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Determination of the minimum inhibitory concentration (MIC) of a drug
that prevents microbial growth is an important step for managing patients
with infections. In this paper we present a novel probabilistic approach that
accurately estimates MICs based on a panel of multiple curves reflecting fea-
tures of bacterial growth. We develop a probabilistic model for determining
whether a given dilution of an antimicrobial agent is the MIC given features
of the growth curves over time. Because of the potentially large collection
of features, we utilize Bayesian model selection to narrow the collection of
predictors to the most important variables. In addition to point estimates of
MICs, we are able to provide posterior probabilities that each dilution is the
MIC based on the observed growth curves. The methods are easily automated
and have been incorporated into the Becton–Dickinson PHOENIX automated
susceptibility system that rapidly and accurately classifies the resistance of
a large number of microorganisms in clinical samples. Over seventy-five stud-
ies to date have shown this new method provides improved estimation of
MICs over existing approaches.

1. Introduction. Since the discovery of penicillin in the late 19th century, mi-
crobiology has undergone rapid development. Large numbers of antibiotics have
been identified and have greatly improved the management of patients with in-
fectious diseases. Antimicrobial susceptibility testing (AST) of clinically obtained
isolates4 is performed daily across the world. Through such tests, the activity of
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an antimicrobial agent against an organism, such as bacteria, is reported either
quantitatively or qualitatively. Quantitative microbial inhibitory activity is typi-
cally described in terms of the minimum inhibitory concentration (MIC), which
is defined as the lowest concentration of an antimicrobial agent at which bacter-
ial growth is inhibited in in-vitro testing. In the U.S. the Clinical and Laboratory
Standards Institute [CLSI (2008)] establish MIC breakpoints for a given bacterial
species and antibiotic so that an isolate may be classified as “susceptible” (S) if
the MIC is less than or equal to the lower breakpoint, “resistant” (R) if the MIC is
greater than or equal to the higher breakpoint, or “intermediate” (I) if the MIC falls
in between. Isolates in the susceptible category are inhibited by the usually achiev-
able concentrations of antimicrobial agent when the recommended dosage is used
for the site of infection, while isolates in the resistant group are not inhibited by
the usually achievable concentrations of the agent with normal dosage schedules;
the intermediate classification provides a buffer zone for uncontrolled variation or
where the antibiotic may be effective at higher than normal doses. Results of such
testing are then used to predict treatment outcome with the antimicrobial agents
tested and guide clinicians in selecting the most appropriate agent for a particular
clinical problem [Turnidge, Ferraro and Jorgensen (2003)].

Current reference methods for antimicrobial susceptibility testing, such as dilu-
tion or disk diffusion, are predominantly phenotypic approaches based on growth
patterns of micro-organisms in antimicrobial agents [Wheat (2001)]. Dilution sus-
ceptibility testing methods are quantitative methods that determine the MIC by
exposing the isolate to a series of two-fold dilutions of the antimicrobial agent
(e.g., 1 μg/mL, 2 μg/mL, 4 μg/mL, 8 μg/mL, 16 μg/mL, etc.) in a suitable
culture system, such as broth or agar, on a series of plates or tubes. Typically, eight
or more concentrations of an agent are used, although the range of concentrations
tested depends on the antimicrobial agent and species being tested. These are incu-
bated overnight and each tube or plate is visually inspected for growth; the lowest
dilution in which the isolate does not grow is reported as the MIC [see Jorgensen
and Turnidge (2003), CLSI (2006) for detailed discussion and methods]. Including
preparation time, incubation time and analysis, it may take 24–48 hours to provide
results.

In recent years, efforts for speeding up the process of susceptibility testing have
resulted in the development of automated AST systems [Ferraro and Jorgensen
(2003)]. In an automated system, it is feasible to monitor the growth of isolates
in real time; by utilizing the information in the growth curves corresponding to
the series of dilutions, it is possible to make an early determination of the MIC (in
a couple of hours ideally), providing a dramatic decrease in the time to results com-
pared to reference methods that make a determination at a fixed end-point. Given
the critical importance of rapid and accurate identification of micro-organisms and
especially their drug resistance in the management of patients, automation of the
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testing process and rapid reporting of results is of great clinical and financial bene-
fit to patients and hospitals [Barenfanger, Drake and Kacich (1999)]. With automa-
tion, a large number of tests can be performed simultaneously, leading to a substan-
tial increase in the amount of data to be analyzed. Thus, there is a crucial need for
such automated systems to be coupled with rigorous statistical methods that pro-
duce reliable MIC estimates in real-time. In this paper we develop a novel statisti-
cal method that allows accurate and rapid determination of MICs based on a panel
of growth curves for a given isolate exposed to various dilutions of an antimi-
crobial agent. This methodology is currently implemented in Becton–Dickinson’s
(BD) newly developed PHOENIX AST system (BD Diagnostic Systems, Sparks,
MD). This system provides rapid and reliable susceptibility testing of a majority of
clinically encountered bacterial strains and is currently utilized by a large number
of laboratories across the globe.

