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A SIMPLE FORWARD SELECTION PROCEDURE BASED ON
FALSE DISCOVERY RATE CONTROL1

BY YOAV BENJAMINI AND YULIA GAVRILOV

Tel Aviv University

We propose the use of a new false discovery rate (FDR) controlling pro-
cedure as a model selection penalized method, and compare its performance
to that of other penalized methods over a wide range of realistic settings:
nonorthogonal design matrices, moderate and large pool of explanatory vari-
ables, and both sparse and nonsparse models, in the sense that they may in-
clude a small and large fraction of the potential variables (and even all). The
comparison is done by a comprehensive simulation study, using a quantitative
framework for performance comparisons in the form of empirical minimax-
ity relative to a “random oracle”: the oracle model selection performance on
data dependent forward selected family of potential models. We show that
FDR based procedures have good performance, and in particular the newly
proposed method, emerges as having empirical minimax performance. Inter-
estingly, using FDR level of 0.05 is a global best.

1. Introduction. The problem of variable selection has attracted the atten-
tion of both applied and theoretical statisticians for a long time. Consider the
widely used linear model, Y = μ + ε = Xβ + ε, where Y is a response variable,
X = (x1, . . . , xm) is an n × m matrix of potential explanatory variables, which
may include higher order terms and interactions. β = (β1, . . . , βm) is a vector of
unknown coefficients, where some (or even most) of the coefficients may equal
zero, and ε = (ε1, . . . , εm) ∼ N(0, σ 2I ) is a random error. We want to select a
subset from the collection of the above m explanatory variables to be used in pre-
dicting linearly the response variable, so that the mean square prediction error is
minimized.

The common solution to this problem is to choose the appropriate subset S by
minimizing a model selection criterion of the form: RSSk + σ 2kλ, where RSSk =∑

i∈S (Yj − β̂ixij )
2 is the residual sum of squares from a least squares estimator

for a model with k = |S| parameters and λ is the penalization parameter.
However, the penalized methods utilizing a constant λ are known to be ineffec-

tive when the real model size can vary widely, which is the case when the potential
number of explanatory variables is large [Donoho and Johnstone (1994), Shen and
Ye (2002) and Foster and Stine (2004)]. One major line of research addresses the
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problem by the use of nonconstant per parameter penalty function. The simplest
suggestion is the Donoho and Johnstone universal threshold where λ depends only
on the size of the pool of variables over which the selection takes place, in the form
of λm = 2 log(m). More refined procedures use λk,m, that depends both on m and
on the size k of the model considered.

In this paper we introduce a penalized model selection method that is based
on a new adaptive false discovery rate (FDR) controlling procedure for multi-
ple testing. Abramovich and Benjamini (1995) have pointed at the connection be-
tween model selection and multiple hypotheses testing, as setting coefficient to 0
amount to dropping the variables from the prediction equation. As Abramovich
et al. (2006) (hereafter ABDJ) show, the basic FDR controlling multiple testing
procedure can be translated into a penalty function, where the penalty per pa-
rameter increases with m, and decreases with k. The method in Benjamini and
Hochberg (1995) (hereafter BH) was shown theoretically to have good asymptotic
properties for orthogonal explanatory variables in sparse models. Johnstone and
Silverman (2005) pointed at its limitation when the models are not sparse. The
selection method proposed here should overcome these limitations, as it is based
on an adaptive testing procedure that potentially addresses both high and low pro-
portions of true hypotheses among the tested ones. The essence of the proposed
procedure is to use penalized forward selection with the penalty function σ 2kλk,m,
with λk,m = 1

k

∑k
i=1 z2

(q/2)i/(m+1−i(1−q)), and stop at the first local minimum of the
penalized RSS.

It is important to observe that all penalized methods can easily be computed us-
ing standard software such as R (S), SAS, SPSS, etc.: translating the penalty λk,m

into p-to-enter, and repeating the forward selection (or backward elimination) at
different p-to-enter, allows even the more complex penalized methods, including
the one proposed here, to be available to mass users of standard commercial statis-
tical software (see the explicit algorithm in Section 3 and the example in Section 4).

In the above methods the penalty makes use of the number of parameters in the
considered model, put differently the l0 norm of the vector of parameters. A differ-
ent line of research addresses the problem by moving to l1—the sum of absolute
sizes of the coefficients—to penalize the RSS. Methods like the Lasso [Tibshirani
(1996)], LARS and Forward Stagewise [Efron et al. (2004)] and the Dantzig Se-
lector [Candes and Tao (2007)] that take this approach, result in estimators that are
not the least squares ones. In most of the proposed methods along the same line,
to be reviewed in Section 2.3, there exist a tuning parameter that takes the role
that λ does in the sense that it controls the size of the model. The choice of the
tuning parameter is based on cross validation ideas, and therefore these methods
are computationally more intensive.

We wish to compare the performance of the proposed model selection method
based on the adaptive FDR testing method to other FDR based penalized methods,
as well as to other penalized methods. The comparison is made over a wide range
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of realistic settings: (1) nonorthogonal design matrices; (2) moderate and large, but
finite pool of explanatory variables; (3) both sparse and nonsparse models, in the
sense that (3a) they may include a small and large fraction of the potential variables
(and even all), and (3b) both constant size coefficients and sizes that decay fast to 0.

