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CONTINUITY PROPERTIES AND INFINITE DIVISIBILITY
OF STATIONARY DISTRIBUTIONS OF SOME GENERALIZED

ORNSTEIN–UHLENBECK PROCESSES

BY ALEXANDER LINDNER AND KEN-ITI SATO

Technische Universität of Braunschweig and Hachiman-yama, Nagoya

Properties of the law μ of the integral
∫ ∞
0 c−Nt− dYt are studied, where

c > 1 and {(Nt , Yt ), t ≥ 0} is a bivariate Lévy process such that {Nt } and
{Yt } are Poisson processes with parameters a and b, respectively. This is the
stationary distribution of some generalized Ornstein–Uhlenbeck process. The
law μ is parametrized by c, q and r , where p = 1 − q − r , q, and r are the
normalized Lévy measure of {(Nt , Yt )} at the points (1,0), (0,1) and (1,1),
respectively. It is shown that, under the condition that p > 0 and q > 0, μc,q,r

is infinitely divisible if and only if r ≤ pq. The infinite divisibility of the
symmetrization of μ is also characterized. The law μ is either continuous-
singular or absolutely continuous, unless r = 1. It is shown that if c is in
the set of Pisot–Vijayaraghavan numbers, which includes all integers bigger
than 1, then μ is continuous-singular under the condition q > 0. On the other
hand, for Lebesgue almost every c > 1, there are positive constants C1 and C2
such that μ is absolutely continuous whenever q ≥ C1p ≥ C2r . For any c > 1
there is a positive constant C3 such that μ is continuous-singular whenever
q > 0 and max{q, r} ≤ C3p. Here, if {Nt } and {Yt } are independent, then
r = 0 and q = b/(a + b).

1. Introduction. A generalized Ornstein–Uhlenbeck process {Vt , t ≥ 0} with
initial condition V0 is defined as

Vt = e−ξt

(
V0 +

∫ t

0
eξs− dηs

)
,

where {(ξt , ηt ), t ≥ 0} is a bivariate Lévy process, independent of V0. See Car-
mona, Petit and Yor [3, 4] for basic properties. Such processes arise in a variety of
situations such as risk theory (e.g., Paulsen [18]), option pricing (e.g., Yor [26]) or
financial time series (e.g., Klüppelberg, Lindner and Maller [13]), to name just a
few. They also constitute a natural continuous time analogue of random recurrence
equations, as studied by de Haan and Karandikar [11]. Lindner and Maller [16]
have shown that a generalized Ornstein–Uhlenbeck process admits a strictly sta-
tionary solution which is not degenerate to a constant process with a suitable V0 if
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and only if ∫ ∞−
0

e−ξs− dLs := lim
t→∞

∫ t

0
e−ξs− dLs(1.1)

exists and is finite almost surely and not degenerate to a constant random vari-
able. The distribution of (1.1) then gives the unique stationary distribution. Here,
{(ξt ,Lt ), t ≥ 0} is another bivariate Lévy process, defined in terms of {(ξt , ηt )} by

Lt = ηt + ∑
0<s≤t

(
e−(ξs−ξs−) − 1

)
(ηs − ηs−) − ta

1,2
ξ,η,

where a
1,2
ξ,η denotes the (1,2)-element in the Gaussian covariance matrix of the

Lévy–Khintchine triplet of {(ξt , ηt )}. Conversely, {(ξt , ηt )} can be reconstructed
from {(ξt ,Lt )} by

ηt = Lt + ∑
0<s≤t

(eξs−ξs− − 1)(Ls − Ls−) + ta
1,2
ξ,L.

Note that, if {ξt } and {ηt } are independent, then Lt = ηt for all t . The convergence
of integral (1.1) was characterized by Erickson and Maller [6] and generalized by
Kondo, Maejima and Sato [14] to the case when {(ξt ,Lt )} is an R × Rd valued
Lévy process with d ∈ N.

Suppose now that {(ξt ,Lt )} is a bivariate Lévy process such that (1.1) converges
almost surely and is finite, and denote by

μ := L

(∫ ∞−
0

e−ξs− dLs

)
the distribution of the integral. If ξt = t is deterministic, then it is well known
that μ is self-decomposable, hence is infinitely divisible as well as absolutely con-
tinuous (if not degenerate to a Dirac measure, which happens only if {Lt } is also
deterministic). Other cases where μ is self-decomposable include the case where
{ξt } is stochastic, but spectrally negative (cf. Bertoin, Lindner and Maller [1]).
On the other hand, as remarked by Samorodnitsky, μ is not infinitely divisible if,
for example, ξt = Nt + αt with a Poisson process {Nt, t ≥ 0} and a positive drift
α > 0 and Lt = t (cf. Klüppelberg, Lindner and Maller [13], page 408). Conti-
nuity properties of μ for general {(ξt ,Lt )} were studied by Bertoin, Lindner and
Maller [1], who showed that μ cannot have atoms unless μ is a Dirac measure, with
this degenerate case also being characterized. Gjessing and Paulsen [8] derived the
distribution of μ in a variety of situations; however, in all cases considered the
distribution turned out to be absolutely continuous.

With these results in mind, it is natural to ask, first, whether μ will always be
absolutely continuous for general {(ξt ,Lt )}, unless μ degenerates to a Dirac mea-
sure and, second, what is the condition for μ to be infinitely divisible. The present
article will give the negative answer to the first question, showing many cases
of μ being continuous-singular and, to the second question, provide a necessary
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and sufficient condition in a restricted class. Namely we will restrict our atten-
tion to the case (ξt ,Lt ) = ((log c)Nt , Yt ), where c is a constant greater than 1 and
{Nt } and {Yt } are Poisson processes with parameters a and b, respectively, with
{(Nt , Yt )} being a bivariate Lévy process. Thus we will study in detail

μ = L

(∫ ∞−
0

e−(log c)Ns− dYs

)
= L

(∫ ∞−
0

c−Ns− dYs

)
.(1.2)

The integral here is an improper Stieltjes integral pathwise. From the strong law
of large numbers, we see that the integral exists and is finite. Even in this class
the problems of infinite divisibility and continuity properties turn out to have rich
substance. Let T be the first jump time of {Nt }. Then∫ ∞−

0
c−Ns− dYs = YT +

∫ ∞−
T

c−Ns− dYs = YT + c−1
∫ ∞−

0
c−N ′

s− dY ′
s ,

where {(N ′
t , Y

′
t )} is an independent copy of {(Nt , Yt )}. Hence, letting ρ = L(YT ),

we obtain

μ̂(z) = ρ̂(z)μ̂(c−1z), z ∈ R,(1.3)

where μ̂(z) and ρ̂(z) denote the characteristic functions of μ and ρ. It follows that

μ̂(z) = μ̂(c−kz)

k−1∏
n=0

ρ̂(c−nz), k ∈ N,

and hence

μ̂(z) =
∞∏

n=0

ρ̂(c−nz).(1.4)

In general, if a distribution μ satisfies (1.3) with some distribution ρ, then μ is
called c−1-decomposable. Our study of the law μ is based on this
c−1-decomposability. The expression (1.4) shows that the law ρ controls μ.
The properties of c−1-decomposable distributions are studied by Wolfe [25],
Bunge [2], Watanabe [23] and others. In particular, it is known that any non-
degenerate c−1-decomposable distribution is either continuous-singular or ab-
solutely continuous (Wolfe [25]). A distribution μ is self-decomposable if and
only if μ is c−1-decomposable for all c > 1; in this case μ and ρ are infinitely
divisible. In general if a distribution μ satisfies (1.3) with ρ being infinitely divis-
ible, then μ is called c−1-semi-self-decomposable. We note that, when c = e and
{Nt } and {Yt } are independent, Kondo, Maejima and Sato [14] recognizes that μ

is e−1-decomposable and either continuous-singular or absolutely continuous.
The Lévy process {(Nt , Yt )} is a bivariate compound Poisson process with