In the next section we describe the structure of the panel growth data obtained
during the development of the BD PHOENIX AST system. Our goal is to identify
and use features of the growth curves to accurately predict the MIC for each set
of panel data. In order to train the statistical algorithms, in Section 3 we develop
a model that predicts for each concentration a growth or no growth response, using
available features of the curves from each panel. Features in the growth data that
are crucial for predicting the probability of growth are selected using Bayesian
model selection. For each isolate and drug dilution in a panel, we construct an
estimate of the probability of growth using these selected features of the growth
curves. In Section 4 we present a novel method to combine the estimated growth
probabilities for the sequence of drug dilutions in a panel to construct a probability
distribution for the MIC. A decision theoretic approach for estimating the MIC is
presented which balances the different types of errors in making an MIC call. In
Section 5 we validate the method and illustrate its performance using two selected
antibiotics, piperacillin (PIP) and cefoxitin (FOX). We conclude with discussion
in Section 6.

2. The PHOENIX AST system. PHOENIX is an instrumented antimicrobial
susceptibility testing (AST) system for rapid identification and susceptibility de-
termination of bacterial isolates from clinical samples. In this system a bacterial
suspension is placed in a series of wells (typically eight) on a test panel, where
each panel is a single PHOENIX diagnostic disposable cartridge. Each well in
a panel corresponds to a different dilution of the microbial agent being tested.
Multiple panels are placed in a revolving carousel and at a sequence of twenty
minute intervals the system moves the panels past a detector where red, green and
blue wavelengths are directed at each well. The system measures the wavelengths
that emanate from the wells; these optical measurements are used to generate two
measures of microbial growth: the redox state and turbidity characteristics of the
sample wells which are directly correlated with microbial growth. The redox state
of a sample in a well is measured by utilizing the change in red, green and blue
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readings that occurs over time as a result of the reduction of a growth indicator,
such as resazurin, by the microbial material in the well. As the resazurin is re-
duced, the color of the sample in the well changes from blue to red to clear. This
change in redox is represented numerically as a continuum, with the value 0 indi-
cating an unreduced growth indicator (blue = resazurin), the value 0.5 indicating
that the indicator is 50% reduced (red), and the value 1.0 indicating that the indica-
tor has been completely reduced (clear = dihydroresorufin). The turbidity is also
estimated by using the red, green and blue readings. The initial signal has a value
of 0 and a maximum of 2.25 (McFarland) units can be estimated.

The system monitors growth over time to decide if the samples have incubated
long enough to estimate the MIC. If the processor determines that the maximum
redox state for the growth control well of the test panel is greater than 0.07 but
less than a predetermined value of 0.2, the panel continues to be incubated, as
this implies insufficient growth. If the processor determines that the maximum
redox state for the growth control well is indeed greater than 0.2, the processor
then checks whether a call can be made. If the processor determines that the redox
curve for the growth control well indicates that the sample is not yet classifiable
as either a slow or fast growing sample, the panel incubation continues and the
panel is retested twenty minutes later. If the processor determines that the redox
curve classification is either fast or slow growing, the time at which this occurs
is labeled as the “time-to-result” and the turbidity and redox data for each of the
wells in the panel are extracted. If the incubation period exceeds 16 hours, the test
panel is reported as “failed” for having insufficient sample growth in the allotted
time, and no results are reported for that test panel. A second-degree polynomial
local regression algorithm (LOESS) is used to smooth the time series data for both
redox and turbidity values calculated for each well over the elapsed period of time.
From the LOESS fit any reading at any time point can be estimated. Moreover,
first- and second-derivatives can be estimated at any point as a function of fitted
local regression coefficients.

Figure 1 illustrates these interpolated growth curves for three PHOENIX
panels in which three gram-negative bacterial strains were combined with the
following dilutions of the drug piperacillin (PIP): 0.25 μg/mL, 0.5 μg/mL,
1 μg/mL, 2 μg/mL, 4 μg/mL, 8 μg/mL, 16 μg/mL, 32 μg/mL, 64 μg/mL
and 128 μg/mL.

Each row of plots shows the growth response of a single isolate to varying di-
lutions of PIP, and was selected to show the range of responses. For a given plot,
each curve corresponds to a different dilution of the drug PIP. The vertical line rep-
resents the time-to-result, the time at which features are extracted for determining
the MIC. Independently from the PHOENIX AST system, a reference MIC is de-
termined for each strain using broth micro-dilution susceptibility testing with the
same series of two-fold dilutions [CLSI (2006)]. In Figure 1 curves corresponding
to dilutions less than the reference MIC are dashed lines, while all curves with
dilutions greater than the reference MIC are solid. The dilution corresponding to
the reference MIC is represented with a long and short dashed line.
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FIG. 1. Panel data for three gram-negative bacterial strains exposed to dilutions of piperacillin
(PIP) showing turbidity (a) and redox (b) over time in hours. The vertical line is at the time-to-result
when features are extracted for estimating the MIC. Dashed curves have concentrations less than the
reference MIC, while solid lines have concentrations greater than or equal to the reference MIC. The
curve with dilution equal to the reference MIC is depicted with long–short dashes.
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3. Modeling probability of growth. Theoretically, we should see no growth
in a well with a concentration higher than the true MIC. Using the external refer-
ence value of the MIC, we create a binary response variable Yij for dilution j in
panel i defined as

Yij =
{

1, if dilution j is < reference MIC,
0, if dilution j is ≥ reference MIC.

