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We propose a novel and efficient method, that we shall call TopRank in
the following paper, for detecting change-points in high-dimensional data.
This issue is of growing concern to the network security community since
network anomalies such as Denial of Service (DoS) attacks lead to changes in
Internet traffic. Our method consists of a data reduction stage based on record
filtering, followed by a nonparametric change-point detection test based on
U -statistics. Using this approach, we can address massive data streams and
perform anomaly detection and localization on the fly. We show how it applies
to some real Internet traffic provided by France-Télécom (a French Internet
service provider) in the framework of the ANR-RNRT OSCAR project. This
approach is very attractive since it benefits from a low computational load
and is able to detect and localize several types of network anomalies. We also
assess the performance of the TopRank algorithm using synthetic data and
compare it with alternative approaches based on random aggregation.

1. Introduction. Recent attacks on very popular web sites such as Yahoo and
eBay, leading to a disruption of services to users, have triggered an increasing in-
terest in network anomaly detection. Typical examples include Denial of Service
(DoS) attacks—a network-based attack in which agents intentionally saturate sys-
tem resources—and their distributed version (DDoS). Since the aforementioned
attacks represent serious threats for computer networks, developing anomaly de-
tection systems for ensuring the defense against them has become a major concern.

Existing detection systems to deal with DoS or DDoS attacks are based on two
different approaches. The first one is a signature-based approach which compares
the observed patterns of the network traffic with known attack templates. If the
attack belongs to the set of known attacks listed in the database, then it can be suc-
cessfully detected: Snort and Bro developed by Roesch (1999) and Paxson (1999),
respectively, are two examples of such anomaly detection systems. The obvious
limitation of this approach is that the signature of the anomaly has to be known in
advance.

The second detection system is based on statistical tools which do not require
any prior information about the kind of anomalies we are faced with. As a conse-
quence, this approach aims at detecting anomalies which do not belong to a pre-
scribed database. It relies on the fact that anomalies in network traffic lead to abrupt
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changes in some network characteristics. We choose those characteristics accord-
ing to the type of attacks we are looking for. These changes occur at unknown time
instants and have to be detected as soon as possible. Detecting an attack in the net-
work traffic can thus be described as a change-point detection problem, which is
a classical issue in statistics. The detection can either be performed with a fixed
delay (batch approach) or with a minimal average delay (sequential approach). We
refer to Basseville and Nikiforov (1993), Brodsky and Darkhovsky (1993), Csörgo
and Horvath (1997) and the references therein for a complete overview of the ex-
isting methods in statistical change-point detection.

The most widespread change-point detection technique in the field of network
anomaly detection is the cumulated sum (CUSUM) algorithm which was first pro-
posed by Page (1954). The CUSUM algorithm has already been used by Wang,
Zhang and Shin (2002) and Siris and Papagalou (2004) for detecting DoS attacks
of the TCP (Transmission Control Protocol) SYN flooding type. Such an attack
consists in exploiting the TCP three-way hand-shake mechanism and its limita-
tion in maintaining half-open connections. More precisely, when a server receives
a SYN packet, it returns a SYN/ACK packet to the client. Until the SYN/ACK
packet is acknowledged by the client, the connection remains half-opened for a
period of at most the TCP connection timeout. A backlog queue builds up in the
system memory of the server to maintain all half-open connections, possibly lead-
ing to a saturation of the server. In Siris and Papagalou (2004), the authors use
the CUSUM algorithm to look for a change-point in the time series correspond-
ing to the sum of received SYN packets by all the destination IP addresses which
have been requested. With such an approach, it is only possible to set off an alarm
when a change occurs in the aggregated series, but it is impossible to pick out the
malicious flows.

Taking into account the previous definition of a TCP/SYN flooding type attack,
it would be natural, in order to identify the IP addresses involved in the attack, to
analyze the time series corresponding to the number of TCP/SYN packets received
by each IP address, to apply to each of them a change-point detection test and to
say that it is attacked if the test sets off an alarm. This idea is used in Tartakovsky
et al. (2006a, 2006b), who propose a multichannel detection procedure which is a
refined version of the previously quoted algorithms: it makes it possible to detect
changes which occur in a channel and which could be obscured by the normal
traffic in the other channels if global statistics were used. Note that these methods
only focus on the number of TCP/SYN packets received by a given destination
IP address and not on the number of TCP/SYN packets sent by a given source IP
address to a given destination IP address. Applying a change-point detection test
to the latter time series to detect an anomaly is bound to fail because of spoofing,
a method used by attackers which makes their IP address appear as a random
address on the Internet.

Operators seeking to understand and manage their networks are increasingly
looking at wide-area-network traffic flows. In this framework, previous methods
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are bound to failure since the quantity of data to analyze is too massive. Indeed,
each flow is characterized by 5 fields: source and destination IP addresses, source
and destination ports and protocol number, which produces a very large database
to store and study. In order to detect anomalies in such massive data streams within
a reasonable time span, it is impossible to analyze the time series of all the IP ad-
dresses receiving TCP/SYN packets. That is why dimension reduction techniques
have to be used. Two main approaches have been proposed: some of them are
based on Principal Component Analysis (PCA) techniques [see Lakhina, Crovella
and Diot (2004)] and others on random aggregation (sketches); see Krishnamurthy
et al. (2003) and Li et al. (2006). Localization of the anomalies is possible with
the second approach using hash table inversion techniques; see Salem, Vaton and
Gravey (2007) and Abry, Borgnat and Dewaele (2007).

In this paper we propose a novel algorithm for detecting change-points in a
multi-dimensional time series (N�

i (t))t≥1, i ∈ {1, . . . ,D}, under computational
constraints which allow us to process the data on the fly, even for a high dimen-
sion D. Our method can be used for identifying DoS and DDoS attacks as well as
PortScan and NetScan in Internet traffic in cases where we are faced with massive
data streams. More precisely, we can identify anomalies of the following types:
TCP/SYN flooding, UDP flooding, PortScan and NetScan. UDP flooding is an
attack similar to TCP/SYN flooding which aims at saturating the memory of a
destination IP address by sending a lot of UDP packets. A PortScan consists in
sending TCP packets to each port of a machine to know which ones are open. In a
NetScan attack, a source IP address sends packets to a large number of IP addresses
in order to detect the machines which are connected to the network. The problem
of change-point detection in high-dimensional data mainly concerns the network
security community but, in our view, it is a challenging issue which will benefit a
broader audience.