Lévy measure concentrated on the three points (1,0), (0,1) and (1,1) and the
amounts of the measure of these points are denoted by u, v and w. Letting
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p = u/(u + v + w), q = v/(u + v + w) and r = w/(u + v + w) be the normal-
ized Lévy measure on these three points, we will see that μ is determined by c, q

and r and ρ is determined by q and r , and hence denote μ = μc,q,r and ρ = ρq,r .
We call r the dependence parameter of {(Nt , Yt )}, since r = 0 is equivalent to the
independence of {Nt } and {Yt } and r = 1 means Nt = Yt for all t . If r = 0, then
ρ = L(YT ) is a geometric distribution, which is infinitely divisible, and hence μ

is also infinitely divisible. But, if r > 0, the situation is more complicated. In Sec-
tion 2 we will give a complete description of the condition of infinite divisibility of
μc,q,r and ρq,r in terms of their parameters. It will turn out that infinite divisibility
of μc,q,r does not depend on c. It is shown in Niedbalska-Rajba [17] that there ex-
ists a c−1-decomposable infinitely divisible distribution μ that satisfies (1.3) with
a noninfinitely-divisible ρ. But, in our case, it will turn out that μc,q,r is infinitely
divisible if and only if ρq,r is so. Further, under the condition that 0 < q < 1 and
p > 0, it will turn out that ρq,r is infinitely divisible if and only if the dependence
parameter is so small that r ≤ pq . We also address the problem of infinite divisi-
bility of the symmetrizations μsym and ρsym of μ and ρ. Infinite divisibility of a
distribution implies that of its symmetrization, but there is a noninfinitely-divisible
distribution whose symmetrization is infinitely divisible, which is pointed out in
pages 81–82 in Gnedenko and Kolmogorov [9]. A complete description of infi-
nite divisibility of μsym and ρsym will be given, which provides new examples
of this phenomenon in [9]. In the proof of noninfinite-divisibility, we use three
methods: (1) Katti’s condition for distributions on nonnegative integers; (2) Lévy–
Khintchine type representation of characteristic functions with signed measures in
place of Lévy measures; (3) representation of the Laplace transforms of infinitely
divisible distributions on [0,∞) in the form e−ϕ(θ) with ϕ′(θ) being completely
monotone.

Section 3 is devoted to the study of continuous-singularity and absolute conti-
nuity of μc,q,r . If q = 0, then it will be shown that

μ̂c,0,r (z) =
∞∏

n=0

[(1 − r) + reic−nz], z ∈ R,

so that μ is an infinite Bernoulli convolution (usage of this word is not fixed;
here we follow Watanabe [23]). The question of singularity and absolute conti-
nuity of infinite Bernoulli convolutions has been investigated by many authors
but, even if r = 1/2, characterization of all c > 1 for which the distribution is ab-
solutely continuous is an open problem. See Peres, Schlag and Solomyak [19],
Peres and Solomyak [20], Watanabe [23] and the references therein. We shall
exclude the case q = 0 from our consideration, but we will show that the no-
tions and techniques developed in the study of infinite Bernoulli convolutions and
b-decomposable measures are effectively applied. Here, unlike in the study of in-
finite divisibility, the parameter c plays a crucial role. If c has an algebraic prop-
erty of being a Pisot–Vijayaraghavan (P.V.) number, then we will show that μc,q,r



254 A. LINDNER AND K. SATO

is continuous-singular under the condition that q > 0. For example, all integers
greater than one and some irrationals such as (1 + √

5)/2 are P.V. numbers. On
the other hand, if c is the reciprocal of a Peres–Solomyak (P.S.) number, then it
will be shown that there are positive constants C1 and C2 such that μc,q,r is ab-
solutely continuous with bounded continuous density whenever q ≥ C1p ≥ C2r .
It is known that Lebesgue almost all reals in (1,∞) are reciprocals of P.S. num-
bers. In general, under the condition 0 < q < 1, we can estimate dim(μc,q,r ), the
Hausdorff dimension of μc,q,r defined as the infimum of the Hausdorff dimen-
sions of E over all Borel sets E satisfying μc,q,r (E) = 1 (in some papers, includ-
ing [23], this is called upper Hausdorff dimension and denoted by dim∗). Using a
powerful theorem of Watanabe [23] for any c−1-decomposable distribution satis-
fying (1.3) with a discrete distribution ρ, we see that dim(μc,q,r ) ≤ H(ρq,r )/ log c,
where H(ρq,r ) is the entropy of ρq,r . It follows that μc,q,r is continuous-singular,
if H(ρq,r )/ log c < 1. Thus, for any c > 1, there is a positive constant C3 such that
μc,q,r is continuous-singular whenever q > 0 and max{q, r} ≤ C3p.

In Section 3 we also study, in the case where μc,q,r is infinitely divisible, con-
tinuity properties of the convolution power (μc,q,r )

t∗ of μc,q,r , that is, the distri-
bution at time t of the Lévy process associated with μc,q,r . It is shown that if c

is a P.V. number, then (μc,q,r )
t∗ is continuous-singular for all t > 0, while, if c

is the reciprocal of a P.S. number, then there is t1 = t1(c, q, r) ∈ (0,∞) such that
(μc,q,r )

t∗ is continuous-singular for all t ∈ (0, t1) and absolutely continuous for all
t ∈ (t1,∞). Thus the present paper provides a new class of Lévy processes with a
remarkable time evolution in distribution. See Section 27 in Sato [21] and Watan-
abe’s survey [24] for such time evolution. We emphasize that here the distribu-
tion μc,q,r arises naturally as the stationary distribution of a generalized Ornstein–
Uhlenbeck process.

The case of {Nt } and {Yt } being independent (i.e., r = 0) is of special in-
terest. The properties of μc,q,0 are included in the results of Section 3 men-
tioned above. As explicit examples, μe,q,0 with c = e is continuous-singular if
q ≤ 1 − log 2 ≈ 0.30685; μc,1/2,0 with q = 1/2 is continuous-singular if c > 4.
We can prove more results for μc,q,0 than for general μc,q,r , since the Lévy mea-
sure of μc,q,0 is increasing with respect to q . Thus, for any c > 1, there exists q1

with 0 < q1 ≤ 1 such that μc,q,0 is continuous-singular for all q ∈ (0, q1) and ab-
solutely continuous for all q ∈ (q1,1). It will be shown that q1 = 1 for any P.V.
number c > 1 and that q1 < 1 whenever c is the reciprocal of a P.S. number, so
that q1 < 1 for Lebesgue almost all c > 1.

Throughout the paper, the set of all positive integers will be denoted by N =
{1,2,3, . . .}, while we set N0 = N ∪ {0}. The set of integers is denoted by Z. The
Dirac measure at a point x will be denoted by δx . For general definitions and
properties regarding Lévy processes and infinitely divisible distributions, we refer
to Sato [21].
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2. Necessary and sufficient conditions for infinite divisibility. Suppose that
{(Nt , Yt ), t ≥ 0} is a bivariate Lévy process such that {Nt } is a Poisson process with
parameter a > 0 and {Yt } is a Poisson process with parameter b > 0. It then follows
easily that {(Nt , Yt )} has no Gaussian part, no drift, and a Lévy measure ν(N,Y )

concentrated on the set {(1,0), (0,1), (1,1)}, consisting of three points (e.g., [21],
Proposition 11.10). Denote

u := ν(N,Y )({(1,0)}), v := ν(N,Y )({(0,1)}), w := ν(N,Y )({(1,1)}).
Then u, v,w ≥ 0, u + w = a and v + w = b. Let

p := u

u + v + w
, q := v

u + v + w
, r := w

u + v + w
,

so that p,q, r ∈ [0,1], p + q + r = 1, p + r > 0 and q + r > 0. These give the
normalized Lévy measure on the three points. The two processes {Nt } and {Yt } are
independent if and only if r = 0. If r = 1, then Nt = Yt for all t with probability
one. So we call r the dependence parameter of {(Nt , Yt )}. The law μ in (1.2)
depends on c, u, v and w. But it will turn out (Proposition 2.1) that μ depends
only on c, q and r . Thus, for c > 1 denote