This definition treats the reference MIC data as if it were measured without er-
ror and ignores any possible missclassifications of curves. The reference methods
are discrete measurements of what is in reality a value along a continuum. The
error associated with any individual MIC estimate will be affected by many fac-
tors; these include but are not limited to operator error, variation in the materials
utilized and the isolate and antimicrobial agent being tested. Multiple observations
with a specific bacterial isolate and antimicrobial combination will typically be
normally distributed around a modal MIC value, with 60–80% of the observations
being at the modal MIC value [CLSI (2006)]. Conventionally, any two observa-
tions within ± one two-fold dilution are considered to be in agreement (this corre-
sponds to a one unit change on the log base 2 scale). For our purposes, we will treat
the reference MIC estimate as the truth, as this is the best available information.

Inspection of the panels in the third row of Figure 1 indicates that several curves
with dilutions above the reference MIC exhibit growth in both the redox and tur-
bidity responses for strain 14,617. For strain 14,598 (the second row), the redox
curves also show evidence of growth at dilutions above the reference MIC; the tur-
bidity measurements for dilutions above the MIC, while still increasing, are well
separated from the curves above the MIC. Upon further verification, the problem
for these two isolates is not attributed to an error in the reference MIC data, but
attributed to the PHOENIX measurements (also subject to operator error, variation
in materials such as formulation of the panels5 and variation in the isolate). The
predictive accuracy of the training model may be improved through an iterative
procedure by omitting such “outlier” panels that exhibited strong growth for dilu-
tions above the MIC when the reference MIC could be verified as being correct.
Because such iterative “outlier” analysis could not be conducted for model training
with additional agents tested at BD, we chose to include such cases in our analyses.

3.1. Models. Conditional on the unknown probabilities (and MIC), we assume
that indicators of growth in different wells and across panels are independent of
each other,

Yij | πij
ind� Ber(πij ), i = 1, . . . , n, j = 1, . . . , J,(3.1)

5The experimental data presented here were from the early stages of development of the PHOENIX
system; BD has reformulated panels since our initial analysis was conducted.
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where πij is the probability of growth or, equivalently, that dilution j in panel i is
less than the MIC, n is the number of panels, and J is the number of dilutions or
wells in a panel. While it is conceivable that observations in the same panel may
be dependent, the model in (3.1) implies that such dependence may be captured
through the model for the probabilities πij , for example, a panel specific random
effect.

The indicator of GROWTH/NO GROWTH may be predicted as a function of
the growth curves by modeling the probabilities of growth, πij , as a function of the
time series for dilution j in panel i. While of course the entire time series could be
used for modeling the GROWTH indicators, certain features of the curves may be
sufficient for differentiating the pattern of GROWTH/NO GROWTH. In an exper-
iment with no noise in the growth curves, we would actually need only the differ-
ence in growth measurements from the beginning to the time-to-result to separate
the dilutions corresponding to GROWTH or NO GROWTH. However, with noisy
curves, other features may be better predictors of growth. In Table 1 we list the fea-
tures of the curves that were viewed as being scientifically relevant for predicting
growth. These include the difference in growth, the area under the growth curve,
the first derivative, the second derivative at the time-to-result and time points where
maxima occurred. Most features are defined relative to the growth control well to
standardize them across different isolate/drug combinations.

We use a logistic regression model, a generalized linear model, to relate the
GROWTH indicator to the collection of features, where the linear predictor ηij ≡
logit(πij ) ≡ log(πij /(1 − πij )) is expressed as a linear function of selected fea-
tures. As we are uncertain that the relationship is actually linear in the features in
Table 1, we may try more flexible generalized linear models where we replace the
linear functions by up to a third order polynomial in each feature. As the linear,
quadratic and cubic terms are typically highly correlated with each other, orthogo-
nal polynomials are preferable from a computational perspective for model selec-
tion, but give equivalent predictions. More generally, the generalized linear model
can be represented in matrix notation as η = Xβ , where X represents the n × p

matrix of feature variables with columns for the linear, quadratic and cubic terms,
β is the p dimensional vector of the unknown regression coefficients and η is the
n-dimensional vector of the linear predictor. Once we have estimates of β , these
are used to calculate η̂ij , the estimate of the linear predictor, which in turn is used
to obtain the estimates of the probabilities of GROWTH,

π̂ij = exp(η̂ij )

1 + exp(η̂ij )
.