Let us now give an outline of this paper. Section 2 describes the framework
of our study. In Section 3 we describe the different methods that we propose to
detect change-points in a multi-dimensional time series under computational con-
straints. These approaches are based on two different dimension reduction tech-
niques: TopRank uses record filtering, whereas HashRank is based on random ag-
gregation. The detection stage uses a nonparametric change-point detection test
based on U -statistics. More precisely, we used rank tests for censored data as pro-
posed and analyzed in Gombay and Liu (2000). The corresponding algorithms
have been written in C language [for TopRank, see Lévy-Leduc, Benmammar and
Roueff (2008)] and applied to real datasets corresponding to some Internet traf-
fic provided by France-Télécom (a French Internet Service Provider) within the
framework of the ANR-RNRT OSCAR project. In Section 4 we apply the TopRank
algorithm to a set of real Internet traffic provided by France-Télécom which con-
tains SYN flooding type attacks in order to explain how to choose the most relevant
parameters. In Section 5 TopRank is applied to a set of real data containing several
types of attacks: SYN flooding, UDP flooding and also PortScan and NetScan.
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Our research indicates that our method can be used to analyze a very large amount
of data and to detect network anomalies on the fly. The methods TopRank and
HashRank are finally compared first from a theoretical point of view on a toy ex-
ample in Section 6 and then with Monte Carlo experiments on synthetic data in
Section 7.

2. Description of the data. In Network applications the raw data consists of
Netflow type data collected at several points of the Internet network and put into a
single Netflow type table. The data at our disposal includes the source and destina-
tion IP addresses, the source and destination ports, the start time and the end time
of the flow, as well as the protocol and the number of exchanged packets. In the
case of the TCP protocol, the number of packets of each type (SYN, SYN/ACK,
FIN, RST) is available.

Depending on the type of attack that one wants to detect, some time indexed
traffic characteristics are of particular interest and have to be processed for detec-
tion purposes. For instance, in the case of the TCP/SYN flooding, the quantity of
interest is the number of TCP/SYN packets received by each destination IP address
per unit of time.

We denote by � the smallest time unit used for building time series from our raw
Netflow type data. The time series are built as follows: in the case of TCP/SYN
flooding, we shall denote by N�

i (t) the number of TCP/SYN packets received
by the destination IP address i in the sub-interval indexed by t of size � sec-
onds. The corresponding time series of the destination IP address i will thus be
(N�

i (t))t≥1. In the case of UDP flooding, N�
i (t) will be defined as the number

of UDP packets received by the destination IP address i in the t th sub-interval of
size � seconds. For a PortScan, we shall take as N�

i (t) the number of different
requested destination ports of the destination IP address i in the t th sub-interval
of size � seconds and for a NetScan, it will be the number of different requested
destination IP addresses by the source IP address i. For Scan attacks, the source
address is reliable (spoofing cannot be used) since the attackers wish to receive
packets responding to their requests.

Our goal is now to provide algorithms for detecting change-points in the time
series (N�

i (t))t≥1 for each i ∈ {1, . . . ,D} under computational constraints which
make it possible to process the data on the fly, even for a high dimension D. For
instance, in the case of TCP/SYN flooding, D is the number of destination IP ad-
dresses appearing in the raw data and can be huge, up to several thousand addresses
within a minute and several million within a few days.

For convenience, in the following we will drop the superscript � in the notation
N�

i (t).

3. Description of the methods. We shall only consider batch methods in the
following. The traffic is analyzed in successive observation windows, each having
a duration of P × � seconds, for some fixed integer P . A decision concerning the
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presence of potentially attacked IP addresses is made at the end of each observa-
tion window and we also identify the IP addresses involved. The value of D then
corresponds to the number of different i encountered in the observation window
of time length P × � seconds.

A crude solution for detecting change-points in the time series (Ni(t))1≤t≤P

would be to apply a change-point detection test to each time series (Ni(t))1≤t≤P

for all i ∈ {1, . . . ,D}. Since D can be huge even in a given observation window
(see Figure 3 in Section 4.1), we are faced in practice with massive data streams
leading to the construction and the analysis of several thousands of time series
even for short observation periods (around 1 minute). To overcome this difficulty,
a data reduction stage must precede the change-point detection step.

In the following, we propose two different data reduction mechanisms: record
filtering and random aggregation (sketches). In short, the record filtering will select
the heavy-hitters among the flows involved and process them, while the random
aggregation will construct and process several (randomly chosen) linear combina-
tions of all the flows. Random aggregation is currently the dimension reduction
mechanism which is the most used in the network security community. Neverthe-
less, we believe that for the purpose of change-point detection, in particular, if the
change-points involve a massive increase, record filtering would be a more efficient
alternative. At first glance, random aggregation has the advantage of processing all
the data. However, heavy-hitters are mixed with many other flows, which may
smooth the change-points and result in poor detection. On the other hand, heavy-
hitters are selected with high probability in record filtering and their change-points
are more likely to be detected. To support this idea, we derive a toy problem related
to this question in Section 6 and perform some numerical experiments on synthetic
data in Section 7.

As for the change-point detection step, we propose using nonparametric tests
based on U -statistics which do not require any prior information concerning the
distribution of the time series constructed after the dimension reduction step. Such
an approach is of particular interest for dealing with Internet traffic data, for which
there is a lack of commonly accepted parametric models.

In the following we shall refer to record filtering followed by a nonparametric
change-point detection test as the TopRank algorithm and when the record filter-
ing stage is replaced by random aggregation, the HashRank algorithm. Both algo-
rithms are further described below.

3.1. The TopRank method. The TopRank algorithm can be split into three
steps described hereafter. Note that the following processing is performed in each
observation window of length P × � seconds and that all the stored data is erased
at the end of each observation window.