Unfortunately, when it comes to analyzing performance for finite problems with
nonorthogonal predictors the analytical tools are limited. Even the available few
nice results [Birgé and Massart (2001)] are not useful for such comparisons. As
many others do, we turn to a simulation study. However, all previous studies known
to us were quite narrow in the number and the range of configurations studied, and
suffered from the lack of a coherent way to discuss their results across configura-
tions. Ours is a more comprehensive study, building upon configurations already
offered as well as some new ones, and includes a quantitative framework for per-
formance comparisons in the form of empirical minimaxity relative to a “random
oracle.”

We first review the nonconstant penalized model selection methods (Section 2)
emphasizing the newly proposed one (Section 3). In Section 4 we analyze the
model selection example raised by Efron et al. (2004) in order to demonstrate the
results of the above methods as well as the computationally intensive LARS and
FSR. Sections 5 and 6 describe the simulation study and comparison methodology
respectively. The results are reported and analyzed in Section 7.

2. Background. As mentioned before, most of the penalized variable selec-
tion procedures share the same form of penalty function and differ only by the
value of penalization coefficient, λ. They can be divided into three groups: (1) con-
stant λ: forward selection (or backward elimination) with fixed p-to-enter (p-to-
drop) where λ = z2

(p−to−enter)/2; AIC [Akaike (1973)] and Cp [Mallows (1973)]

where λ = 2 ≈ z2
0.16/2; (2) λm that is the function of the size of the set of vari-

ables m over which the model is searched, for example the universal threshold of
Donoho and Jonhstone. Note that the latter can also be viewed as a multiple testing
Bonferroni procedure at level αm = 1/

√
π log(m), that is, λm ≈ z2

(αm/2)(1/m) (with
0.19 ≤ αm ≤ 0.37, when 10 ≤ m ≤ 10,000); (3) λk,m that is a function of both m

and the size of the considered model k, as described below.

2.1. The BH-based penalty. The FDR criterion in simultaneous testing is de-
fined as the expected proportion of true null hypotheses rejected out of the total
number of null hypotheses rejected [Benjamini and Hochberg (1995), hereafter
BH].

The FDR-controlling testing procedure in BH runs as follows. Associated
with H0i its p-value p(i), and p(1) ≤ · · · ≤ p(m) are the ordered p-values. Let
k = max{i :p(i) ≤ iq/m}. If such a k exists, reject the k hypotheses associated with
p(1), . . . , p(k), otherwise reject none. This procedure controls the FDR at level q ,
in fact at a level lower than q by a factor of m0/m, where m0 is the number of
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hypotheses for which the null is true. When applying the FDR procedure in the
orthogonal model selection situation, sorting the p-values is equivalent to choos-
ing the variable sequentially (irrespectively whether in a backward or forward

manner) according to standardized coefficients, since (
β̂k

SE(β̂k)
)2 = RSSk−1−RSSk

σ 2 .

Comparing the two-sided p-value pk with kq/m is equivalent to comparing
the above standardized coefficient squared with z2

(k/m)(q/2). Now pk ≤ kq/m iff

RSSk + σ 2 ∑k
i=1 z2

(i/m)(q/2) ≤ RSSk−1 + σ 2 ∑k−1
i=1 z2

(i/m)(q/2). Adhering to the BH
procedure one starts from the smallest standardized coefficient and stops at the first
(rightmost) local minimum; using the same procedure in a forward selection man-
ner and stopping at first (leftmost) local minimum is equivalent to the step-down
version of the BH that also controls the FDR [Sarkar (2002)].

In view of the above, one can present these FDR procedures as a penalized
method with a variable penalty factor

λk,m = 1

k

k∑

i=1

z2
(i/m)(q/2).(1)

ABDJ have made the above connection and showed that, for an orthogonal de-
sign matrix, the global minimum of the least squares penalized by (1) is asymptoti-
cally minimax for lr loss, 0 < r ≤ 2, simultaneously throughout a range of sparsity
classes. The FDR parameter q plays an essential role in the asymptotic minimaxity
theory in ABDJ. Even if we allow variable qm for problem of size m, but in such a
way that qm → q < 0.5, when m → ∞, then it is a sufficient condition for asymp-
totic minimaxity to hold. In contrast, if the limit q > 0.5, asymptotic minimaxity
is prevented.

It was also shown by ABDJ that, in the above setting, the difference between the
locations of the rightmost minimum and the leftmost local minimum (bracketing
the global minimum) is uniformly small. Therefore the asymptotic minimaxity of
the global minimum holds for the other two as well. Moreover, numerically these
indices are often identical.

NOTE. If the estimators have other distribution, z2
(i/m)(q/2) should be replaced

by the same quantile of the appropriate distribution.

2.2. Other nonconstant penalties. For large m and k = o(m) the BH penalty
is approximately the same as the following penalties:

λk,m ≈ 1

k

k∑

i=1

2 log(2m/qi) ≈ 2 log(2m/qk) = 2 log(m/k) + 2 log(2/q).