μc,q,r := L

(∫ ∞−
0

c−Ns− dYs

)
.(2.1)

If r = 1, then∫ ∞−
0

c−Ns− dYs =
∫ ∞−

0
c−Ns− dNs =

∞∑
j=0

c−j = c

c − 1
,

which is degenerate to a constant. So, from now on, we assume that p + q > 0
in addition to the above-mentioned conditions p + r > 0 and q + r > 0. That is,
p,q, r < 1. In this section we are interested in whether μc,q,r is infinitely divisi-
ble or not. It is also of interest whether the symmetrization (μc,q,r )

sym of μc,q,r is
infinitely divisible or not. Recall that the symmetrization μsym of a distribution μ

is defined to be the distribution with characteristic function |μ̂(z)|2. Infinite divisi-
bility of μ implies that of μsym, but the converse is not true, as is mentioned in the
Introduction.

We define ρq,r in the following way: If q > 0, denote by σq a geometric dis-
tribution with parameter 1 − q , that is, σq({k}) = (1 − q)qk for k = 0,1, . . . and
denote

ρ = ρq,r := (1 + r/q)σq − (r/q)δ0,(2.2)

so that ρq,r is a probability distribution concentrated on N0 with

ρq,r ({0}) = (1 + r/q)(1 − q) − (r/q) = p;(2.3)

if q = 0, let ρ0,r be a Bernoulli distribution with parameter r ∈ (0,1), that is,

ρ0,r ({1}) = 1 − ρ0,r ({0}) = r.(2.4)
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PROPOSITION 2.1. We have

μ̂c,q,r (z) = ρ̂q,r (z)μ̂c,q,r (c
−1z), z ∈ R.(2.5)

In particular, μc,q,r is c−1-decomposable and determined by c, q and r .

PROOF. As is explained in the Introduction, we have only to show that
L(YT ) = ρq,r , where T is the time of the first jump of {Nt }, that is, the time
of the first jump of {(Nt , Yt )} with size in {(1,0), (1,1)}. Let Si be the size of the
ith jump of {(Nt , Yt )}. Then we have for k ≥ 1

YT = k ⇐⇒ [S1 = · · · = Sk−1 = (0,1), Sk = (1,1)]
or

[S1 = · · · = Sk = (0,1), Sk+1 = (1,0)],
as well as

YT = 0 ⇐⇒ S1 = (1,0).

Since

P [Si = (1,0)] = p, P [Si = (0,1)] = q, P [Si = (1,1)] = r,

it follows that P(YT = 0) = p and, for k ≥ 1, P(YT = k) = qk−1r + qkp. From
this it follows easily that L(YT ) = ρq,r for q > 0, while it is a Bernoulli distribu-
tion with parameter r for q = 0. �

We can now formulate criteria when ρq,r and μc,q,r and their symmetrizations
are infinitely divisible. As is seen in (1.4), infinite divisibility of ρq,r implies that of
μc,q,r . Similarly, infinite divisibility of (ρq,r )

sym implies that of (μc,q,r )
sym. The

converse of these two implications is by no means clear, as we know Niedbalska-
Rajba’s example mentioned in the Introduction. However the following theorem
will say that the converse is true for μc,q,r and ρq,r and for (μc,q,r )

sym and
(ρq,r )

sym. Thus infinite divisibility of μc,q,r does not depend on c. Another re-
markable consequence is that (μc,q,r )

sym can be infinitely divisible without μc,q,r

being infinitely divisible and that (ρq,r )
sym can be infinitely divisible without ρq,r

being infinitely divisible.

THEOREM 2.2. Assume that the parameters p,q, r satisfy p,q, r < 1. Let
c > 1. For μc,q,r defined in (2.1) and ρq,r in (2.2) and (2.4), the following hold
true:

(a) If p = 0, then ρq,r and μc,q,r are infinitely divisible.
(b) If p > 0 and q > 0, then the following conditions are equivalent:

(i) μc,q,r is infinitely divisible.
(ii) ρq,r is infinitely divisible.
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(iii) r ≤ pq .
(c) If p > 0, q > 0 and r > pq , then the following conditions are equivalent:

(i) (μc,q,r )
sym is infinitely divisible.

(ii) (ρq,r )
sym is infinitely divisible.

(iii) p ≤ qr .
(d) If q = 0, then none of ρq,r , μc,q,r , (ρq,r )

sym and (μc,q,r )
sym is infinitely

divisible.

In the proof, we will first settle the question of infinite divisibility of ρq,r and
(ρq,r )

sym.

LEMMA 2.3. Assume q > 0 and let ρ = ρq,r . Then the following hold true:
(a) If r ≤ pq , or if p = 0, then ρ is infinitely divisible.
(b) If r > pq and p > 0, then ρ is not infinitely divisible.
(c) Assume that r > pq and p > 0. Then ρsym is infinitely divisible if and only

if

p ≤ qr.(2.6)

We remark that if 0 ≤ α ≤ 1, then (1 − α)σq + αδ0 is infinitely divisible, since
convex combinations of two geometric distributions are infinitely divisible (see
pages 379–380 in Steutel and van Harn [22]), and the Dirac measure δ0 is a limit
of geometric distributions. Assertions (a) and (b) show to what extent this fact can
be generalized to negative α.

PROOF OF LEMMA 2.3. Since σ̂q(z) = (1 − q)/(1 − qeiz), we have

ρ̂(z) = p + reiz

1 − qeiz
, z ∈ R.(2.7)

(a) If p = 0, then ρ({0}) = 0 and ρ({k}) = (1 − q)qk−1 for k = 1,2, . . . and
thus ρ is a geometric distribution translated by 1, hence infinitely divisible. So
assume that r ≤ pq . Then p > 0, recalling that p + r > 0. Since p = (1 − q)/(1 +
r/p), it follows from (2.7) that

ρ̂(z) = exp
[
log(1 − q) − log

(
1 + r

p

)
+ log

(
1 + r

p
eiz

)
− log(1 − qeiz)

]
.

Hence

ρ̂(z) = exp

[ ∞∑
k=1

(eikz − 1)
qk

k

(
1 −

(
− r

pq

)k)]
.(2.8)

Recall that r/(pq) ≤ 1. It follows that ρ is infinitely divisible with Lévy measure
νρ({k}) = k−1qk(1 − (−r/(pq))k), k = 1,2, . . . , and drift 0.



258 A. LINDNER AND K. SATO

(b) Now assume that r > pq and p > 0. By Katti’s criterion ([12] or Corol-
lary 51.2 of [21]), a distribution

∑∞
n=0 pnδn with p0 > 0 is infinitely divisible if

and only if there are qn ≥ 0, n = 1,2, . . . , such that

npn =
n∑

k=1

kqkpn−k, n = 1,2, . . . .

In fact, the equations above determine qn, n = 1,2, . . . , successively in a unique
way; infinite divisibility of

∑∞
n=0 pnδn is equivalent to nonnegativity of all qn. Now

let pn = ρ({n}). The first two equations are p1 = q1p0 and 2p2 = q1p1 + 2q2p0.
Hence q1 = p1/p0 > 0, but

q2 = 2p2 − q1p1

2p0
= (1 + r/q)(1 − q)q2

2p2 [1 − q − (r/q)(1 + q)] < 0,

since r > pq . This shows that ρ is not infinitely divisible.
(c) Assume again that r > pq and p > 0. From (2.7) it can be seen that ρ̂ will

have a real zero if and only if p = r . In that case, |ρ̂|2 will also have a real zero,
and hence ρsym cannot be infinite divisible in agreement with the fact that (2.6) is
violated for p = r . So in the following we assume that p �= r . From (2.7) we have

log(|ρ̂(z)|2) = log(p2 + 2pr cos z + r2) − log(1 − 2q cos z + q2).

