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THE BEAD MODEL AND LIMIT BEHAVIORS OF DIMER
MODELS1
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Université Pierre et Marie Curie–Paris 6, LPMA

In this paper, we study the bead model: beads are threaded on a set of
wires on the plane represented by parallel straight lines. We add the con-
straint that between two consecutive beads on a wire; there must be exactly
one bead on each neighboring wire. We construct a one-parameter family of
Gibbs measures on the bead configurations that are uniform in a certain sense.
When endowed with one of these measures, this model is shown to be a de-
terminantal point process, whose marginal on each wire is the sine process
(given by eigenvalues of large hermitian random matrices). We prove then
that this process appears as a limit of any dimer model on a planar bipartite
graph when some weights degenerate.

1. Introduction and presentation of the bead model. We consider the col-
lection of configurations of beads strung on an infinite set of parallel threads lying
on the plane, represented by straight lines indexed by integers. A bead configu-
ration on these threads gives a configuration of points on Z × R. We impose the
following constraints on the configurations:

• The configuration must be locally finite: The number of beads in each finite
interval of a thread must be finite.

• Between two consecutive beads on a thread, there must be exactly one bead
on each neighboring thread. A piece of bead configuration is represented in
Figure 1.

Let � be the set of bead configurations satisfying these two conditions.
The main goal of this paper is to construct probability measures for our infinite

system � that are uniform in a certain sense.
If there were only a finite number of threads of finite length, and a fixed num-

ber of beads on each thread, then the set � would be a bounded convex set of
R

N , where N is the total number of beads. Therefore, the normalized Lebesgue
measure on � would give a uniform probability measure. Therefore, we look for
probability measures on � that satisfy the two following properties:

• they are ergodic under the action of Z × R by translation,
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FIG. 1. A piece of a bead configuration.

• conditioned in an annular region, they induce the uniform measure on allowed
configurations inside this region.

Such a probability measure is called an ergodic Gibbs measure. When endowed
with an ergodic Gibbs measure, the set � is called a bead model.

This model can be viewed as an interface model on Z
2. Indeed, the position of

the beads have the same combinatorics as the square lattice Z
2 (rotated counter-

clockwise by π/4). A configuration can be therefore encoded by a height function
φ : Z2 → R, where φ(x, y) is the ordinate of the bead (x, y) on its thread. The
problem of existence (and uniqueness) of Gibbs measures for this model can thus
be formulated in terms of random surfaces with a simple attractive potential [19]
reflecting the hard-core interaction between beads. However, this approach does
not lead to an explicit expression for the Gibbs measures. We adopt another point
of view that will allow us to give a closed formula for cylinder events.

The σ -algebra of events for our probability measures is defined as follows. To
each bounded Borel set B of Z × R and to each bead configuration ω ∈ � is asso-
ciated an integer XB(ω), equal to the number of beads in B . Let F be the smallest
σ -algebra such that all the maps XB :� → N are measurable. F is generated by
the elementary events

{ω ∈ �|XB(ω) = n}.
If P is a Gibbs measure on (�,F ), it defines through the application X :B �→

XB a random process with values in the set of boundedly finite, integer-valued
measures, that is, in other words, a random point field.

Even without giving for the moment any explicit description for a Gibbs mea-
sure, it is possible to estimate, at least heuristically, the probability of some rare
events. For example, one can estimate the probability that n beads lie in the same
wire interval of length ε. For this event to occur, then due to the geometrical
constraint imposed on configurations, there must be n − 1 beads in a small in-
terval of size ε on the left neighbor thread, and n − 2 beads in the same inter-
val on its left, and so on, and the same must happen on the right-hand side of
the considered thread. That is why the probability of this event must be of order
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εn+2
∑n−1

k=1(n−k) = εn2
. Note that this is much smaller than the probability of having

n points of a Poisson process in such a small interval, which is of order εn: There
is thus a kind of repulsion between beads, induced by the geometrical constraint
on bead configurations.

Such a repulsion has been observed in some point processes on the real line,
especially in determinantal point processes [20], for which correlation functions
are expressed as determinants of a certain kernel. Certainly, the most famous ex-
ample of such a process is the so-called sine process, which describes the statistics
of the eigenvalues of large random hermitian matrices with Gaussian entries (GUE
ensemble [13]) in the bulk of the spectrum, and whose kernel is given by the fol-
lowing expression:

k(x, y) = sin(x − y)

π(x − y)
,

in the limit when the size of the matrices goes to infinity.
We will see that the Gibbs measures we construct on (�,F ) define determi-

nant random point fields on Z × R, for which correlations functions are given by
determinants of a kernel J , whose restriction to a single thread is the sine kernel.
Indeed, we prove the following theorem:

THEOREM 1. For a fixed average density of beads, there exists a 1-parameter
family of ergodic Gibbs measures (Pγ ) on (�,F ). When endowed with one of
these measures, (�,F ) is a determinantal random point field on Z × R, with an
explicit kernel. In particular, the marginal on each thread is the sine random point
field.

The exact expression for the kernel is given in Theorem 2. The parameter is
directly related to the average distance between a bead and its right neighbor just
below it and describes the amplitude of a magnetic field that tends to push the
beads in some direction. See Figure 2.

A way to construct these Gibbs measures is first to consider a discretized version
of the bead model. The set of possible configurations �t ⊂ � is constituted by the

FIG. 2. Two typical bead configurations for different values of γ . The parameter γ is negative in
panel (a), and positive in panel (b). The arrows represent the effect of the magnetic field on the beads.
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configurations for which the beads are located at sites of a lattice with mesh t.
We show that in this discrete setting, there exist probability measures supported by
�t, for which the distribution of the beads is a determinantal random point field,
by exhibiting a bijection between the discretized bead model and the dimer model
on the honeycomb lattice—or equivalently random tilings of the plane by rhombi.
The measures on random tilings have the Gibbs property and correlations have
a determinantal form. Then we prove that the sequence of discrete determinantal
processes indexed by t converges to a determinantal random point field on Z × R

when t goes to zero. In the second part of the paper, we prove that the bead model
appears not only as a limit of the dimer model on the honeycomb lattice, but as the
universal limit behavior of the dimer model on any bipartite periodic planar graph.

2. A discrete version of the bead model and the dimer model on the hon-
eycomb lattice. We assume for the moment that the threads are not continuous
lines, but a one-dimensional lattice with mesh size t. The possible positions of the
beads are labeled by coordinates

(x,ty) ∈ Z × tZ,(1)

x representing the thread on which the bead lies, and y being the coordinate run-
ning along the thread.

A discrete bead configuration is in bijection with a family of lattice paths in
(Z + 1

2) × Z, with steps going upward or to the right. A bead represents a step to
the right. Each horizontal step is then connected to its neighbor on its right above
it, by upward steps. This interpretation can be convenient to obtain that the one-
wire correlations are determinantal and described by the sine kernel in the limit,
using Lindström–Gessel–Viennot method [5] (or Karlin–McGregor method [8]).
See Section 4.2 for some complements about this interpretation.

2.1. Nonintersecting paths and Lindström–Gessel–Viennot method. A method
to study correlations between beads along a thread could have been to look at the
path interpretation of the discrete bead model in a finite box, and then let the box
grow, as suggested now.

LetBn,N be the finite box {−n + 1
2 , . . . , n− 1

2} × {N, . . . ,N}. A path in Bn,N is
said to be monotonous if its steps are going either upward or to the right. A family
of paths 	 in Bn,N is said to be a monotonous k-path from (u0, . . . , uk−1) to
(v0, . . . , vk−1) if 	 is a family of k nonintersecting monotonous paths, such that
there exists exactly one path in 	 connecting uj to vj for every j ∈ {0, . . . , k − 1}.

Define xj = (−N,−n + j − 1
2) and yj = (N, j + 1

2), for 0 ≤ j ≤ n − 1. We
endow the set of monotonous n-paths from (x0, . . . , xn−1) to (y0, . . . , yn−1) with
the uniform measure. The j th random path will cross the vertical line x = 0 with
a horizontal step at a random ordinate zj ∈ {−N, . . . ,N}. Since the paths are not
crossing one another, the points zj are distinct.
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The number of monotonous paths from xi to yj is given by
(2N+n−j+i

2N

)
since

we need 2N steps upward, and n − j + i to the right. Thus, by Linström–Gessel–
Viennot argument [5], the number of monotonous n-paths from (x0, . . . , xn−1) to
(y0, . . . , yn−1)

det
[(

2N + n − j + i

2N

)]
0≤i,j≤n−1

.

The number of monotonous n-paths intersecting the vertical line x = 0 at
z0, . . . , zn−1 is the number of monotonous n-paths from (x0, . . . , xn−1) to ((−1

2 ,

z0), . . . , (−1
2 , zn−1)) times the number of monotonous n-paths from ((1

2 , z0), . . . ,

(1
2 , zn−1)) to (y0, . . . , yn−1). As a consequence, the expression for the probability

of having crossings of the vertical axis at z0, . . . , zn−1 is, again by Lindström–
Gessel–Viennot’s argument, a combination of determinants

P[z0, . . . , zn−1] = det[(N+zk+n−i−1
n−i−1

)]det[(N−zk+j
j

)]
det[(2N+n−j+i

2N

)]
(2)

= det[(N+zk+i
i

)]det[(N−zk+j
j

)]
det[(2N+j+i+1

2N

)] ,

where the second equality is obtained from the first one by inverting the order of
the rows in the first determinant in the numerator and in the one in the denominator.