We may find that not all features are needed to model the probability of
GROWTH; the variables represent features that could potentially explain the
growth patterns and in some cases may be redundant. Using all features (and the
higher polynomial terms) may lead to over-fitting of the model training data and
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TABLE 1
Characteristic features of growth curves used as covariates in the GROWTH or

NO GROWTH model

Feature label Description

T.FD Turbidity, 1st derivative of the Test Well
T.SD Turbidity, 2nd derivative of the Test Well
T.IN Turbidity, Integral of the Test Well
T.AB.M Turbidity, Maximum Absolute of the Test Well
T.FD.M Turbidity, Maximum 1st Derivative of the Test Well
T.SD.M Turbidity, Maximum 2nd Derivative of the Test Well
T.AB.M.R T.AB.M(Test Well)/T.AB.M(Control Well)
T.FD.M.R T.FD.M(Test Well)/T.FD.M(Control Well)
T.SD.M.R T.SD.M(Test Well)/T.SD.M(Control Well)
T.IN.R T.IN(Test Well)/T.AB(Control Well)
T.FD.T tT.FD.M(Test Well)−tT.FD.M(Control Well)
T.SD.T tT.SD.M(Test Well)−tT.SD.M(Control Well)
R.FD Redox, 1st derivative of the Test Well
R.SD Redox, 2nd derivative of the Test Well
R.IN Redox, Integral of the Test Well
R.AB.M Redox, Maximum Absolute of the Test Well
R.FD.M Redox, Maximum 1st Derivative of the Test Well
R.SD.M Redox, Maximum 2nd Derivative of the Test Well
R.AB.M.R R.AB.M(Test Well)/R.AB.M(Control Well)
R.FD.M.R R.FD.M(Test Well)/R.FD.M(Control Well)
R.SD.M.R R.SD.M(Test Well)/R.SD.M(Control Well)
R.IN.R R.IN(Test Well)/R.AB(Control Well)
R.FD.T tR.FD.M(Test Well)−tR.FD.M(Control Well)
R.SD.T tR.SD.M(Test Well)−tR.SD.M(Control Well)

poor predictions on the out-of-sample validation data. Reducing the set of features
is also important because of limited storage and computing capacity in the system
for making predictions. Bayesian variable selection [Hoeting et al. (1999), Clyde
and George (2004)] can be used to reduce the set of features to prevent over-fitting
while still providing excellent out-of-sample properties.

3.2. Bayesian model selection. We used Bayesian model selection based on
the Bayes Information Criterion [Schwarz (1978), Kass and Raftery (1995)] to
reduce the set of features used in the prediction of GROWTH. This approach is
equivalent to using a penalized deviance criterion for model selection, however,
the penalty depends on the sample size, which ensures that in large samples that
the probability of the true model goes to one (under modest conditions), and pro-
vides consistent model selection [Kass and Raftery (1995)]. This choice typically
results in more parsimonious models than selection based on, for example, the
often-used Akaike’s Information Criterion (AIC) [Akaike (1973, 1983a, 1983b)].
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Hoeting et al. (1999) provide examples where the use of BIC in Bayesian model
selection and model averaging leads to excellent predictive performance in prac-
tice.

Models M correspond to different choices of features and polynomials in the
features used to capture the smooth functions. Using BIC, the probability of
a model, Mm, given the collection of panel data Y = {Yij }i=1,...,n,j=1,...,J is ap-
proximated by

p(Mm|Y) = exp(L(Mm) − (dm/2) log(n))∑
m′ exp(L(Mm′) − (dm′/2) log(n))

,

where L(Mm) is the log likelihood under model Mm evaluated at the maximum
likelihood estimates β̂ and dm is the number of terms in the model. Because of the
large number of features and higher order terms, we cannot enumerate all models.
To identify the high posterior probability models, we used the deterministic search
algorithm bic.glm() in S-PLUS [Hoeting et al. (1999)].

Because of the large number of potential features and limitations in the leaps
and bounds algorithm used in bic.glm(), it was necessary to use a two stage
procedure to identify which features would be incorporated in the selected model.
The first stage was a screening stage where we identified the highest probability
models that included only linear terms in the features. Using the subset of features
that were included in the top model, we then added quadratic and cubic terms in
these features, and repeated the calculations of the posterior model probabilities.
While such a sequential approach may miss the highest probability model,6 this
scheme corresponds to a hierarchical model that incorporates second order (and
higher) terms only if there are important main (linear) terms. Second, because the
search algorithm needed to be run for hundreds of other drugs, this led to a reason-
ably efficient computational strategy. After this two stage selection approach, the
highest posterior probability model was used to determine the distribution of the
MIC, as described in Section 4.