Several independent groups of researchers have proposed model selection proce-
dures with penalties per parameter of similar form that are function of both m

and k:
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(1) Foster and Stine (2004) arrived at a penalty λk,m = 1
k

∑k
i=1 2 log(m

i
) from in-

formation theoretic considerations.
(2) Tibshirani and Knight (1999) propose model selection using a covariance in-

flation criterion that adjusts the training error by the average covariance of pre-
dictions and responses on permuted versions of dataset. In the case of orthogo-
nal regression, their proposal takes the form of penalized RSS, with the penalty
being λk,m = 1

k
2

∑k
i=1 2 log(m

i
). One may consider this much-simpler penal-

ized form even in the nonorthogonal setting for which the original method was
developed.

(3) Birgé and Massart have studied penalized model selection specifically de-
signed to include penalties of the form λk,m = 2 log(Cm/k).

(4) Finally, George and Foster (2000) adopt an empirical Bayes approach, drawing
the components from a mixture prior (1 −w)δ0 +wN(0,C) and then estimat-
ing w and C from the data. They argue that the resulting estimator penalizes
the addition of a kth variable by a quantity close to 2 log((m + 1 − k)/k).

2.3. L1 methods. During the last few years, the attention in high dimensional
linear regression problems has shifted to l1 penalized approaches that do not rely
on least squares estimators. Some examples of such methods are: Lasso, LARS,
Forward Stagewise [Efron et al. (2004)] and the Dantzig Selector [Candes and Tao
(2007)].

In the Lasso, one minimizes the residuals sum of squares subject to
∑ |βi | ≤ t ,

where t is a tuning parameter that governs the size of the model, and should be
estimated by cross validation (in fact choosing t large enough results in the least
squares coefficients in the full model). Forward Stagewise is an iterative technique
that begins with zero coefficients for all variables and the coefficients are modified
in small steps, each time in the direction of the variable whose correlation with
the current residuals is maximal (unlike regular forward selection where we look
for the maximal absolute correlation between the current residuals and the variable
adjusted for those already in the model). As in Forward Stagewise, LARS starts
with all coefficients equal to zero, and finds the predictor most correlated with the
response. It takes the largest step possible in the direction of this predictor until
some other predictor has as much correlation with the current residual. At this
point LARS proceeds in a direction equiangular between the two predictors, until
a third variable enters the “most correlated” set, and so on. As shown by Efron et al.
(2004), all three algorithms can be viewed as greedy forward stepwise procedures
whose forward progress is determined by a compromise among the currently most
correlated covariates.

Candes and Tao (2007) have proposed the Dantzig selector, that minimizes∑ |βi | subject to sup |Xr| ≤ λσ , where r is the current residuals and λ some posi-
tive constant that controls the size of the model. Not surprisingly, they recommend
λm = √

2 logm, and for sparse models the establish optimal l2 rate properties.
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Bickel, Ritov and Tsybakov (2008a, 2008b) showed that the Lasso and the Dantzig
Selector are approximately equivalent in terms of the prediction loss. However,
when m 	 n, the bounds of the l2 loss for two methods have a different numerical
constants with no uniform dominance of one over the other.

3. The multiple-stage FDR procedure based penalty. In sparse problems
where the number of nonzero coefficients is small relative to the searched pool,
the factor of m0/m is close to 1 and not that important. In nonsparse problems,
adaptive FDR controlling methods were offered that have better performance as
testing procedures [Benjamini and Hochberg (2000), Storey, Taylor and Siegmund
(2004), Benjamini, Krieger and Yekutieli (2006) and many others]. They should
have potentially better performance as model selection procedures. Unfortunately,
not all such procedures can be translated into penalty functions and thereby be
used in a simple way as model selection methods.

The multiple-stage FDR procedure in Benjamini, Krieger and Yekutieli (2006)
re-estimates m0 at the ith stage by subtracting from m an estimated current bound
on the number of correct rejections i(1 − q). It leads to constants of the form
αi = iq/(m + 1 − i(1 − q)), and the multiple-stage step-down testing procedure
runs as follows:

(1) Let i = 1.
(2) If p(i) ≤ αi reject the hypothesis associated with p(i), update i to i + 1 and

repeat (2).
(3) If p(i) > αi stop.

Finner, Dickhaus and Roters (2009) show the asymptotic optimality of the test-
ing procedure (and of asymptotically equivalent ones), under the mixture model of
Genovese and Wasserman (2002). The FDR controlling property of the multiple-
stage procedure for a finite number of hypotheses using independent test statistics
was proved in Gavrilov, Benjamini and Sarkar (2009).

Using the same idea as outlined in Section 2.1 for the orthogonal design, defin-
ing the penalty factor λk,m = 1

k

∑k
i=1 z2

(q/2)(i/m+1−i(1−q)) and searching for the
first minimum on the forward path is identical to applying the original multiple-
stage procedure. In the nonorthogonal case we use the same penalty. As we still

have (
β̂k

SE(β̂k)
)2 = RSSk−1−RSSk

σ 2 , we practically test the coefficients sequentially us-

ing the FDR correction, so the kth variable is added to the current model if its
standardized coefficient given the previous k − 1 variables already entered into the
model is larger than z2

αk/2.

It is important to emphasize that the above procedure is not the same as com-
puting all marginal p-values and applying the multiple testing procedure, nor is
it equivalent to fitting the model with all variables and testing using these m p-
values. Applying forward selection on dependent predictors does not guarantee
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FIG. 1. The penalty factor of BH and multiple-stage procedures at FDR level 0.05.

that the p-values for testing the additional coefficient are entered in the same in-
creasing order. Moreover, all p-values are updated at each step of the forward
selection, in contrast to the original multiple-stage procedure where the sequence
of p-values is constant and ordered.