The binomial coefficient
(N±zk+i

i

)
is a polynomial of degree i in the variable

zk . Therefore, using skew-symmetry and multilinearity of the determinant, we can
replace the entries of the ith row of

det
[(

N ± zk + i

i

)]

by any polynomial of degree i evaluated at the points zk , up to a multiplicative con-
stant. A convenient choice in this case is to use the family of orthonormal polyno-
mial (ψi(z))0≤i≤n−1 obtained by Gram–Schmidt orthonormalization process from
the standard basis of polynomials (zi) with respect to the uniform measure on
{0, . . . , n − 1}. These polynomials are called the discrete Chebyshev polynomials
and are a special case of a larger family, the Hahn polynomials (see [16] for a
reference on discrete orthogonal polynomials).

This allows us to rewrite the probability (2) as

P[z0, . . . , zn−1] = 1

Cn,N

det[ψi(zk)]det[ψj(zk)] = 1

Cn,N

det[kn,N(zi, zj )],(3)

where

kn,N(z, z′) =
n−1∑
j=0

ψj(z)ψj (z
′)
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is the self-reproducing kernel of the projector on the n first discrete Chebyshev
polynomials.

Using standard techniques from orthogonal polynomials [16, 21], one can prove
that the correlation functions between intersection points for the point process
(zi)0≤i≤n−1 are determinantal.

Now letting n and N go to infinity with the proper scaling and making use of
the asymptotic results of [1] for discrete orthogonal polynomials, one can prove
that in the bulk [i.e., in a neighborhood of (0,0)], the point process converges to
the determinantal sine process presented above.

These techniques have been used in several papers (see, e.g., [6, 7] and refer-
ences therein) to obtain asymptotic results on random tilings and related models
in statistical mechanics. However, in order to get the complete determinantal be-
havior of the bead model, and get an explicit expression for the kernel, we will use
another method, which will exploit a bijection between discrete bead configura-
tions and dimer configurations on the honeycomb lattice H . But before explaining
this mapping, we recall some facts about the dimer model on H .

2.2. The dimer model on H . A dimer configuration of the honeycomb lattice
H is a subset of edges of H such that every vertex is incident with exactly one
edge of this subset. A dimer configuration is also called in graph theory a perfect
matching. On the set of all possible dimer configurations, there is a two-parameter
family [12] of Gibbs probability measures, all elements of which satisfy the fol-
lowing properties:

• They are ergodic under the action of the lattice translations Z × Z.
• If a dimer configuration is fixed in an annular region of H , the dimer configu-

rations on the inside and in the outside region are independent, and the dimer
configurations inside are uniformly distributed.

Here is how these measures are defined, following [9, 12]. The vertices of H are
colored in white and black such that no two neighbors have the same color. Weights
are assigned to edges of H according to their orientation: a, b, c. A fundamental
domain of H is obtained by taking for example a white and a black vertex sharing
an horizontal edge. The vertices of H are named by their color (white or black) and
indexed by the coordinates of their fundamental domain (x, y). The fundamental
domain and the base vectors are represented on Figure 3.

The local statistics for the Gibbs measure corresponding to these weights have
a determinantal form: The probability that edges e1 = (wx1,y1,bx′

1,y
′
1
), . . . , ek =

(wxk,yk
,bx′

k,y
′
k
) belong to the random dimer configuration are given by

P[e1, . . . , ek] =
(

k∏
j=1

K(wxj ,yj
,bx′

j ,y′
j
)

)
det

1≤i,j≤k
[K−1(bx′

i ,y
′
i
,wxj ,yj

)],(4)

where K is the so-called Kasteleyn operator. In the case of the honeycomb lattice,
it is simply the weighted adjacency matrix restricted to the rows corresponding to
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FIG. 3. A piece of the honeycomb lattice H , with a fundamental domain (in grey), and the system
of coordinates used to label vertices. Weights a, b, c are assigned to the edges of H according to
their orientation.

white vertices, and columns corresponding to black vertices: if w and b are neigh-
bors, then K(w,b) = a, b or c depending on the orientation of the edge (w,b). If
they are not neighbors, then K(w,b) = 0. Since K is Z

2 periodic, its inverse can be
expressed using inverse Fourier transform over the unit torus

K−1(bx′,y′,wx,y) = K−1(b(x′−x),(y′−y),w0,0
)

(5)

=
∫∫

T2

z−(y′−y)w(x′−x)

a + b/w + cz/w

dz

2iπz

dw

2iπw
.

When none of the weights is greater than the sum of the other two, one can show
(by computing explicitly the integral above) that every type of edge appears in the
random dimer configuration with positive probability. The measure is then said to
be liquid [12].

For such weights, there is a particularly well-adapted embedding for the hexago-
nal lattice, the so-called isoradial embedding [10] corresponding to these weights,
defined as follows: The length of a dual edge of H is equal to the weight of the
corresponding primal edge, so that the dual faces of H are represented as triangles
with side length a, b and c. The dual faces for the usual embedding of H with
regular hexagons are equilateral triangles and the this embedding corresponds to
equally distributed weights a = b = c.

The measure and the embedding (up to a global scaling factor) depend only on
the two ratios a/b and c/b. For our purpose, we will chose a = t, b = 1, and
c = exp(γt). These values satisfy the triangular inequalities for γ ∈ (−1,1) at
least for t small enough. The distance between two successive horizontal edges is
t. We denote by Pγ,t and K−1

γ,t the probability measure and the inverse Kasteleyn
operator corresponding to these particular weights.

2.3. Correspondence between beads and dimers. The mapping we construct
between discrete bead configurations and dimer configurations can be described as
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FIG. 4. A piece of discrete bead configuration and the corresponding piece of dimer configuration
on H .

follows: There is a bead at (x,ty) if and only if the horizontal edge incident with
the white vertex in fundamental domain (x, y) is in the dimer configuration.

A way to see geometrically this correspondence is to use these isoradial embed-
dings of the honeycomb lattice described above. Take an isoradial embedding of
the honeycomb lattice for weights a = t, b = 1, c = eγt for γ ∈ (−1,1) and t
small enough. Once chosen a dimer configuration on H , draw a bead in the middle
of an horizontal edge if it appears in the dimer configuration and you end with a
discrete bead configuration with mesh size t. Reciprocally, from a bead configu-
ration, one can reconstruct a dimer configuration by placing horizontal dimers on
edges crossing an occupied site, and completing the configuration. This is always
possible because of the intertwining of bead positions. Moreover, the completion
is unique as soon as there is at least one bead on each wire.

For a fixed t, each value of γ corresponds to a liquid Gibbs probability measure
on dimer configurations, that can be transported to bead configurations. The local
statistics of the beads coincide with those of the horizontal dimers. The probability
measure on bead configurations benefits from the conditional uniform property of
the dimer Gibbs measure.

This procedure defines for a given t a family parameterized by γ of probability
measures on discrete bead configurations that have the conditioned uniform prop-
erty. The correlations between beads are given by determinants: the probability of
having a bead at the sites (x1,ty1), . . . , (xk,tyk) in the random bead configura-
tion ω is the probability to find the edges (wx1,y1,bx1,y1), . . . , (wxk,yk

,bxk,yk
) in

the random dimer configuration

Pγ,t[(x1,ty1), . . . , (xk,tyk) ∈ ω] = tk det
1≤i,j≤k

K−1
γ,t(bxi ,yi

,wxj ,yj
),(6)

where K−1
γ,t is defined by

K−1
γ,t(bx,y,w) =

∫∫
T2

z−ywx

t+ 1
w

(1 + zeγt)

dz

2iπz

dw

2iπw
.(7)

3. Construction of explicit Gibbs measures for the continuous bead model.
In this section, we will give an explicit description for Gibbs measures for the bead
model. But before proving Theorem 1, it is necessary to investigate the behavior
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of the kernel defining the discrete bead model. In other words, one has to compute
the asymptotics of K−1

γ,t(b
x
y,w) for t small and y large.

The first thing to note is that for the weights we chose, the probability of an
horizontal edge at a given white vertex (that is the probability of a bead at a given
site in the discrete model) is

Pγ,t[horizontal edge] = tK−1
γ,t(b0,0,w0,0)

= t
∫∫

T2

1

t+ (1/w)(1 + zeγt)

dz

2iπz

dw

2iπw
(8)

= t
√

1 − γ 2 + o(t).

In order to keep a constant average density of beads, we must choose the rescaled

vertical coordinate ξ equal to ty
√

1 − γ 2.
The asymptotics of the kernel for this vertical scaling are given by the following

lemma.

LEMMA 1. In the vertical scaling limit t → 0,ty
√

1 − γ 2 → ξ , the coeffi-

cients (−1)y√
1−γ 2

K−1
γ,t (bx,y,w) converge to

Jγ (x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

∫
[−1,1]

e−iξφ(
γ + iφ

√
1 − γ 2

)x
, if x ≥ 0,

−
∫

R\[−1,1]
e−iξφ(

γ + iφ

√
1 − γ 2

)x dφ

2π
, if x < 0.