The above procedures are applied to study the turbidity and redox growth curves
for gram-negative bacterial strains exposed to dilutions of cefoxitin (FOX) (n =
1647 panels) and piperacillin (PIP) (n = 1599 panels). These two antibiotics were
selected to provide a testbed for method development. FOX was considered to be
an easier system to model, with more clearly distinguished cases of GROWTH/NO
GROWTH, while PIP was viewed as being a more challenging case, as illustrated
with the selected growth curves in Figure 1. For modeling purposes here, both fast
and slow growing strains were combined. The data for FOX were obtained using
the following series of two-fold dilutions {2−1,20,21, . . . ,25} (J = 7), while the
data for PIP used {2−2,2−1, . . . ,27} (J = 10).

6If there are strong quadratic or cubic effects, but the linear terms are not important, then we may
fail to select this model with the sequential approach.
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The selected features are dependent on the drug. The model for FOX includes
five terms: T.FD.M.R the ratio of the turbidity maximum first derivative of the
test well to the turbidity maximum first derivative of the control well; R.FD
first derivative of redox in the test well; R.SD second derivative of redox in the
test well; R.SD.M maximum second derivative of redox in the test well; and
R.AB.M.R the ratio of the redox maximum absolute value of the test well to
the redox maximum absolute value of the control well. The model for the more
challenging PIP data includes nine terms: an T.AB.M.R the ratio of the turbid-
ity maximum absolute value of the test well to the turbidity maximum absolute
value of the control well; T.FD first derivative of turbidity in the test well; T.SD
second derivative of turbidity in the test well; T.FD.M.R ratio of absolute first
derivative of turbidity of the test well to maximum first derivative of turbidity in
the control well; T.SD.M maximum second derivative of turbidity in the test well;
R.AB.M.R the ratio of the redox maximum absolute value of the test well to the
redox maximum absolute value of the control well; R.FD first derivative of redox
in the test well; R.FD.M.R ratio of absolute first derivative of redox of the test
well to maximum first derivative of redox in the control well; and R.SD second
derivative of redox in the test well.

In modeling GROWTH/NO GROWTH, we made no provision to order the es-
timated probabilities πij in panel i according to dilution. Rather than explicitly
building an order constraint into the model for GROWTH/NO GROWTH, we take
the theoretical ordering into account in developing the prediction of the MIC, as
described in the next section.

4. MIC estimation.

4.1. Overview of MIC estimation. The modeling described in Section 3 oper-
ates at the level of a single dilution or well in a panel, and is aimed at determining
the probability that each dilution is displaying growth. Note, however, that predic-
tion of the MIC must be done at the level of a panel. In this section we describe
our strategy for combining the dilution-level predictions and obtaining a MIC esti-
mate for each panel. For panel i, our prediction algorithm consists of the following
steps:

Estimate growth probabilities. For each dilution j in panel i estimate the prob-
ability πij that there is growth, π̂ij .
Combine growth probabilities. For each dilution j in panel i estimate the prob-
ability ρij that dilution j is the MIC. This distribution of the MIC is constructed
by combining all the π̂ij for panel i and is described in detail in Section 4.2.
Estimate the MIC. Using the distribution of the MIC in panel i, ρij , derive an
estimate for the MIC for the panel. Two estimates are discussed in detail: the
“modal MIC” and a “decision theoretic MIC.” The probability distribution of
the MIC may also be used to delay the call, when there is a high degree of
uncertainty about which dilution is the MIC.
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Statistically, this overall procedure achieves the important practical goals of
(a) estimating growth based on simple physical features representing growth in
a well; (b) training the growth probability model on large data sets; (c) adjusting
the probability of growth in a well depending on the observations made on other
wells in the same panel; and (d) providing the basis for sequential estimation of
the MIC, and decisions about delaying the call.

4.2. Probability distribution of the MIC. We now describe how to derive the
probabilities ρi1, . . . , ρiJ+1 that dilution j is the MIC of the ith panel, using the
set of probabilities π̂i1, . . . , π̂iJ that there is growth in each well. Suppose that
the dilution for well j (denoted as Dj ) is the MIC for panel i. If this were true,
theoretically we would have the following sequence of curves: all curves with
dilutions less than Dj would exhibit GROWTH, and all dilutions greater than or
equal to Dj would have NO GROWTH. How do we compute the probability of
this sequence given the probability of GROWTH/NO GROWTH for each well?

First, we make additional assumptions of order (O) and independence (I):

O: Suppose that the dilution (concentration) in well j , Dj , is greater than the
dilution in well k, Dk . Then, if Dk is inhibitory, so is Dj .

I: Conditional on the set of probabilities πij for j = 1, . . . , J , the outcome in
well j , Yij is independent of the outcome Yik in any other well k �= j .

We utilized Assumption I in constructing the model for GROWTH/NO
GROWTH. Within the nested restrictions of Assumption O, the probability of
the sequence of curves that can lead to Dj being the MIC can be computed under
independence, Assumption I.