Figure 1 presents the comparisons between the penalty factor of BH and
multiple-stage procedures. Because of their similarity for sparse models, it can be
expected that the multiple-stage procedure enjoys the good asymptotic properties
of the BH procedure for sparse models. However, for nonsparse models the penalty
of multiple-stage procedure is smaller, allowing richer models to be selected when
this is indeed the case (m0/m 
 1).

The multiple-stage procedure in its penalized form can be computed using for-
ward selection (by any statistical software) in the following way:

(1) Let i = 1.
(2) Run the forward selection with p-to-enter equals to qi/(m + 1 − i(1 − q)).
(3) Let i′ be the size of the model selected in (2).
(4) If i ′ = i stop; otherwise let i be i ′ and repeat (2).

In fact, any penalized method with λk,m decreases in k can be computed in a similar
way to find first/last local minimum.

NOTE 1. In the multiple-stage procedure, the hypotheses can be rejected even
if its p-value is greater than 0.5. This is not surprising, since all the hypotheses are
tested simultaneously and the control of FDR allows a few erroneous rejections if
many correct rejections have already been made. If one does not want to reject hy-
potheses with large p-values, a constraint may be added that the hypotheses cannot
be rejected unless pi ≤ C, leading to λk,m = 1

k

∑k
i=1 z2

min((q/2)i/(m+1−i(1−q)),C).



186 Y. BENJAMINI AND Y. GAVRILOV

NOTE 2. The implementation of the procedure in R (and Splus) is available at
http://www.math.tau.ac.il/~ybenja.

4. Modeling the diabetes data [Efron et al. (2004)]. We now want to
demonstrate our model selection procedure, as well as other penalized model se-
lection procedures on the data first used in Efron et al. (2004), to illustrate their
model selection method, LARS, and then by Wu, Boos and Stefanski (2007) to
illustrate their false selection rate (FSR) method that is based on adding pseudo
variables to the real dataset. Ten baseline variables, age, sex, body mass index, av-
erage blood pressure and six blood serum measurements, were obtained for each
of n = 442 diabetes patients, as well as the response of interest, a quantitative mea-
sure of disease progression one year after baseline. The statisticians were asked to
identify the important baseline factors in disease progression and to construct the
model that produces accurate baseline predictions of response for future patients.

The data were standardized so that the baseline variables have mean 0 and unit
length, and that the response has mean 0. Then, two sequences of nested models
were produced by forward selection, one using only 10 main effects, and another
using 10 main effects, 45 two-way interactions and 9 squares (each baseline vari-
able except the dichotomous variable SEX). We do not force the hierarchy princi-
ple, and thus interaction effects can enter before main effects do.

The selection procedures were applied to the data, once searching for main ef-
fects only and once searching for main effects and interactions. In both cases we
use the penalty of FDR procedures with q = 0.05. (We get the same models also
if we use q = 0.10.) Standard errors were estimated from the full model.

In the main effect forward selection, the variables enter the model in the fol-
lowing order: BMI, S5, BP, S1, SEX, S2, S4, S6, S3, AGE. Both FDR procedures,
AIC, DJ and forward selection with 0.05 select into the model the first 6 variables,
exactly like FSR method. TK method stops after selecting 8 variables, BM—3 vari-
ables, FS—all 10 variables. The subset chosen by LARS is quite close to that of
chosen by FDR methods: instead of S2, S3 and S6 are included, so this subset
contains 7 variables.

In the quadratic model, the FDR procedure, DJ and TK select for the model 7
variables—5 main effects and 2 interactions. AIC method stops after 16 variables,
forward selection with 0.05 and FS—13 variables and BM—2 variables. (For com-
parisons of all penalized procedures with LARS and FSR, see Table 2 in Supple-
mentary Materials [Benjamini and Gavrilov (2009)].)

It is interesting to note that in both cases our results are identical to those of
Wu, Boos and Stefanski (2007), but in the FDR based selection procedures there
is no need to estimate parameters via bootstrapping, and therefore, they are faster
and easier to implement. In fact, as noted in Introduction, any user of standard
statistical software can use them.

As Wu, Boos and Stefanski (2007) noted, for the quadratic model the seven
variables selected by the FSR, and as shown here by both FDR procedures, is the

http://www.math.tau.ac.il/~ybenja
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subset of the 16 variables included in the LARS model. The LARS model has
R2 = 0.549 while the others have R2 = 0.534; the increase of 0.0153 comes at
the expense of having nine additional variables in the model, indicating that LARS
over-fits in this case. This tendency of LARS (and the Lasso) to overfit the model
was noted by Bickel, Ritov and Tsybakov (2008a, 2008b).

Since the true model is not known in this case, we may choose to compare the
performance of multiple-stage procedure and LARS, based on fivefold cross vali-
dation. This was further repeated 100 times, each time using a different (random)
partitioning to the five subsets. The difference between the performances of the
methods in terms of mean square prediction error was very small and not signifi-
cant (p = 0.98). For the main-effects model, the FSR and FDR procedures produce
very similar models to that of LARS, with nearly identical R2. In summary, this
example demonstrates that penalized selection methods works at least as well as
the more complex ones.