(9)

In particular, when x = 0,

Jγ (0, ξ) = 1

2π

∫
[−1,1]

eiξφ dφ = sin(ξ)

πξ
.(10)

PROOF. The entries of the inverse Kasteleyn operator are given by (7). To
evaluate this integral, we first perform the integration over w by the method of
residues. If x ≥ 0, the rational fraction

fz(w) = wx

tw + (1 + zeγt)

has one pole at w = w0(z) = −1+zeγt

t .
By Cauchy’s theorem, the integral

1

2iπ

∫
S1

fz(w)dw

is zero unless the pole w0(z) is in the unit disc, that is,

Re(z) < −1 + e2γt − t2

2eγt
= −1 + (1 − γ 2)t2 + O(t3).(11)
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Define θ0 = θ0(γ,t) = Arccos(1+e2γt−t2

2eγt ) = t
√

1 − γ 2 + O(t2). The con-
straint (11) on the pole to be inside the unit disk can be rewritten as

arg(z) ∈ (π − θ0, π + θ0).

Posing z = −eiθ = −eitφ
√

1−γ 2
in the integral, we get

K−1
γ,t(bx,y,w)

(12)

=
∫

Re(z)<−(1+e2γt−t2)/(2eγt)
z−y

(
−1 + zeγt

t

)x dz

2πtiz

= (−1)y
∫ θ0

−θ0

e−iyθ

(
eγteiθ − 1

t

)x dθ

2πt
(13)

= (−1)y

2π

∫ θ0/t
√

1−γ 2

−θ0/t
√

1−γ 2
e−ityφ

√
1−γ 2

(14)

×
(

et(γ+iφ
√

1−γ 2) − 1

t

)x√
1 − γ 2 dφ.

In the vertical scaling limit t→ 0, ty
√

1 − γ 2 → ξ , we have

lim
θ0

t
√

1 − γ 2
= 1,

lim e−ityφ
√

1−γ 2 = e−iξφ,

lim
et(γ+iφ

√
1−γ 2) − 1

t
= γ + iφ

√
1 − γ 2.

Thus, the integral above, multiplied by (−1)y√
1−γ 2

, converges to

lim
(−1)y√
1 − γ 2

K−1(bx,y,w) = 1

2π

∫
[−1,1]

e−iξφ(
γ + iφ

√
1 − γ 2

)x
dφ.

When x < 0, fz(w) has two poles: There is a pole at w = 0 in addition to
that located at w = w0(z) = −1+zeγt

t . Since wfz(w) goes to zero when z goes
to infinity, the sum of the residues is zero. Therefore, the integral of fz(w) on
the unit circle is not zero only if w0(z) is outside of the unit disc. It equals in
that case the opposite of the residue at w0(z). Again, with the change of variable

z = −eiθ = −eitφ
√

1−γ 2
, we have

K−1
γ,t(bx,y,w) = −

∫
Re(z)>−(1+e2γt−t2)/(2eγt)

z−y

(
−1 + zeγt

t

)x dz

2πtiz
(15)
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= (−1)y+1
(∫ −θ0

−π
+

∫ π

θ0

)
e−iyθ

(
eγteiθ − 1

t

)x dθ

2πt
(16)

= (−1)y+1
(∫ −θ0/(t

√
1−γ 2)

−π/(t
√

1−γ 2)
+

∫ π/(t
√

1−γ 2)

θ0/(t
√

1−γ 2)

)
e−ityφ

√
1−γ 2

(17)

×
(

eγteitφ
√

1−γ 2 − 1

t

)x

√
1 − γ 2 dφ

2π
.

Thus, in the scaling limit by the Lebesgue dominated convergence theorem,

lim
(−1)y√
1 − γ 2

K−1
γ,t(bx,y,w) = −1

2π

∫
R\[−1,1]

e−iξφ(γ + iφ)x dφ

this completes the proof of the lemma. �

From the exact expressions (14) and (17) of K−1(b(x)
y ,w), one can easily check

that the entries are uniformly bounded in y and t for a given value of x, leading to
the following lemma.

LEMMA 2. ∀x ∈ Z ∃Mx > 0 ∀t < t0 ∀y ∈ R |K−1
γ,t(bx,y,w)| ≤ Mx .

These two lemmas will now be used to prove Theorem 1, stating that this family
converges weakly to the determinantal random point field on Z×R with kernel Jγ .

THEOREM 2. For each value of γ ∈ (−1,1), the discrete bead model con-
verges weakly when t goes to 0 to a determinantal random point field on Z × R.
The kernel of this limiting determinant random point field is Jγ :

Jγ (x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

∫
[−1,1]

e−iξφ(
γ + iφ

√
1 − γ 2

)x dφ

2π
, if x ≥ 0,

−
∫

R\[−1,1]
e−iξφ(

γ + iφ

√
1 − γ 2

)x dφ

2π
, if x < 0.

(18)

The marginal of the process on a given line is a determinantal random point field
on R with kernel

Jγ (0, ξ − ξ ′) = sin(ξ − ξ ′)
π(ξ − ξ ′)

.(19)

It is thus the sine random point field of the eigenvalues of large random Hermitian
matrices.

PROOF. Since tightness is automatic for random point fields [4], it is sufficient
to prove the convergence of finite dimensional distributions in order to prove the
weak convergence of the family of random point fields (�,F ,Pγ,t).
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Let I1, . . . , Ik be segments on wire x1, . . . , xk, respectively. It will be convenient
to use multi-index notations

n! =
k∏

j=1

nj !, |n| =
k∑

j=1

nj , In = I
n1
1 × · · · × I

nk

k , zn = z
n1
1 · · · znk

k .

We will prove the convergence of the moment generating function G
(I)
γ,t(z1, . . . ,

zk) of the joint law of (XI1, . . . ,XIk
)

G
(I)
γ,t(z) = Eγ,t

[
k∏

j=1

(1 − zj )
XIj

]
= ∑

n∈Nk

Eγ,t

[
k∏

j=1

(XIj
)!

(XIj
− nj )!

]
(−z)n

n! ,(20)

where Eγ.t is the expectation with respect to the probability Pγ,t on discrete bead
configurations. The factorial moments

A
(I)
γ,t(n1, . . . , nk) = Eγ,t

[
k∏

i=1

XIi
!

(XIi
− ni)!

]
(21)

are quite easy to compute. They are given by the formula

A
(I)
γ,t(n1, . . . , nk)

(22)
= ∑

y1
1 ...y1

n1
∈ I1
t
√

1−γ 2
distinct

yk
1 ...yk

nk
∈ Ik

t
√

1−γ 2
distinct

Pγ,t[there are beads at (x1,ty1
1), . . . , (xk,tyk

nk
)],

where the sum is performed over all the distinct integer nj -tuples of Ij

t
√

1−γ 2
,

j = 1, . . . , k. By equation (6), this can be rewritten in terms of determinants of
matrices with blocks of size n1, . . . , nk

A
(I)
γ,t(n) = ∑

y1
1 ...y1

n1 ∈ I1
t
√

1−γ 2
distinct

yk
1 ...yk

nk
∈ Ik

t
√

1−γ 2
distinct

t|n| det

⎡
⎢⎢⎢⎢⎢⎣

K−1
γ,t(bx1,yi1 ,wx1,yj1 ) · · · K−1

γ,t(bxk,yik
,wx1,yj1 )

.

.

.
. . .

.

.

.

K−1
γ,t(bx1,yi1 ,wxk,yjk

) · · · K−1
γ,t(bxk,yik

,wxk,yjk
)

⎤
⎥⎥⎥⎥⎥⎦

1≤i1,j1≤n1
1≤ik ,jk≤nk

,

(23)

which converges when t goes to zero by Lemma 1 to

A(I)
γ (n) =

∫
In

det

⎡
⎢⎢⎢⎣

Jγ (x1 − x1, ξ
(1)
i1

− ξ
(1)
j1

) · · · Jγ (x1 − xk, ξ
(1)
i1

− ξ
(k)
jk

)

...
. . .

...

Jγ (xk − x1, ξ
(k)
ik

− ξ
(1)
j1

) · · · Jγ (xk − xk, ξ
(k)
ik

− ξ
(k)
jk

)

⎤
⎥⎥⎥⎦ dnξ,

(24)
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where the integration variable ξ is the n-tuple (ξ
(1)
1 , . . . , ξ

(1)
n1 , . . . , ξ

(k)
nk ). Since the

coefficients of K−1
γ,t are bounded uniformly in t and y, say by M , then using

Hadamard inequality, we get a uniform bound on the coefficients A
(I)
γ,t(n1, . . . , nk)

∣∣A(I)
γ,t(n)

∣∣ ≤ k∏
j=1

|Ij |nj
(√|n|M)|n|

.(25)

Therefore, by an argument of dominated convergence, the entire series Q
(I)
γ,t(z),

z ∈ C
k converges uniformly on compact sets to

Q(I)
γ (z) = ∑

n∈Nk

A(I)
γ (n)

(−z)n

n!(26)

which is the moment generating function for the limit distribution of (XI1, . . . ,

XIk
). The probability of having for all j ∈ {1, . . . , k} exactly nj beads in Ij is

given by the following formula:

Pγ [XI1 = n1, . . . ,XIk
= nk] = (−1)|n|

n! · ∂n

∂zn
Q(I)

γ (z)
∣∣∣
z=(1,...,1)

.(27)

In particular, the probability of having no bead in a Borel set B is given by the
Fredholm determinant

Pγ [XB = 0] = Det(Id − χBK−1
γ χB) = QB

γ (1)
(28)

=
∞∑

n=0

(−1)n

n!
∫
Bn

det[Jγ (ξi − ξj )]dnξ,

where χB is the indicator function of B . �

Many quantities about the continuous bead model can be easily computed, using
the underlying dimer model. An example of such a quantity is the average ratio
between the distance between a bead and its neighbor on the left and above it, and
the distance between two successive beads on the same thread. This average ratio
is just the limit of the proportion of c-edges among the nonhorizontal edges in the
random dimer configuration of H . It is then equal to

Eγ [r] = lim
t→0

Pγ,t[c-edge]
Pγ,t[c- or b-edge]

= lim
t→0

eγtK−1
γ,t(−1,−1)

K−1
γ,t(−1,0) + eγtK−1

γ,t(−1,−1)
(29)

= arccosγ

π
.