STEP 1 (Record filtering). The main dimension reduction takes place in this
step. In each sub-interval indexed by t ∈ {1, . . . ,P } of duration � seconds of the
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observation window, we keep the indices i of the M largest Ni(t) and label them
as i1(t), . . . , iM(t) in such a way that Ni1(t)(t) ≥ Ni2(t)(t) ≥ · · · ≥ NiM(t)(t). In the
following we shall denote by TM(t) the following set:

TM(t) = {i1(t), . . . , iM(t)}.
In other words, for all t ∈ {1, . . . ,P },

#TM(t) = M and ∀i ∈ TM(t) and ∀j /∈ TM(t), Ni(t) ≥ Nj(t).

We stress that, in order to perform the following steps, we only need to store the
variables {Ni(t), i ∈ TM(t), t = 1, . . . ,P }.

STEP 2 (Creation of censored time series). In this stage we shall build cen-
sored time series to be analyzed in the last step. For a given index i, the corre-
sponding time series is censored since it is possible that for a given t in {1, . . . ,P },
i does not belong to the set TM(t). In this case its value Ni(t) is not available and
is censored using the upper bound NiM(t)(t) = mini∈TM(t) Ni(t). More formally,
the censored time series is defined by

(Xi(t), δi(t))1≤t≤P ,(1)

where, for each t ∈ {1, . . . ,P },

Xi(t) =
{

Ni(t), if i ∈ TM(t),
min

j∈TM(t)
Nj (t), otherwise,

δi(t) =
{

1, if i ∈ TM(t),
0, otherwise.

The value of δi(t) tells us if the corresponding value Xi(t) has been censored
or not. Observe that, by definition, δi(t) = 1 implies Xi(t) = Ni(t) and δi(t) = 0
implies Xi(t) ≥ Ni(t).

In practice, the censored time series are only built for indices i selected in the
first step, that is, i ∈ ⋃P

t=1 TM(t). However, many such time series will be highly
censored. Hence, we propose an additional dimension reduction which consists in
considering only the indices

i ∈
P⋃

t=1

TM ′(t),

where M ′ ∈ {1, . . . ,M} is a chosen parameter.

STEP 3 (Change-point detection test). In Gombay and Liu (2000) a nonpara-
metric statistical change-point detection method is proposed to analyze censored
data, as well as a way of computing its p-values. It is a nonparametric rank test
using a score function (denoted by A in the following) which was first introduced
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by Gehan (1965) and Mantel (1967) in their generalization of Wilcoxon’s rank test
for censored data. We apply this test to each time series created in Step 2. Note
that each of these time series is removed when the analysis in a given observation
window is complete. With such an approach, up to M ′ × P time series of length
P are processed in each observation window of time length P × � seconds.

Let us now further describe the statistical test that we perform. This procedure
aims at testing from the observations (Xi(t), δi(t))1≤t≤P built in the previous step
if a change occurred in the time series (Ni(t))1≤t≤P for a given i. More precisely,
if we drop the subscript i for convenience in the description of the test, the tested
hypotheses are as follows:

(H0): “{N(t)}1≤t≤P are independent and identically distributed random vari-
ables.”

(H1): “There exists some r such that (N(1), . . . ,N(r)) and (N(r + 1), . . . ,

N(P )) have a different distribution.”

Let us now describe the test statistic that we use. For each s, t ∈ {1, . . . ,P }, we
define the following:

• As,t = 1(X(s) > X(t), δ(s) = 1) − 1(X(s) < X(t), δ(t) = 1), where 1(E) = 1
in the event E and 0 in its complementary set,

• Us = ∑P
t=1 As,t , s = 1, . . . ,P ,

• St = (
∑t

s=1 Us)/(
∑P

s=1 U2
s )1/2, t = 1, . . . ,P .

We shall use

WP = max
1≤t≤P

|St |(2)

as a test statistic. Since, under (H0) [see Gombay and Liu (2000)],

WP
d−→ B� = sup

0<t<1
|B(t)| as P → ∞,

where {B(t), t ∈ [0,1]} denotes a Brownian bridge and d the convergence in dis-
tribution, we shall take for the change-point detection test the following p-value:
Pval(WP ), where for all b > 0,

Pval(b) = P(B� > b) = 2
∞∑

j=1

(−1)j−1e−2j2b2
, b > 0.

The last equality is given in Gombay and Liu (2000). These results can be proved
by remarking that the numerator of St is a U -statistic and the denominator is the
normalization which ensures the convergence in distribution of WP . All these re-
sults are proved in detail in Liu (1998) and Midodzi (2001), under specific assump-
tions. Then, for a given asymptotic level α ∈ (0,1), we reject (H0) when

Pval(WP ) < α.(3)
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In the rejection case, the change-point instant is given by

t̂P = Argmax
1≤t≤P

|St |.

3.2. The HashRank method. In this approach we propose another method to
perform the data reduction stage based on hash functions. As explained previously,
the following processing is performed in each observation window of length P ×�

seconds and all the stored data is erased at the end of each observation window.

STEP 1 (Filtering using hash functions). Let us define a hash table with L

rows and K columns. We consider L hash functions h�, � = 1, . . . ,L, each taking
its value in {1, . . . ,K}. To each entry (�, k) ∈ {1, . . . ,L} × {1, . . . ,K} of the hash
table is associated the list L�,k of the indices i which are hashed into this entry
and a time series (X�,k(t))1≤t≤P defined by

X�,k(t) = ∑
i

1
(
h�(i) = k

)
Ni(t), t = 1, . . . ,P .

STEP 2 (Change-point detection test). We perform a statistical change-point
detection test on each of the time series previously obtained. Let us denote by C
the set of cells (�, k), � ∈ {1, . . . ,L}, k ∈ {1, . . . ,K}, of the hash table in which a
change occurred. The test statistic that we use is the same as the one explained in
Section 3.1 (nonparametric rank tests), except that the terms related to the censor-
ship are removed.

STEP 3 (Inversion of the hash table). Assuming that a time series (Ni(t))1≤t≤P

which contains a change-point will yield a change-point in the L time series(
X�,h�(i)(t)

)
1≤t≤P , � = 1, . . . ,L,

we classify i as an anomaly if a change-point has occurred in the time series as-
sociated to the cell (�,h�(i)) for all � ∈ {1, . . . ,L}. In practice, the set of such
indices is obtained from the lists L�,k and the set C defined in the previous steps
as follows: ⋂

1≤�≤L

LC
� , where LC

� = ⋃
k:(�,k)∈C

L�,k.