Write

A = 2pr

p2 + r2 , B = 2q

1 + q2 , C = p2 + r2

1 + q2 .

Then 0 < A < 1, 0 < B < 1, and C > 0 (recall that 0 < q < 1 and p �= r) and we
obtain

log(|ρ̂(z)|2) = logC + log(1 + A cos z) − log(1 − B cos z)

= logC −
∞∑

k=1

k−1(−A)k cosk z +
∞∑

k=1

k−1Bk cosk z

= logC +
∞∑

k=1

k−12−k(−(−A)k + Bk) k∑
l=0

(
k

l

)
cos(k − 2l)z,

since cosk z = 2−k ∑k
l=0

(k
l

)
cos(k − 2l)z. Letting z = 0, we represent logC by A

and B and get

log(|ρ̂(z)|2) =
∞∑

k=1

Dk

k∑
l=0

(
k

l

)(
cos(k − 2l)z − 1

)
,

where

Dk = k−12−k(−(−A)k + Bk).(2.9)
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Then we get, with �(k−1)/2� denoting the largest integer not exceeding (k−1)/2,

log(|ρ̂(z)|2) = 2
∞∑

k=1

Dk

�(k−1)/2�∑
l=0

(
k

l

)(
cos(k − 2l)z − 1

)

= 2
∞∑

k=1

Dk

∑
m

(
k

(k − m)/2

)
(cosmz − 1),

where m runs over k, k − 2, . . . ,3,1, if k is odd ≥ 1 and over k, k − 2, . . . ,4,2,
if k is even ≥ 2. Since

∑∞
k=1 2k|Dk| ≤ ∑∞

k=1 k−1(Ak + Bk) < ∞, we can change
the order of summation and obtain

log(|ρ̂(z)|2) = 2
∞∑

m=1

Em(cosmz − 1)(2.10)

with

Em =
∞∑

h=0

Dm+2h

(
m + 2h

h

)
.(2.11)

This means that

log(|ρ̂(z)|2) =
∫

R

(
eixz − 1 − ixz1(−1,1)(x)

)
ν(dx),(2.12)

where ν is the symmetric signed measure

ν =
∞∑

m=1

Em(δm + δ−m).(2.13)

Let F = r/(pq). Then F > 1. A simple calculation then shows that A ≤ B if and
only if F − 1 ≤ q2(F 2 − F), which is equivalent to 1 ≤ q2F , that is, (2.6). Now,
if (2.6) holds, then A ≤ B and hence Dk ≥ 0 for all k, which implies Em ≥ 0
for all m and ρsym is infinitely divisible with the Lévy–Khintchine representa-
tion (2.12) with (2.13). If (2.6) does not hold, then A > B , Dk < 0 for all even k,
and Em < 0 for all even m, which implies, by (2.12) and (2.13), that ρsym is not
infinitely divisible (see Exercise 12.3 of [21]). �

PROOF OF THEOREM 2.2. Write μ = μc,q,r and ρ = ρq,r . (a) Suppose p = 0.
Then ρ is infinitely divisible by Lemma 2.3, and hence so is μ by (2.5).

(b) Suppose that p,q > 0. Under these conditions, the equivalence of (ii)
and (iii) follows from Lemma 2.3. Further, (ii) implies (i) by (2.5), so that it re-
mains to show that (i) implies (iii). For that, suppose that r > pq , and in order
to show that μ is not infinitely divisible, we will distinguish three cases: p = r ,
p > r and p < r . The first case is easy, but in the second and third cases we have
to use rather involved arguments resorting to different conditions that guarantee
noninfinite-divisibility.
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Case 1: Suppose that p = r . Then ρ̂ will have a real zero as argued in the
proof of Lemma 2.3(c). By (2.5), μ̂ will also have a real zero, so that μ cannot be
infinitely divisible.

Case 2: Suppose that p > r . Then ρ̂ can be expressed as in (2.8) with the same
derivation. Together with (2.5) and (1.4) this implies

μ̂(z) = exp

[ ∞∑
n=0

∞∑
m=1

(eimc−nz − 1)
1

m

(
qm − (−r/p)m

)]
, z ∈ R.(2.14)

Absolute convergence of this double series follows from c > 1, q < 1 and r/p < 1.
Define the real numbers am, m ∈ N, and the signed measure ν by

am := 1

m

(
qm − (−r/p)m

)
and ν :=

∞∑
n=0

∞∑
m=1

amδc−nm.

It follows that μ̂ in (2.14) has the same form as the Lévy–Khintchine representation
with the signed measure ν in place of a Lévy measure, so that infinite divisibility
of μ is equivalent to the signed measure ν having negative part 0; see Exercise 12.3
in [21]. Thus, to show that μ is not infinitely divisible, we will show that there is
a point x such that ν({x}) < 0. Since r/p > q , it follows that am < 0 if m is even
and that am > 0 if m is odd. If ck is irrational for all k ∈ N, then the points c−nm

with n ∈ N0 and m ∈ N are distinct, which implies ν({c−nm}) < 0 for all even m

and μ is not infinitely divisible.
Suppose that ck is rational for some k ∈ N. Let k0 be the smallest such k and

write ck0 = α/β with α,β ∈ N such that α and β have no common divisor. Let f

be the largest t ∈ N0 such that 2t divides β . Let m be even. Denote

Gm := {(n′,m′) ∈ N0 × N : c−n′
m′ = m, m′ odd},

Hm := {(n′,m′) ∈ N0 × N : c−n′
m′ = m, m′ even}.

Then

ν({m}) = ∑
(n′,m′)∈Gm∪Hm

am′ ≤ am + ∑
(n′,m′)∈Gm

am′ .(2.15)

We claim that the set Gm contains at most one element. To show this, let (n′,m′) ∈
Gm. Then n′ �= 0 and cn′ = m′/m and thus n′ = lk0 for some l ∈ N. Then m′/m =
(α/β)l and hence βl divides m and m/βl is odd. Thus m = 2lf m′′ with some odd
integer m′′. It follows that lf is determined by m. Hence l is determined by m

and c. Hence n′ is determined by m and c, which shows that Gm contains at most
one element. It also follows that f ≥ 1 whenever Gm �= ∅ for some even m. If
there is some even m such that Gm = ∅, then ν({m}) < 0 by (2.15), and we are
done. So suppose from now on that Gm �= ∅ for every even m. Let mj = 2jf for
j = 1,2, . . . . The argument above shows that the unique element (n′

j ,m
′
j ) in Gmj
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is given by n′
j = jk0 and m′

j = cjk0mj . Noting that 0 < q < r/p < 1 and c > 1,

choose j so large that qmj ≤ 2−1(r/p)mj and m′
j = mjc

jk0 > 2mj . Then

amj
= 1

mj

(
qmj − (r/p)mj

) ≤ − 1

2mj

(r/p)mj

and

am′
j
= 1

m′
j

(
q

m′
j + (r/p)

m′
j
) ≤ 3

2m′
j

(r/p)
m′

j <
3

4mj

(r/p)2mj .

Thus

ν({mj }) ≤ amj
+ am′

j
≤ 1

2mj

(r/p)mj
(−1 + (3/2)(r/p)mj

)
< 0

for large enough j , showing that μ is not infinitely divisible under the conditions
of Case 2.