This quantity would have been difficult to obtain directly from the description of
the Gibbs measure for the point process, but has a simple interpretation in terms of
dimers.
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4. Comments and interpretations of the bead model.

4.1. GUE matrices and uniformly distributed intertwined points. Afterward,
it may seem not so surprising that these configurations of “uniformly” intertwined
points are related to the determinantal sine process and more generally to random
matrices from the GUE ensemble.

Take a random (finite) matrix Hn from the GUE ensemble, and define for k ∈
{1, . . . , n}, H

(k)
n = (Hn)1≤i,j≤k to be the submatrix of Hn formed by the first k

rows and k columns of Hn. Let λ
(k)
1 ≤ λ

(k)
k be the eigenvalues of H

(k)
n . It follows

directly from the mini-max formulation for the eigenvalues that

∀k ∈ {1, . . . , n},∀j ∈ {1, . . . k} λ
(k+1)
j ≤ λ

(k)
j ≤ λ

(k+1)
j+1 .(30)

Furthermore, a result of Baryshnikov [2] states that if we condition on the eigen-
values λ1, . . . , λn of Hn, then the eigenvalues of the submatrices are uniformly
distributed over the simplex

S(λ1,...,λn) =
{
(x

(k)
j )1≤k≤n−1

1≤j≤k

|λj ≤ x
(n−1)
j ≤ λj+1;x(k+1)

j ≤ x
(k)
j ≤ x

(k+1)
j+1

}
.

(31)
The bead model is somehow a bi-infinite analogue of this.

4.2. The bead model as an asymmetric exclusion process. A bead configura-
tion can be interpreted as the history of a collection of particles located on sites
of a one-dimensional lattice Z and jumping from left to right. Time is continuous
and is flowing vertically along the threads and there is a lattice site between two
successive threads. Joining every bead to the bead just above it on the neighboring
right thread, one gets an infinite collection of monotonous paths representing the
trajectories of the particles: A bead on a thread corresponds to a jump of a particle
from the site at the left of the thread to the site on its right. Because of the geo-
metric constraint on beads, these paths cannot touch each other. Consequently, the
particles are submitted to an exclusion rule: a particle cannot jump to a site if this
one is already occupied by another particle.

The Gibbs measures Pγ on bead configurations, viewed as families of monoto-
nous paths constructed as above, are probability measures on all possible evolu-
tions of particles. The Gibbs property and ergodicity imply that the marginal of
these measures for a fixed time (i.e., along an horizontal line) give stationary mea-
sures for some Markovian dynamics.

The discrete bead model, as it was discussed in Section 2.1, gives a discrete
version of this particle system: In the dimer picture, a particle is represented by a
c-edge and a hole by a b-edge. Under Pγ , the average particle density ρ is equal to
the limit of the probability of a c-edge and, therefore, related to γ by the following
expression

ρ = lim
t→0

Pt,γ [c-edge] = 1 − arccosγ

π
(32)
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FIG. 5. The trajectories corresponding to the bead configuration of Figure 1 and positions of par-
ticles (black squares) at different times t1 and t2.

so that the density is an increasing function of γ .
The Asymmetric Simple Exclusion Process (ASEP) is also an example of par-

ticle systems with the same constraint of exclusion. Its evolution is Markovian,
and the transition rates from an allowed configuration to another is constant. The
translation invariant stationary measures for this model are Bernoulli probability
measure, whose parameter is the density.

If the particles are not located on the vertices of the finite lattice Z but on a
finite annulus Z/NZ, then the number of particles is a conserved quantity. For a
fixed number of particles, the stationary measure is uniform for ASEP. This is not
the case for the bead model with a finite number of beads1 the probability of a
configuration of particles depends not only on the number of particles, but also on
their positions.

The properties of the particle system coming from the bead model differ from
that of ASEP. It would be interesting to study more in details these properties using
the dimer microscopic structure, and to compare them with that of ASEP, that are
also related to random matrix theory [18].

5. The bead model as a universal limit for dimer models. Although the
bead model was presented in the last section as the limit of the dimer model on the
honeycomb lattice, it turns out to be much more general. Indeed, the bead model
appears as the limit of any dimer model on a planar Z

2-periodic bipartite graph.
We first recall briefly some facts from the theory of the dimer model on a planar
bipartite lattice (see [11, 12] for more details).

1A bead model for a finite number of threads can be constructed following the same procedure as
in the beginning of this article. We impose the number of threads N to be even to ensure that the
geometric constraint on beads makes sense. We get leading to a 1-parameter family of determinantal
random fields, whose kernel is obtained by replacing the integral in (9) by a discrete sum.
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5.1. The dimer model on a bipartite planar periodic graph. Let G be a planar
bipartite Z

2-periodic graph, together with a positive periodic weight function on
the edges of G. We suppose that the fundamental domain, delimited by a horizontal
path γx and a vertical path γy , contains n black vertices b1, . . . ,bn and n white
vertices w1, . . . ,wn, and that G has at least one dimer configuration.

There is a two-parameter family of Gibbs measures on dimer configurations of
G for these weights, parameterized by the two component of an external mag-
netic field B = (Bx,By) [12]. One can associate to this weighted graph, as in the
case of the honeycomb lattice, a Kasteleyn operator K that will describe the dimer
model on G. For a given value of the magnetic field B , the probability that some
edges e1 = (w1,b1), . . . , ek = (wk,bk) appear in the random dimer configuration
is given by the following formula

PB[e1, . . . , ek] =
(

k∏
j=1

K(wj ,bj )

)
det

1≤i,j≤k
[K−1

B (bi ,wj )],(33)

where the entries of K−1
B are given by the inverse Fourier transform

K−1
B (bj

x,y,wi) =
∫∫

T2
z−ywx[K(eBxz, eByw)]−1

j,i

dz

2iπz

dw

2iπw
(34)

=
∫∫

T2
z−ywx Qj,i(e

Bx z, eByw)

P (eBx z, eByw)

dz

2iπz

dw

2iπw
.

The characteristic polynomial P(z,w) is the determinant of the Fourier trans-
form K(z,w) of the periodic operator K, and Q(z,w) is the comatrix of K(z,w).
The asymptotics of K−1

B , and thus the correlations decay depend on the reg-
ularity of the integrand in (34), and in particular on the presence of zeros of
P(eBx z, eByw) on the unit torus.

The spectral curve {(z,w) ∈ C
2|P(z,w) = 0} is a complex algebraic curve of

a special kind: It is a Harnack curve [11, 15, 17]. For generic values of (Bx,By),
P(eBx z, eByw) has zero or two roots on the unit torus, and the phase diagram
describing the behavior of the measures in function of Bx and By is given by the
amœba of the spectral curve, that is, the image of P(z,w) = 0 by the mapping

Log: (C∗)2 → R
2,

(z,w) �→ (log |z|, log |w|).
When (Bx,By) lies in the interior of the amœba, the characteristic polynomial

P(eBx z, eByw) has two conjugate roots on the unit torus and the correlations de-
cay polynomially, and the corresponding measure is said to be liquid or massless.
When (Bx,By) lies inside a bounded connected component of the amœba, the cor-
relations decay exponentially fast, and the measure is gaseous or massive. When
(Bx,By) lies in an unbounded complementary component of the amœba, the mea-
sure is said to be solid and there are infinite deterministic dual paths crossing no
dimers with probability 1.
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The existence of a dimer configuration on G is equivalent to that of a dimer
configuration on the torus G1 = G/Z

2. We suppose that such a configuration on
G1 exists, that can be lifted to a periodic dimer configuration C0 of G. A dimer
configuration C can be interpreted as white-to-black unit flow, that is, a 1-form
with divergence +1 at each white vertex, and divergence −1 at each black vertex.
Therefore, the difference C − C0 is a divergence-free flow. The horizontal (resp.
vertical) slope of a Gibbs measure μ is the expected amount for μ of the flow
C − C0 across −γy (resp. γx). Two Gibbs measures having the same slope are
in fact equal [12, 19]. The Newton polygon N(P ) of P , the convex hull of the
exponents of monomials of P , coincide with the set of all possible slopes for a
Gibbs measure on dimer configurations. The structure of this amœba is related to
the geometry of N(P ) through the Ronkin function [14]

R : (Bx,By) �→
∫∫

T2
log(P (eBx z, eByw))

dz

2iπz

dw

2iπw
.(35)

In particular, the solid and gaseous phases are mapped to integer points of N(P ).
To clarify all these notions, we apply them to the particular example of the

honeycomb lattice we discussed before: Choosing weights a, b, c for edges ac-
cording to their orientation (without magnetic field) is, in fact, equivalent to
choosing all weights equal to a = t and imposing a magnetic field equal to
Bx = log(c/b) = γt,By = log(a/b) = logt. The fundamental domain of the hon-
eycomb lattice is constituted by one black vertex and one white vertex. Therefore,
the Fourier transform K(z,w) is 1 × 1 matrix: K(z,w) = t(1 + 1/w + z/w). The
characteristic polynomial P(z,w) is therefore also equal to t(1 + 1/w + z/w),
and thus

P(eBx z, eByw) = t+ 1

w
(1 + zeγt).(36)

The cofactor Q(z,w) of K(z,w) is by convention equal to 1. The Newton polygon
and the amœba for this model are represented on Figure 6.