Several types of hash functions can be considered in the first step, but we shall
only focus on random hashing because of its low computational load.

We shall use 4-universal hashing functions for which a fast implementation is
described in Thorup and Zhang (2004). Such functions are used since they are
known to ensure a small number of collisions (a collision occurs when the L dif-
ferent hashing functions have the same output when applied to two different in-
dices i). Collisions may yield a false alarm during Step 3 described above. More
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precisely, following Abry, Borgnat and Dewaele (2007), we shall take as hash func-
tions the following (h�)�=1,...,L:

h�(x) = 1 +
( 3∑

j=0

aj,� xk modp

)
modK,(4)

where x is a 32-bit integer (making this method particularly well suited for the
hashing of IP addresses), and p is the Mersenne prime number 261 − 1. As for the
(aj,�)’s, they are picked randomly in {0, . . . , p−1} with independent outputs from
one hash function to another.

4. Application to real data with attacks of SYN flooding type. In this sec-
tion we give the results of the TopRank algorithm when it is applied to some real
Internet traffic provided by France-Télécom within the framework of the ANR-
RNRT OSCAR project and we give some hints about the choice of the different
parameters involved.

This data corresponds to a recording of 118 minutes of ADSL (Asymmetric
Digital Subscriber Line) and Peer-to-Peer (P2P) traffic to which some TCP/SYN
flooding type attacks have been added. Figure 1 (left) displays the total number
of TCP packets received each second by the different requested IP addresses.
The number of TCP/SYN packets received by the four attacked destination IP
addresses are displayed on the right in Figure 1. As we can see in this figure, the
first attack occurs at around 2000 seconds, the second at around 4000 seconds, the
third at around 6000 seconds and the last one at around 6500 seconds.

From Figure 1, we can see that we are faced with massive data streams and that
the attacks are completely hidden in TCP traffic and thus difficult to detect.

FIG. 1. Number of TCP packets exchanged and number of TCP/SYN packets received by the 4
attacked IP addresses.
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4.1. Choice of parameters. As described above, Step 1 (the record filtering
step) and Step 2 (the creation of the censored time series) of the TopRank algorithm
rely on several parameters (P,�,M for Step 1 and M ′ for Step 2). As for Step 3
(the change-point detection test), it does not require the tuning of any parameters.
The main objective of the first two steps is to cope with high dimensionality and
the requirements of real time implementation. The choice of the parameters must
satisfy these requirements as well as a reasonable average detection delay and a
relevant selection of the time series to be processed in the subsequent detection
step. In the following, we give some guidance regarding parameter selection in the
context of Network anomaly detection.

Since a decision concerning the presence of attacks is made at the end of each
observation window, the maximal detection delay is given by the time length of
the observation window, that is, P × � seconds. The average detection delay is
then given by P × �/2 seconds (typically about 30 seconds in the context of
Network anomaly detection). Once the average detection delay has been chosen,
one should choose P as large as possible under the constraints of real time data
processing for a given maximal number of tests to perform within the observation
window. Indeed, a large P ensures a better statistical consistency. On the other
hand, the test statistic WP in (2) has an O(P 2) computational complexity. Given
the computational limits of a standard computer, we chose P = 60 in order to
allow up to 103 time series to be processed within a 1 minute observation window.

Let us now explain the choice of M , which sets the censorship level. Indeed,
the number of TCP/SYN packets received by the M th most requested machine
corresponds to a threshold above which an IP address may appear as potentially
attacked. From the data, we remark that 99% of the observed values of this thresh-
old are at most 10 when M = 10 and at most 5 for M = 20. In the applications
to real data, we chose M = 10 to allow us to capture flows with significantly high
traffic rates (10 packets per second) while ensuring a low cost in terms of memory
storage. Recall that a M ×P data table (Xi(t), δi(t))1≤t≤P,1≤i≤M has to be stored
during the first and second step.

We now comment on the choice of the parameter M ′ in {1, . . . ,M}. Taking
M ′ = 1 means that we only analyze the IP addresses i having, at least once in an
observation window, the largest Ni(t). Taking M ′ = M means that the detection
step is applied to the censored time series of all IP addresses i which have been
selected in the filtering step. Hence, increasing M ′ increases the number of ana-
lyzed censored time series. Figure 2 displays the number of time series which are
actually built in Step 2 of TopRank after the filtering stage of Step 1 for differ-
ent values of M ′: M ′ = 1, M ′ = 5 and M ′ = M = 10 when we are looking for
TCP/SYN flooding type attacks. Figure 3 displays the number of different des-
tination IP addresses every minute of the traffic trace. Comparing Figure 2 with
Figure 3, we see that Steps 1 and 2 of the TopRank algorithm appear to be nec-
essary to provide an implementation feasible on the fly. Indeed, applying Step 3
to each IP address every minute would produce an excessive computational load.
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FIG. 2. Number of analyzed time series every minute when M ′ = 1 (“∗”), M ′ = 5 (“o”) and
M ′ = M = 10 (“+”).

As for the statistical performance of the method with respect to the parameter M ′,
we shall see in the following section that the parameter M ′ does not significantly
change the results in terms of false alarm and detection rates.

4.2. Performance of the method. We now investigate the performance of the
TopRank algorithm with the following parameters: P = 60, � = 1 s, M = 10 and
M ′ = 1. Using these parameters, the average detection delay is 30 seconds.

FIG. 3. Number of destination IP addresses every minute.
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4.2.1. Statistical performance. First, note that with the previous choice of pa-
rameters the attacked IP addresses have been identified when the upper bound of
the p-value α introduced in Step 3 of TopRank is such that α ≥ 2 × 10−6.

Figure 4 displays the censored time series (Step 2 of TopRank) of the four at-
tacked IP addresses. These censored time series are displayed in the first observa-
tion window in which the algorithm detects the anomaly. We also display with a
vertical line the instant where the change is detected. Remember that the uncen-
sored time series of these 4 IP addresses are displayed in Figure 1 (right).