Consider the set of all sequences of growth curves that satisfy the ordering As-
sumption O. We call these “valid” sequences. For example, if a panel had only
three wells, the set of valid sequences of GROWTH/NO GROWTH results would
be

D1 < D2 < D3 Call

0 0 0 MIC ≤ D1
1 0 0 D1 < MIC ≤ D2
1 1 0 D2 < MIC ≤ D3
1 1 1 MIC > D3

.

Note that while there are J dilutions, there are J + 1 valid sequences, since if all
J observed curves exhibit growth, the call should be that the MIC is greater than
the highest observed dilution.

By restricting attention to the reduced set of ordered sequences, we are now in a
position to compute the probability ρij of the sequence of curves that leads to Dj

being the MIC in panel i. This ordered sequence is
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D1 . . . Dj−1 Dj . . . DJ

1 1 1 0 0 0 .

By comparing the likelihood of the sequence above to the likelihood of the other
valid sequences, we can compute MIC probabilities that are consistent with the
ordering Assumption O,

ρij = P(Dj−1 < MICi ≤ Dj) =
∏

k<j πik

∏
k≥j (1 − πik)∑J+1

j=1
∏

k<j πik

∏
k≥j (1 − πik)

(4.1)

for j = 1, . . . , J +1, where the denominator is a sum over all J +1 valid sequences
and for notational convenience, D0 ≡ 0 and DJ+1 ≡ ∞. This framework allows
us to predict that the MIC is greater than any of the observed dilutions, which is
important in detecting emerging resistance.

For a particular model Mm, these probabilities are estimated by plugging in the
π̂ij . To take into account model uncertainty, one can average the above expression
over several models using the posterior probabilities of models as weights. While
such a procedure may give better estimates, we have not pursued this direction
because of the computational demands associated with on-line implementations,
and instead use the highest probability model.

The probabilities ρij can be used in several ways to determine an estimate of
the MIC. We experimented extensively with two approaches: the “modal MIC”
and a “decision theoretic MIC.” The modal MIC consists simply of choosing the
dilution Dj for panel i with the largest probability ρij . This is the optimal estimator
under a loss function that is one if the estimate is not the true MIC and zero if the
estimate is exactly the MIC. Our decision theoretic MIC takes into account that
under-estimation and over-estimation have different costs and that errors of plus or
minus one dilution are unimportant.

4.3. Decision theoretic MIC estimation. In evaluating performance in prac-
tice, a number of error types are evaluated. The essential agreement between an
estimated MIC and reference MIC is defined as agreement in MIC to within ± one
two-fold dilution. According to the Food and Drug Administration (FDA) [FDA
(2007), page 21], the essential agreement should be greater than or equal to 90%.
In general, underestimation of the MIC by more than one dilution is considered to
be worse than overestimating the MIC by more than one dilution.

A second approach for evaluating performance utilizes the categorical classi-
fication of isolates as susceptible, intermediate or resistant (SIR). The SIR inter-
pretations are compared and categorical agreement is evaluated. Based on FDA
guidelines, the overall categorical agreement should be greater than or equal to
90%. Acceptable error rates are based on the clinical significance of the error.
A very major error occurs when an isolate is called susceptible when the isolate is
in fact resistant. A very major error rate greater than 1.5% of the resistant strains
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would be unacceptable. The major error threshold is more forgiving, less than or
equal to 3%, and occurs when an isolate is called resistant when in actuality the
isolate is susceptible. We devise a decision theoretic estimator that captures the
ideas behind the categorical errors, where underestimating the MIC leads to more
severe consequences than overestimating it. One way to capture this is to attach
a weight, or a loss, to each dilution error size. We use the following notation:

Error Loss

Exact prediction (no error) 0
Predicted MIC within 1 dilution of reference MIC w3
Predicted MIC > reference MIC by more than 1 dilution w2
Predicted MIC < reference MIC by more than 1 dilution w1

.

The w’s need to be chosen to reflect the relative importance of the errors and will
typically be such that w1 > w2 > w3.

To obtain the MIC prediction, we choose the dilution that minimizes the ex-
pected loss. For dilution Dj this is

Lj = w1
∑

k>j+1

ρik + w2
∑

k<j−1

ρik + w3
(
ρi(j−1) + ρi(j+1)

)
.(4.2)

The decision theoretic MIC prediction is the Dj associated with the j that mini-
mizes Lj . If one chooses w1 = w2 = w3, the modal MIC and the decision theo-
retic MIC coincide. For the analyses reported later we used w1 = 5,w2 = 1 and
w3 = 0, reflecting that underestimating the MIC by more than one dilution is 5
times worse than overestimating it by more than one dilution. There is no penalty
for being within one dilution of the reference MIC.