Finally, we use the example to demonstrate how the MS selection procedure
of a quadratic model, as described in Section 3, can be performed using stan-
dard software. We start by running the linear forward regression in SPSS with
p-of-entry = 0.00078 that is calculated from α1 = q/(m + q), where m = 64 and
q = 0.05. This search stops after 5 variables enter the model (including the in-
tercept). Now we update the p-of-entry to α5 = 5q/(m + 1 − 5(1 − q)) = 0.004.
The new search stops with 8 variables in the model. Updating the p-of-entry to
α8 = 8q/(m + 1 − 8(1 − q)) = 0.007, we again get the model with 8 variables
(including the intercept). Since the model size no longer changes, the search is
stopped.

5. Simulation study. A simulation study was performed to compare the effi-
ciency of the FDR controlling procedures and some other penalty based selection
procedures. Table 1 in Supplementary Materials [Benjamini and Gavrilov (2009)]
describes the selection procedures and configurations studied by various authors.
The scope of each simulation by itself, appearing in the literature, is quite limited.
Even when considering them jointly, they do not span a wide configuration space.
The number of potential explanatory variables is at most 50. The most widely stud-
ied structure of nonzero coefficients is “all at a constant size chosen to yield a fixed
correlation.” In most studies the proposed method is compared with AIC and BIC,
but with none of the other nonconstant adaptive penalties.

5.1. The procedures. Ten model selection procedures were compared with
the random oracle performance: (1) The Linear Step-up procedure in BH—
FDR; (2) the two-stage FDR procedure (the modified version) in Benjamini,
Krieger and Yekutieli (2006)—TSFDR; (3) the multiple-stage procedure in Ben-
jamini, Krieger and Yekutieli (2006) and Gavrilov, Benjamini and Sarkar (2009)—
MSFDR; (4) forward selection procedure—FWD; (5) the procedure in Foster and
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Stine (2004)—FS; (6) the procedure in Tibshirani and Knight (1999)—TK; (7)
the procedure in Birgé and Massart (2001)—BM; (8) the procedure in George and
Foster (2000)—GF; (9) the universal threshold in Donoho and Johnstone (1994)—
DJ; (10) AIC (Cp) procedure. The first four procedures were implemented at levels
0.05,0.10,0.25 and 0.50, resulting in 22 model selection procedures investigated.

5.2. The configurations investigated. Simulations are conducted with corre-
lated and independent explanatory variables. A random sample {(Yi,Xi)}ni=1 is
generated according to Yi = Xiβ + εi, εi ∼ N(0, σ 2). The number of potential
explanatory variables m = 20, 40, 80 and 160, the number of real explanatory
variables (with nonzero coefficients) p = √

m,m/4,m/3,m/2,3m/4 and m. We
denote these in the figures by p =“1” to “6,” from the sparsest model to the
full one. The number of observations n is always 2m, and σ = 1. For each m,
three design matrices were generated for three values of ρ = 0.5,0,−0.5, from
N(0,
m×m) with 
m×m whose diagonal elements are 1 and whose ij th element
is ρ|i−j | for i �= j . For each configuration of the parameters defined above, three
different choices of β are considered:

(1) β = c(m){1/
√

i}pi=1;
(2) β = c(m){p/(mi)}pi=1 for p = m,3m/4,m/2,m/3,m/4, so the smallest

nonzero β will be always c(m)/m. For p = √
m β was chosen uniformly on the

interval c(m)(1/m,1);
(3) β = {c(p)}pi=1, where the value of c(p) is chosen to give a theoretical

R2 = β ′X′Xβ
β ′X′Xβ+n

= 0.75. The value of c(p) decreases as p increases.

We denote these three types of coefficients in the tables and figures as “1,” “2”
and “3.”

Configuration (2) differs from configuration (1) both in the rate of decrease
and in the fact that the minimal β is constant across p. In both configurations
c(m) is chosen so that the standard error of the least squares estimators of the
coefficients in the true model will be approximately equal for all values of m.
Configuration (3) was chosen as it had been used by several authors as a test case
in their simulation studies [George and Foster (2000); Shen and Ye (2002)]. The
intercept for all configurations was chosen β0 = 10, so that it is practically always
included in the model.

In our initial simulations (not reported here), two additional configurations of
coefficients and different c(m) factors were included. The configurations of co-
efficients presented here expose extreme performances for all compared selection
procedures for better or worse, and thus suffice for minimax evaluation.

5.3. Computational procedures. The performance of each model selection
procedure in each configuration was measured by its mean square predicted error
averaged over 1000 replications. The computational task involved in the current
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study was beyond achievement using a single computer within a reasonable time
frame. We therefore utilized the software tool for computer-intensive jobs, Con-
dor (http://www.cs.wisc.edu/condor/), which allows running serially and in paral-
lel jobs, using the large collections of distributively owned computing resources.
In our case we used the approximately 80 computers in our Students Computer
Lab at the Schools of Computer Sciences and Mathematical Sciences at Tel Aviv
University (operating on LINUX).

