta random variables by Result 16.
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Thus

E

[
N∑

k=1

(
1 − |ϕz(λk)|2)]

= (1 − |z|2)
∞∑

p=0

|z|2pE

[
N∑

k=1

(1 − |λk|2)|λk|2p

]

= (1 − |z|2)
∞∑

p=0

|z|2p
N∑

k=1

Beta(k + p,n) − Beta(k + p + 1, n)

Beta(k, n)

= (1 − |z|2)
∞∑

p=0

|z|2p
N∑

k=1

nk(k + 1) · · · (k + p − 1)

(k + n) · · · (k + n + p)

= (1 − |z|2)
∞∑

p=0

|z|2p
N∑

k=1

(
n

k
+ errk

)
,

where in the last line, from the simple bounds

n

k + n

(
k

k + n + 1

)p+1

≤ nk(k + 1) · · · (k + p − 1)

(k + n) · · · (k + n + p)
≤ n

k + n
,

we see that |errk| ≤ C(p)k−2 where C(p) is at most a polynomial in p (in fact

|errk| ≤ (p+2)n2

k(k+n)
). Thus, it follows that

E

[
N∑

k=1

(
1 − |ϕz(λk)|2)] = (n logN)(1 − |z|2)

( ∞∑
p=0

|z|2p

)
+ O(1)

= n logN + O(1).

This is exactly what we wanted to show about the expected value.
Variance: Now we want the variance of XN := ∑N

k=1(1 − |ϕz(λk)|2). No
really new ideas are needed, only the calculations are more tedious. Expand
XN in power series as before to get

E[X2] = (1 − |z|2)2

(32)

× ∑
p,q,r,s≥0

zp+rzq+sE

[
N∑

k,�=1

(1 − |λk|2)(1 − |λ�|2)λq
kλ

p
k λs

�λ
r
�

]
.

All terms in which p + r �= q + s vanish, by rotation invariance. Fix p,q, r, s

so that p + r = q + s and write the inner expectation as

E

[
N∑

k=1

(1 − |λk|2)2|λk|2p+2r

]
+ E

[∑
k �=�

(1 − |λk|2)(1 − |λ�|2)λq
kλ

p
k λs

�λ
r
�

]
.
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The first one is already a function of the absolute values of λks and hence, re-
placing them by independent Beta random variables, we get (details are similar
to those in computing the expectation)

E

[
N∑

k=1

(1 − |λk|2)2|λk|2p+2r

]

=
N∑

k=1

Beta(k + p + r, n) − 2 Beta(k + p + r + 1, n)

+ Beta(k + p + r + 2, n)(Beta(k, n))−1

= n(n + 1)

N∑
k=1

k(k + 1) · · · (k + p + r − 1)

(k + n) · · · (k + n + p + r + 1)

≤ n(n + 1)

N∑
k=1

1

k(k + 1)
,

which is bounded. Of course, we shall have to sum over p,q, r, s subject to
p + r = q + s, but it is clear that because of the factor of |z|2p+2r in (32), the
total contribution to (32) from this summand (all terms with k = �) is bounded
as N → ∞.

It remains to consider the sum over k �= �. The two-point correlation is
KN(λ,λ)KN(ξ, ξ) − KN(λ, ξ)KN(ξ, λ). We consider

E

[∑
k �=�

(1 − |λk|2)(1 − |λ�|2)λq
kλ

p
k λs

�λ
r
�

]

=
∫

D2
(1 − |λ|2)(1 − |ξ |2)λqλ

p
ξsξ

r(
KN(λ,λ)KN(ξ, ξ) − |KN(λ, ξ)|2)

.

Consider the first summand, where we choose the term KN(λ,λ)KN(ξ, ξ) in-
side the brackets. This survives only if p = q and r = s and it is easily seen that
this term when summed over p = q and r = s in (32) will give exactly E[X]2.
When we compute the variance of X, we shall subtract E[X]2 from E[X2] and
this term gets cancelled.

Thus to show the boundedness of the variance, we only need to show the
boundedness of∫

D2
(1 − |λ|2)(1 − |ξ |2)λqλ

p
ξsξ

r
KN(λ, ξ)KN(ξ, λ) dμn(λ) dμn(ξ).(33)

Recall that

KN(λ, ξ) =
N−1∑
j=0

Cjλ
j ξ

j
,
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where, Cj = (−n−1
j

)
(−1)j . Moreover, for any j ,

Cj

∫
D

|λ|2j dμn(λ) = 1.

Therefore the integral in (33) is equal to

N−1∑
i,j=0

CiCj

∫
D

(1 − |λ|2)λq+iλ
p+j

dμn(λ)

∫
D

(1 − |ξ |2)ξ s+j ξ
r+i

dμn(ξ)

=
N−1∑
i,j=0

CiCjδq+i,p+j δs+j,r+i

(
1

Cp+j

− 1

Cp+j+1

)(
1

Cr+i

− 1

Cr+i+1

)
.

We fixed p,q, r, s such that p − q = s − r . Therefore, there are N − |p − q|
choices for (i, j) which do not vanish (if |p − q| ≥ N , there are no such terms).
Without losing generality, let p < q , and write the above quantity as

N−(q−p)∑
i=0

CiCq−p−i

(
1

Cp+j

− 1

Cp+j+1

)(
1

Cr+i

− 1

Cr+i+1

)
.

Since C−1
j = Beta(j + 1, n) we compute

1

Cj

− 1

Cj+1
= n�(j + 1)

�(n)�(j + n + 2)
.