The bead model is obtained from the dimer model on the honeycomb lattice
when the magnetic field goes inside one of the outgrowths of the amœba, in the
thin region separating two solid phases. In the general dimer model, the bead model
will also appear near the frontier between the liquid phase and solid phases. But
before explaining how to find the bead model in this setting, we need some more
information about the local geometry of the amœba, in particular about its un-
bounded outgrowths: the tentacles.

5.2. Tentacles of the amœba. Consider a particular side of the Newton poly-
gon N(P ). Changing the generators of the Z

2 lattice acting on G by translation
induces a linear transformation of N(P ). A change of basis of Z

2 is encoded by an
element M of SL2(Z). The linear transformation acting on N(P ) is (M−1)T . Af-
ter possibly such an operation, we can assume that this side is horizontal, and that
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FIG. 6. The dimer model on the honeycomb lattice corresponding to Figure 3: (a) the Newton
polygon N(P ) of the characteristic polynomial P(z,w) = 1 + (1 + z)/w, and (b) the amœba of P

in the plane (Bx,By).

the polygon lies above it. Recall that the Newton polygon represents the possible
slopes for a Gibbs measure on the dimer model on G. When the slope of a Gibbs
measure is a lattice point of the boundary of N(P ), the system is a solid phase.

We want to investigate the geometry of the phase diagram for values of the
magnetic field inducing measures with a slope close to the particular side of N(P )

we chose. In particular, we seek for the shape of the boundary of the amœba in
a neighborhood of the frontier between the liquid phase and the different solid
phases, corresponding to the points of the particular side of the polygon.

To get a measure with a slope close to that side of N(P ), we apply to the system
a magnetic field oriented essentially downward (Bx,By) = (c,−R), with R very
large. To remain close to the notations used in the previous section, we introduce
the small parameter t= e−R .

When t is small, the leading terms in the characteristic polynomial P(ecz,tw)

are those with the smallest power in w, say δ0.

P(ecz,tw) = (tw)δ0

(∑
γ

aγ δ0(e
cz)γ + O(t)

)
.(37)

By a suitable choice of the origin of the Newton polygon (deforming the paths γx

and/or γy delimiting the fundamental domain of G), one can assume that δ0 = 0
and that all the roots of P0(X) = ∑

γ aγ 0X
γ are positive [12].

If ec is not a root of P0(X) = ∑
γ aγ 0X

γ , then for t small enough, P(ecz,

e−Rw) has no roots on the unit torus. In this case, the magnetic field (Bx,By) =
(c,−R) belongs to an unbounded component of the amœba. The corresponding
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measure μ(Bx,By) is solid. On the contrary, if ec is a root of this polynomial, then
for every R large enough, the polynomial has two complex conjugated roots on
the unit torus: We are in the liquid phase. The amœba defining the liquid phase
has therefore tentacles going to infinity with asymptotes given by the straight lines
x = c.

For generic weights, the asymptotes are all distinct, and there is one asymptote
for each segment between two lattice points on the side of N(P ). Moreover, one
can give an asymptotic expansion for the equation of the boundary of the amœba.
Since the boundary of the amœba is the image of the real locus of the curve, it is
given by the equation

P(±eBx ,±eBy ) = 0.(38)

In a neighborhood of (Bx,By) = (c,−∞), the solution of (38) for Bx admits an
asymptotic expansion in t = e−By : Bx = c + c1t + O(t2). Since P(ec,0) = 0,
we have

P(eBx ,±eBy ) = P
(
ec+c1t+O(t2),±t)

(39)
= (

c1e
c∂1P(ec,0) ± ∂2P(ec,0)

)
t+ O(t2).

Therefore, the coefficient c1 in the expansion is defined by

c1 = ± ∂2P(ec,0)

ec∂1P(ec,0)
(40)

and the two curves Bx = c ± e−c ∂2P(ec,0)
∂1P(ec,0)

eBy define the two asymptotic branches
of the boundary of the amœba in the neighborhood of (c,−∞). Define β as

β = −e−c ∂2P(ec,0)

∂1P(ec,0)
.(41)

For any γ ∈ (−1,1), the curve

Bx = c + γβeBy(42)

lies inside the amoeba for By negative enough.

5.3. Deep inside a tentacle.

5.3.1. Analytic results about the roots of P . Let us fix c to be equal, as be-
fore to the logarithm of one of the roots of P0. For a fixed z, the polynomial
P(ec+γβtz,W) has d roots W0(z), . . . ,Wd−1(z). Since ec is a root of P0, one
of these Wj(z), say it is W0, equals 0 when z = 1. If all the roots of P0 are distinct,
W0(z) is the only zero having this property. The 2-to-1 property of the map from
the spectral curve to its amœba shows that W0(z) does not equal zero for z �= 1.
Therefore, by compactness of S

1 there exists an ε > 0, such that

∀j ∈ {1, . . . , d − 1},∀z ∈ S
1 |Wj(z)| ≥ ε.(43)
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FIG. 7. A tentacle (in thick lines) and curves described above, for different values of γ .

Differentiability of the roots with respect to the coefficients and symmetry by
complex conjugation imply that there exists θ(t) = θ0t + O(t2), with θ0 > 0,

such that

|W0(z)| ≤ t ⇔ z ∈ [
e−iθ(t), eiθ(t)].(44)

In fact, an expansion of P similar to (39) shows that when arg(z) = O(t)

W0(z) = γt+ i arg(z)

β
+ O(t2),(45)

and, therefore, θ(t) = tβ
√

1 − γ 2 + O(t2).

5.3.2. Asymptotics of the inverse Kasteleyn operator inside a tentacle. The
Newton polygon N(P ) can also be obtained indirectly from the max flow–min
cut theorem as the intersections of half-planes made of points satisfying linear
constraints in order to be a slope of a measure on dimer coverings [12].

The side of the Newton polygon we are looking at is a segment of the straight
line delimiting one of these half-planes. When the average slope of the Gibbs mea-
sure lies on this line, one of the inequalities defining N(P ) becomes an equality,
implying the existence of frozen dual paths, with a direction perpendicular to the
side of N(P ), that are not crossed by any dimer with probability 1. These possibly
frozen paths will be the threads of our bead model. When the slope is not exactly
on that boundary of N(P ), some dimers may cross these paths. We will see that
these defects will play the role of beads strung along these threads.

Let e = (w,b) be an edge of G crossing one of these threads. When the slope
of the Gibbs measure is on the side of the Newton polygon, this edge appears in
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the random dimer configuration with probability 0. In particular, there is no dimer
configuration on the torus G1 = G/Z

2 containing this edge, corresponding to a
lattice point of the side of N(P ) . As the cofactor Qe(z,w) = Qbw(z,w) is up
to a sign the determinant of the Kasteleyn operator on G1 \ {w,b}, it contains
only monomials of degree at least 1 in w [otherwise, there would have been a
Gibbs measure with a slope on the side of N(P ) for which e is a dimer with
positive probability, what is in contradiction with the fact that e crosses a frozen
path].

We determine now the asymptotic expression for the coupling function K−1
γ,t(bx,

w) corresponding to our magnetic field (Bx,By) = (c + βγt, logt), between w
and the black end bx of a translate ex of e by x = (x, y) ∈ Z

2

K−1
γ,t(bx,w) =

∫∫
z−ywxQe(e

c+βγtz,tw)

P (ec+βγtz,tw)

dz

2iπz

dw

2iπw
.(46)

PROPOSITION 1. Denote by Jγ (x, ξ) the kernel of the bead model.

Jγ (x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

∫
[−1,1]

e−iξφ(
γ + iφ

√
1 − γ 2

)x dφ

2π
, if x ≥ 0,

−
∫

R\[−1,1]
e−iξφ(

γ + iφ

√
1 − γ 2

)x dφ

2π
, if x < 0.

(47)

In the scaling limit t → 0, tβy
√

1 − γ 2 → ξ, the coefficients K−1
γ,t(bx,w)

have the following asymptotics:

K−1
γ,t(bx,w) ∼ tρe

√
1 − γ 2Jα(x, ξ),(48)

where the quantity ρe is given by

ρe = ∂2Qe(e
c,0)

∂2P(ec,0)
.(49)

Keρe represents the proportion of this type of edges among the defects along a
thread.

PROOF. We denote by f (z,w) the rational fraction inside the integral (46)

f (z,w) = z−y−1wx−1Qe(e
c+βγtz,tw)

P (ec+βγtz,tw)
.(50)

The integral defining K−1
γ,t is evaluated by performing first the integral over w.

Suppose first that x ≥ 0. There is no singularity at w = 0, since the monomial in
Q with lowest degree in w has degree 1. The only pole in the unit disc is W0(z)/t

when z ∈ [e−iθ(t), eiθ(t)] = It. In this case, we introduce ζ(φ) = γ + iφ
√

1 − γ 2
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with z = eiβtφ
√

1−γ 2
, and get

K−1
γ,t(bx,w)

=
∫
It

z−y(W0(z)/t)x−1Qe(e
c+βγtz,W0(z))

∂2P(z,W0(z))t

dz

2iπz
(51)

=
√

1 − γ 2

×
∫ 1+O(t)

−1+O(t)

e−iβtyφ
√

1−γ 2
(ζ(φ)+O(t))x−1Qe(e

c+tβζ(φ),tζ(φ)+O(t2))

∂2P(ec+tβζ(φ),tζ(φ)+O(t2))

β dφ

2π
.