6. Comparison methodology. In problems of even medium size it is techni-
cally impossible to apply an exhaustive search over all possible subsets, therefore
we limit the search for the best model over a selected path of nested models. We
adhere in this work to the path generated by forward selection, as the motivating
testing method starts with the most significant coefficient, and then adds one-by-
one more coefficients. (We also have in mind current large applications where
the number of variable considered may be larger than the number of observations
available, and the use of a forward path is more natural.) Admittedly, such a path is
data dependent, and need not contain the best overall model. If the produced path
is far from being optimal, the performance of all tested methods on this path is
beforehand restricted, since all penalized methods propose only the stopping rule
with no corrections for “bad” path. By restricting attention to the same path we
manage to separate the task of producing the good path of nested models from the
task of stopping at the best model on this path.

Since in practice the configuration of parameters is unknown we would like
to summarize performance across all configurations studied. For each configura-
tion of parameters the performance of of a model selection method was measured
by its MSPE: MSPEk = E[(βXi − β̂kXi)

′(βXi − β̂kXi)] = σ 2k + (β2X2)
′(I −

X1(X
′
1X1)

−1X′
1)(β2X2) where X = [X1,X2], X1 are the variables in the current

model, X2 are the variables out of the current model and β2 is the vector of true
coefficients corresponding to X2. However, the comparison between estimators
cannot be done directly in terms of MSPE, as MSPE values in one configuration
can be vastly different from MSPE values in the other, so we have to work in terms
of relative performance at the configuration level. Finally, one can revert to esti-
mator whose maximum relative MSPE is minimal over the configurations studied,
that is, the method that has the empirical minimax performance.

The benchmark for relative error can be set at the best estimator at that con-
figuration among the tested ones, as was done in robustness studies [Andrews et
al. (1972)]. This leads to results that are strongly dependent on the initial pool of
estimators studied, so we avoid this option.

Using the ideas similar to the “oracle” of Donoho and Johnstone (1994), we de-
fine the “random oracle” as a benchmark. The random oracle calculates the above
theoretical MSPE along the random path produced by forward selection, making
use of the true values of the coefficients, and chooses the model with minimal

http://www.cs.wisc.edu/condor/
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MSPE. Then, we compare the performance of each procedure on the same ran-
dom sequence relative to the performance of the random oracle. This comparison
attenuates the stochastic component in the comparison that depends on the chosen
path of nested models and gives us a common basis for all procedures even if the
chosen path is far from including the global optimum.

The errors for the relative performance of each method to the random oracle
were approximated from the standard errors of MSPE from the simulation results,
using estimators for standard error of ratios [Cochran (1977)].

7. The simulation results. Figure 2 presents the configuration where m = 80,
ρ = 0. For β-type = “1” ( 1√

i
) and p =“1” (p = √

m) using q = 0.05 is best for all
FDR procedures, while under the same setting for p = “6” (p = m), q = 0.25 is
the best. Figure 3 (as well as Tables 3–6 in Supplementary Materials [Benjamini
and Gavrilov (2009)] presents the MSPE values of three studied FDR procedures
(BH, TS and MS) at level 0.05 relative to those of the random oracle estimator over
all configurations for each m and ρ separately. Based on our simulation results, and
on theoretical results of ABDJ, q = 0.50 never leads to the best performances. The
FDR control parameter q plays a role in achieving the minimal loss in each specific
configuration studied. As expected, the small values of q perform better in “small”
models and vice versa. However, the information available for the model builder
is only on m, sometimes on ρ, rarely vaguely on p and never on the structure of
the coefficients. Therefore, if we choose q using a minimax consideration over the
last two, we get Table 1 which summarizes the preferable values of q for the FDR
procedures.

FIG. 2. The MSPE values relative to the random oracle of FDR procedures: BH—solid line;
TSFDR—dotted line; MSFDR—dashed line at 5% (◦), 10% (�) and 25% (+) FDR level.
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FIG. 3. The MSPE values relative to the random oracle of FDR procedures: BH—solid line;
TSFDR—dotted line; MSFDR—dashed line at 5% (◦), 10% (�) and 25% (+) FDR level.

TABLE 1
The preferable values of q for the FDR procedures studied

BH TSFDR MSFDR

m = 20 and 40 ρ = −0.5 0.05 0.05 0.05
ρ = 0 0.05 0.05 0.05

ρ = 0.5 0.05 0.05 0.05
any ρ 0.05 0.05 0.05

m = 80 ρ = −0.5 0.1 0.1 0.1
ρ = 0 0.1 0.05 0.05

ρ = 0.5 0.1 0.05 0.05
any ρ 0.1 0.1 0.05

m = 160 ρ = −0.5 0.25 0.25 0.25/0.1
ρ = 0 0.1 0.1 0.05

ρ = 0.5 0.1 0.1 0.1
any ρ 0.1 0.1 0.05
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It is evident that smaller values of q (0.05 and 0.1) perform better than q = 0.25
in the studied range. In addition, while the optimal choice of q for BH procedure
varies across different m values, within the same size m it varied only in the con-
figuration ρ = −0.5. For the proposed MSFDR the optimal values of q are more
stable as m changes.

As it follows from Figure 2, the BH procedure at 0.05 has an advantage over
the two adaptive FDR procedures at 0.05 only for “small problems,” in particular
for m = 20 β-type = “1” (1/

√
i) and p is up to m/2 and β-type = “2” (1/i) and

p = √
m. For β-types = “2” and “3” for all m the performances of three FDR pro-

cedures are very similar with sometimes a little advantage to the MS for full model.
Still, the relative loss of using the adaptive procedures instead of BH in “small”
models is less than the relative loss of using BH instead of adaptive procedures in
rich models. Therefore by minimax criterion we recommend to use adaptive FDR
procedures.