Case 3: Suppose that p < r and, by way of contradiction, assume that μ is in-
finitely divisible. Denote by Lμ(θ) = ∫

R e−θxμ(dx), θ ≥ 0, the Laplace transform
of μ. Then Lμ(θ) = e−ϕ(θ) where ϕ has a completely monotone derivative ψ(θ)

on (0,∞), that is, (−1)nψ(n)(θ) ≥ 0 on (0,∞) for n = 0,1, . . . (see Feller [7],
page 450). By (2.5) and (2.7) we have

ϕ(θ) = − logLμ(θ) = −
∞∑

n=0

log
p + rfn(θ)

1 − qfn(θ)
,(2.16)

where f0(θ) = e−θ and fn(θ) = exp(−c−nθ) = f0(c
−nθ), n = 1,2, . . . . Conver-

gence of the summation in (2.16) is easily established. Since ψ = d
dθ

ϕ is com-
pletely monotone, so is θ �→ c−1ψ(c−1θ) = d

dθ
(ϕ(c−1θ)). Consider the function

ξ(θ) = p

p + re−θ
, θ ∈ (0,∞).

Then 1/(1 − qf0(θ)) − ξ(θ) is the difference of two completely monotone func-
tions, because

d

dθ

(
ϕ(θ) − ϕ(c−1θ)

) = d

dθ

(
− log

p + rf0(θ)

1 − qf0(θ)

)
= 1

1 − qf0(θ)
− ξ(θ).

Since 1/(1 − qf0(θ)) = ∑∞
k=0 qke−kθ is completely monotone, ξ(θ) is itself the

difference of two completely monotone functions. Applying Bernstein’s theorem,
there must exist a signed measure σ on [0,∞) such that

∫
[0,∞) e

−θx |σ |(dx) < ∞
and ξ(θ) = ∫

[0,∞) e
−θxσ (dx) for all θ ∈ (0,∞). However, introducing the signed

measure τ := ∑∞
k=0(−r/p)kδk , we have

ξ(θ) =
∞∑

k=0

(
− r

p
e−θ

)k

=
∫
[0,∞)

e−θxτ (dx),
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if θ > θ0 := log(r/p). Thus e−θ0xσ (dx) and e−θ0xτ (dx) have a common Laplace
transform ξ(θ0 + θ), θ > 0. Now from the uniqueness theorem in Laplace trans-
form theory (page 430 of Feller [7]) combined with the Hahn–Jordan decomposi-
tion of signed measures, it follows that e−θ0xσ (dx) = e−θ0xτ (dx), that is, σ = τ .
But

∫
[0,∞) e

−θx |τ |(dx) = ∞ for 0 < θ ≤ θ0, contradicting the property of σ . This
finishes the proof of (b).

(c) Suppose that p,q > 0 and that r > pq . The equivalence of (ii) and (iii) then
follows from Lemma 2.3, and (ii) implies (i) by (2.5), so that it remains to show
that (i) implies (iii). If p = r , then |ρ̂|2 and hence |μ̂|2 have real zeros as shown
in the proof of Lemma 2.3(c) and μsym is not infinitely divisible. Hence we can
assume that p �= r . With A,B , Dk and Em as in the proof of Lemma 2.3(c), it
follows from |μ̂(z)|2 = ∏∞

n=0 |ρ̂(c−nz)|2 and (2.10) that

log(|μ̂(z)|2) = 2
∞∑

n=0

∞∑
m=1

Em

(
cos(mc−nz) − 1

)
.(2.17)

Since

2
∞∑

n=0

∞∑
m=1

|Em|| cos(mc−nz) − 1|

=
∞∑

n=0

∞∑
k=1

|Dk|
k∑

l=0

(
k

l

) ∣∣cos
(
(k − 2l)c−nz

) − 1
∣∣

≤
∞∑

n=0

∞∑
k=1

|Dk|2k(kc−nz)2 ≤ z2
∞∑

n=0

c−2n
∞∑

k=1

k(Ak + Bk) < ∞,

we can consider the right-hand side of (2.17) as an integral with respect to a signed
measure. Thus

log(|μ̂(z)|2) =
∫

R

(
eixz − 1 − ixz1(−1,1)(x)

)̃
ν(dx),(2.18)

where ν̃ is the symmetric signed measure

ν̃ =
∞∑

n=0

∞∑
m=1

Em(δmc−n + δ−mc−n).(2.19)

Now suppose that p > qr . As observed in the proof of Lemma 2.3(c), this is
equivalent to A > B . In order to show that μ is not infinitely divisible, we use
Exercise 12.3 of [21] again. We need to show that ν̃ has a nontrivial negative part.
Recall that Em > 0 for all odd m and Em < 0 for all even m. If ck is irrational for
all k ∈ N, then ν̃({m}) = Em < 0 for even m. Hence, suppose that ck is rational
for some k ∈ N. We first estimate Em. Since

(m+2h
h

) ≤ 2m+2h, it follows from (2.9)
and (2.11) that

|Em| ≤
∞∑

h=0

1

m + 2h
2Am+2h ≤ 2Am

m(1 − A2)
, m ∈ N.(2.20)
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Choose γ ∈ (0,1) such that A/γ < 1, and choose α ∈ N such that (α + 1/2)/(α +
1) ≥ γ . By Stirling’s formula, there exists a constant d1 > 0 such that for every
m ∈ N, (

m + 2αm

αm

)
≥ d1

(
m + 2αm

(m + αm)αm

)1/2 (m + 2αm)m+2αm

(m + αm)m+αm(αm)αm

≥ d1

(αm)1/2 (2γ )m+2αm.

Since Dk < 0 for every even k, we conclude

|Em| ≥ |Dm+2αm|
(

m + 2αm

αm

)
(2.21)

≥ d1

(αm)1/2(m + 2αm)
(Aγ )m+2αm(

1 − (B/A)m+2αm)
for every even m ≥ 2. For even m define Gm, Hm, k0 and f as in the proof of (b)—
Case 2. If Gm = ∅ for some even m, then ν̃({m}) ≤ Em < 0 similarly to (2.15). So
suppose that Gm �= ∅ for all even m ≥ 2. As seen in the proof of (b), this implies
that Gm consists of a single element and that f ≥ 1. Let m = mj = 2jf with j ∈ N,
then the unique element (n′

j ,m
′
j ) in Gmj

satisfies m′
j /mj = cjk0 . Recall that m′

j

is odd by the definition of Gm. For large j , we then have m′
j /2 > mj + 2αmj , and

from (2.20) and (2.21) it follows that there exists some constant d2 > 0 such that

Em′
j

|Emj
| ≤ d2

√
m′

j (A/γ )
m′

j /2 → 0 as j → ∞,

so that ν({mj }) ≤ Emj
+ Em′

j
< Emj

/2 < 0 for large j , finishing the proof of (c).
(d) Suppose q = 0. By (2.4), ρ = ρ0,r is Bernoulli distributed with parameter r .

Further, μ = μc,0,r is the distribution of
∑∞

n=0 c−nUn, where {Un,n ∈ N} is an
i.i.d. sequence with distribution ρ. The support of μ is then a subset of [0, c/(c −
1)]. It follows that also ρsym and μsym have bounded support. Moreover none of
them is degenerate to a Dirac measure. Hence they are not infinitely divisible. �

EXAMPLE 2.4. (a) Let p = q > 0. Then ρq,r , μc,q,r , (ρq,r )
sym and (μc,q,r )

sym

will all be infinitely divisible if r ∈ [0,3 − 2
√

2], and none of them is infinitely
divisible if r > 3 − 2

√
2 ≈ 0.17157. Recall that r is the dependence parameter.