For a small t and a fixed φ, we have

Qe
(
ec+tβζ(φ),tζ(φ) + O(t2)

) = tζ(φ)∂2Qe + O(t2),(52)

∂2P
(
ec+tβζ(φ),tζ(φ) + O(t2)

) = ∂2P + O(t),(53)

where the derivatives of polynomials P and Qe without specified point are eval-
uated at (ec,0). For the first expansion, we used the fact that Qe(z,0) ≡ 0 and
therefore ∂1Qe = 0. Therefore,

K−1
γ,t(bx,w) = tβ

√
1 − γ 2 ∂2Qe

∂2P

(∫
[−1,1]

e−iξφζ(φ)x
dφ

2π
+ O(t)

)

= tβ

√
1 − γ 2ρe

(∫
[−1,1]

e−iξφ(γ + iφ

√
1 − γ 2)x

dφ

2π
+ O(t)

)
.

When x < 0, the rational fraction in the integral has a multiple pole at w = 0
which is hard to evaluate directly. However, the rational fraction is o( 1

w
) as |w| →

∞, and hence the sum of all residues in the plane is 0.
Let us bound the residues at the simple roots of P : W1(z), . . . ,Wd−1(z) . We

know already from (43) that there exists ε such that for every j ∈ {1, . . . , d − 1},
|Wj(z)| ≥ ε for every z ∈ S

1. By the same argument of compactness, there exists
a constant M > 0 such that for t small enough,

∀j ∈ {1, . . . , d − 1} ∀z ∈ S
1

(54)

|∂2P(ec+βγtz,Wj (z))| ≥ 1

M
and

∣∣∣∣Qe(e
c+βγtz,Wj(z))

Wj (z)

∣∣∣∣ ≤ M

and, therefore,∣∣∣∣(Wj (z)/t)xQe(e
c+γβt,Wj (z))

Wj (z)∂2P(ec+γβtz,Wj (z))

∣∣∣∣ ≤ (ε/t)xM2 = O(t−x).(55)

Thus, the contribution of these residues is negligible as soon as x ≤ −2. In that
case, we have

K−1
γ,t(bx,w) =

∫
S1

Resw=0 f (z,w)
dz

2iπ
+

∫
It

Resw=W0(z)/t f (z,w)
dz

2iπ
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= −
d−1∑
j=1

∫
S1

Resw=Wj (z)/t f (z,w)
dz

2iπ
(56)

−
∫

S1\It
Resw=W0(z)/t f (z,w)

dz

2iπ
.

Using the estimates (52) and (53), we find, using the same change of variable

z = eiβt
√

1−γ 2φ as above that∫
S1\It

Resw=W0(z)/t f (z,w)
dz

2iπ

=
∫

S1\It
z−y(W0(z)/t)x−1Qe(e

c+γβtz,W0(z))

t∂2P(ec+γβtz,W0(z))

dz

2iπz

= tβ

√
1 − γ 2

(∫ −1+o(1)

−π/(|β|t
√

1−γ 2)
+

∫ π/(|β|t
√

1−γ 2)

1+o(1)

)
(57)

× e−iyβtφ
√

1−γ 2
(ζ(φ) + O(t))x−1

t∂2P(ec+βtζ(φ),tζ(φ) + O(t2))

× Qe
(
ec+tβζ(φ),tζ(φ) + O(t2)

) dφ

2π
.

By Lebesgue’s dominated convergence theorem and by (52) and (53), the inte-

gral is asymptotic in the scaling limit t→ 0, tβy
√

1 − γ 2 → ξ to the following
expression:

∂2Qe

∂2P

∫
R\[−1,1]

e−iφξ (γ + iφ

√
1 − γ 2

)x dφ

2π
(58)

and thus,

K−1
γ,t(bx,w) = tβ

√
1 − γ 2∂2Qe

∂2P
(59)

×
(
−

∫
R\[−1,1]

e−iφξ (γ + iφ

√
1 − γ 2

)x dφ

2π
+ o(1)

)
.

When x = −1, the residues at the poles W1(z), . . . ,Wd−1(z) are not negligible
any more. However, in this case, the pole at w = 0 is simple. A direct evaluation
of the integral shows

K−1
γ,t(b(−1,y),w) =

∫
S1

Resw=0 f (z,w)
dz

2iπ
+

∫
It

Resw=W0(z)/t f (z,w)
dz

2iπ

=
∫

S1

z−yt∂2Qe(e
c+βγtz,0)

P (ec+βγtz,0)

dz

2iπz
(60)
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+
∫
It

z−y(W0(z)/t)−2Qe(e
c+βγtz,W0(z))

t∂2P(ec+βγtz,W0(z))

dz

2iπz
.

Posing again z = eiβtφ
√

1−γ 2
and ζ(φ) = γ + iφ

√
1 − γ 2, one has

K−1
γ,t(bx,w) = t2β

√
1 − γ 2

×
∫ π/(|β|t

√
1−γ 2)

−π/(|β|t
√

1−γ 2)

e−iβϕty
√

1−γ 2
∂2Qe(e

c+βtζ(φ),0)

P (ec+βtζ(φ),0)

dφ

2π
(61)

+ t2β

√
1 − γ 2

∫ 1+o(1)

−1+o(1)

e−iβϕty
√

1−γ 2
Qe(e

c+βtζ(φ),0)

W0(e
iβφt

√
1−γ 2

)2∂2P(ec+βtζ(φ),0)

dφ

2π
.

Using the following estimates from Taylor’s formula

∂2Q
(
ec+βtζ(φ),0

) = ∂2Qe + O(t),(62)

P
(
ec+βtζ(φ),0

) = P
(
ec+βγt+iβtζ(φ),W0(z)

)
− W0(z)∂2P

(
ec+βtζ(φ),W0(z)

) + O(t2)(63)

= 0 − tζ(φ)
(
∂2P + O(t)

) = −tζ(φ)∂2P + O(t2)

together with (52) and (53), and applying Lebesgue dominated convergence theo-
rem after an integration by parts, one can prove that in the scaling limit, the coef-
ficient of the inverse Kasteleyn operator K−1

γ,t(bx,w) is asymptotic to

−tβ

√
1 − γ 2 ∂2Qe

∂2P

∫
R\[−1,1]

e−iφξ (γ + iφ

√
1 − γ 2

)−1 dφ

2π
. �

REMARK 1. The ratio ∂2Qe/∂2P controls the density of the copies of e in the
limiting bead model. If one plugs the value φ = 1 into (52) and (53), one can see
that it is up to terms of higher order in t, equal to

iQe(e
c+βγtz0,tw0)

i∂2P(ec+βγtz0,tw0)tw0
,(64)

where (z0,w0) are zeros of the characteristic polynomial P(ec+βγt·,t·) on the
unit torus. When multiplied by Ke, the numerator is the length of the dual edge e∗
in the natural application from the dual graph G∗ to R

2 described below while the
denominator is that of the vertical side of the fundamental domain.

LEMMA 3 ([3]). Let (eBx z0, e
Byw0) be a root of the characteristic polynomial,

with (z0,w0) on the unit torus. The 1-form

e = (w,b) �→ iKwb(eBx z0, e
Byw0)Qbw(eBx z0, e

Byw0)(65)
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is a divergence-free flow. Its dual is therefore the gradient of a mapping from G∗
to R

2 � C.
This mapping �∗ is Z

2-periodic and the symmetries of its range are generated
by

x̂ = ieBx z0∂1P(eBx z0, e
Byw0) and ŷ = ieByw0∂2P(eBx z0, e

Byw0).

This application � coincide with the notion of isoradial embedding for dimer
models with critical weights (see [10]) and gives a geometry well adapted for the
study of liquid measures on dimer configurations (see, e.g., [3]).

Proposition 1 shows that the kernel giving the correlations has the same form
as the original bead model. However, in order to recover fully the bead model, one
can not just look at one type of edges on threads but at all of them.

Since the frozen paths have been chosen to cross no dimer when the slope is on
the side of the particular Newton polygon we are looking at, they are bordered by
white vertices on their left and black vertices on their right. For a reason of parity
between white and black vertices, there is no dimer configuration of the graph G1
deprived of the projection of these two vertices having a height change2 on the side
of N(P ). Therefore, the arguments of the proof of Proposition 1 can be applied to
obtain similar asymptotics as those given in that proposition for the coefficients of
K−1

γ,t between these vertices.

PROPOSITION 2. Let bx,y and w be respectively a black and a white vertex
each bordering one of these paths, and in fundamental domains separated by a
lattice translation (x, y). In the scaling limit,

t→ 0, tβy

√
1 − γ 2 → ξ,(66)

the coefficient K−1
γ,t(bx,y,w) has the following asymptotics

K−1
γ,t(bx,y,w) ∼ tρbwJγ (x, ξ),(67)

where

ρbw = ∂2Qbw(ec,0)

∂2P(ec,0)
.(68)

These coefficients ρbw are in fact the product of two terms, one depending only
on b and the other on w. This property is stated in the following lemma.