The TopRank part of Table 1 gives the smallest p-value above which the corre-
sponding attack is detected, as well as the number of false alarms. The number of
false alarms corresponds to the number of IP addresses for which an alarm is trig-
gered but which are different from the attacked IP addresses. For instance, the first
attack is detected if α ≥ 10−8 [see (3)] and the associated number of false alarms
is equal to 3. If M ′ = 5 or M ′ = M = 10, the results remain unchanged except for
the third attack for which the number of false alarms equals 10 instead of 9.

In Table 1 we also give the results obtained from the same data with a method
proposed by Siris and Papagalou (2004). This algorithm uses the CUSUM algo-

FIG. 4. Censored time series of the 4 attacked IP addresses, where the vertical lines correspond to
the detected change-point instants and the uncensored values are displayed with stars (“∗”).
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TABLE 1
Statistical performance for detecting the 4 successive SYN flooding attacks displayed on the

right-hand side of Figure 1. The attacks consist in sending SYN packets to a given destination IP
address. In the top row the intensity (number of SYN packets per second) of each attack is given. In
the TopRank part of the table, the displayed p-values are the smallest ones that ensure the detection
of the attack by the TopRank algorithm and below that the corresponding number of false alarms in

the whole traffic trace is given. In the SP part of the table [SP is the method devised by Siris and
Papagalou (2004)], the h row gives the smallest threshold values that ensure the detection of each

attack. In the last row the corresponding number of false alarms is displayed

Number of SYN packets 1000 500 200 50

TopRank p-values 10−8 10−10 2 × 10−6 10−12

Number of false alarms 3 1 9 0

SP h 5 6.5 9.7 16.34
Number of false alarms 69 65 62 22

rithm to look for a change-point in the time series corresponding to the sum of re-
ceived SYN packets by all the destination IP addresses which have been requested.
For each observation window of 60 seconds, an alarm is set off when the statistic
gn defined in equation (6) of Siris and Papagalou (2004) is greater than a thresh-
old h at least once in the window. This quantity gn depends on two parameters α

and β . We use the same values as Siris and Papagalou (2004), namely, α = 0.5 and
β = 0.98, to obtain the results displayed in Table 1. We observe that the TopRank
algorithm allows us not only to retrieve the attacked destination IP addresses, but
also seems to perform better in terms of false alarm rate. This suggests that ag-
gregating traffic flows results in a poor detection of malicious flows, especially
when the normal traffic is high. Indeed, a close look shows that the normal traffic
is particularly high during the first attack, which explains why the corresponding
threshold value is the lowest (and the false alarm rate the highest) although this
attack is the most intense. We shall investigate the comparison between record fil-
tering and aggregation filtering further, in Sections 6 and 7, in terms of information
loss and detection performance respectively.

To compute the number of false alarms, we have considered that the attacked
IP addresses were only those for which an attack was generated, but it is possible
that the underlying ADSL and P2P traffic contains some other attacks. Figure 5
displays the censored time series of some IP addresses which were considered to
be false alarms in the TopRank part of Table 1, as well as the time instant where
a change was detected (vertical line). However, if we refer to their time series,
these IP addresses could be considered as being attacked. Thus, the results shown
in Table 1 have been computed in the most unfavorable way for the algorithms.

4.2.2. Numerical performance. As we have seen, the TopRank algorithm
seems to give satisfactory results from a statistical point of view. Moreover, with
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FIG. 5. Censored time series for IP addresses considered as false alarms, where the vertical lines
correspond to the detected change-point instants and the uncensored values are displayed with stars
(“∗”).

M = 10, M ′ = 1, and P = 60, applying the TopRank algorithm takes only 1 minute
and 19 seconds to process the whole traffic trace of 118 minutes, when looking for
TCP/SYN flooding type attacks with a computer having the following configura-
tion: RAM 1 GB, CPU 3 GHz.

5. Application to real data with several kinds of attacks. In this section
we shall show that the TopRank algorithm can not only detect SYN flooding type
attacks but also any other kind of attacks, such as UDP flooding, PortScan and
NetScan attacks. As we shall see in the following, the TopRank algorithm can
detect, identify the anomaly and also provide the IP addresses involved.

The real data of this section has been provided by France-Télécom Internet Ser-
vice Provider within the framework of the ANR-RNRT OSCAR project. It corre-
sponds to a recording of 67 minutes of ADSL and P2P traffic to which some attacks
of the following types, SYN flooding, UDP flooding, PortScan and NetScan, have
been added.

The top of Figure 6 displays the total number of TCP packets, as well as the
number of TCP packets received by the destination IP address attacked by a
PortScan. The bottom of Figure 6 displays the total number of packets, as well
as the number of packets sent by the source IP address generating a NetScan at-
tack.

In Figure 6 we can see, as in Section 4, that the attacks are completely hidden
in the total traffic and thus difficult to detect.

5.1. Choice of parameters. The previous data has been processed using the
same parameters as those used in Section 4: P = 60, � = 1 s, M = 10 and M ′ = 1.
Note that the reduction stage (Step 1 of TopRank) is also necessary for the analysis
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FIG. 6. Number of exchanged packets for PortScan and NetScan attacks.

of this dataset. Indeed, in Figure 7, which displays the number of different desti-
nation IP addresses each minute of the traffic trace, we can see that Step 3 cannot
be applied to each IP address at every minute in a reasonable computational time.

5.2. Performance of the method.

5.2.1. Statistical performance. First, note that with the previous choice of pa-
rameters the attacked IP addresses have been identified when the upper bound of
the p-value α introduced in Step 3 of TopRank is such that α ≥ 10−11 for the
PortScan, α ≥ 10−6 for the UDP flooding, α ≥ 0.0006 for the SYN flooding and
α ≥ 0.04 for the NetScan.

Figure 8 displays the censored time series (Step 2 of TopRank) of the attacked IP
addresses in the case of SYN flooding, UDP flooding and PortScan, as well as the
censored time series of the source IP address generating the attack in the case of
NetScan. These time series are displayed in the first observation window in which
the algorithm detects the anomaly of the corresponding type. We also display with
a vertical line the instant where the change is detected. The detection time delay is
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FIG. 7. Number of destination IP addresses each minute.