4.4. Uncertainty and making a call. The distribution of the MIC may be use-
ful in formulating guidelines for deciding when to make a call on the MIC predic-
tion or when to continue incubating a panel. One could determine the modal MIC
or decision theoretic MIC and how much probability they receive, as well as how
much probability mass the estimated MIC plus or minus 1 dilution receives. Sam-
pling could continue until these reach a specified level. We expect that, as sampling
continues, the estimated πij will become closer to 1 or 0, so that the probability
of the model MIC (the dilution with the largest probability) should increase to 1.
However, early on the probabilities will not be as concentrated.

4.5. Illustration. Figure 2 shows the MIC distribution for the three bacterial
strains that were presented in the growth curves in Figure 1, while Table 2 lists the
estimates of the MIC and the probability mass that they receive.

For strain 14,482, the distribution of the MIC is uni-modal with a peak at two,
which corresponds to the modal MIC, the decision theoretic MIC and the refer-
ence MIC. For strain 14,598, we also have a uni-modal distribution, but underes-
timate the MIC by one dilution using the modal MIC (reference MIC = 2, modal
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FIG. 2. Probability distribution of the MIC for the three strains presented in Figure 1.
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TABLE 2
MIC prediction results for the three strains of interest. P(REF ± 1) represents the probability of the
mass assigned to dilutions within 1 two-fold dilution of the reference MIC. P(modal MIC) and P(DT

MIC) are the probabilities that the modal and the decision theoretic MICs estimates are the MIC,
respectively. P(valid sequence) is the sum of probabilities of all possible valid sequences

REF MIC Modal MIC Decision theoretic MIC
Test ID P(REF ± 1) P(modal MIC) P(DT MIC) P(valid sequence)

14,482 2 2 2 0.33
(0.96) (0.54) (0.54)

14,598 2 1 2 0.27
(0.97) (0.66) (0.26)

14,617 4 128 128 0.85
(0.00) (0.54) (0.54)

MIC = 1), while the decision theoretic MIC agrees with the reference MIC. Be-
cause the estimate is within one dilution of the reference MIC, this error is not im-
portant for essential agreement. Finally, for strain 14,617, the modal MIC is 128,
while the reference MIC is 4. While overestimation of the MIC is better than under-
estimation, this results in an unacceptably large error. Verification of the reference
data indicated that the response variable is in fact not in error, but that the problem
is likely with the particular panel and/or isolate. The reference MIC and dilutions
within one of it receive virtually no support under the estimated distribution of
the MIC for strain 14,617, however, for strains 14,482 and 14,598, the probability
that the MIC is within one dilution of the reference MIC is 0.96 and 0.97 respec-
tively. Also of interest to note is that for strains 14,482 and 14,598, although the
predictions are in agreement with the reference MIC, the probability of the growth
sequence being valid is low compared to strain 14,617. While the growth patterns
may deviate from the valid order as defined by the respective drug dilutions, this
probability does not necessarily provide a reliable indication of the accuracy of the
estimated MIC.

5. Validation. To carry out model validation for each drug, we divide the data
into a training and validation group. We used a random sample of 65% of the panel
data for training and the remaining 35% for validation. In the training stage we
identify the best model using BIC as described previously. This model is then used
to predict the MICs for the validation group.

The MIC prediction for the validation group proceeds as follows:

1. The features from each dilution j of each panel i in the validation group are
used along with the estimated coefficients from the training data to estimate the
probability of growth, πij , for dilution j , π̂ij .
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2. The probability that a dilution is the MIC for panel i, ρ̂ij is calculated [see
equation (4.1)]. These probabilities are estimated by plugging in the estimates
of πij obtained in Step 1 for each panel in the validation set.

3. The estimated MIC probabilities (ρ̂ij , j = 1, . . . , J + 1) are then used to esti-
mate the modal or decision theoretic MIC for panel i.

For each panel in the validation set we thus obtain a modal and decision theoretic
MIC estimator.

5.1. Essential agreements. The essential agreements for the FOX nd PIP data
are summarized graphically in Figures 3 and 4 and in Tables 3 and 4. In Figures 3
and 4, the choice of MIC estimator affects the error rates. For the modal MIC in
FOX, the error rate associated with underestimation by more than one two-fold
dilution was 3.82%, whereas for the decision theoretic MIC, the underestimation
error rate was 1.56%. Essential agreements for the two MIC estimates were similar,
93.23% for the modal MIC and 93.40% for the decision theoretic MIC. The error
rates for PIP are noticeably higher, as anticipated, based on initial perceptions of
PIP being a more challenging system. There is a greater tendency for the modal

FIG. 3. Essential agreement (top) and log2 residual plots (bottom) for the FOX validation set using
the modal MIC (left) and the decision theoretic MIC (right).



726 X. K. ZHOU ET. AL.

FIG. 4. Essential agreement (top) and log2 residual plots (bottom) for the PIP validation set using
the modal MIC (left) and the decision theoretic MIC (right).