2The term height change here is an abuse of notations, since the difference between the reference
unit flow C0 and the one corresponding to any dimer configuration of G1 deprived of the two vertices
has a nonzero divergence. What we mean here by this expression is, in fact, the powers in z and w in
the weight of the configuration computed using the magnetically altered Kasteleyn operator K(z,w)

divided by that of the reference dimer configuration.
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LEMMA 4. The rank of the matrix ∂2Q(ec,0), restricted to projections of ver-
tices bordering a thread is equal to 1. In particular, for any b and any w bordering
a thread, there exist Ub and Vw such that

ρbw = UbVw.(69)

PROOF. The matrix ∂2Q(ec,0) is the limit when t goes to zero of

1

tw0
Q(ec+βγtz0,tw0),(70)

where (z0,w0) are zeros on the unit torus of P(ec+βγtz,tw). These zeros depend
on t and γ and their the first term in their expansion in t is obtained by plugging
φ = ±1 into equations (52) and (53):

z0 = 1 + O(t), w0 = γ ± i

√
1 − γ 2 + O(t).(71)

Since (ec+βγtz0,tw0) is not real, it is a simple zero of P = detK , since the map-
ping from the spectral curve to its amœba is 2-to-1 out of the real locus. Q is the
comatrix of K , its rank is 1 at a simple zero of P . Therefore, as the limit of se-
quence of rank 1 matrices, the matrix ∂2Q(ec,0) has a rank a most 1. As there is
at least a nonzero entry in this matrix, the rank is equal to 1.

The coefficient ρbw is a multiple of the entry (b,w) of this matrix. Its decompo-
sition into a product comes from the representation of a rank-1 matrix as a tensor
product of a vector and a linear form. �

5.4. Convergence to the bead model. We already said that the threads of our
bead model would be the infinite collection of vertical paths, translated one from
another, that are frozen, that is, they do not cross any dimer when the slope of the
measure lies on the boundary of the Newton polygon. The beads are represented by
the dimers crossing these paths when the magnetic field lies in one of the vertical
tentacles of the amœba.

Like in Section 3, as the magnetic field goes deeper into the tentacle of the
amœba, the picture of the graph in the plane is rescaled in such a way that al-
though the probability of seeing a particular dimer crossing these “almost-frozen”
paths goes to zero, the average number of such edges by centimeter of thread stays
almost constant. The scaling limit we perform is

t→ 0, tβy

√
1 − γ 2 → ξ ∈ R.(72)

To find the limiting distribution of this beads, we first evaluate the quantities

E

[
XI1 !

(XI1 − n1)! · · · XIk
!

(XIk
− nk)!

]
,(73)

where XIj
is the number of dimers crossing the (rescaled) thread interval. We look

in detail at the case k = 1 when only one thread interval is at stake. The other cases
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are similar. For a given n, and a fixed value of γ and of the scaling parameter t,
we have

Eγ,t

[
XI !

(XI − n)!
]

= ∑
e1,...,en∈I

distinct

Pγ,t[e1, . . . , en ∈ C],(74)

where the sum is over all possible n-tuples of edges crossing the thread interval
I . The edges crossing I are labeled by their type (i.e., their projection on G1 =
G/Z

2) and the coordinates of the fundamental domain they belong to. The edge
ej

x represents the edge of type j in the fundamental domain with coordinates x =
(x, y). The type label j ranges from 1 to d . Since the probability of having two
such edges in the same fundamental domain is negligible, we can rewrite this sum
of probabilities, as a sum over the fundamental domains and the types of edges
crossing the thread interval.

Eγ,t

[
XI !

(XI − n)!
]

= ∑
x1,...,xn∈I

distinct

n∑
j1,...,jn=1

Pγ,t[ej1
x1

, . . . , ejn
xn

∈ C] + O(t).(75)

The different probabilities Pγ,t[ej1
x1, . . . , ejn

xn ∈ C] are given by the determinant of
a n × n matrix that is equal to

(
tβ

√
1 − γ 2

)n( n∏
l=1

Kjl

)

(76)
× det

1≤k,l≤n

[
ρjkjl

Jγ

(
xk − xl,tβ

√
1 − γ 2(yk − yl)

)] + O(tn+1).

Since ρjk is the product of two terms UjVk , we can carry them out of the determi-
nant by n-linearity these coefficients, equation (76) becomes

(
tβ

√
1 − γ 2

)n( n∏
l=1

Kjl

)

× det
1≤k,l≤n

[
Ujk

Vjl
Jγ

(
xk − xl,tβ

√
1 − γ 2(yk − yl)

)] + O(tn+1)

= (
tβ

√
1 − γ 2

)n( n∏
l=1

Kjl
Ujl

Vjl

)

(77)
× det

1≤k,l≤n

[
Jγ

(
xk − xl,tβ

√
1 − γ 2(yk − yl)

)] + O(tn+1)

= (
tβ

√
1 − γ 2

)n( n∏
l=1

Kjl
ρjl

)

× det
1≤k,l≤n

[
Jγ

(
xk − xl,tβ

√
1 − γ 2(yk − yl)

)] + O(tn+1).
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Summing now over the different types of edges, one gets

d∑
j1,...,jn=1

Pγ,t[ej1
x1

, . . . , ejn
xn

∈ C]

= (
tβ

√
1 − γ 2

)n( d∑
j=1

Kjl
ρjl

)n

(78)

× det
1≤k,l≤n

[
Jγ

(
xk − xl,tβ

√
1 − γ 2(yk − yl)

)] + O(tn+1).

Kjρj is the proportion of edges of type j along the thread. These coefficients sum
up to 1, and we have finally that expression (75) is a Riemann sum for∫

· · ·
∫
In

det
1≤k,l≤n

[Jγ (xk − xl, ξk − ξl)]dnξ(79)

and the same argument of domination as in the proof of Theorem 2 implies that the
distribution of XI converges to the distribution of beads in the interval I in the bead
model of parameter γ . The generalization to any finite dimensional distribution is
notationally cumbersome, but straightforward. These considerations give thus the
proof of the following theorem.

THEOREM 3. Let γ ∈ (−1,1). In the scaling limit t→ 0,tβy
√

1 − γ 2 → ξ ,
the point process describing the position of rare edges on the threads, identified
with the almost frozen paths converges to the bead model of index γ , that is, the
determinantal point process on Z × R with kernel Jγ .

Recall that γ describes the different possible ways to go deep into a tentacle.
This theorem states that the bead model, with its 1-parameter family of Gibbs
measures, is the universal limiting behavior of any dimer model on a bipartite
periodic planar graph when the order parameters (Bx,By) go to infinity in staying
in the liquid phase.

6. Interaction between bead models. It often happens that a side of the New-
ton polygon is not the result of a unique frozen path, but that different paths give
the same constraint on the slope. In that case, we do not have just one family of
frozen paths, but several parallel families of thread, carrying all in the scaling limit
a bead model. In this section, we describe the interaction between these different
bead models in the case of the generic case of the honeycomb lattice H with a
n × m fundamental domain.

The fundamental domain of this periodic planar graph is represented on Figure 8
for n = m = 3. The vertices of the fundamental domain are labeled by two integers,
i and j ranging from 1 to n, and from 1 to m, respectively. The weights of the
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FIG. 8. (a) A 3 × 3 fundamental domain of the honeycomb lattice. Weights of edges around white
vertex wij are aij , bij and cij . The Fourier multipliers have been distributed over the edges by gauge
transformation. (b) The amœba for generic weights on the graph represented on the left panel. This
amœba presents a gaseous phase, and three tentacles in three directions, each corresponding to a
collection of frozen paths drawn on Figure 9.

edges around the white vertex labeled by (i, j) are denoted by aij , bij and cij . By
an appropriate gauge transformation [12], one can spread the factors z and w in
the magnetically altered Kasteleyn matrix K(z,w) so that the coefficients of this
operator are aij , bijw

−1/n and cij z
1/m. The reference dimer configuration we will

use is the configuration containing all the a-edges.
One distinguishes three special classes of dual cycles in G1, say A, B and C that

cross only edges of a given type (resp. a, b and c). The lifts of these classes to H

are represented on Figure 9. The B class is constituted by n vertical straight paths

FIG. 9. The three classes of possible frozen paths: A, B and C.
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with homology class (0,1), whereas the C class contains the m horizontal straight
paths with homology class (1,0). The A class contains d = gcd(n,m) paths with
homology (m

d
, n

d
). The three classes of cycles lift to H , forming three classes of

parallel families of straight lines.
The Newton polygon of the weighted dimer graph G is a right triangle. Each

side of the triangle corresponds to Gibbs measures for which all the paths of one of
the three classes are frozen. The horizontal side contains n + 1 lattice points. The
amœba of the associated spectral curve exhibits n vertical tentacles separating n+
1 unbounded complementary components—solid phases in the phase diagram—
each corresponding to a lattice point of the horizontal side.

The frozen configurations are obtained as follows: When the Gibbs measure’s
slope lies, say, on the horizontal side of the Newton polygon, there is almost surely
no edge crossing the B class of paths. These paths delimit thin strips where one
sees either an infinite succession of a-edges or an infinite collection of c-edges.
On G1 and in presence of a magnetic field (Bx,By), the associated patterns have
weights

∏m
i=1 aij and eBx

∏m
i=1 cij . The patterns with the highest weight corre-

spond to the type of columns appearing in the configuration with probability 1.
When the horizontal component of the magnetic field is very negative, the weight
of the “a” patterns are greater than the “c” ones, but as Bx increases, the weight of
the second pattern becomes more important, and at some point, it becomes bigger
than the first one. In the graph G, the a-edges that were filling the space between
the two B paths switch to c-edges. Generically, the values of Bx corresponding
to such a switch are all different. They correspond to the abscissæ of the vertical
tentacles of the amoœba.