Note that for all FDR procedures the relative loss to random oracle decreases
in m, which means that in the large problems (m = 160 and above) the per-
formances of FDR procedures will be very close to those of the random ora-
cle. The maximal loss relatively to random oracle of BH procedure at 0.05 gets
up to 1.72,1.78,1.98 and 1.87, of two-stage FDR procedure at 0.05 gets up to
1.62,1.74,1.82 and 1.81, of multiple-stage FDR procedure at 0.05 gets up to
1.47,1.72,1.77 and 1.79 for m = 20,40,80,160, respectively.

Based on the above, for the range of configurations investigated here, the
multiple-stage FDR procedure (MSFDR) at 0.05 emerges as the recommended
overall choice.

Comparing this MSFDR with q = 0.05 with other selection methods that have
no extra tuning parameter, the empirical minimaxity summaries are given in Ta-
ble 2. The two leading procedures are MSFDR 0.05 and the TK, each one achiev-
ing minimax performance for two problem sizes. Still, comparing just these two,

TABLE 2
The maximal relative loss (MSPE of method divided by MSPE of the random oracle). Bold figures

indicate the minimax relative loss (or to within one simulation standard error). Simulation
standard errors are given in parentheses

Procedure m = 20 m = 40 m = 80 m = 160

FWD 2.80 (0.068) 2.87 (0.061) 2.84 (0.043) 3.59 (0.098)
Cp 4.77 (0.096) 4.87 (0.096) 4.88 (0.069) 6.88 (0.193)
DJ 2.34 (0.022) 2.78 (0.021) 3.05 (0.016) 2.58 (0.010)
BM 4.47 (0.064) 5.15 (0.106) 6.61 (0.137) 5.09 (0.110)
FS 3.07 (0.097) 3.62 (0.090) 3.35 (0.059) 3.35 (0.068)
TK 1.66 (0.028) 1.71 (0.015) 1.72 (0.010) 1.99 (0.010)
MSFDR 0.05 1.47 (0.031) 1.72 (0.012) 1.77 (0.010) 1.79 (0.008)
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the inefficiency of the MSFDR relative to TK is maximally 2.9%, while the other
way around it is 12.9%, and for m = 40 the two are hardly distinguishable.

The maximal relative loss by DJ procedure gets up 3.05. It performs better than
the penalties that depend both on m and p that reach 3.62 for FS and 6.61 for
BM. Cp and FWD at 0.05 show poor performance, with 6.88 and 3.59. Since the
performance deteriorates as m increases, it indicates even worse performance for
large problems.

So far we have done the comparisons only utilizing the information about m.
If further information is available on the structure of the dependency among the
explanatory variables we may wish to look into the results on the finer resolution.

Figure 4 (as well as Tables 3–6 in Supplementary Materials) summarizes for
each m and ρ separately the mean MSPE values relative to those of the random
oracle over the subset of configurations of interest as discussed in Section 6. The
results are presented for the MSFDR at 0.05 as the single FDR candidate and other
selection procedures discussed in Section 2.2.

Again, MSFDR and the TK are the minimax procedures, about half “wins” for
each, with MSFDR leading for m = 20 and m = 160, the TK for the other two,
with very small differences for m = 40. If we further allow q to depend on m

and ρ, then when the TK has the advantage the two have similar performance
and when the MSFDR takes the lead the TK is even further behind. The least-
favorable situations for both were usually the extreme models either the smallest
or the largest. The structure of the coefficients was either a constant or decay as
the square root.

The performance of the DJ procedure is similar for all values of ρ. Large true
models strain its performance, as can be expected. It performs better for sparse
models although it is never the best, as predicted by the asymptotic theory.

The performance of BM procedure was the worst among the procedures with
nonconstant penalty, although in some configurations this procedure was the best
among the tested ones. Its maximal relative loss occurs for the configurations
where coefficients decay as a square root, mostly for extreme size of true model:
too sparse or too rich.

GF procedure performs poorly in spite of its adaptive penalty, with a more than
twentyfold increase in MSPE (and therefore is not presented in Figure 4), because
it is not high enough for the first variables that enter the model. In addition, because
the penalty starts to decrease as the model includes more than m/2 variables, if
m/2 explanatory variables enter the model all variables will.

To make a more comprehensive analysis of the simulation results and, in par-
ticular, to avoid the dependence of the conclusions on a single least-favorable
case, we calculate the mean relative MSPE values for the k least-favorable cases,
k = 2,3 finally for all tested configurations. The maximal means of each tested
methods are presented in Table 3.

As the relative MSPE is averaged over more configurations the maximal risk
and the gaps between the methods decrease. Still, there are two clear leaders: the
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FIG. 4. MSPE values relative to the random oracle: MSFDR (�), DJ (+), FS (×), BM (�),
TK (◦), FWD 5% (�), Cp (•).

TK and the multiple-stage procedure. Their relationship reflects the one discussed
using the single least-favorable analysis.