(b) Let 2p = q > 0. Then ρq,r and μc,q,r will be infinitely divisible for r ∈
[0, (13 − 3

√
17)/4] and fail to be infinitely divisible for r > (13 − 3

√
17)/4 ≈

0.15767. On the other hand, (ρq,r )
sym and (μc,q,r )

sym are infinitely divisible if
and only if r ∈ [0, (13 − 3

√
17)/4] ∪ [1/2,1).
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3. Continuous-singularity and absolute continuity. We continue to study
the distribution

μc,q,r = L

(∫ ∞−
0

c−Ns− dYs

)
defined by a process {(Nt , Yt ), t ≥ 0} and a constant c > 1 in Section 2. The
parameters p, q and r with p + q + r = 1 are assumed to satisfy p,q, r < 1
and p,q, r ≥ 0 throughout this section (see the first paragraph of Section 2). In
this section continuity properties of μc,q,r are considered. Since μc,q,r is c−1-
decomposable and nondegenerate, it is either continuous-singular or absolutely
continuous, as Wolfe’s theorem [25] says. So our problem is to specify the
continuous-singular case and the absolutely continuous case. To get complete cri-
teria for the two cases is a difficult problem, far from being achieved.

We use two classes of numbers, namely Pisot–Vijayaraghavan (P.V.) numbers
(sometimes called Pisot numbers) and Peres–Solomyak (P.S.) numbers. A number
c > 1 is called a P.V. number if there exists a polynomial F(x) with integer co-
efficients with leading coefficient 1 such that c is a simple root of F(x) and all
other roots have a modulus of less than 1. Every positive integer greater than 1 is
a P.V. number, but also (1 + √

5)/2 and the unique real root of x3 − x − 1 = 0
are nontrivial examples. There exist countably infinitely many P.V. numbers which
are not integers. See Peres, Schlag and Solomyak [19] for related information. On
the other hand, following Watanabe [23], we call c−1 a P.S. number if c > 1 and
if there are p0 ∈ (1/2,1) and k ∈ N such that the kth power of the characteristic
function of the distribution of

∑∞
n=0 c−nUn, where {Un} is Bernoulli i.i.d. with

P [Un = 0] = 1 −P [Un = 1] = p0, is integrable. Watanabe [23] points out that the
paper [20] of Peres and Solomyak contains the proof that the set of P.S. numbers in
the interval (0,1) has Lebesgue measure 1. However, according to [23], an explicit
example of a P.S. number is not known so far. As follows from the results of [23],
the set of P.V. numbers and the set of reciprocals of P.S. numbers are disjoint.

THEOREM 3.1. Assume that c is a P.V. number and that q > 0. Then μc,q,r is
continuous-singular.

Recall that the assumption q > 0 merely excludes the case of infinite Bernoulli
convolutions.

PROOF OF THEOREM 3.1. Write μ = μc,q,r . The following proof of continu-
ous-singularity of μ is based on an idea of Erdős [5]. It is enough to show that it
is not absolutely continuous. Thus, by virtue of the Riemann–Lebesgue theorem,
it is enough to find a sequence zk → ∞ such that

lim sup
k→∞

|μ̂(zk)| > 0.
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By the definition of a P.V. number, there is a polynomial F(x) = xN +aN−1x
N−1+

· · ·+ a1x + a0 such that aN−1, . . . , a0 ∈ Z, F(c) = 0, and the totality {α1, . . . , αN }
of roots of F(x) satisfies α1 = c and |αj | < 1 for 2 ≤ j ≤ N . Choose zk = 2πck .
Now we divide the proof into three cases: (Case 1) p > 0 and r ≤ pq; (Case 2)
p = 0; (Case 3) p > 0 and r > pq . Recall that q > 0 is always assumed.

Case 1: As in the proofs of Theorem 2.2(b)—Case 2, we have

μ̂(z) = exp

[ ∞∑
n=0

∞∑
m=1

(eimc−nz − 1)am

]
, z ∈ R,(3.1)

with

am = m−1qm(
1 − (−r/(pq)

)m) ≥ 0.(3.2)

The double series above is absolutely convergent. We then have

|μ̂(z)| = exp

[
−

∞∑
n=0

∞∑
m=1

(
1 − cos(mc−nz)

)
am

]
.(3.3)

Thus

|μ̂(zk)| = exp

[
−

∞∑
n=0

∞∑
m=1

(
1 − cos(2πmck−n)

)
am

]
= exp

[
−

∞∑
m=1

(Sm + Rm)am

]
with

Sm =
k∑

n=0

(
1 − cos(2πmck−n)

)
, Rm =

∞∑
n=k+1

(
1 − cos(2πmck−n)

)
.

Now

Sm =
k∑

n=0

(
1 − cos(2πmcn)

) =
k∑

n=0

(
1 − cos

(
2πm

N∑
j=2

αj
n

))
,

since cn = ∑N
j=1 αj

n − ∑N
j=2 αj

n and
∑N

j=1 αj
n is an integer. The latter is a

consequence of the symmetric function theorem in algebra (e.g., Lang [15], Sec-
tion IV.6), implying that

∑N
j=1 αj

n, as a symmetric function of α1, . . . , αN , can
be expressed as a polynomial with integer coefficients in the elementary symmet-
ric functions, which are integer valued themselves since F has integer coefficients
with leading coefficient 1. Choose 0 < δ < 1 such that |αj | < δ for j = 2, . . . ,N .
Then, with some constants C1,C2,C3,

Sm ≤ C1

k∑
n=0

(
m

N∑
j=2

αj
n

)2

≤ C2m
2

k∑
n=0

N∑
j=2

|αj |2n

≤ C3m
2

k∑
n=0

δ2n ≤ C3m
2/(1 − δ2).
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Further, we have

Rm ≤ C1

∞∑
n=1

(mc−n)2 = C1m
2/(c2 − 1).

Hence, it follows that

|μ̂(zk)| ≥ exp

[
−

∞∑
m=1

amm2
(

C3

1 − δ2 + C1

c2 − 1

)]
.

This shows that lim supk→∞ |μ̂(zk)| > 0, since
∑∞

m=1 amm2 < ∞.
Case 2: We have

|ρ̂q,r (z)| = exp

[ ∞∑
m=1

(cosmz − 1)
qm

m

]

by the remark at the beginning of the proof of Lemma 2.3(a). Hence the situation
is the same as in Case 1.

Case 3: Recall the proof of Lemma 2.3(c). We have

|ρ̂q,r (z)|2 = exp

[
2

∞∑
m=1

Em(cosmz − 1)

]

with Em of (2.11). Hence

|μ̂(z)|2 =
∞∏

n=0

|ρ̂q,r (c
−nz)|2 ≥ exp

[
−2

∞∑
n=0

∞∑
m=1

E+
m

(
1 − cos(mc−nz)

)]
,

where E+
m = max{Em,0}. We have

∑∞
m=1 E+

mm2 < ∞, since

∞∑
m=1

E+
mm2 ≤

∞∑
m=1

∞∑
h=0

m2|Dm+2h|
(

m + 2h

h

)

=
∞∑

m=1

∑
k−m even ≥0

m2|Dk|
(

k

(k − m)/2

)

≤
∞∑

k=1

k2|Dk|
�(k−1)/2�∑

l=0

(
k

l

)
≤

∞∑
k=1

k

2
(Ak + Bk) < ∞,

noting that
∑�(k−1)/2�

l=0

(k
l

) ≤ 2k−1 and |Dk| ≤ k−12−k(Ak + Bk) with 0 < A < 1
and 0 < B < 1. Hence we obtain lim supk→∞ |μ̂(zk)|2 > 0 exactly in the same
way as in Case 1. �
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THEOREM 3.2. Assume that c−1 is a P.S. number. Then there exists ε = ε(c) ∈
(0,1) such that μc,q,r is absolutely continuous with bounded continuous density
whenever p > 0, r ≤ pq and q ≥ 1 − ε, or whenever p = 0 and q ≥ 1 − ε. In
particular, there exist constants C1 = C1(c) > 0 and C2 = C2(c) > 0 such that
μc,q,r is absolutely continuous with bounded continuous density whenever q ≥
C1p ≥ C2r .