In a fixed window and when By is very large, one sees columns of edges of
the same type (a, or c) with a probability close to 1. When the magnetic field lies
in a tentacle of the phase diagram, the system hesitates between two states for
a given type of columns. With a probability p bounded away from 0 and 1, the
column is filled with a-edges, and with probability 1 − p, it is filled with c-edges.
If one rescales vertically the graph in the same time as By goes to +∞, then one
will be able to see the transition between these two possibilities: Between the two
types of fillings, a b-edge is inserted. The edge creates a defect in the neighboring
column that is supposed to be frozen. This discussion is quantified in the following
proposition.

PROPOSITION 3. If

Bx <

m∑
i=1

log
aij0

cij0

,(80)

then with probability going to 1 when By goes to infinity, the columns of type j0
will be filled with a-edges.

If the inequality is strict in the other direction, then they will be filled with c-
edges with probability going to 1 when By goes to infinity.
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PROOF. When the vertical component of the magnetic field is very negative,
the main contribution to the characteristic polynomial is given by the configu-
rations on G1 that contain no b-edges. One can choose to fill each strip of G1
between two consecutive frozen cycles either by a-edges or by c-edges. Choos-
ing a filling with c edges induces a height change of m in the vertical direction.
Therefore,

P B(z,w) = P(eBx z, eByw) =
n∏

j=1

(
m∏

i=1

aij − (−1)meBx z

m∏
i=1

cij

)
+ O(t),(81)

where t = eBy is small.
Let b and w two vertices in the same strip j0 in G1. Denote by by and w0

lifts of b and w in the same column of G, separated by y fundamental domains.
The entry of the inverse Kasteleyn operator between these two vertices is easily
evaluated: recall that Qbw is the characteristic polynomial of the graph G where all
the translated of b and w, as well as all the edges connected to these vertices, have
been removed. Repeating the argument given above, we find the main contribution
to it,

QB
bw(z,w) = Qbw(eBx z, eByw)

(82)

= Mbwzδ
n∏

j=1
j �=j0

(
m∏

i=1

aij − (−1)meBx z

m∏
i=1

cij

)
+ O(t),

where Mbwzδ is the weight of the dimer configuration of the strip j0 of G1 deprived
of b and w. The coefficient of the inverse Kasteleyn operator corresponding to
these two vertices whose fundamental domains are separated by the lattice vector
(x, y) is given by

K−1
B (by,w0) =

∫∫
T2

z−yw0QB
bw(z,w)

P B(z,w)

dz

2iπz

dw

2iπw
(83)

=
∫∫

T2

z−y+δMbw

(
∏m

i=1 aij0 − (−1)meBx z
∏m

i=1 cij0)

dz

2iπz

dw

2iπw
(84)

+ O(t)

=
∫

S1

z−y+δMbw

(
∏m

i=1 aij0 − (−1)meBx z
∏m

i=1 cij0)

dz

2iπz
+ O(t).(85)

Suppose that Bx <
∑m

i=1 log
aij0
cij0

, the other case is similar. In that case, the pole

located at

z = (−1)m
∏m

i=1 aij0

eBx
∏m

i=1 cij0

(86)
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is outside of the unit disk. If y − δ < 0, then there is no pole at all in the unit disk
and, therefore, the integral over z is zero. However, if y − δ ≥ 0, then the integral
equals the opposite of the residue at z0, and

K−1
B (by,w0) = Mbw

(−1)meBx
∏m

i=1 cij0

( ∏m
i=1 aij0

(−1)meBx
∏m

i=1 cij0

)−y−1

+ O(t).(87)

When by and w0 are the ends of an edge with weight ai0j0 , Mbw = ∏
i �=i0

aij0 and
y and δ equal 0. It follows that

K−1
B (by,w0) = Mbw∏m

i=1 aij0

+ O(t) = 1

ai0j0

+ O(t).(88)

Thus, the probability of this a-edge, given by ai0j0K−1
B (by,w0) goes to 1 when t

goes to zero.
On the other hand, in the case when b and w are the ends of a “c”-type edge, then

either y = −1 or δ = 1. In both cases, K−1
B (by,w0) is O(t). Thus, the probability

of this edge goes to zero when t goes to zero. Such an edge is called nontypical.
�

A sequence of nontypical edges in a frozen column is initiated by the presence
of a bead (a “b”-edge) crossing a neighboring wire. The analysis we made of the
inverse Kasteleyn operator allows us to determine the distribution of the length of
the sequence of nontypical edges in a frozen column.

PROPOSITION 4. The length of a succession of nontypical edges in a frozen
column has a geometric distribution in the limit. The parameter of the geomet-
ric distribution has an explicit expression in terms of ratios of lengths of dual
edges.

PROOF. We suppose that in the frozen column j0, we only see a-edges with
probability close to 1. The inequality

Bx <

m∑
i=1

log
aij0

cij0

(89)

is satisfied. Since we work only in one column, we will drop the index j0

for the sake of simplicity. See Figure 10 for an illustration of the notations.
Given that the edge e = (w,b) with weight bi0 is present in the dimer config-
uration, we compute the probability of seeing N successive c-edges after this
bead. Denote by ec

1 = (w1,b1), . . . , ec
N(wN,bN) the N c-edges. The weights of

the edges around vertex wi are a[i], b[i], c[i], where [i] = (i0 + i modm) + 1.
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FIG. 10. Illustration of Proposition 4. Here is represented a frozen column of (horizontal) a-rhombi
(in light grey), perturbed by the presence of a defect (the b-rhombus corresponding to the edge
(w,b)), followed by a finite sequence of c-rhombi.

The conditional probability we want to compute is given by the following for-
mula:

P[e ∈ C and ∀i = 1, . . . ,Nec
i ∈ C|e ∈ C]

= P[e ∈ C and ∀i = 1, . . . ,Nec
i ∈ C]

P[e ∈ C](90)

=
(

N∏
i=1

c[i]
)

detAN+1

K−1(b,w)
,

where AN+1 is the following square matrix whose entries are inverse Kasteleyn
operator coefficients:

A =

⎡
⎢⎢⎢⎢⎢⎣

K−1(b,w) · · · K−1(bj ,w) · · ·
...

. . .
...

K−1(b,wi) K−1(bj ,wi)
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ .(91)

Since w and the white vertices wi stand on different sides of a frozen path,
the associated coefficients K−1(b,wi) are O(t). More precisely, from (67), one
has

K−1(b,wi) = tρbwi
+ O(t2).(92)

Besides, if i ≤ j , the power of z in the numerator of (83) is positive, and it follows
from computations made above that K−1(bj ,wi) is also O(t).

For i ∈ {1, . . . ,N} and with the convention that w0 = w, wi−1 and bi are the
ends of an a-edge with weight a[i−1]. The same computations as above show that
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K−1(bi ,wi−1) = 1
a[i−1] . As a consequence, the asymptotic expansion of the deter-

minant of AN+1 is given by the product of these elements just above the diagonal
times the last element of the first column.

detAN+1 = tρbwN

N∏
i=1

1

a[i−1]
+ O(t2).(93)

As the probability of the bead is bi0ρbwt+ O(t2), the conditional probability we
want is given by

P[N successive c-edges|bead] = ρbw

ρbwN

N∏
i=1

c[i]
a[i−1]

+ O(t).(94)

Using Proposition 4, one can rewrite ρbwN
/ρbw as the following telescopic prod-

uct:

ρbwN

ρbw
= UbVwN

UbVw
=

N∏
i=1

Ubi
Vwi

Ubi
Vwi−1

.(95)

Plugging this into (94), one gets

P[N successive c-edges|bead] =
N∏

i=1

c[i]Ubi
Vwi

a[i−1]Ubi
Vwi−1

+ O(t)

(96)

=
N∏

i=1

�(c[i])
�(a[i−1])

+ O(t),

where �(a[i−1]) and �(c[i]) are respectively the length of the dual edges with weight
a[i−1] and c[i] given by the mapping described in Lemma 3. In particular, in the
limit t → 0, the probability that the length L of this succession of nontypical
edges exceeds p fundamental domains equals

P[L ≥ p] =
(

m∏
i=1

�(ci)

�(ai)

)p

.(97)

Thus, in the limit, L has a geometric distribution. �

Pushing further the above computations of the lengths of the nontypical se-
quences of edges in frozen columns, one can derive the following.

PROPOSITION 5. The limiting bead models on the different families of threads
Bj are perfectly correlated: The distance between beads on each side of a frozen
column converges in probability to zero.
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FIG. 11. A sketch of a typical tiling for a Gibbs measure corresponding to a point inside a tentacle.
The black beads mark the transition between the two dominant type of edges. Next to them, beads
also appear on the other threads to compensate the defect created in frozen columns.

PROOF. The details of the proof are omitted here, but by looking carefully at
the determinants in the proof given above, one can in fact see that, for every t,
the probability that a sequence of non typical edges in a frozen columns exceeds,
say, 1√

t
is of order q1/

√
t, and thus decays very fast when t goes to zero. Thus,

in the vertically rescaled graph, the distance between two beads at the extremity
of a sequence of nontypical edges is close to 0. In the scaling limit, the distance
between these beads converges in probability to 0. �

As a consequence, the picture of a typical dimer configuration for a Gibbs mea-
sure corresponding to a point in a tentacle of the phase diagram looks like the one
in Figure 11.
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