FIG. 8. Censored time series of the attacked IP addresses, where the vertical lines correspond to
the detected change-point instants and the uncensored values are displayed with stars (“∗”).
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TABLE 2
Statistical performance of the TopRank algorithm for detecting several types of attacks. In the

second row are displayed the smallest p-values that ensure the detection of the PortScan,
SYN flooding, UDP flooding and NetScan type attacks respectively. In the last

row, the corresponding number of false alarms is given

PortScan SYN flooding UDP flooding NetScan

p-values 10−11 6 × 10−4 10−6 0.04
Number of false alarms 3 127 136 378

equal to around 1 minute for the SYN flooding, 5 seconds for the UDP flooding,
30 seconds for the PortScan and 20 seconds for the NetScan.

We can see from Figure 8 that the rank test for censored data described in Step 3
of TopRank can detect several types of changes: sudden increase, slow increase and
several types of magnitude of changes.

Table 2 gives the smallest p-value above which the corresponding attack is de-
tected, as well as the number of false alarms. The number of false alarms cor-
responds to the number of IP addresses for which an alarm is triggered by the
TopRank algorithm but which are different from the attacked IP addresses. For in-
stance, the PortScan attack is detected if α ≥ 10−11 and the associated number of
false alarms is equal to 3.

To compute the number of false alarms, we have considered, as previously, that
the attacked IP addresses were only those for which an attack was generated, but
it is possible that the background ADSL and P2P traffic contains some other at-
tacks. Figure 9 displays the censored time series of some IP addresses which were
considered to be false alarms in the computation of Table 2 in the case of the SYN
flooding, UDP flooding and NetScan, as well as the time instant where a change
was detected (vertical line).

Since these IP addresses could be considered as being attacked, the results of
Table 2 are computed in the most unfavorable way for our algorithm. This is a
major problem for comparing algorithms on massive data streams. The issue is
that without properly labeled datasets, comparisons cannot be performed using
standard methods such as ROC (Receiver Operating Characteristic) curves. A sec-
ond difficulty is to distinguish the relative merits of the filtering step and those of
the detection step. Finally, a third difficulty arises in the specific case of Network
anomaly detection: Internet traffic is known to be bursty, with loads varying quite
a lot over the day. Hence, the performance observed on a 2 hour dataset cannot be
generalized without caution, especially for methods that rely on the choice of nu-
merous parameters. The parameters of the filtering step can be interpreted in terms
of dimension reduction rate and are thus easier to compare. This is much more
difficult as far as the detection step is concerned, since the parameters often need
to be adapted to the statistical characteristics of the traffic data being studied. The
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FIG. 9. Censored time series for IP addresses considered as false alarm in the case of SYN and
UDP flooding (top: left and right respectively) and in the case of NetScan (bottom). The vertical lines
correspond to the detected change-point instants and the uncensored values are displayed with stars
(“∗”).

methods proposed by Krishnamurthy et al. (2003), Li et al. (2006), Salem, Vaton
and Gravey (2007) and Abry, Borgnat and Dewaele (2007) all use as a dimension
reduction technique random aggregation (sketches) which enables them to work on
the fly. All these methods use either outlier detection, or CUSUM in their change
detection step, with several parameters (in addition to the test threshold) that need
to be fine-tuned. In practice, because of the high variability of the loads within one
day, the choice of these parameters might require some expertise. In contrast, our
detection step is purely nonparametric. Since it is based on rank statistics, it only
requires choosing a threshold of the p-value under which an alarm is set off.

In Section 7 we shall compare our filtering steps with random aggregation fil-
tering on synthetic datasets which are completely labeled.

5.2.2. Numerical performance. As we have seen, this method seems to give
satisfactory results from a statistical point of view. Moreover, with M = 10,
M ′ = 1, and P = 60, applying the TopRank algorithm takes only 1 minute and
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30 seconds to process the whole traffic trace of 67 minutes, when looking for SYN
flooding, UDP flooding, PortScan and NetScan, with a computer having the fol-
lowing configuration: RAM 1 GB, CPU 3 GHz. This makes the implementation of
the TopRank algorithm very realistic in detection systems processing data on the
fly, even for very intense traffic data.

6. A toy problem comparing record and aggregation methods. In this
section we briefly introduce and solve a toy problem to compare the effects of
record filtering and random aggregation on data dimension reduction in a simpli-
fied framework. We have considered these two data reduction methods in the first
steps of the TopRank and HashRank algorithms, which aim at detecting an increase
of one (or several) components of a D-dimensional time series for a large D. For
detecting such anomalies, one has to be able to infer from the reduced data, at each
time instant, that one of the components is indeed large. We consider this inference
problem in a case where all the components have the same known distribution, ex-
cept possibly one, whose distribution is obtained by multiplying by a scale factor
θ−1 ≥ 1. Hence, we are in a standard problem of estimating a scalar parameter θ .
To compare the theoretical merits of the two data reduction methods, we simply
evaluate the Fisher information related to the two different observations.

More precisely, let X1, . . . ,XD be D independent random variables with pos-
itive values such that, among them, D − 1 admit the same density p(x) and one
admits the density θp(θx) with θ ∈ (0,1]. We shall compare the Fisher informa-
tion associated with the parameter θ for two different observations:

1. The observation obtained by data dimension reduction using simple record fil-
tering:

YD = max
k=1,...,D

(Xk).(5)

2. The observation obtained by data dimension reduction using simple random
aggregation filtering:

ZD =
D∑

k=1

Xk.(6)

The distributions of YD and ZD are both parametrized by θ . We will denote the cor-
responding densities by fD,θ and gD,θ respectively, and the corresponding Fisher
information quantities [see Bickel and Doksum (1976)] by

ID(θ) = Var(∂θ logfD,θ (YD)) and JD(θ) = Var(∂θ loggD,θ (ZD)).

Suppose that p is 2 times continuously differentiable, has its support in [0,1] and
that

E

[(
ṗ

p
(X)

)2]
< ∞,
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where ṗ denotes the derivative of p and X a random variable with density p. We
claim that, for any θ ∈ (0,1), as D → ∞,

ID(θ) → Var((θ ∨ X)(ṗ/p)(θ ∨ X))

θ2 and JD(θ) ∼ D−1 (E[X])2

θ4 Var(X)
,(7)

where a ∨ b = max(a, b).