Recall that Lebesgue almost all c ∈ (1,∞) are the reciprocals of P.S. numbers.

PROOF OF THEOREM 3.2. Let μ = μc,q,r . Let p0 ∈ (1/2,1) and k ∈ N as in
the definition of a P.S. number. The following proof was suggested by an argu-
ment of Watanabe [23]. Let K := k| log(2p0 − 1)|/2, which is positive. Then (2.4)
of [23] tells us that∫ ∞

−∞
exp

{
α

∞∑
n=0

(
cos(c−nu) − 1

)}
du < ∞ whenever α ≥ K.(3.4)

Under the condition that p > 0, q > 0 and r ≤ pq , we have (3.3) with am of (3.2).
Let α0 = ∑∞

m=1 am. Then it follows from Jensen’s inequality that∫ ∞
−∞

|μ̂(z)|dz = 2
∫ ∞

0
exp

[
1

α0

∞∑
m=1

am

(
α0

∞∑
n=0

(
cos(mc−nz) − 1

))]
dz

≤ 2
∫ ∞

0

[
1

α0

∞∑
m=1

am exp

(
α0

∞∑
n=0

(
cos(mc−nz) − 1

))]
dz

= 2

α0

( ∞∑
m=1

am

m

)∫ ∞
0

exp

(
α0

∞∑
n=0

(
cos(c−nu) − 1

))
du.

The last integral is finite whenever α0 ≥ K by (3.4). We have am ≥ m−1qm for m

odd, and it follows that α0 tends to ∞ as q ↑ 1. Thus there is ε = ε(c) such that
α0 ≥ K for all q ≥ 1 − ε. Hence μ has bounded continuous density whenever
p > 0, r ≤ pq and q ≥ 1−ε. The case when p = 0 and q ≥ 1−ε follows similarly,
with am = m−1qm in the above calculations.

To see the second half of the theorem, suppose that q ≥ C1p ≥ C2r with
C1,C2 > 0. Then p > 0 since p + r > 0, and hence q > 0. Thus

q =
(

1 + p

q
+ r

q

)−1

≥
(

1 + p

q
+ C1p

C2q

)−1

≥
(

1 + 1

C1
+ 1

C2

)−1

.

Hence, q ≥ 1 − ε(c) if C1 and C2 are large enough. We also have

r

pq
≤ C1

C2

(
1 + 1

C1
+ 1

C2

)
.
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Hence r/(pq) ≤ 1 if C1 is fixed and C2 is large. Thus there are C1 and C2 such
that q ≥ 1 − ε(c), p > 0 and r/(pq) ≤ 1 whenever q ≥ C1p ≥ C2r . �

Now we use the entropy H(ρ) of a discrete probability measure ρ on R. Here
discrete means that ρ is concentrated on a countable set. We define

H(ρ) := − ∑
a∈C

ρ({a}) logρ({a}),

where C is the carrier (the set of points with positive mass) of ρ.

THEOREM 3.3. Assume that q > 0. Then

H(ρq,r ) = (q + r)

(
log

1

1 − q
+ 1

1 − q
log

1

q
− log

q + r

q

)
+ p log

1

p
,(3.5)

where p log(1/p) is understood to be zero for p = 0. The following are true:
(a) The Hausdorff dimension of μc,q,r is estimated as

dim(μc,q,r ) ≤ H(ρq,r )

log c
.(3.6)

(b) For each c > 1, there exists a constant C3 = C3(c) > 0 such that μc,q,r is
continuous-singular whenever max{q, r} ≤ C3p.

(c) Fix q and r . Then there exists a constant C4 = C4(q, r) > 0 such that μc,q,r

is continuous-singular whenever c ≥ C4.

The estimate (3.6) is meaningful only when H(ρq,r )/ log c < 1, as the Haus-
dorff dimension of any measure on the line is less than or equal to 1. In this
case (3.6) not only tells the continuous-singularity of μc,q,r , but also gives finer
information on a set of full measure for μc,q,r .

PROOF OF THEOREM 3.3. Recall that ρq,r is defined by (2.2). The geometric
distribution σq has entropy

H(σq) = − log(1 − q) − q

1 − q
logq(3.7)

and H(ρq,r ) is readily calculated as

H(ρq,r ) = (1 + r/q)[H(σq) + (1 − q) log(1 − q) − q log(1 + r/q)] − p logp,

which shows (3.5).
(a) Applying the remarkable Theorem 2.2 of Watanabe [23] on c−1-decompo-

sable distributions, we obtain (3.6).
(b) Notice that, since μ is continuous-singular or absolutely continuous, it must

be continuous-singular if its Hausdorff dimension is less than 1. Suppose that
max{q, r} ≤ C3p with C3 > 0. Then p > 0 and hence p = (1 + q/p + r/p)−1 ≥
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(1 + 2C3)
−1, which tends to 1 as C3 → 0. Hence q → 0 and r → 0 as C3 → 0.

Thus

H(ρq,r ) = (q + r)

(
log

1

1 − q
+ q

1 − q
log

1

q
+ log

1

q + r

)
+ p log

1

p
→ 0

and hence

sup
{
H(ρq,r ) : max{q, r} ≤ C3p

} → 0, C3 → 0.

This shows (b).
(c) For given q, r , take any C4 > expH(ρq,r ). Then the assertion follows from

the estimate (3.6). �

It is known that the distributions of some Lévy processes have time evolu-
tion, that is, change their qualitative properties as time passes (see Chapters 5
and 10 of Sato [21] and Watanabe [24]). It was Watanabe [23] who showed that
the distributions of some semi-self-decomposable processes have time evolution
in continuous-singularity and absolute continuity. It is of interest that the Lévy
process {Zt, t ≥ 0} determined by the distribution μc,q,r when it is infinitely di-
visible gives an explicit example of time evolution of this sort as the following
theorem shows. Note that L(Zt ) = (μc,q,r )

t∗ for t ≥ 0.

THEOREM 3.4. Assume that either p > 0, q > 0 and r ≤ pq or p = 0. Write
ρ = ρq,r and μ = μc,q,r . Then the following are true:

(a) There are t1 = t1(c, q, r) and t2 = t2(c, q, r) with 0 < t1 ≤ t2 ≤ ∞ such
that μt∗ is continuous-singular for all t ∈ (0, t1), absolutely continuous without
bounded continuous density for all t ∈ (t1, t2) if t1 < t2, and absolutely continuous
with bounded continuous density for all t ∈ (t2,∞) if t2 < ∞.

(b) If c is a P.V. number, then t1 = ∞, that is, μt∗ is continuous-singular for all
t > 0.

(c) If c−1 is a P.S. number, then t2 < ∞. Thus t2 < ∞ for Lebesgue almost all
c > 1.

(d) The entropy H(ρt∗) is a finite, continuous, strictly increasing function of
t ∈ [0,∞), vanishing at t = 0, and

dim(μt∗) ≤ H(ρt∗)
log c

for all t ≥ 0.(3.8)

(e) Fix q , r and t > 0. Then μt∗ is continuous-singular for all sufficiently large
c > 1.