Therefore

CiCj

(
1

Cp+j

− 1

Cp+j+1

)(
1

Cr+i

− 1

Cr+i+1

)

= �(i + n + 1)�(j + n + 1)

�(i + 1)�(j + 1)

n2�(p + j + 1)�(r + i + 1)

�(p + j + n + 2)�(r + i + n + 2)

= n2 (j + 1) · · · (j + p)(i + 1) · · · (i + r)

(j + n + 1) · · · (j + n + p + 1)(i + n + 1) · · · (i + n + r + 1)
.

As before by the obvious bounds we may write this quantity as

n2

(i + 1)(j + 1)
+ O(i−2j−2).

Now we take i, j with j = i + q − p and sum over i as well as p,q, r, s (with
the condition p + r = q + s). This yields a bounded quantity.

In summary, we wrote E[X2] as in (32). Terms with k = � yielded a bounded
quantity. Terms with k �= � were split into two sums. One of them is bounded
while the other is exactly equal to E[X]2. Thus the variance is bounded as
N → ∞.

This completes the proof of Lemma 14. �
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8. Questions. We record here two among several natural questions that arise
from the considerations of this paper.

1. In Theorem 4, the determinantal process exists for any positive real n, while the
matrix analytic function makes sense only for integer values of n (size of the
matrix). Is there a random zero set interpretation for hyperbolic determinantal
processes for noninteger values of n?

2. For each z, the eigenvalues of the random matrix in Theorem 4 is a rescaled
version of Ginibre’s ensemble. Is it possible to find the joint law of the sets of
eigenvalues as z varies over the unit disk?

3. Are there random matrices of the form given in Theorem 5 for which we can
calculate the exact distribution of eigenvalues? Recall that these are random
matrices for which: (1) The distribution is invariant under multiplication by
unitary matrices. (2) The number of random singular values stays fixed even as
the size of the matrix goes to infinity.

If this can be done, then presumably we shall also get the distribution of
zeros of det(X0 + zG1 + z2G2 + · · ·). We say “presumably,” because we have
not proved uniform convergence of fN on compact sets, except in the special
case of truncated Haar unitary matrices.

APPENDIX: DETERMINANTAL POINT PROCESSES

We give a brief introduction to determinantal processes, strictly limited to the
context of this paper. More details, as well as proofs, may be found in the surveys
[7, 19].

Let � be a region in the plane and let p be a positive continuous function on �.
Define the measure μ by dμ(z) = p(z) dm(z). A simple point process on � is
a random measure on � that takes values in the space of counting measures of
locally finite subsets of �. If the number of points that fall in any compact set
has exponential tails, then the distribution of the point process is determined by its
correlation functions (joint intensities) with respect to μ,

ρk(z1, . . . , zk)

= lim
ε↓0

P[X has points in each of D(zi, ε),1 ≤ i ≤ k]∏k
i=1 μ(D(zi, ε))

for any k ≥ 1 and any z1, . . . , zk ∈ �. There is also an integral version of this
definition which is more appropriate in more general situations. Joint intensities
need not exist in general.

Consider the space L2(�,μ) and its subspace H consisting of holomorphic
functions. It is a fact that H is a closed subspace. For, suppose fn ∈ H and fn → f

in L2(μ). Then for any z ∈ �, consider a disk D(z, r) contained entirely in �.
Convergence in L2 and absolute continuity of μ shows that fns converge to f
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in L2(m) on the annulus D(z, r) \ D(z, r
2). Apply Cauchy’s integral formula to

infer that fn → f uniformly on D(z, r
4). Therefore f is itself analytic on �. This

shows that H is a Hilbert space. This reasoning also shows that for any z ∈ �, the
evaluation f → f (z) is a bounded linear functional on H.

Switch notation and let H denote any closed subspace of L2(μ) consisting of
holomorphic functions. Then the evaluation f → f (z) is a bounded linear func-
tional on H. As a consequence, if {ψn}n≥1 is any orthonormal basis of H, then the
series

K(z,w) = ∑
ψn(z)ψn(w),

does converge and K (called the reproducing kernel of H) is independent of the
choice of the basis. The integral operator on L2(μ) defined by

Kf (z) =
∫
�

f (w)K(z,w)dμ(w)

is precisely the projection operator on L2(μ) onto the subspace H.

DEFINITION A.1. Let H be a closed subspace of L2(μ) consisting of com-
plex analytic functions, and let K be the reproducing kernel of H. Then a point
process X on � with joint intensities given by

ρk(z1, . . . , zk) = det(K(zi, zj ))i,j≤k

does exist and is called the determinantal point process on � with kernel K with
respect to the measure μ. We also say that H is the associated Hilbert space.

We just state a few facts regarding these processes.

1. The number of points in X is almost surely equal to the dimension of H.
2. If subspaces Hn increase to H, then the corresponding determinantal processes

converge in distribution, that is, Xn
d→ X. This was used tacitly in deducing

Theorem 4 from Result 12.
3. If H = span{1, z, . . . , zn−1}, then by writing out the density (which is just

1
n!ρn(·)), one sees that the vector of n points of the process has density pro-
portional to

∏
i<j |zi − zj |2 ∏n

i=1 p(zi) with respect to the Lebesgue measure
on �n.
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Note added in proof : Just as the final version of this paper was about to be sent,
Victor Katsnelson has sent us a preprint [10] of his joint work with Bernd Kirstein,
on the Schur algorithm and system theory, using ideas with which it seems that the
proof of Theorem 4 may be simplified. We leave this for the future.
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