REMARK 1. Since ID(θ) � 1 and JD(θ) � D−1, this result clearly shows that,
for large D, record filtering is advantageous from an information point of view
in comparison with aggregation filtering. However, the fact that p has compact
support is crucial in this result. We believe that ID would have different asymptotic
behavior if other assumptions were made on the tail distribution of X. However,
we leave this question open for future work.

Let us give some simple arguments to support our claims. It is easy to show that,
as D → ∞,

YD
d−→ 1 ∨ (X/θ).

We admit that this convergence in distribution can be strengthened to establish that
the Fisher information ID tends to the one associated to the limit distribution. The
limiting distribution has density t → θp(θt)/

∫ 1
θ p(u)du with a support in [0,1/θ ]

and the corresponding Fisher information is equal to Var((1 ∨ X/θ)
ṗ
p
(θ ∨ X)).

Hence, the left-hand side of (7).
Denote σ 2 = Var(X) and μ = E[X] and Z̃D = (

√
D − 1σ)−1(ZD − (D−1)μ).

Observe that the Fisher information associated with the observation Z̃D is the same
as for ZD . The centering and normalization is chosen so that the sum of the (D−1)

i.i.d. Xi’s in ZD is approximately N (0,1). The remaining Xi is then divided by√
D − 1 and thus is negligible as D → ∞,

Z̃D
d−→ U with U ∼ N (0,1).

In contrast with the previous case, as D → ∞, the asymptotic distribution does
not depend on θ . This is why JD(θ) → 0, as D → ∞. To obtain an equivalent as
in (7), we use

ẐD = U + (
θ
√

D − 1σ
)−1

X

to approximate the distribution of Z̃D , which is more precise than the limit distri-
bution. The corresponding density is given by the convolution

p̂θ (x) = √
D − 1σθ

∫ ∞
t=−∞

g(x − t)p
(√

D − 1σθt
)
dt,

where g denotes the density of U . It follows that

∂θ log p̂θ (x) = θ−1 −
∫

g(x − t)q(
√

D − 1σθt)

θ
∫

g(x − t)p(
√

D − 1σθt)
,(8)
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where q(t) = −t ṗ(t). Denote by ġ the derivative of g. Using a Taylor expansion
of g(x − t) around x, one has for a kernel function k such that

∫
k = 1, as b → 0,∫

g(x − t)k(t/b) dt = b

(
g(x) − bġ(x)

∫
tk(t) dt + O(b2)

)
.

Observing that
∫

q = ∫
p = 1, we may apply this approximation to the convolu-

tions appearing in the ratio displayed in (8) with b = (
√

D − 1σθ)−1 and k = q

and p successively. Since
∫

tq(t) dt = 2
∫

tp(t) dt = 2μ, we get, as D → ∞,

∂θ log p̂θ (x) = θ−1
[
1 − g(x) − 2μbġ(x) + O(b2)

g(x) − μbġ(x) + O(b2)

]

= θ−1μbġ(x)/g(x) + O(b2).

Using this approximation, since ġ(x)/g(x) = −x [recall that g is the density of the

N (0,1)] and Var(ẐD) ∼ 1, we get, as D → ∞, Var(∂θ log p̂θ (ẐD)) ∼ D−1 μ2

θ4σ 2 .
Admitting that this provides a good approximation of the Fisher information
of ZD , we get the right-hand side of (7).

7. Application to synthetic data. In Sections 4 and 5 the traffic traces are
not completely labeled. We only have some labeled anomalies, those generated
in the experiments, but many other anomalies, present in the background ADSL
and P2P traffic, are not labeled. Indeed, the amount of data is too large and all the
destination IP addresses cannot be thoroughly analyzed to make a diagnostic of an
anomaly for each of them. Here, we generate synthetic high-dimensional data cor-
responding to 1 minute of Internet traffic and containing 1 anomaly. Using Monte
Carlo simulations, ROC curves are obtained for the different detection algorithms,
and then compared.

7.1. Description of the synthetic data. We explain, in the following, how the
number of SYN packets received by the different IP addresses involved in a given
observation window is synthesized in each sub-interval of time length �. For a
given IP address, we propose modeling the SYN packet traffic using a Poisson
point process with a given intensity expressed as a number of SYN packets re-
ceived per second. In Network applications, each IP address receives a very differ-
ent amount of traffic. Hence, we shall use different intensities from an IP address
to another. To take into account this diversity, we propose using the realizations of
a Pareto distribution for the parameters of the different intensities so that a lot of
machines receive a small number of SYN packets while a few receive a lot.

Let us now further describe the framework of our numerical experiments. We
first randomly generate a sequence (θi)i=1,...,D of intensities for D = 1000 IP ad-
dresses with the Pareto distribution having the following density: γα/(1+γ x)1+α ,
when x > 0, with α = 2.5 and γ = 0.72, which roughly corresponds to what we
observed in the real traffic traces at our disposal. Then, we generate the D time
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FIG. 10. An example of parameters (θi )1≤i≤D . The stars “∗” correspond to θ1, θ100 and θ500.

series of length P = 60 corresponding to the number of packets received by each
IP address in the 60 sub-intervals of the observation window, which consists of
i.i.d. Poisson random variables, except for 1 IP address for which a change-point
is introduced. Let us denote by (Yi,j ), where 1 ≤ i ≤ D and 1 ≤ j ≤ P , the data
thus obtained and by i0 the IP address whose time series contains a change-point
at time index j0 ∈ {1, . . . ,P }:

(Yi0,j )1≤j≤j0

i.i.d.∼ P oisson(θi0) and (Yi0,j )j0<j≤P
i.i.d.∼ P oisson(ηθi0),

where the parameter η is a positive coefficient. The remaining time series are gen-
erated as follows:

∀i �= i0, (Yi,j )1≤j≤P
i.i.d.∼ P oisson(θi).