8. Discussion. Recall that the minimax properties of the BH procedure were
proved in ABDJ for large m (asymptotically), for orthogonal variables and for
sparse signals. From the simulation study it seems that these theoretical properties
carry over to finite cases with and without the orthogonality of the explanatory
variables for sparse signals, a property shared by all other FDR procedures. It is
almost as good as the performance of the random oracle, which means that given
a random sequence of the nested models the FDR procedures do the “achievable
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TABLE 3
Mean relative MSPE values for the k least-favorable configurations, k = 2, 3, ALL.

The case for k = 1 is in Table 2

m = 20 m = 40 m = 80 m = 160

k 2 3 ALL 2 3 ALL 2 3 ALL 2 3 ALL
Procedure

FWD 2.80 2.62 1.48 2.69 2.62 1.46 2.77 2.52 1.37 3.55 3.54 1.54
Cp 4.71 4.28 1.82 4.58 4.42 1.80 4.75 4.32 1.69 6.73 6.58 2.07
DJ 2.30 2.25 1.36 2.60 2.53 1.44 2.91 2.82 1.47 2.51 2.47 1.46
BM 4.39 4.20 2.03 4.77 4.63 2.41 5.55 5.06 2.35 4.81 4.44 2.30
FS 3.07 3.06 1.77 3.49 3.42 1.57 3.26 2.97 1.33 2.79 2.57 1.24
TK 1.64 1.63 1.30 1.66 1.60 1.23 1.67 1.61 1.19 1.86 1.81 1.23
MSFDR 0.05 1.46 1.45 1.27 1.63 1.60 1.25 1.72 1.67 1.21 1.79 1.78 1.21

best.” Interestingly, in the scope of configurations studied in our simulation, using
FDR level of 0.05 is global best.

When we enlarge the scope of configurations to nonsparse as well as sparse the
multiple-stage FDR procedure at level 0.05 turns out to be the best among FDR
procedures. Comparing this single FDR controlling procedure with other penalized
methods, there are two procedures that perform well across all tested situations:
TK and the multiple-stage FDR procedure at level 0.05, with an advantage to the
multiple-stage FDR at large problems.

Why is the multiple-stage FDR procedure so successful? We think that it can be
attributed to its good frequentist behavior for sparse signals, where it behaves like
the BH procedure that adapts to the level of sparsity in the right way. At the other
extreme, where p/m may be close to 1, it becomes close to an empirical Bayes
rule, where p/m is “estimated” by approximately (1 − q) times the proportion
of coefficients currently in the model, and then the Bayes rule is applied. This is
achieved while keeping an inherently smooth transition from one situation to the
other. This can be compared to the approach of Johnstone and Silverman (2005),
who combine the two approaches for model selection in a different way.

In order to understand the similarity and differences in the results for the TK
and MSFDR procedures, Figure 5 compares the penalty per coefficient of the two
for m = 160. The penalty of the MSFDR procedure is lower for the first variables
that enter the model than the penalty of the TK (if m > 5), and this gap grows up
as m increases. In fact, the ratio between two penalties at the first step gets close
to 1.8 for m = 10,000. The cutoff point is at about m/5.5. Above the intersection
point the gap between the TK and MSFDR penalties decreases as m increases.
Since both procedures are used in a step-forward manner, the performance of TK
procedure is expected to be worse than that of the multiple-stage procedure when
the model does not contain variables with extremely strong signals.
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FIG. 5. Comparing the multiple-stage FDR and the Tibshirani–Knight penalties at the studied
problem sizes for m = 160. The solid line for MSFDR at 0.05 and the dotted line for TK procedure.

To strengthen the previous conclusion we extend our simulation study. In the
new simulation we compare just the two leading methods: MS and TK procedures
for 500 explanatory variables with p nonzero coefficients, where p = √

m ≈ 25,
p = m/2 = 250 and p = m = 500. The coefficients were chosen constant, so that
theoretical R2 = 0.75. (It was mostly a least-favorable case for both procedures.)
The number of observations is n = 1000 (as before n = 2m). At p = 250 the
performance was the same to within simulation standard error. At p = 500 the
TK had some advantage, and at p ≈ √

m the MS had a large advantage, so that the
maximal MSPE of MS relative to TK turned out to be 0.82.

As noted before, allowing dependency of q on m in the MSFDR is not a lim-
itation since m is always known and does not depend on the data structure. The
simulation study in ABDJ for the orthogonal case studied the BH performance for
m = 1024 and 65,536, and the recommended value was about q = 0.4. It indicates
that the optimal choice of q may increases in m (but note that this need not be the
case for the minimax relative to the oracle loss). The dependency of q on m, and
possibly on other factors known to the modeler, is an interesting research problem
that will benefit from further theoretical and empirical study.

A problem that has not been addressed in this article is the challenging case
where the number of potential variables m is larger than the number of observa-
tions n. Our initial simulations show good performance for the MS method in this
case as well, assuming that σ 2 is known. While if m < n the standard deviation can
be estimated from the full model, if m ≥ n the estimation of the standard deviation
is a real challenge. We therefore leave this problem for future work.
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SUPPLEMENTARY MATERIAL

Supplementary Materials (DOI: 10.1214/08-AOAS194SUPP; .pdf). We pres-
ent the configurations used to date in comparative studies of model selection meth-
ods, and give in detail the set of configurations used in the current comparative
analysis of the penalty based model selection methods. We then give the detailed
results of the analysis, the summary of which is presented in the paper.
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