TABLE 3
Essential agreements from the FOX validation data

Estimate EST − REF < −1 −1 ≤ EST − REF ≤ −1 EST − REF > 1

Modal MIC 3.82 93.23 2.95
Decision theoretic MIC 1.56 93.40 5.03

TABLE 4
Essential agreements from the PIP validation data

Estimate EST − REF < −1 −1 ≤ EST − REF ≤ −1 EST − REF > 1

Modal MIC 23.57 71.07 5.36
Decision theoretic MIC 12.14 79.82 8.04
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MIC estimate to underestimate the MIC with PIP, than what was observed with
FOX. For PIP, the decision theoretic MIC has a much higher essential agreement
than the modal MIC, with a reduction by half in the underestimation error rate
(12.14% versus 23.57%).

To further explore the errors, plots of log2(estimated MIC) − log2(reference
MIC) versus the expected loss evaluated at the estimated MIC are given in Fig-
ures 3 and 4, where the estimated MIC is either the modal MIC or decision theo-
retic MIC. For the modal estimate the corresponding loss is one minus the proba-
bility that the modal MIC is the true MIC, 1 − P(modal MIC), and the loss at the
decision theoretic MIC, L(DT MIC), is given by equation (4.2). These plots sug-
gest better agreement between the estimated and reference MIC when the probabil-
ity of modal MIC is high or loss at the decision theoretic MIC is low. We therefore
examined the essential agreements for strains where the probability of the modal
MIC was at least 0.5. This leads to a slight improvement for FOX (essential agree-
ment is 94.1% and 94.9% for the modal and decision theoretic estimators, resp.).
The gains are greater for PIP with essential agreements of 74.3% and 85.0%, for
the modal and decision theoretic estimators, respectively. This suggests that it is
possible that by delaying the call because of substantial uncertainty in the MIC and
allowing the samples to incubate longer, that we may reduce some of the large er-
rors. This is particularly important for resistant strains that exhibit delayed growth.
By delaying the call, the resistance may become more pronounced, leading to cor-
rect classification of the curves.

6. Discussion. In this paper we have illustrated a probabilistic approach for
estimating MICs based on panels of microbial growth curves. Given the necessity
to fit a large number of models to hundreds of antibiotics for the implementation in
PHOENIX, we had to make several compromises in our modeling approach at the
time of algorithm development due to the available computational environments
and the computing/storage constraints of the PHOENIX device. Given advances in
computing environments today, more flexible models could be obtained by replac-
ing the cubic polynomials with piecewise cubic splines as in generalized additive
models. While a fully Bayesian analysis that accounts for errors in the reference
MIC might be preferable, the use of logistic regression with approximate model
probabilities using BIC and plug-in estimates provided a reasonable solution that
could be implemented in real-time in a device with limited computing and storage
capacity.

The experimental data presented in this paper to illustrate MIC determination
were from the early stages of development of the PHOENIX system. Since our ini-
tial analyses were conducted, BD refined formulation of panels and the potencies
were adjusted to provide optimum concentrations of antimicrobial agents, leading
to a reduction in the bias noted here in PIP. Currently, the methodology described
in this paper for the modal MIC is used to make an initial estimate of the MIC
in PHOENIX. There are two additional steps in PHOENIX that are used before
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making a final MIC determination that affect very major and major errors. The
first is an expert system that determines if the time is long enough for resistance
to express (delayed resistance detection). The second step uses an expert system
that takes the results and combines them with other data (resistance markers) to
provide a final MIC and SIR determination.

To date, more than seventy-five recent studies have shown the PHOENIX AST
system provides accurate estimates of MICs and susceptibility interpretation for
various micro-organisms and drugs [see, e.g., Fahr et al. (2003), Donay et al.
(2004), Horstkotte et al. (2004)]. Currently, 85 drugs are cleared by the FDA in
the U.S. having met FDA standards for essential and categorical agreement, with
an additional 20 to 25 in clinical trials. In a European collaborative two-center trial
[Fahr et al. (2003)], this system was tested for 469 clinically obtained bacterial
isolates with 64 antimicrobial drugs. The results were compared to those of frozen
standard broth micro-dilution panels according to the guidelines of the Clinical
and Laboratory Standards Institute (formerly the National Committee for Clinical
Laboratory Standards). The study [Fahr et al. (2003)] found that performance of
the PHOENIX AST system was equivalent to that of the standard broth micro-
dilution reference method. In addition to accuracy in prediction, the study [Donay
et al. (2004)] found that the PHOENIX AST system required significantly less
time to obtain results than by the disk diffusion method.

Predicting the emergence of antibiotic resistance is a challenging problem that
many automated AST systems fail to adequately address [Tenover et al. (2006)].
In some cases resistance to higher levels of an antibiotic is virtually unknown.
Because the models developed in this paper predict inhibition of growth based on
features of the curves, and not actual dilution, the PHOENIX AST system may pre-
dict high MICs indicative of emerging resistance, even though the models have not
necessarily been trained on resistant strains. For example, the PHOENIX system
has already proved to be effective in detecting the emergence of Staphylococcal
resistance to vancomycin [Deal et al. (2002)].
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