In the following, we shall take D = 1000, j0 = 35, P = 60 and η = 2 or η = 7.
A sensible choice of i0 is made by first sorting the IP addresses i ∈ {1, . . . ,D} so
that the parameters θi are in a decreasing order, θ1 ≥ θ2 ≥ · · · ≥ θD . The choice
of i0 is thus related to the difficulty of the detection: the smaller i0, the easier the
detection. For η = 2, we chose i0 = 100 (10th percentile intensity) and for η = 7,
we chose i0 = 500 (median intensity), for which we have θ100 ≈ 2 and θ500 ≈ 0.4.
See Figure 10, where the (θi)1≤i≤D are displayed.

Figure 11 displays the time series which have been synthesized using the previ-
ously described model corresponding to i = 1, i = i0 and i = 10. The case where
i0 = 100 and η = 2 is displayed on the left and the case where i0 = 500 and η = 7
on the right.

7.2. ROC curves of the TopRank and HashRank algorithms. Now, we pro-
pose comparing the two approaches presented in Section 3 by computing their
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FIG. 11. Some synthesized time series (Yi,j )1≤j≤60. Left: i = 1 (“∗”), i = 10 (“+”), i = i0 = 100
with η = 2 (“o”). Right: i = 1 (“∗”), i = 10 (“+”), i = i0 = 500 with η = 7 (“o”).

false-alarm and detection rates, which leads to the plot of the ROC curves dis-
played hereafter. More precisely, the x-axis and y-axis of the ROC curves that we
consider correspond to the false-alarm rate (the number of false anomalies divided
by D − 1, the number of time series without anomalies) and the detection rate
(1 if the anomaly is detected and 0 otherwise), both averaged over 100 successive
Monte Carlo experiments. Each point of the curve is obtained for a given threshold
Pthresh below which a p-value is classified as an anomaly.

To make this comparison as fair as possible, the TopRank algorithm has been
modified in order to address a number of time series in the change-point detection
step, equal to the number addressed by the HashRank algorithm. Using this con-
vention, we ensure an equivalent computational load for both algorithms, since, in
both cases, the detection step is similar (nonparametric rank test).

In the case of the HashRank algorithm, the number of time series to which a de-
tection test is applied is equal to L × K with L = 8 and K = 17, these two values
ensuring a small number of collisions. In our experiments, the smallest value of M

for which 8 × 17 = 136 time series can be constructed in the TopRank algorithm is
M = 50. For this M , we construct the 136 first time series encountered as the in-
dex i goes along the list i1(1), i1(2), . . . , i1(60), i2(1), i2(2), . . . , i2(60), i3(1), . . . ,

where the ik(t) are defined in Step 1 of the TopRank algorithm; see Section 3.1.
In Figure 12 are displayed the ROC curves of the TopRank and HashRank al-

gorithms when i0 = 500 and η = 7 (left) and when i0 = 100 and η = 2 (right). We
also plot the ROC curve y = x corresponding to the random classifier and the ROC
curve of the Comprehensive Rank test (which consists in applying the nonparamet-
ric rank test to each time series, i.e., without any reduction step). Remember that
such an approach is not feasible in practice for anomaly detection on the fly. It is
displayed here to highlight the loss resulting from the data reduction steps.

Let us comment briefly on these results. It appears that the TopRank algorithm
outperforms the HashRank algorithm except in the first case for high false alarm
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FIG. 12. ROC curves using TopRank (“∗”), HashRank (“o”), random classifier (plain) and the
Comprehensive Rank test (“+”). The anomaly is simulated with, on the left, i0 = 500, η = 7, on the
right, i0 = 100, η = 2.

rates. Indeed, because of the record filtering, it is possible that the time series
indexed by i0 is not analyzed in the detection step and thus not detected, no matter
how close to 1 the threshold Pthresh is chosen. This is why, on the left in Figure 12,
the detection rate is bounded from above by 0.88. This does not occur on the right
because η × θi0 is large enough so that the time series indexed by i0 is analyzed
with a probability almost equal to 1. As a result, the performance of the TopRank
algorithm is similar to the Comprehensive Rank test, that is, as if no reduction step
were applied. This indicates that the censorship does not affect the sensitivity of
the detection.

Figure 13 shows that the TopRank algorithm seems to reach a detection rate very
close to 1 for a false alarm rate of around 0.04, while the Comprehensive Rank test
attains this detection for a false alarm rate of around 0.138. This can be explained
as follows: some time series falsely detected as an anomaly by a nonparametric
rank test are not selected by the record filtering step, which diminishes the number
of false alarms. More generally, for the TopRank algorithm, the number of alarms is
bounded by the number of analyzed time series [L×K = 136, which corresponds
to a false alarm rate {(L × K) − 1}/(D − 1) ≈ 0.136]. This is not the case for the
HashRank algorithm, although only L × K time series are analyzed. Indeed, the
analyzed time series are random aggregations of all the raw time series, and all the
IP addresses can be retrieved in the inversion step.

Finally, it is interesting to observe that, in contrast to the TopRank algorithm,
the HashRank algorithm has better performance in the first situation when i0 = 500
and η = 7 than in the second, when i0 = 100, η = 2. This is because in the first case
the jump at the change-point is higher, (η − 1)θi0 ≈ 6 × 0.4 = 2.4 in comparison
to (η − 1)θi0 ≈ 2.

8. Conclusion. In this paper we propose and compare two anomaly detec-
tion methods for identifying DoS attacks in Internet traffic: the TopRank algorithm
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FIG. 13. Zoom on the top-left part of the graph on the right in Figure 12.

based on a record filtering technique followed by a nonparametric rank test for
censored data and the HashRank algorithm based on random aggregation followed
by a standard nonparametric rank test. In the course of this study, we have shown
that the TopRank algorithm is a very efficient technique to detect several types of
DoS attacks, as well as PortScan and NetScan. More precisely, the TopRank al-
gorithm has two main features which make it very attractive. First, it is able to
adapt to various types and intensities of traffic thanks to the nonparametric prop-
erty of the test stage. Second, its computational simplicity and efficiency make its
implementation feasible on the fly. This on-the-fly implementation has been tested
in the context of an experimental detection system that we have jointly developed
with France-Télécom and the other partners involved in the ANR-RNRT OSCAR
project.
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