LEMMA 3.5. If ρ is a distribution on Z with finite absolute moment of order
1 + ε for some ε > 0, then its entropy H(ρ) is finite.
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PROOF. Let ρ = ∑∞
m=−∞ pmδm. Then

∑∞
m=−∞ |m|1+εpm < ∞. Hence there

is a constant C > 0 such that pm ≤ C|m|−1−ε . The function f (x) = x log(1/x) is
increasing for 0 ≤ x ≤ e−1. Hence,

H(ρ) ≤ ∑
|m|≤m0

pm log(1/pm) + ∑
|m|>m0

C|m|−1−ε log((C|m|−1−ε)−1) < ∞

with an appropriate choice of m0. �

PROOF OF THEOREM 3.4. Observe that under our assumption μ is infinitely
divisible (see Theorem 2.2), so that μt∗ is definable for all t ≥ 0. If p > 0 and r ≤
pq , it follows from (2.8) that ρ is a compound Poisson distribution, concentrated
on N0, with finite second moment, since

∑∞
m=1 m2am < ∞ for am = νρ({m}). If

p = 0, then ρ is a geometric distribution shifted by 1 (see the proof of Lemma 2.3).
In both cases, H(ρ) < ∞ by Lemma 3.5. The property that μ is c−1-decomposable
is preserved to convolution powers, since (1.3) implies

μ̂t∗(z) = ρ̂t∗(z)μ̂t∗(c−1z)

for any t ≥ 0. Thus we have

μ̂t∗(z) =
∞∏

n=0

ρ̂t∗(c−nz) = exp

(
itγ 0

pz + t

∞∑
n=0

∞∑
m=1

(eimc−nz − 1)am

)
,(3.9)

where γ 0
p = 0 for p > 0 and γ 0

p = ∑∞
n=0 c−n = c/(c − 1) for p = 0. If p > 0,

q > 0 and r = 0, then ρ is geometric. If p = 0, then the result is the same as in the
case of ρ being a geometric distribution, since shifts do not change entropy, Haus-
dorff dimension and continuity properties. Hence, from now on, we exclude the
case p = 0. Let us prove (d) first. We obtain the properties of H(ρt ) from Propo-
sition 5.1 of Watanabe [23] or Exercise 29.24 of Sato [21]. Applying Theorem 2.2
of [23] to the law μt∗, we get (3.8).

(a) It follows from (d) that μt∗ is continuous-singular for all sufficiently small
t > 0. Let t1 be the supremum of t > 0 for which μt∗ is continuous-singular. Then
0 < t1 ≤ ∞. Noting that if t < t ′, then μt∗ is a convolution factor of μt ′∗, use
Lemma 27.1 of [21]. Thus μt∗ is continuous-singular for all t ∈ (0, t1) and ab-
solutely continuous for all t ∈ (t1,∞) if t1 < ∞. Let t2 be the infimum of t > t1
for which μt∗ has bounded continuous density. Use the fact that a distribution is
absolutely continuous with bounded continuous density if a convolution factor of
it has this property. Then we obtain the assertion (a).

(b) The proof is the same as that of Theorem 3.1 with am replaced by tam.
(c) Let c−1 be a P.S. number. Then μt∗ is absolutely continuous with bounded

continuous density for all sufficiently large t , which is shown in the same way as
Theorem 3.2, or we can apply Theorem 2.1 of Watanabe [23].

(e) Obvious consequence of (d). �
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In the rest of this section we consider the case where {Nt } and {Yt } are indepen-
dent, that is, the case where r = 0. The following theorem is largely a repetition of
Theorems 3.1–3.3 in this case but, since the Lévy measure of μc,q,0 is increasing
with respect to q , we obtain stronger statements.

THEOREM 3.6. Under the condition that 0 < q < 1 and r = 0 (i.e., {Nt }
and {Yt } are independent), the following are true:

(a) For any c > 1 there are constants q1 = q1(c) and q2 = q2(c) satisfying 0 <

q1 ≤ q2 ≤ 1 with the following properties: μc,q,0 is continuous-singular for all
q ∈ (0, q1), absolutely continuous without bounded continuous density for all q ∈
(q1, q2) if q1 < q2, and absolutely continuous with bounded continuous density for
all q ∈ (q2,1) if q2 < 1.

(b) If c is a P.V. number, then q1 = 1, that is, μc,q,0 is continuous-singular for
all q .

(c) If c−1 is a P.S. number, then q2 < 1. Hence q2 < 1 for Lebesgue almost all
c > 1.

(d) The Hausdorff dimension of μc,q,0 is estimated as

dim(μc,q,0) ≤ H(ρq,0)

log c
,(3.10)

where

H(ρq,0) = − log(1 − q) − q

1 − q
logq,(3.11)

which is a finite, continuous, strictly increasing function of q ∈ (0,1) and tends
to 0 as q ↓ 0.

(e) Fix c > 1. If q is so small that H(ρq,0) < log c, then μc,q,0 is continuous-
singular. In particular, if

0 < q < 1 − (log 2/ log c),(3.12)

then μc,q,0 is continuous-singular.
(f) Fix q > 0. If c is so large that c > expH(ρq,0), then μc,q,0 is continuous-

singular.

PROOF. Let us begin with the proof of (d). The estimate (3.10) follows
from (3.6) of Theorem 3.3. The expression (3.11) is exactly (3.7), since ρq,0 = σq .

(e) and (f) These come from (d), as a distribution with Hausdorff dimension < 1
cannot be absolutely continuous. We get the sufficient condition (3.12), since

H(ρq,0) = 1

1 − q

(
(1 − q) log

1

1 − q
+ q log

1

q

)
≤ 1

1 − q
log 2

by strict concavity of the function logx.
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(a) Recall that μc,q,0 has Lévy measure

νc,q,0 =
∞∑

n=0

∞∑
m=1

qm

m
δc−nm.

Hence, if q < q ′, then μc,q,0 is a convolution factor of μc,q ′,0. Now the proof is
obtained by the same argument as in the proof of (a) of Theorem 3.4.

(b) Consequence of Theorem 3.1.
(c) This follows from Theorem 3.2. �

EXAMPLE 3.7. (a) In the case c = e, μe,q,0 is continuous-singular if

q ≤ 1 − log 2 ≈ 0.30685.

This follows from (3.12) in Theorem 3.6.
(b) In the case q = 1/2, μc,1/2,0 is continuous-singular if c > 4 since

H(ρ1/2,0) = 2 log 2, as (f) of Theorem 3.6 says.

In the independent case (0 < q < 1 and r = 0), the assumption in Theorem 3.4 is
satisfied. So the assertions on time evolution of μc,q,0 hold true as in that theorem.
It is of interest to estimate H(ρq,0

t∗) appearing in the right-hand side of (3.8).

PROPOSITION 3.8. If 0 < q < 1, then

H(ρq,0
t∗) ≤ t

[
1

p

(
1 + 2 log

1

p

)
+ q

p
log

1

t

]
for 0 < t ≤ 1,(3.13)

where p = 1 − q . The right-hand side of (3.13) is a strictly increasing function of
t ∈ (0,1] which tends to 0 as t ↓ 0.

PROOF. Write ρ = ρq,0. Since ρ equals geometric distribution σq with para-
meter p, the distribution ρt∗, t > 0, is a negative binomial distribution with para-
meters t and p, that is,

ρt∗({k}) =
(−t

k

)
pt(−q)k, k ∈ N0.

To estimate H(ρt∗) from above, observe that tptqk/k ≤ ρt∗({k}) ≤ tqk for 0 <

t ≤ 1 and k ∈ N so that

H(ρt∗) = −
∞∑

k=0

ρt∗({k}) logρt∗({k})

≤ −(logpt) +
∞∑

k=1

tqk(log k − log(tpt ) − k logq
)

≤ t

[
log

1

p
+ 1

p
log

1

p
− q

p
log(tpt ) − q

p2 logq

]
,
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where we used
∑∞

k=1 kqk = q/p2 and

∞∑
k=1

qk log k ≤
∞∑

k=1

qk
k∑

n=1

1

n
= 1

p
log

1

p
,

compare Gradshteyn and Ryzhik [10], Formula 1.513.6. Recalling that pt ≥ p

since t ≤ 1 and this can be further estimated to

H(ρt∗) ≤ t

[
2

p
log

1

p
+ q

p
log

1

t
+ q

p2 log
1

q

]
.

Together with (q/p) log(1/q) = (q/p) log(1 + p/q) ≤ 1, this gives (3.13). �
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